101
|
Abudu O, Nguyen D, Millward I, Manning JE, Wahid M, Lightfoot A, Marcon F, Merard R, Margielewska-Davies S, Roberts K, Brown R, Powell-Brett S, Nicol SM, Zayou F, Croft WD, Pearce H, Moss P, Iqbal AJ, McGettrick HM. Interplay in galectin expression predicts patient outcomes in a spatially restricted manner in PDAC. Biomed Pharmacother 2024; 172:116283. [PMID: 38377735 DOI: 10.1016/j.biopha.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Galectins (Gal's) are a family of carbohydrate-binding proteins that are known to support the tumour microenvironment through their immunosuppressive activity and ability to promote metastasis. As such they are attractive therapeutic targets, but little is known about the cellular expression pattern of galectins within the tumour and its neighbouring stromal microenvironment. Here we investigated the cellular expression pattern of Gals within pancreatic ductal adenocarcinoma (PDAC). METHODS Galectin gene and protein expression were analysed by scRNAseq (n=4) and immunofluorescence imaging (n=19) in fibroblasts and epithelial cells of pancreatic biopsies from PDAC patients. Galectin surface expression was also assessed on tumour adjacent normal fibroblasts and cancer associated primary fibroblasts from PDAC biopsies using flow cytometry. RESULTS scRNAseq revealed higher Gal-1 expression in fibroblasts and higher Gal-3 and -4 expression in epithelial cells. Both podoplanin (PDPN+, stromal/fibroblast) cells and EpCAM+ epithelial cells expressed Gal-1 protein, with highest expression seen in the stromal compartment. By contrast, significantly more Gal-3 and -4 protein was expressed in ductal cells expressing either EpCAM or PDPN, when compared to the stroma. Ductal Gal-4 cellular expression negatively correlated with ductal Gal-1, but not Gal-3 expression. Higher ductal cellular expression of Gal-1 correlated with smaller tumour size and better patient survival. CONCLUSIONS In summary, the intricate interplay and cell-specific expression patterns of galectins within the PDAC tissue, particularly the inverse correlation between Gal-1 and Gal-4 in ducts and its significant association with patient survival, highlights the complex molecular landscape underlying PDAC and provides valuable insights for future therapeutic interventions.
Collapse
Affiliation(s)
- Oladimeji Abudu
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Duy Nguyen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Isabel Millward
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Julia E Manning
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Mussarat Wahid
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Abbey Lightfoot
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Francesca Marcon
- University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Reena Merard
- University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | | | - Keith Roberts
- University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Rachel Brown
- University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Sarah Powell-Brett
- University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Samantha M Nicol
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Fouzia Zayou
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Wayne D Croft
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
102
|
Han W, Shi D, Yang Q, Li X, Zhang J, Peng C, Yan F. Alteration of chromosome structure impacts gene expressions implicated in pancreatic ductal adenocarcinoma cells. BMC Genomics 2024; 25:206. [PMID: 38395755 PMCID: PMC10885383 DOI: 10.1186/s12864-024-10109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a five-year survival rate of approximately 10%. Genetic mutations are pivotal drivers in PDAC pathogenesis, but recent investigations also revealed the involvement of non-genetic alterations in the disease development. In this study, we undertook a multi-omics approach, encompassing ATAC-seq, RNA-seq, ChIP-seq, and Hi-C methodologies, to dissect gene expression alterations arising from changes in chromosome accessibility and chromatin three-dimensional interactions in PDAC. RESULTS Our findings indicate that chromosomal structural alterations can lead to abnormal expressions on key genes during PDAC development. Notably, overexpression of oncogenes FGFR2, FOXA2, CYP2R1, and CPOX can be attributed to the augmentation of promoter accessibility, coupled with long-range interactions with distal elements. Additionally, our findings indicate that chromosomal structural alterations caused by genomic instability can lead to abnormal expressions in PDACs. As an example, by analyzing chromosomal changes, we identified a putative oncogenic gene, LPAR1, which shows upregulated expression in both PDAC cell lines and clinical samples. The overexpression is correlated with alterations in LPAR1-associated 3D genome structure and chromatin state. We further demonstrated that high LPAR1 activity is required for enhanced PDAC cell migration in vitro. CONCLUSIONS Collectively, our findings reveal that the chromosomal conformational alterations, in addition to the well-known genetic mutations, are critical for PDAC tumorigenesis.
