101
|
Garcia-Vaquero ML, Gama-Carvalho M, Rivas JDL, Pinto FR. Searching the overlap between network modules with specific betweeness (S2B) and its application to cross-disease analysis. Sci Rep 2018; 8:11555. [PMID: 30068933 PMCID: PMC6070533 DOI: 10.1038/s41598-018-29990-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
Discovering disease-associated genes (DG) is strategic for understanding pathological mechanisms. DGs form modules in protein interaction networks and diseases with common phenotypes share more DGs or have more closely interacting DGs. This prompted the development of Specific Betweenness (S2B) to find genes associated with two related diseases. S2B prioritizes genes frequently and specifically present in shortest paths linking two disease modules. Top S2B scores identified genes in the overlap of artificial network modules more than 80% of the times, even with incomplete or noisy knowledge. Applied to Amyotrophic Lateral Sclerosis and Spinal Muscular Atrophy, S2B candidates were enriched in biological processes previously associated with motor neuron degeneration. Some S2B candidates closely interacted in network cliques, suggesting common molecular mechanisms for the two diseases. S2B is a valuable tool for DG prediction, bringing new insights into pathological mechanisms. More generally, S2B can be applied to infer the overlap between other types of network modules, such as functional modules or context-specific subnetworks. An R package implementing S2B is publicly available at https://github.com/frpinto/S2B .
Collapse
Affiliation(s)
- Marina L Garcia-Vaquero
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016, Lisboa, Portugal
| | - Margarida Gama-Carvalho
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016, Lisboa, Portugal
| | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca (USAL), Salamanca, Spain
| | - Francisco R Pinto
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016, Lisboa, Portugal.
| |
Collapse
|
102
|
RNA Sequencing and Pathway Analysis Identify Important Pathways Involved in Hypertrichosis and Intellectual Disability in Patients with Wiedemann-Steiner Syndrome. Neuromolecular Med 2018; 20:409-417. [PMID: 30014449 DOI: 10.1007/s12017-018-8502-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023]
Abstract
A growing number of histone modifiers are involved in human neurodevelopmental disorders, suggesting that proper regulation of chromatin state is essential for the development of the central nervous system. Among them, heterozygous de novo variants in KMT2A, a gene coding for histone methyltransferase, have been associated with Wiedemann-Steiner syndrome (WSS), a rare developmental disorder mainly characterized by intellectual disability (ID) and hypertrichosis. As KMT2A is known to regulate the expression of multiple target genes through methylation of lysine 4 of histone 3 (H3K4me), we sought to investigate the transcriptomic consequences of KMT2A variants involved in WSS. Using fibroblasts from four WSS patients harboring loss-of-function KMT2A variants, we performed RNA sequencing and identified a number of genes for which transcription was altered in KMT2A-mutated cells compared to the control ones. Strikingly, analysis of the pathways and biological functions significantly deregulated between patients with WSS and healthy individuals revealed a number of processes predicted to be altered that are relevant for hypertrichosis and intellectual disability, the cardinal signs of this disease.
Collapse
|
103
|
The Histone Demethylase KDM5 Is Essential for Larval Growth in Drosophila. Genetics 2018; 209:773-787. [PMID: 29764901 PMCID: PMC6028249 DOI: 10.1534/genetics.118.301004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
Regulated gene expression is necessary for developmental and homeostatic processes. The KDM5 family of transcriptional regulators are histone H3 lysine 4 demethylases that can function through both demethylase-dependent and -independent mechanisms. While loss and overexpression of KDM5 proteins are linked to intellectual disability and cancer, respectively, their normal developmental functions remain less characterized. Drosophila melanogaster provides an ideal system to investigate KDM5 function, as it encodes a single ortholog in contrast to the four paralogs found in mammalian cells. To examine the consequences of complete loss of KDM5, we generated a null allele of Drosophila kdm5, also known as little imaginal discs (lid), and show that it is essential for viability. Animals lacking KDM5 show a dramatically delayed larval development that coincides with decreased proliferation and increased cell death in wing imaginal discs. Interestingly, this developmental delay is independent of the well-characterized Jumonji C (JmjC) domain-encoded histone demethylase activity of KDM5, suggesting key functions for less characterized domains. Consistent with the phenotypes observed, transcriptome analyses of kdm5 null mutant wing imaginal discs revealed the dysregulation of genes involved in several cellular processes, including cell cycle progression and DNA repair. Together, our analyses reveal KDM5 as a key regulator of larval growth and offer an invaluable tool for defining the biological activities of KDM5 family proteins.
Collapse
|
104
|
de Sena Cortabitarte A, Berkel S, Cristian FB, Fischer C, Rappold GA. A direct regulatory link between microRNA-137 and SHANK2: implications for neuropsychiatric disorders. J Neurodev Disord 2018; 10:15. [PMID: 29665782 PMCID: PMC5905159 DOI: 10.1186/s11689-018-9233-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mutations in the SHANK genes, which encode postsynaptic scaffolding proteins, have been linked to a spectrum of neurodevelopmental disorders. The SHANK genes and the schizophrenia-associated microRNA-137 show convergence on several levels, as they are both expressed at the synapse, influence neuronal development, and have a strong link to neurodevelopmental and neuropsychiatric disorders like intellectual disability, autism, and schizophrenia. This compiled evidence raised the question if the SHANKs might be targets of miR-137. METHODS In silico analysis revealed a putative binding site for microRNA-137 (miR-137) in the SHANK2 3'UTR, while this was not the case for SHANK1 and SHANK3. Luciferase reporter assays were performed by overexpressing wild type and mutated SHANK2-3'UTR and miR-137 in human neuroblastoma cells and mouse primary hippocampal neurons. miR-137 was also overexpressed or inhibited in hippocampal neurons, and Shank2 expression was analyzed by quantitative real-time PCR and Western blot. Additionally, expression levels of experimentally validated miR-137 target genes were analyzed in the dorsolateral prefrontal cortex (DLPFC) of schizophrenia and control individuals using the RNA-Seq data from the CommonMind Consortium. RESULTS miR-137 directly targets the 3'UTR of SHANK2 in a site-specific manner. Overexpression of miR-137 in mouse primary hippocampal neurons significantly lowered endogenous Shank2 protein levels without detectable influence on mRNA levels. Conversely, miR-137 inhibition increased Shank2 protein expression, indicating that miR-137 regulates SHANK2 expression by repressing protein translation rather than inducing mRNA degradation. To find out if the miR-137 signaling network is altered in schizophrenia, we compared miR-137 precursor and miR-137 target gene expression in the DLPFC of schizophrenia and control individuals using the CommonMind Consortium RNA sequencing data. Differential expression of 23% (16/69) of known miR-137 target genes was detected in the DLPFC of schizophrenia individuals compared with controls. We propose that in further targets (e.g., SHANK2, as described in this paper) which are not regulated on RNA level, effects may only be detectable on protein level. CONCLUSION Our study provides evidence that a direct regulatory link exists between miR-137 and SHANK2 and supports the finding that miR-137 signaling might be altered in schizophrenia.