Collapse
Affiliation(s)
- Wenrui Han
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio- resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Detong Shi
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio- resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Qiu Yang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio- resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Xinxin Li
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio- resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Jian Zhang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio- resources in Yunnan, Yunnan University, 650500, Kunming, China
- Southeast United Graduate School, 650500, Kunming, China
| | - Cheng Peng
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio- resources in Yunnan, Yunnan University, 650500, Kunming, China.
| | - Fang Yan
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio- resources in Yunnan, Yunnan University, 650500, Kunming, China.
| |
Collapse
|
103
|
Feng L, Tang X, You Z. Undifferentiated sarcomatoid carcinoma of the pancreas-a single-institution experience with 23 cases. BMC Cancer 2024; 24:250. [PMID: 38389041 PMCID: PMC10885366 DOI: 10.1186/s12885-024-11988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The clinical course and surgical outcomes of undifferentiated sarcomatoid carcinoma of the pancreas (USCP) remain poorly characterized owing to its rarity. This study aimed to describe the histology, clinicopathologic features, perioperative outcomes, and overall survival (OS) of 23 resected USCP patients. METHODS We retrospectively described the histology, clinicopathologic features, perioperative outcomes and OS of patients who underwent pancreatectomy with a final diagnosis of USCP in a single institution. RESULTS A total of 23 patients were included in this study. Twelve patients were male, the median age at diagnosis was 61.5 ± 13.0 years (range: 35-89). Patients with USCP had no specific symptoms and characteristic imaging findings. The R0 resection was achieved in 21 cases. The En bloc resection and reconstruction of mesenteric-portal axis was undertaken in 9 patients. There were no deaths attributed to perioperative complications in this study. The intraoperative tumor-draining lymph nodes (TDLNs) dissection was undergone in 14 patients. The 1-, 3- and 5-year survival rates were 43.5%, 4.8% and 4.8% in the whole study, the median survival was 9.0 months. Only 1 patient had survived more than 5 years and was still alive at last follow-up. The presence of distant metastasis (p = 0.004) and the presence of pathologically confirmed mesenteric-portal axis invasion (p = 0.007) was independently associated with poor OS. CONCLUSIONS USCP was a rare subgroup of pancreatic malignancies with a bleak prognosis. To make a diagnose of USCP by imaging was quite difficult because of the absence of specific manifestations. Accurate diagnosis depended on pathological biopsy, and the IHC profile of USCP was mainly characterized by co-expression of epithelial and mesenchymal markers. A large proportion of patients have an early demise, especially for patients with distant metastasis and pathologically confirmed mesenteric-portal axis invasion. Long-term survival after radical resection of USCPs remains rare.
Collapse
Affiliation(s)
- Lei Feng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, China
| | - Xiaojuan Tang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, China
| | - Zhen You
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, China.
| |
Collapse
|
104
|
Hartupee C, Nagalo BM, Chabu CY, Tesfay MZ, Coleman-Barnett J, West JT, Moaven O. Pancreatic cancer tumor microenvironment is a major therapeutic barrier and target. Front Immunol 2024; 15:1287459. [PMID: 38361931 PMCID: PMC10867137 DOI: 10.3389/fimmu.2024.1287459] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is projected to become the 2nd leading cause of cancer-related deaths in the United States. Limitations in early detection and treatment barriers contribute to the lack of substantial success in the treatment of this challenging-to-treat malignancy. Desmoplasia is the hallmark of PDAC microenvironment that creates a physical and immunologic barrier. Stromal support cells and immunomodulatory cells face aberrant signaling by pancreatic cancer cells that shifts the complex balance of proper repair mechanisms into a state of dysregulation. The product of this dysregulation is the desmoplastic environment that encases the malignant cells leading to a dense, hypoxic environment that promotes further tumorigenesis, provides innate systemic resistance, and suppresses anti-tumor immune invasion. This desmoplastic environment combined with the immunoregulatory events that allow it to persist serve as the primary focus of this review. The physical barrier and immune counterbalance in the tumor microenvironment (TME) make PDAC an immunologically cold tumor. To convert PDAC into an immunologically hot tumor, tumor microenvironment could be considered alongside the tumor cells. We discuss the complex network of microenvironment molecular and cellular composition and explore how they can be targeted to overcome immuno-therapeutic challenges.