Collapse
Affiliation(s)
| | - Simone Berkel
- Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany
| | | | - Christine Fischer
- Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany
| | - Gudrun A. Rappold
- Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences (IZN), Ruprecht-Karls-University, Heidelberg, Germany
- Department of Human Molecular Genetics, Institute of Human Genetics, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| |
Collapse
|
105
|
Vallianatos CN, Farrehi C, Friez MJ, Burmeister M, Keegan CE, Iwase S. Altered Gene-Regulatory Function of KDM5C by a Novel Mutation Associated With Autism and Intellectual Disability. Front Mol Neurosci 2018; 11:104. [PMID: 29670509 PMCID: PMC5893713 DOI: 10.3389/fnmol.2018.00104] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/15/2018] [Indexed: 01/03/2023] Open
Abstract
Intellectual disability (ID) affects up to 2% of the population world-wide and often coincides with other neurological conditions such as autism spectrum disorders. Mutations in KDM5C cause Mental Retardation, X-linked, Syndromic, Claes-Jensen type (MRXSCJ, OMIM #300534) and are one of the most common causes of X-linked ID. KDM5C encodes a histone demethylase for di- and tri-methylated histone H3 lysine 4 (H3K4me2/3), which are enriched in transcriptionally engaged promoter regions. KDM5C regulates gene transcription; however, it remains unknown whether removal of H3K4me is fully responsible for KDM5C-mediated gene regulation. Most mutations functionally tested to date result in reduced enzymatic activity of KDM5C, indicating loss of demethylase function as the primary mechanism underlying MRXSCJ. Here, we report a novel KDM5C mutation, R1115H, identified in an individual displaying MRXSCJ-like symptoms. The carrier mother's cells exhibited a highly skewed X-inactivation pattern. The KDM5C-R1115H substitution does not have an impact on enzymatic activity nor protein stability. However, when overexpressed in post-mitotic neurons, KDM5C-R1115H failed to fully suppress expression of target genes, while the mutant also affected expression of a distinct set of genes compared to KDM5C-wildtype. These results suggest that KDM5C may have non-enzymatic roles in gene regulation, and alteration of these roles contributes to MRXSCJ in this patient.
Collapse
Affiliation(s)
| | - Clara Farrehi
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Michael J. Friez
- Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, SC, United States
| | - Margit Burmeister
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Catherine E. Keegan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
- Division of Genetics, Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
106
|
Akahira-Azuma M, Tsurusaki Y, Enomoto Y, Mitsui J, Kurosawa K. Refining the clinical phenotype of Okur-Chung neurodevelopmental syndrome. Hum Genome Var 2018; 5:18011. [PMID: 29619237 PMCID: PMC5874396 DOI: 10.1038/hgv.2018.11] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 12/30/2022] Open
Abstract
We describe an 8-year-old Japanese boy with a de novo recurrent missense mutation in CSNK2A1, c.593A>G, that is causative of Okur–Chung neurodevelopmental syndrome. He exhibited distinctive facial features, severe growth retardation with relative macrocephaly, and friendly, hyperactive behavior. His dysmorphic features might suggest a congenital histone modification defect syndrome, such as Kleefstra, Coffin–Siris, or Rubinstein–Taybi syndromes, which are indicative of functional interactions between the casein kinase II, alpha 1 gene and histone modification factors.
Collapse
Affiliation(s)
- Moe Akahira-Azuma
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yoshinori Tsurusaki
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
107
|
An inactivating mutation in the histone deacetylase SIRT6 causes human perinatal lethality. Genes Dev 2018; 32:373-388. [PMID: 29555651 PMCID: PMC5900711 DOI: 10.1101/gad.307330.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/26/2018] [Indexed: 12/27/2022]
Abstract
Ferrer et al. demonstrate that a homozygous inactivating mutation in the histone deacetylase SIRT6 results in severe congenital anomalies and perinatal lethality in four affected fetuses. Human induced pluripotent stem cells derived from D63H homozygous fetuses fail to differentiate into embryoid bodies, functional cardiomyocytes, and neural progenitor cells due to a failure to repress pluripotent genes. It has been well established that histone and DNA modifications are critical to maintaining the equilibrium between pluripotency and differentiation during early embryogenesis. Mutations in key regulators of DNA methylation have shown that the balance between gene regulation and function is critical during neural development in early years of life. However, there have been no identified cases linking epigenetic regulators to aberrant human development and fetal demise. Here, we demonstrate that a homozygous inactivating mutation in the histone deacetylase SIRT6 results in severe congenital anomalies and perinatal lethality in four affected fetuses. In vitro, the amino acid change at Asp63 to a histidine results in virtually complete loss of H3K9 deacetylase and demyristoylase functions. Functionally, SIRT6 D63H mouse embryonic stem cells (mESCs) fail to repress pluripotent gene expression, direct targets of SIRT6, and exhibit an even more severe phenotype than Sirt6-deficient ESCs when differentiated into embryoid bodies (EBs). When terminally differentiated toward cardiomyocyte lineage, D63H mutant mESCs maintain expression of pluripotent genes and fail to form functional cardiomyocyte foci. Last, human induced pluripotent stem cells (iPSCs) derived from D63H homozygous fetuses fail to differentiate into EBs, functional cardiomyocytes, and neural progenitor cells due to a failure to repress pluripotent genes. Altogether, our study described a germline mutation in SIRT6 as a cause for fetal demise, defining SIRT6 as a key factor in human development and identifying the first mutation in a chromatin factor behind a human syndrome of perinatal lethality.
Collapse
|
108
|
Huang D, Qiu Y, Li G, Liu C, She L, Zhang D, Chen X, Zhu G, Zhang X, Tian Y, Liu Y. KDM5B overexpression predicts a poor prognosis in patients with squamous cell carcinoma of the head and neck. J Cancer 2018; 9:198-204. [PMID: 29290786 PMCID: PMC5743728 DOI: 10.7150/jca.22145] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/18/2017] [Indexed: 01/04/2023] Open
Abstract
Purpose: Lysine demethylase (KDM) 5B, as a member of the histone lysine demethylase family, is overexpressed and functions abnormally in various human cancers. However, its expression in the squamous cell carcinoma of the head and neck (SCCHN) remains unclear. Methods: KDM5B expression was analyzed by immunohistochemistry and correlated with clinicopathological parameters in 103 archival SCCHN tissue samples and 24 adjacent noncancerous epithelial tissues. Results: We found that KDM5B expression was higher in SCCHN than that in adjacent noncancerous tissues. This was closely associated with lymph node metastasis and tumor recurrence. In addition, Kaplan-Meier analysis revealed that patients with high KDM5B expression had shorter disease-free and overall survival times than those with low KDM5B expression. Importantly, both univariate and multivariate analysis demonstrated that KDM5B level was an independent prognostic factor in SCCHN patients. Conclusions: These results indicate that KDM5B is a valuable biomarker that can be used to predict SCCHN patient outcome.
Collapse
Affiliation(s)
- Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Li She
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Diekuo Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Xiyu Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Gangcai Zhu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Yongquan Tian
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| |
Collapse
|
109
|
Liu M, Xu Z, Du Z, Wu B, Jin T, Xu K, Xu L, Li E, Xu H. The Identification of Key Genes and Pathways in Glioma by Bioinformatics Analysis. J Immunol Res 2017; 2017:1278081. [PMID: 29362722 PMCID: PMC5736927 DOI: 10.1155/2017/1278081] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/16/2017] [Indexed: 02/05/2023] Open
Abstract
Glioma is the most common malignant tumor in the central nervous system. This study aims to explore the potential mechanism and identify gene signatures of glioma. The glioma gene expression profile GSE4290 was analyzed for differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were applied for the enriched pathways. A protein-protein interaction (PPI) network was constructed to find the hub genes. Survival analysis was conducted to screen and validate critical genes. In this study, 775 downregulated DEGs were identified. GO analysis demonstrated that the DEGs were enriched in cellular protein modification, regulation of cell communication, and regulation of signaling. KEGG analysis indicated that the DEGs were enriched in the MAPK signaling pathway, endocytosis, oxytocin signaling, and calcium signaling. PPI network and module analysis found 12 hub genes, which were enriched in synaptic vesicle cycling rheumatoid arthritis and collecting duct acid secretion. The four key genes CDK17, GNA13, PHF21A, and MTHFD2 were identified in both generation (GSE4412) and validation (GSE4271) dataset, respectively. Regression analysis showed that CDK13, PHF21A, and MTHFD2 were independent predictors. The results suggested that CDK17, GNA13, PHF21A, and MTHFD2 might play important roles and potentially be valuable in the prognosis and treatment of glioma.
Collapse
Affiliation(s)
- Mingfa Liu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Zhennan Xu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Zepeng Du
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Bingli Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Tao Jin
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Ke Xu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Liyan Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Haixiong Xu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| |
Collapse
|
110
|
Epigenetic Etiology of Intellectual Disability. J Neurosci 2017; 37:10773-10782. [PMID: 29118205 DOI: 10.1523/jneurosci.1840-17.2017] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Intellectual disability (ID) is a prevailing neurodevelopmental condition associated with impaired cognitive and adaptive behaviors. Many chromatin-modifying enzymes and other epigenetic regulators have been genetically associated with ID disorders (IDDs). Here we review how alterations in the function of histone modifiers, chromatin remodelers, and methyl-DNA binding proteins contribute to neurodevelopmental defects and altered brain plasticity. We also discuss how progress in human genetics has led to the generation of mouse models that unveil the molecular etiology of ID, and outline the direction in which this field is moving to identify therapeutic strategies for IDDs. Importantly, because the chromatin regulators linked to IDDs often target common downstream genes and cellular processes, the impact of research in individual syndromes goes well beyond each syndrome and can also contribute to the understanding and therapy of other IDDs. Furthermore, the investigation of these disorders helps us to understand the role of chromatin regulators in brain development, plasticity, and gene expression, thereby answering fundamental questions in neurobiology.
Collapse
|
111
|
Scandaglia M, Lopez-Atalaya JP, Medrano-Fernandez A, Lopez-Cascales MT, Del Blanco B, Lipinski M, Benito E, Olivares R, Iwase S, Shi Y, Barco A. Loss of Kdm5c Causes Spurious Transcription and Prevents the Fine-Tuning of Activity-Regulated Enhancers in Neurons. Cell Rep 2017; 21:47-59. [PMID: 28978483 PMCID: PMC5679733 DOI: 10.1016/j.celrep.2017.09.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/29/2017] [Accepted: 09/04/2017] [Indexed: 12/17/2022] Open
Abstract
During development, chromatin-modifying enzymes regulate both the timely establishment of cell-type-specific gene programs and the coordinated repression of alternative cell fates. To dissect the role of one such enzyme, the intellectual-disability-linked lysine demethylase 5C (Kdm5c), in the developing and adult brain, we conducted parallel behavioral, transcriptomic, and epigenomic studies in Kdm5c-null and forebrain-restricted inducible knockout mice. Together, genomic analyses and functional assays demonstrate that Kdm5c plays a critical role as a repressor responsible for the developmental silencing of germline genes during cellular differentiation and in fine-tuning activity-regulated enhancers during neuronal maturation. Although the importance of these functions declines after birth, Kdm5c retains an important genome surveillance role preventing the incorrect activation of non-neuronal and cryptic promoters in adult neurons.