Collapse
Affiliation(s)
- Conner Hartupee
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Chiswili Y. Chabu
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Siteman Cancer Center, Washington University, St. Louis, MO, United States
| | - Mulu Z. Tesfay
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Joycelynn Coleman-Barnett
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - John T. West
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - Omeed Moaven
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Louisiana State University - Louisiana Children's Medical Center (LSU - LCMC) Cancer Center, New Orleans, LA, United States
| |
Collapse
|
105
|
Scianò F, Terrana F, Pecoraro C, Parrino B, Cascioferro S, Diana P, Giovannetti E, Carbone D. Exploring the therapeutic potential of focal adhesion kinase inhibition in overcoming chemoresistance in pancreatic ductal adenocarcinoma. Future Med Chem 2024; 16:271-289. [PMID: 38269431 DOI: 10.4155/fmc-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer-related deaths worldwide. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase often overexpressed in PDAC. FAK has been linked to cell migration, survival, proliferation, angiogenesis and adhesion. This review first highlights the chemoresistant nature of PDAC. Second, the role of FAK in PDAC cancer progression and resistance is carefully described. Additionally, it discusses recent developments of FAK inhibitors as valuable drugs in the treatment of PDAC, with a focus on diamine-substituted-2,4-pyrimidine-based compounds, which represent the most potent class of FAK inhibitors in clinical trials for the treatment of PDAC disease. To conclude, relevant computational studies performed on FAK inhibitors are reported to highlight the key structural features required for interaction with the protein, with the aim of optimizing this novel targeted therapy.
Collapse
Affiliation(s)
- Fabio Scianò
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Francesca Terrana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Barbara Parrino
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Patrizia Diana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) De Boelelaan 1117, Amsterdam, 1081HV, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, Pisa, 56017, Italy
| | - Daniela Carbone
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| |
Collapse
|
106
|
Horvat NK, Karpovsky I, Phillips M, Wyatt MM, Hall MA, Herting CJ, Hammons J, Mahdi Z, Moffitt RA, Paulos CM, Lesinski GB. Clinically relevant orthotopic pancreatic cancer models for adoptive T cell transfer therapy. J Immunother Cancer 2024; 12:e008086. [PMID: 38191243 PMCID: PMC10806555 DOI: 10.1136/jitc-2023-008086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor. Prognosis is poor and survival is low in patients diagnosed with this disease, with a survival rate of ~12% at 5 years. Immunotherapy, including adoptive T cell transfer therapy, has not impacted the outcomes in patients with PDAC, due in part to the hostile tumor microenvironment (TME) which limits T cell trafficking and persistence. We posit that murine models serve as useful tools to study the fate of T cell therapy. Currently, genetically engineered mouse models (GEMMs) for PDAC are considered a "gold-standard" as they recapitulate many aspects of human disease. However, these models have limitations, including marked tumor variability across individual mice and the cost of colony maintenance. METHODS Using flow cytometry and immunohistochemistry, we characterized the immunological features and trafficking patterns of adoptively transferred T cells in orthotopic PDAC (C57BL/6) models using two mouse cell lines, KPC-Luc and MT-5, isolated from C57BL/6 KPC-GEMM (KrasLSL-G12D/+p53-/- and KrasLSL-G12D/+p53LSL-R172H/+, respectively). RESULTS The MT-5 orthotopic model best recapitulates the cellular and stromal features of the TME in the PDAC GEMM. In contrast, far more host immune cells infiltrate the KPC-Luc tumors, which have less stroma, although CD4+ and CD8+ T cells were similarly detected in the MT-5 tumors compared with KPC-GEMM in mice. Interestingly, we found that chimeric antigen receptor (CAR) T cells redirected to recognize mesothelin on these tumors that signal via CD3ζ and 41BB (Meso-41BBζ-CAR T cells) infiltrated the tumors of mice bearing stroma-devoid KPC-Luc orthotopic tumors, but not MT-5 tumors. CONCLUSIONS Our data establish for the first time a reproducible and realistic clinical system useful for modeling stroma-rich and stroma-devoid PDAC tumors. These models shall serve an indepth study of how to overcome barriers that limit antitumor activity of adoptively transferred T cells.
Collapse
Affiliation(s)
- Natalie K Horvat
- Department of Pediatric Hematology, Oncology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Isaac Karpovsky
- Department of Hematology and Oncology, Emory University, Atlanta, Georgia, USA
| | - Maggie Phillips
- Department of Hematology and Oncology, Emory University, Atlanta, Georgia, USA
| | - Megan M Wyatt
- Department of Surgery, Department of Microbiology & Immunology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Margaret A Hall
- Department of Hematology and Oncology, Emory University, Atlanta, Georgia, USA
| | - Cameron J Herting
- Department of Hematology and Oncology, Emory University, Atlanta, Georgia, USA
| | - Jacklyn Hammons
- Department of Hematology and Oncology, Emory University, Atlanta, Georgia, USA
| | - Zaid Mahdi
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Richard A Moffitt
- Department of Hematology and Oncology, Emory University, Atlanta, Georgia, USA
| | - Chrystal M Paulos
- Department of Surgery, Department of Microbiology & Immunology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Gregory B Lesinski
- Department of Hematology and Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
107
|
Duong HQ, Hoang MC, Nguyen TH, Nguyen PT, Le VT, Dao TN, Ngo VL, Dang TH. Aldehyde Dehydrogenase-1A1 (ALDH1A1): The Novel Regulator of Chemoresistance in Pancreatic Cancer Cells. Cancer Control 2024; 31:10732748241305835. [PMID: 39611960 PMCID: PMC11607765 DOI: 10.1177/10732748241305835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Aldehyde dehydrogenase-1A1 (ALDH1A1), a member of a superfamily of 19 isozymes, exhibits various biological functions and is involved in several important physiological and pathological processes, including those associated with various diseases including cancers such as pancreatic cancer. Chemotherapy is one of the most important strategies for the treatment of pancreatic cancer; however, the chemoresistance exhibited by pancreatic cancer cells is a leading cause of chemotherapy failure. It has been reported that overexpression of ALDH1A1 significantly correlates with poor prognosis and tumor aggressiveness, and is clinically associated with chemoresistance. Additionally, ALDH1A1 may serve as a novel regulator for the diagnosis and prognosis of cancer resistance. In particular, ALDH1A1 can promote cancer progression by facilitating the manifestation of cancer stem cell properties. However, the molecular mechanism by which ALDH1A1 clinically regulates the development of chemoresistance, and its role in prognosis and cancer stem cells, including pancreatic cancer stem cells, remain unclear. Therefore, the current review aims to summarize the clinical functions of ALDH1A1 as a novel regulator of chemoresistance, prognosis, and cancer stem cell development in pancreatic cancer.