Collapse
Affiliation(s)
- Marilyn Scandaglia
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Alejandro Medrano-Fernandez
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Maria T Lopez-Cascales
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Beatriz Del Blanco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Michal Lipinski
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Eva Benito
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Roman Olivares
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, 5815 Medical Science II, Ann Arbor, MI 48109, USA
| | - Yang Shi
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain.
| |
Collapse
|
112
|
Tarhonskaya H, Nowak RP, Johansson C, Szykowska A, Tumber A, Hancock RL, Lang P, Flashman E, Oppermann U, Schofield CJ, Kawamura A. Studies on the Interaction of the Histone Demethylase KDM5B with Tricarboxylic Acid Cycle Intermediates. J Mol Biol 2017; 429:2895-2906. [PMID: 28827149 PMCID: PMC5636616 DOI: 10.1016/j.jmb.2017.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022]
Abstract
Methylation of lysine-4 of histone H3 (H3K4men) is an important regulatory factor in eukaryotic transcription. Removal of the transcriptionally activating H3K4 methylation is catalyzed by histone demethylases, including the Jumonji C (JmjC) KDM5 subfamily. The JmjC KDMs are Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenases, some of which are associated with cancer. Altered levels of tricarboxylic acid (TCA) cycle intermediates and the associated metabolites D- and L-2-hydroxyglutarate (2HG) can cause changes in chromatin methylation status. We report comprehensive biochemical, structural and cellular studies on the interaction of TCA cycle intermediates with KDM5B, which is a current medicinal chemistry target for cancer. The tested TCA intermediates were poor or moderate KDM5B inhibitors, except for oxaloacetate and succinate, which were shown to compete for binding with 2OG. D- and L-2HG were moderate inhibitors at levels that might be relevant in cancer cells bearing isocitrate dehydrogenase mutations. Crystallographic analyses with succinate, fumarate, L-malate, oxaloacetate, pyruvate and D- and L-2HG support the kinetic studies showing competition with 2OG. An unexpected binding mode for oxaloacetate was observed in which it coordinates the active site metal via its C-4 carboxylate rather than the C-1 carboxylate/C-2 keto groups. Studies employing immunofluorescence antibody-based assays reveal no changes in H3K4me3 levels in cells ectopically overexpressing KDM5B in response to dosing with TCA cycle metabolite pro-drug esters, suggesting that the high levels of cellular 2OG may preclude inhibition. The combined results reveal the potential for KDM5B inhibition by TCA cycle intermediates, but suggest that in cells, such inhibition will normally be effectively competed by 2OG.
Collapse
Affiliation(s)
- Hanna Tarhonskaya
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Radosław P Nowak
- Structural Genomic Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Catrine Johansson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom; Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Windmill Road, Oxford, OX3 7LD, United Kingdom
| | - Aleksandra Szykowska
- Structural Genomic Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Anthony Tumber
- Structural Genomic Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Rebecca L Hancock
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Pauline Lang
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Emily Flashman
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Udo Oppermann
- Structural Genomic Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom; Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Windmill Road, Oxford, OX3 7LD, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
113
|
Javidfar B, Park R, Kassim BS, Bicks LK, Akbarian S. The epigenomics of schizophrenia, in the mouse. Am J Med Genet B Neuropsychiatr Genet 2017; 174:631-640. [PMID: 28699694 PMCID: PMC5573750 DOI: 10.1002/ajmg.b.32566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/04/2017] [Accepted: 06/12/2017] [Indexed: 01/02/2023]
Abstract
Large-scale consortia including the Psychiatric Genomics Consortium, the Common Minds Consortium, BrainSeq and PsychENCODE, and many other studies taken together provide increasingly detailed insights into the genetic and epigenetic risk architectures of schizophrenia (SCZ) and offer vast amounts of molecular information, but with largely unexplored therapeutic potential. Here we discuss how epigenomic studies in human brain could guide animal work to test the impact of disease-associated alterations in chromatin structure and function on cognition and behavior. For example, transcription factors such as MYOCYTE-SPECIFIC ENHANCER FACTOR 2C (MEF2C), or multiple regulators of the open chromatin mark, methyl-histone H3-lysine 4, are associated with the genetic risk architectures of common psychiatric disease and alterations in chromatin structure and function in diseased brain tissue. Importantly, these molecules also affect cognition and behavior in genetically engineered mice, including virus-mediated expression changes in prefrontal cortex (PFC) and other key nodes in the circuitry underlying psychosis. Therefore, preclinical and small laboratory animal work could target genomic sequences affected by chromatin alterations in SCZ. To this end, in vivo editing of enhancer and other regulatory non-coding DNA by RNA-guided nucleases including CRISPR-Cas, and designer transcription factors, could be expected to deliver pipelines for novel therapeutic approaches aimed at improving cognitive dysfunction and other core symptoms of SCZ.