Collapse
Affiliation(s)
- Hong-Quan Duong
- Laboratory Center, Hanoi University of Public Health, Hanoi, Vietnam
| | - Minh-Cong Hoang
- Laboratory Department, Yenphong Medical Center, Bacninh, Vietnam
| | - Thi-Hue Nguyen
- Laboratory Department, Bacgiang General Hospital, Bacgiang, Vietnam
| | | | - Van-Thu Le
- Laboratory Center, Hanoi University of Public Health, Hanoi, Vietnam
| | - Thi-Nguyet Dao
- Pathology Department, Ducgiang General Hospital, Hanoi, Vietnam
| | - Van-Lang Ngo
- Faculty of Biomedical Sciences, Phenikaa University, Hanoi, Vietnam
| | - The-Hung Dang
- Laboratory Center, Hanoi University of Public Health, Hanoi, Vietnam
| |
Collapse
|
108
|
Wu Y, Zhang F, Xu P, Li P. Brucine Inhibits Proliferation of Pancreatic Ductal Adenocarcinoma through PI3K/AKT Pathway-induced Mitochondrial Apoptosis. Curr Cancer Drug Targets 2024; 24:749-759. [PMID: 38310464 DOI: 10.2174/0115680096274284231116104554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 02/05/2024]
Abstract
INTRODUCTION The purpose of this research was to settle the role of brucine in pancreatic ductal adenocarcinoma (PDAC) and the mechanisms involved. METHODS The findings of this study suggest that brucine exerts inhibitory effects on cell growth, clonogenicity, and invasive potential of Panc02 and Mia Paca-2 cells. These effects may be linked to an increase in apoptotic-prone cell population. RESULTS Gene sequencing data suggests that these effects are mediated through the induction of apoptosis. Experimental evidence further supports the notion that brucine reduces mitochondrial membrane potential and upregulates Bax expression while downregulating Bcl-2 expression. These effects are believed to be a result of brucine-mediated suppression of PI3K/Akt activity, which serves as a regulatory factor of mTOR, Bax, and Bcl-2. Suppression of PI3K activity enhances the tumor-suppressing effects of brucine. CONCLUSION Overall, these findings suggest that brucine has therapeutic potential as a remedy option for PDAC.
Collapse
Affiliation(s)
- You Wu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui, China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, 230022, Hefei, Anhui, China
| | - Fenglin Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui, China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, 230022, Hefei, Anhui, China
| | - Panling Xu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui, China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, 230022, Hefei, Anhui, China
| | - Ping Li
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui, China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, 230022, Hefei, Anhui, China
| |
Collapse
|
109
|
Xiu Z, Yang Q, Xie F, Han F, He W, Liao W. Revolutionizing digestive system tumor organoids research: Exploring the potential of tumor organoids. J Tissue Eng 2024; 15:20417314241255470. [PMID: 38808253 PMCID: PMC11131411 DOI: 10.1177/20417314241255470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Digestive system tumors are the leading cause of cancer-related deaths worldwide. Despite ongoing research, our understanding of their mechanisms and treatment remain inadequate. One promising tool for clinical applications is the use of gastrointestinal tract tumor organoids, which serve as an important in vitro model. Tumor organoids exhibit a genotype similar to the patient's tumor and effectively mimic various biological processes, including tissue renewal, stem cell, and ecological niche functions, and tissue response to drugs, mutations, or injury. As such, they are valuable for drug screening, developing novel drugs, assessing patient outcomes, and supporting immunotherapy. In addition, innovative materials and techniques can be used to optimize tumor organoid culture systems. Several applications of digestive system tumor organoids have been described and have shown promising results in related aspects. In this review, we discuss the current progress, limitations, and prospects of this model for digestive system tumors.
Collapse
Affiliation(s)
- Zhian Xiu
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fusheng Xie
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weiwei He
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| |
Collapse
|
110
|
Shao Z, Chen X, Qiu H, Xu M, Wen X, Chen Z, Liu Z, Ding X, Zhang L. CircNEK6 promotes the progression of pancreatic ductal adenocarcinoma through targeting miR-503/CCND1 axis. Transl Oncol 2024; 39:101810. [PMID: 37871516 PMCID: PMC10622713 DOI: 10.1016/j.tranon.2023.101810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
PURPOSE The present study aimed to reveal the function and underlying molecular mechanism of circRNA NIMA related kinase 6 (circNEK6) in promoting the progression of pancreatic ductal adenocarcinoma (PDAC). METHODS The differentially expressed circRNAs in three paired PDAC tissues and adjacent tissues were identified by RNA sequencing. CircNEK6 was screened out to further explore its relationship with the prognosis of PDAC patients. The target microRNAs and mRNAs of circNEK6 were analyzed through online databases and detected by quantitative real-time polymerase chain reaction. Cell counting kit-8 assay, clone formation assay, transwell assay, flow cytometry and western blot were used to explore the function of circNEK6 on the biological behaviors of PDAC cells. The in vivo antitumor effect of circNEK6 silencing on PDAC was investigated by nude mouse xenograft models. RESULTS 203 differentially expressed circRNAs including circNEK6 were identified between paired PDAC tissues and adjacent tissues, and the expression level of circNEK6 was negatively correlated with the prognosis of PDAC patients. The results of in vitro experiments showed that knockdown of circNEK6 repressed the proliferation, migration and invasion, but induced the apoptosis of PDAC cells. Moreover, circNEK6 silencing inhibited tumor growth and prolonged the survival time of PDAC-bearing mice. Mechanistically, miR-503/cyclin D1 (CCND1) axis was predicted and confirmed as the target of circNEK6. CONCLUSIONS CircNEK6 serves as a competing endogenous RNA of CCND1 by absorbing miR-503, which might be treated as a novel and potential target for PDAC treatment.
Collapse
Affiliation(s)
- Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xueting Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Hui Qiu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, No. 9 Kunpeng North Road, Xuzhou, Jiangsu 221000, China
| | - Muchen Xu
- Department of Radiation Oncology, Dushu Lake Hospital Affilated to Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu 215000, China
| | - Xin Wen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, No. 9 Kunpeng North Road, Xuzhou, Jiangsu 221000, China
| | - Ziqin Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Zhengyang Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xin Ding
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, No. 9 Kunpeng North Road, Xuzhou, Jiangsu 221000, China.
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, No. 9 Kunpeng North Road, Xuzhou, Jiangsu 221000, China.
| |
Collapse
|
111
|
Wang L, Wu X, Ruan Y, Zhang X, Zhou X. Exosome-transmitted hsa_circ_0012634 suppresses pancreatic ductal adenocarcinoma progression through regulating miR-147b/HIPK2 axis. Cancer Biol Ther 2023; 24:2218514. [PMID: 37326330 PMCID: PMC10281470 DOI: 10.1080/15384047.2023.2218514] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/08/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Circular RNA (circRNA) has been confirmed to play a vital role in pancreatic ductal adenocarcinoma (PDAC) progression. However, the function and regulatory mechanism of hsa_circ_0012634 in PDAC progression remain unclear. Quantitative real-time PCR was used to measure the expression of hsa_circ_0012634, microRNA (miR)-147b and homeodomain interacting protein kinase 2 (HIPK2). Cell function was assessed by cell counting kit 8 assay, EdU assay, colony formation assay and flow cytometry. Glucose uptake and lactate production were evaluated to determine cell glycolysis ability. Protein expression was examined by western blot analysis. RNA interaction was confirmed by RNA pull-down assay and dual-luciferase reporter assay. Exosomes were isolated from serums and cell culture supernatant using ultracentrifugation and identified by transmission electron microscopy. Animal experiments were conducted using nude mice. Hsa_circ_0012634 was downregulated in PDAC tissues and cells, and its overexpression suppressed PDAC cell proliferation, glycolysis and enhanced apoptosis. MiR-147b was targeted by hsa_circ_0012634, and its inhibitors repressed PDAC cell growth and glycolysis. HIPK2 could be targeted by miR-147b, and hsa_circ_0012634 regulated miR-147b/HIPK2 to suppress PDAC cell progression. Hsa_circ_0012634 was lowly expressed in serum exosomes of PDAC patients. Exosomal hsa_circ_0012634 inhibited PDAC cell growth and glycolysis in vitro, as well as tumorigenesis in vivo. Exosomal hsa_circ_0012634 restrained PDAC progression via the miR-147b/HIPK2 pathway, confirming that hsa_circ_0012634 might serve as a diagnosis and treatment biomarker for PDAC.