Collapse
Affiliation(s)
| | | | | | - Lucy K. Bicks
- Department of Psychiatry; Friedman Brain Institute; Icahn School of Medicine at Mount Sinai; New York New York
| | - Schahram Akbarian
- Department of Psychiatry; Friedman Brain Institute; Icahn School of Medicine at Mount Sinai; New York New York
| |
Collapse
|
114
|
van der Stijl R, Withoff S, Verbeek DS. Spinocerebellar ataxia: miRNAs expose biological pathways underlying pervasive Purkinje cell degeneration. Neurobiol Dis 2017; 108:148-158. [PMID: 28823930 DOI: 10.1016/j.nbd.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/21/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023] Open
Abstract
Recent work has demonstrated the importance of miRNAs in the pathogenesis of various brain disorders including the neurodegenerative disorder spinocerebellar ataxia (SCA). This review focuses on the role of miRNAs in the shared pathogenesis of the different SCA types. We examine the novel findings of a recent cell-type-specific RNA-sequencing study in mouse brain and discuss how the identification of Purkinje-cell-enriched miRNAs highlights biological pathways that expose the mechanisms behind pervasive Purkinje cell degeneration in SCA. These key pathways are likely to contain targets for therapeutic development and represent potential candidate genes for genetically unsolved SCAs.
Collapse
Affiliation(s)
- Rogier van der Stijl
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| |
Collapse
|
115
|
Porter RS, Murata-Nakamura Y, Nagasu H, Kim HG, Iwase S. Transcriptome Analysis Revealed Impaired cAMP Responsiveness in PHF21A-Deficient Human Cells. Neuroscience 2017; 370:170-180. [PMID: 28571721 DOI: 10.1016/j.neuroscience.2017.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/08/2017] [Accepted: 05/19/2017] [Indexed: 12/16/2022]
Abstract
Potocki-Shaffer Syndrome is a rare neurodevelopmental syndrome associated with microdeletion of a region of Chromosome 11p11.2. Genetic evidence has implicated haploinsufficiency of PHF21A, a gene that encodes a histone-binding protein, as the likely cause of intellectual disability and craniofacial abnormalities in Potocki-Shaffer Syndrome. However, the molecular consequences of reduced PHF21A expression remain elusive. In this study, we analyzed by RNA-Sequencing (RNA-Seq) two patient-derived cell lines with heterozygous loss of PHF21A compared to unaffected individuals and identified 1,885 genes that were commonly misregulated. The patient cells displayed down-regulation of key pathways relevant to learning and memory, including Cyclic Adenosine Monophosphate (cAMP)-signaling pathway genes. We found that PHF21A is required for full induction of a luciferase reporter carrying cAMP-responsive elements (CRE) following stimulation by the cAMP analog, forskolin. Finally, PHF21A-deficient patient-derived cells exhibited a delayed induction of immediate early genes following forskolin stimulation. These results suggest that an impaired response to cAMP signaling might be involved in the pathology of PHF21A deficiency. This article is part of a Special Issue entitled: [SI: Molecules & Cognition].
Collapse
Affiliation(s)
- Robert S Porter
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Hajime Nagasu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Hyung-Goo Kim
- Section of Reproductive Endocrinology, Infertility & Genetics, Department of Obstetrics & Gynecology, Augusta University, Augusta, GA 30912, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
116
|
CHARGE and Kabuki Syndromes: Gene-Specific DNA Methylation Signatures Identify Epigenetic Mechanisms Linking These Clinically Overlapping Conditions. Am J Hum Genet 2017; 100:773-788. [PMID: 28475860 PMCID: PMC5420353 DOI: 10.1016/j.ajhg.2017.04.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/06/2017] [Indexed: 01/13/2023] Open
Abstract
Epigenetic dysregulation has emerged as a recurring mechanism in the etiology of neurodevelopmental disorders. Two such disorders, CHARGE and Kabuki syndromes, result from loss of function mutations in chromodomain helicase DNA-binding protein 7 (CHD7LOF) and lysine (K) methyltransferase 2D (KMT2DLOF), respectively. Although these two syndromes are clinically distinct, there is significant phenotypic overlap. We therefore expected that epigenetically driven developmental pathways regulated by CHD7 and KMT2D would overlap and that DNA methylation (DNAm) alterations downstream of the mutations in these genes would identify common target genes, elucidating a mechanistic link between these two conditions, as well as specific target genes for each disorder. Genome-wide DNAm profiles in individuals with CHARGE and Kabuki syndromes with CHD7LOF or KMT2DLOF identified distinct sets of DNAm differences in each of the disorders, which were used to generate two unique, highly specific and sensitive DNAm signatures. These DNAm signatures were able to differentiate pathogenic mutations in these two genes from controls and from each other. Analysis of the DNAm targets in each gene-specific signature identified both common gene targets, including homeobox A5 (HOXA5), which could account for some of the clinical overlap in CHARGE and Kabuki syndromes, as well as distinct gene targets. Our findings demonstrate how characterization of the epigenome can contribute to our understanding of disease pathophysiology for epigenetic disorders, paving the way for explorations of novel therapeutics.
Collapse
|
117
|
Kejík Z, Kaplánek R, Havlík M, Bříza T, Jakubek M, Králová J, Mikula I, Martásek P, Král V. Optical probes and sensors as perspective tools in epigenetics. Bioorg Med Chem 2017; 25:2295-2306. [PMID: 28285925 DOI: 10.1016/j.bmc.2017.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/13/2016] [Accepted: 01/11/2017] [Indexed: 12/23/2022]
Abstract
Modifications of DNA cytosine bases and histone posttranslational modifications play key roles in the control of gene expression and specification of cell states. Such modifications affect many important biological processes and changes to these important regulation mechanisms can initiate or significantly contribute to the development of many serious pathological states. Therefore, recognition and determination of chromatin modifications is an important goal in basic and clinical research. Two of the most promising tools for this purpose are optical probes and sensors, especially colourimetric and fluorescence devices. The use of optical probes and sensors is simple, without highly expensive instrumentation, and with excellent sensitivity and specificity for target structural motifs. Accordingly, the application of various probes and sensors in the recognition and determination of cytosine modifications and structure of histones and histone posttranslational modifications, are discussed in detail in this review.