Collapse
Affiliation(s)
- Luoluo Wang
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xiang Wu
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Ruan
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xueming Zhang
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xinhua Zhou
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
112
|
Zhou K, Strunk H, Dimitrov D, Vidal-Jove J, Gonzalez-Carmona MA, Essler M, Jin C, Mei Z, Zhu H, Marinova M. US-guided high-intensity focused ultrasound in pancreatic cancer treatment: a consensus initiative between Chinese and European HIFU centers. Int J Hyperthermia 2023; 41:2295812. [PMID: 38159562 DOI: 10.1080/02656736.2023.2295812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose: Ultrasound-guided high-intensity focused ultrasound (USgHIFU) represents a safe and effective non-invasive thermoablative technique for managing inoperable pancreatic cancer. This treatment method significantly alleviates disease-related symptoms and reduces pancreatic tumor volume. However, the current body of evidence is constrained by a lack of randomized controlled trials. The utilization of USgHIFU is primarily indicated for patients with unresectable, locally advanced, or metastatic pancreatic cancer, particularly those experiencing symptoms due to a locally advanced primary tumor.Methods: This collaborative consensus paper, involving European and Chinese HIFU centers treating pancreatic cancer, delineates criteria for patient selection, focusing on those most likely to benefit from USgHIFU treatment. Consideration is given to endpoints encompassing symptom alleviation, local response rates, other oncological outcomes, as well as overall and progression-free survival. Additionally, this paper defines relevant contraindications, side effects, and complications associated with USgHIFU. The publication also explores the feasibility and role of USgHIFU within the context of palliative care, including standard systemic chemotherapy.Results: The non-invasive local treatment of advanced pancreatic cancer using HIFU should be regarded as an adjunctive option alongside systemic chemotherapy or best supportive care for managing this aggressive disease. Based on the ability of USgHIFU therapy to mitigate pain and reduce primary tumor volume, it should be considered as a complementary therapy for symptomatic patients with inoperable pancreatic cancer and as a potential means of tumor debulking. The underutilized yet promising USgHIFU exhibits the potential to enhance patients' quality of life by alleviating cancer-related pain. Experts in the field should evaluate this treatment option be evaluated by experts in this field, with this consensus paper potentially serving as a guiding resource for the medical community.Conclusions: US-guided HIFU for advanced pancreatic cancer addresses treatment goals, available options, success rates, and limitations. As a non-invasive, effective local therapy, complementary to chemotherapy and best supportive care, it plays a pivotal role in pain relief, reducing of tumor volume, and potentially improving survival rates.
Collapse
Affiliation(s)
- Kun Zhou
- Clinical Center for Tumor Therapy, 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | - Dobromir Dimitrov
- Department of Surgical Propedeutics, HIFU Center University Hospital St. Marina, Medical University Peleven, Pleven, Bulgaria
| | - Joan Vidal-Jove
- Institute Khuab, Comprehensive Tumor Center Barcelona, Barcelona, Spain
| | | | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Germany
| | - Chengbin Jin
- Clinical Center for Tumor Therapy, 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhechuan Mei
- Department of Gastroenterology and Hepatology, 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Zhu
- Clinical Center for Tumor Therapy, 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Milka Marinova
- Department of Nuclear Medicine, University Hospital Bonn, Germany
| |
Collapse
|
113
|
Dong W, Zhao H, Xiao S, Zheng L, Fan T, Wang L, Zhang H, Hu Y, Yang J, Wang T, Xiao W. Single-cell RNA-seq analyses inform necroptosis-associated myeloid lineages influence the immune landscape of pancreas cancer. Front Immunol 2023; 14:1263633. [PMID: 38149248 PMCID: PMC10749962 DOI: 10.3389/fimmu.2023.1263633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Tumor-infiltrating myeloid cells (TIMs) are key regulators in tumor progression, but the similarity and distinction of their fundamental properties in pancreatic ductal adenocarcinoma (PDAC) remain elusive. Method In this study, we conducted scRNA-seq data analysis of cells from 12 primary tumor (PT) tissues, 4 metastatic (Met) tumor tissues, 3 adjacent normal pancreas tissues (Para), and PBMC samples across 16 PDAC patients, and revealed a heterogeneous TIMs environment in PDAC. Result Systematic comparisons between tumor and non-tumor samples of myeloid lineages identified 10 necroptosis-associated genes upregulated in PDAC tumors compared to 5 upregulated in paratumor or healthy peripheral blood. A novel RTM (resident tissue macrophages), GLUL-SQSTM1- RTM, was found to act as a positive regulator of immunity. Additionally, HSP90AA1+HSP90AB1+ mast cells exhibited pro-immune characteristics, and JAK3+TLR4+ CD16 monocytes were found to be anti-immune. The findings were validated through clinical outcomes and cytokines analyses. Lastly, intercellular network reconstruction supported the associations between the identified novel clusters, cancer cells, and immune cell populations. Conclusion Our analysis comprehensively characterized major myeloid cell lineages and identified three subsets of myeloid-derived cells associated with necroptosis. These findings not only provide a valuable resource for understanding the multi-dimensional characterization of the tumor microenvironment in PDAC but also offer valuable mechanistic insights that can guide the design of effective immuno-oncology treatment strategies.