Collapse
Affiliation(s)
- Zdeněk Kejík
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Robert Kaplánek
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Martin Havlík
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Tomáš Bříza
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Milan Jakubek
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Jarmila Králová
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Ivan Mikula
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Pavel Martásek
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Vladimír Král
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic.
| |
Collapse
|
118
|
Jin X, Wu N, Dai J, Li Q, Xiao X. TXNIP mediates the differential responses of A549 cells to sodium butyrate and sodium 4-phenylbutyrate treatment. Cancer Med 2016; 6:424-438. [PMID: 28033672 PMCID: PMC5313639 DOI: 10.1002/cam4.977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/15/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
Sodium butyrate (NaBu) and sodium 4-phenylbutyrate (4PBA) have promising futures in cancer treatment; however, their underlying molecular mechanisms are not clearly understood. Here, we show A549 cell death induced by NaBu and 4PBA are not the same. NaBu treatment induces a significantly higher level of A549 cell death than 4PBA. A gene expression microarray identified more than 5000 transcripts that were altered (>1.5-fold) in NaBu-treated A549 cells, but fewer than 2000 transcripts that were altered in 4PBA. Moreover, more than 100 cell cycle-associated genes were greatly repressed by NaBu, but slightly repressed by 4PBA; few genes were significantly upregulated only in 4PBA-treated cells. Gene expression was further validated by other experiments. Additionally, A549 cells that were treated with these showed changes in glucose consumption, caspase 3/7 activation and histone modifications, as well as enhanced mitochondrial superoxide production. TXNIP was strongly induced by NaBu (30- to 40-fold mRNA) but was only slightly induced by 4PBA (two to fivefold) in A549 cells. TXNIP knockdown by shRNA in A549 cells significantly attenuated caspase 3/7 activation and restored cell viability, while TXNIP overexpression significantly increased caspase 3/7 activation and cell death only in NaBu-treated cells. Moreover, TXNIP also regulated NaBu- but not 4PBA-induced H4K5 acetylation and H3K4 trimethylation, possibly by increasing WDR5 expression. Finally, we demonstrated that 4PBA induced a mitochondrial superoxide-associated cell death, while NaBu did so mainly through a TXNIP-mediated pathway. The above data might benefit the future clinic application.
Collapse
Affiliation(s)
- Xuefang Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Nana Wu
- The Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Juji Dai
- Department of General Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Qiuxia Li
- The Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - XiaoQiang Xiao
- The Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China.,Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| |
Collapse
|
119
|
Garay PM, Wallner MA, Iwase S. Yin-yang actions of histone methylation regulatory complexes in the brain. Epigenomics 2016; 8:1689-1708. [PMID: 27855486 PMCID: PMC5289040 DOI: 10.2217/epi-2016-0090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of histone methylation has emerged as a major driver of neurodevelopmental disorders including intellectual disabilities and autism spectrum disorders. Histone methyl writer and eraser enzymes generally act within multisubunit complexes rather than in isolation. However, it remains largely elusive how such complexes cooperate to achieve the precise spatiotemporal gene expression in the developing brain. Histone H3K4 methylation (H3K4me) is a chromatin signature associated with active gene-regulatory elements. We review a body of literature that supports a model in which the RAI1-containing H3K4me writer complex counterbalances the LSD1-containing H3K4me eraser complex to ensure normal brain development. This model predicts H3K4me as the nexus of previously unrelated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Patricia Marie Garay
- Neuroscience Graduate Program, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Shigeki Iwase
- Neuroscience Graduate Program, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
120
|
Zech M, Boesch S, Maier EM, Borggraefe I, Vill K, Laccone F, Pilshofer V, Ceballos-Baumann A, Alhaddad B, Berutti R, Poewe W, Haack TB, Haslinger B, Strom TM, Winkelmann J. Haploinsufficiency of KMT2B, Encoding the Lysine-Specific Histone Methyltransferase 2B, Results in Early-Onset Generalized Dystonia. Am J Hum Genet 2016; 99:1377-1387. [PMID: 27839873 DOI: 10.1016/j.ajhg.2016.10.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/25/2016] [Indexed: 12/26/2022] Open
Abstract
Early-onset generalized dystonia represents the severest form of dystonia, a hyperkinetic movement disorder defined by involuntary twisting postures. Although frequently transmitted as a single-gene trait, the molecular basis of dystonia remains largely obscure. By whole-exome sequencing a parent-offspring trio in an Austrian kindred affected by non-familial early-onset generalized dystonia, we identified a dominant de novo frameshift mutation, c.6406delC (p.Leu2136Serfs∗17), in KMT2B, encoding a lysine-specific methyltransferase involved in transcriptional regulation via post-translational modification of histones. Whole-exome-sequencing-based exploration of a further 30 German-Austrian individuals with early-onset generalized dystonia uncovered another three deleterious mutations in KMT2B-one de novo nonsense mutation (c.1633C>T [p.Arg545∗]), one de novo essential splice-site mutation (c.7050-2A>G [p.Phe2321Serfs∗93]), and one inherited nonsense mutation (c.2428C>T [p.Gln810∗]) co-segregating with dystonia in a three-generation kindred. Each of the four mutations was predicted to mediate a loss-of-function effect by introducing a premature termination codon. Suggestive of haploinsufficiency, we found significantly decreased total mRNA levels of KMT2B in mutant fibroblasts. The phenotype of individuals with KMT2B loss-of-function mutations was dominated by childhood lower-limb-onset generalized dystonia, and the family harboring c.2428C>T (p.Gln810∗) showed variable expressivity. In most cases, dystonic symptoms were accompanied by heterogeneous non-motor features. Independent support for pathogenicity of the mutations comes from the observation of high rates of dystonic presentations in KMT2B-involving microdeletion syndromes. Our findings thus establish generalized dystonia as the human phenotype associated with haploinsufficiency of KMT2B. Moreover, we provide evidence for a causative role of disordered histone modification, chromatin states, and transcriptional deregulation in dystonia pathogenesis.
Collapse
Affiliation(s)
- Michael Zech
- Institut für Neurogenomik, Helmholtz Zentrum München, 85764 Munich, Germany; Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Sylvia Boesch
- Department of Neurology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Esther M Maier
- Dr. von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Ingo Borggraefe
- Dr. von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Katharina Vill
- Dr. von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Franco Laccone
- Institute of Medical Genetics, Medical School of Vienna, 1090 Vienna, Austria
| | | | - Andres Ceballos-Baumann
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Schön Klinik München Schwabing, 80804 Munich, Germany
| | - Bader Alhaddad
- Institut für Humangenetik, Technische Universität München, 81675 Munich, Germany
| | - Riccardo Berutti
- Institut für Humangenetik, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Tobias B Haack
- Institut für Humangenetik, Technische Universität München, 81675 Munich, Germany; Institut für Humangenetik, Helmholtz Zentrum München, 85764 Munich, Germany; Devision of Molecular Genetics, Universitätsklinikum Tübingen, 72076 Tübingen, Germany
| | - Bernhard Haslinger
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Tim M Strom
- Institut für Humangenetik, Technische Universität München, 81675 Munich, Germany; Institut für Humangenetik, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Juliane Winkelmann
- Institut für Neurogenomik, Helmholtz Zentrum München, 85764 Munich, Germany; Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Institut für Humangenetik, Technische Universität München, 81675 Munich, Germany; Munich Cluster for Systems Neurology, SyNergy, 81377 Munich, Germany.
| |
Collapse
|
121
|
Ricq EL, Hooker JM, Haggarty SJ. Toward development of epigenetic drugs for central nervous system disorders: Modulating neuroplasticity via H3K4 methylation. Psychiatry Clin Neurosci 2016; 70:536-550. [PMID: 27485392 PMCID: PMC5764164 DOI: 10.1111/pcn.12426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 12/19/2022]
Abstract
The mammalian brain dynamically activates or silences gene programs in response to environmental input and developmental cues. This neuroplasticity is controlled by signaling pathways that modify the activity, localization, and/or expression of transcriptional-regulatory enzymes in combination with alterations in chromatin structure in the nucleus. Consistent with this key neurobiological role, disruptions in the fine-tuning of epigenetic and transcriptional regulation have emerged as a recurrent theme in studies of the genetics of neurodevelopmental and neuropsychiatric disorders. Furthermore, environmental factors have been implicated in the increased risk of heterogeneous, multifactorial, neuropsychiatric disorders via epigenetic mechanisms. Aberrant epigenetic regulation of gene expression thus provides an attractive unifying model for understanding the complex risk architecture of mental illness. Here, we review emerging genetic evidence implicating dysregulation of histone lysine methylation in neuropsychiatric disease and outline advancements in small-molecule probes targeting this chromatin modification. The emerging field of neuroepigenetic research is poised to provide insight into the biochemical basis of genetic risk for diverse neuropsychiatric disorders and to develop the highly selective chemical tools and imaging agents necessary to dissect dynamic transcriptional-regulatory mechanisms in the nervous system. On the basis of these findings, continued advances may lead to the validation of novel, disease-modifying therapeutic targets for a range of disorders with aberrant chromatin-mediated neuroplasticity.
Collapse
Affiliation(s)
- Emily L. Ricq
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Chemical Neurobiology Laboratory, Center for Human Genetic Research, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jacob M. Hooker
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Center for Human Genetic Research, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
122
|
Affiliation(s)
- Joyce Taylor-Papadimitriou
- a Breast Cancer Biology , Division of Cancer Studies, King's College London , Guy's Hospital, London , UK
| | - Joy Burchell
- a Breast Cancer Biology , Division of Cancer Studies, King's College London , Guy's Hospital, London , UK
| |
Collapse
|
123
|
Hirano K, Namihira M. New insight into LSD1 function in human cortical neurogenesis. NEUROGENESIS 2016; 3:e1249195. [PMID: 27900345 DOI: 10.1080/23262133.2016.1249195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 02/04/2023]
Abstract
The cerebral cortex of primates has evolved massively and intricately in comparison to that of other species. Accumulating evidence indicates that this is caused by changes in cell biological features of neural stem cells (NSCs), which differentiate into neurons and glial cells during development. The fate of NSCs during rodent cortical development is stringently regulated by epigenetic factors, such as histone modification enzymes, but the role of these factors in human corticogenesis is largely unknown. We have recently discovered that a lysine-specific demethylase 1 (LSD1), which catalyzes the demethylation of methyl groups in the histone tail, plays a unique role in human fetal NSCs (hfNSCs). We show that, unlike the role previously reported in mice, LSD1 in hfNSCs is necessary for neuronal differentiation and controls the expression of HEYL, one of the NOTCH target genes, by modulating the methylation level of histones on its promoter region. Interestingly, LSD1-regulation of Heyl expression is not observed in mouse NSCs. Furthermore, we first demonstrated that HEYL is able to maintain the undifferentiated state of hfNSCs. Our findings provide a new insight indicating that LSD1 may be a key player in the development and characterization of the evolved cerebral cortex.
Collapse
Affiliation(s)
- Kazumi Hirano
- Molecular Neurophysiology Research Group, Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST) , Japan
| | - Masakazu Namihira
- Molecular Neurophysiology Research Group, Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST) , Japan
| |
Collapse
|
124
|
Longitudinal assessment of neuronal 3D genomes in mouse prefrontal cortex. Nat Commun 2016; 7:12743. [PMID: 27597321 PMCID: PMC5025847 DOI: 10.1038/ncomms12743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/28/2016] [Indexed: 12/15/2022] Open
Abstract
Neuronal epigenomes, including chromosomal loopings moving distal cis-regulatory elements into proximity of target genes, could serve as molecular proxy linking present-day-behaviour to past exposures. However, longitudinal assessment of chromatin state is challenging, because conventional chromosome conformation capture assays essentially provide single snapshots at a given time point, thus reflecting genome organization at the time of brain harvest and therefore are non-informative about the past. Here we introduce 'NeuroDam' to assess epigenome status retrospectively. Short-term expression of the bacterial DNA adenine methyltransferase Dam, tethered to the Gad1 gene promoter in mouse prefrontal cortex neurons, results in stable G(methyl)ATC tags at Gad1-bound chromosomal contacts. We show by NeuroDam that mice with defective cognition 4 months after pharmacological NMDA receptor blockade already were affected by disrupted chromosomal conformations shortly after drug exposure. Retrospective profiling of neuronal epigenomes is likely to illuminate epigenetic determinants of normal and diseased brain development in longitudinal context.
Collapse
|
125
|
Mariani L, Lussi YC, Vandamme J, Riveiro A, Salcini AE. The H3K4me3/2 histone demethylase RBR-2 controls axon guidance by repressing the actin-remodeling gene wsp-1. Development 2016; 143:851-63. [PMID: 26811384 DOI: 10.1242/dev.132985] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/16/2016] [Indexed: 12/25/2022]
Abstract
The dynamic regulation of histone modifications is important for modulating transcriptional programs during development. Aberrant H3K4 methylation is associated with neurological disorders, but how the levels and the recognition of this modification affect specific neuronal processes is unclear. Here, we show that RBR-2, the sole homolog of the KDM5 family of H3K4me3/2 demethylases in Caenorhabditis elegans, ensures correct axon guidance by controlling the expression of the actin regulator wsp-1. Loss of rbr-2 results in increased levels of H3K4me3 at the transcriptional start site of wsp-1, with concomitant higher wsp-1 expression responsible for defective axon guidance. In agreement, overexpression of WSP-1 mimics rbr-2 loss, and its depletion restores normal axon guidance in rbr-2 mutants. NURF-1, an H3K4me3-binding protein and member of the chromatin-remodeling complex NURF, is required for promoting aberrant wsp-1 transcription in rbr-2 mutants and its ablation restores wild-type expression of wsp-1 and axon guidance. Thus, our results establish a precise role for epigenetic regulation in neuronal development by demonstrating a functional link between RBR-2 activity, H3K4me3 levels, the NURF complex and the expression of WSP-1.
Collapse
Affiliation(s)
- Luca Mariani
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yvonne C Lussi
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Julien Vandamme
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alba Riveiro
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anna Elisabetta Salcini
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
126
|
Speranzini V, Pilotto S, Sixma TK, Mattevi A. Touch, act and go: landing and operating on nucleosomes. EMBO J 2016; 35:376-88. [PMID: 26787641 DOI: 10.15252/embj.201593377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 12/16/2022] Open
Abstract
Chromatin-associated enzymes are responsible for the installation, removal and reading of precise post-translation modifications on DNA and histone proteins. They are specifically recruited to the target gene by associated factors, and as a result of their activity, they contribute in modulating cell identity and differentiation. Structural and biophysical approaches are broadening our knowledge on these processes, demonstrating that DNA, histone tails and histone surfaces can each function as distinct yet functionally interconnected anchoring points promoting nucleosome binding and modification. The mechanisms underlying nucleosome recognition have been described for many histone modifiers and related readers. Here, we review the recent literature on the structural organization of these nucleosome-associated proteins, the binding properties that drive nucleosome modification and the methodological advances in their analysis. The overarching conclusion is that besides acting on the same substrate (the nucleosome), each system functions through characteristic modes of action, which bring about specific biological functions in gene expression regulation.
Collapse
Affiliation(s)
| | - Simona Pilotto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
127
|
Landmarks in the Evolution of (t)-RNAs from the Origin of Life up to Their Present Role in Human Cognition. Life (Basel) 2015; 6:life6010001. [PMID: 26703740 PMCID: PMC4810232 DOI: 10.3390/life6010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 01/28/2023] Open
Abstract
How could modern life have evolved? The answer to that question still remains unclear. However, evidence is growing that, since the origin of life, RNA could have played an important role throughout evolution, right up to the development of complex organisms and even highly sophisticated features such as human cognition. RNA mediated RNA-aminoacylation can be seen as a first landmark on the path from the RNA world to modern DNA- and protein-based life. Likewise, the generation of the RNA modifications that can be found in various RNA species today may already have started in the RNA world, where such modifications most likely entailed functional advantages. This association of modification patterns with functional features was apparently maintained throughout the further course of evolution, and particularly tRNAs can now be seen as paradigms for the developing interdependence between structure, modification and function. It is in this spirit that this review highlights important stepping stones of the development of (t)RNAs and their modifications (including aminoacylation) from the ancient RNA world up until their present role in the development and maintenance of human cognition. The latter can be seen as a high point of evolution at its present stage, and the susceptibility of cognitive features to even small alterations in the proper structure and functioning of tRNAs underscores the evolutionary relevance of this RNA species.
Collapse
|
128
|
Liu X, Secombe J. The Histone Demethylase KDM5 Activates Gene Expression by Recognizing Chromatin Context through Its PHD Reader Motif. Cell Rep 2015; 13:2219-31. [PMID: 26673323 DOI: 10.1016/j.celrep.2015.11.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/05/2015] [Accepted: 10/31/2015] [Indexed: 12/22/2022] Open
Abstract
KDM5 family proteins are critically important transcriptional regulators whose physiological functions in the context of a whole animal remain largely unknown. Using genome-wide gene expression and binding analyses in Drosophila adults, we demonstrate that KDM5 (Lid) is a direct regulator of genes required for mitochondrial structure and function. Significantly, this occurs independently of KDM5's well-described JmjC domain-encoded histone demethylase activity. Instead, it requires the PHD motif of KDM5 that binds to histone H3 that is di- or trimethylated on lysine 4 (H3K4me2/3). Genome-wide, KDM5 binding overlaps with the active chromatin mark H3K4me3, and a fly strain specifically lacking H3K4me2/3 binding shows defective KDM5 promoter recruitment and gene activation. KDM5 therefore plays a central role in regulating mitochondrial function by utilizing its ability to recognize specific chromatin contexts. Importantly, KDM5-mediated regulation of mitochondrial activity is likely to be key in human diseases caused by dysfunction of this family of proteins.
Collapse
Affiliation(s)
- Xingyin Liu
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|