Collapse
Affiliation(s)
- Weiwei Dong
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huixia Zhao
- Dept of Oncology, The Forth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shanshan Xiao
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Liuqing Zheng
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Tongqiang Fan
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Li Wang
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - He Zhang
- Dept of Oncology, The Forth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yanyan Hu
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jingwen Yang
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Tao Wang
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Wenhua Xiao
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
114
|
McNearney TA, Digbeu BDE, Baillargeon JG, Ladnier D, Rahib L, Matrisian LM. Pre-Diagnosis Pain in Patients With Pancreatic Cancer Signals the Need for Aggressive Symptom Management. Oncologist 2023; 28:e1185-e1197. [PMID: 37285228 PMCID: PMC10712702 DOI: 10.1093/oncolo/oyad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
OBJECTIVE This study assessed the impact of pancreatic cancer (PC) pain on associated symptoms, activities, and resource utilization from 2016 to 2020 in an online patient registry. PATIENTS AND METHODS Responses from PC patient volunteers (N = 1978) were analyzed from online surveys in a cross-sectional study. Comparisons were performed between PC patient groups reporting, (1) the presence vs. absence of pre-diagnosis PC pain, (2) high (4-8) vs. low (0-3) pain intensity scores on an 11-point numerical rating scale (NRS), and (3) year of PC diagnosis (2010-2020). Descriptive statistics and all bivariate analyses were performed using Chi-square or Fisher's Exact tests. RESULTS PC pain was the most frequently reported pre-diagnosis symptom (62%). Pre-diagnostic PC pain was reported more frequently by women, those with a younger age at diagnosis, and those with PC that spread to the liver and peritoneum. Those with pre-diagnostic PC pain vs. those without reported higher pain intensities (2.64 ± 2.54 vs.1.56 ± 2.01 NRS mean ± SD, respectively, P = .0039); increased frequencies of post-diagnosis symptoms of cramping after meals, feelings of indigestion, and weight loss (P = .02-.0001); and increased resource utilization in PC pain management: (ER visits N = 86 vs. N = 6, P = .018 and analgesic prescriptions, P < .03). The frequency of high pain intensity scores was not decreased over a recent 11-year span. CONCLUSIONS PC pain continues to be a prominent PC symptom. Patients reporting pre-diagnosis PC pain experience increased GI metastasis, symptoms burden, and are often undertreated. Its mitigation may require novel treatments, more resources dedicated to ongoing pain management and surveillance to improve outcomes.
Collapse
Affiliation(s)
- Terry A McNearney
- Scientific and Medical Affairs, Pancreatic Cancer Action Network (PanCAN), Manhattan Beach, CA, USA
| | | | | | - Dennis Ladnier
- Scientific and Medical Affairs, Pancreatic Cancer Action Network (PanCAN), Manhattan Beach, CA, USA
| | - Lola Rahib
- Scientific and Medical Affairs, Pancreatic Cancer Action Network (PanCAN), Manhattan Beach, CA, USA
| | - Lynn M Matrisian
- Scientific and Medical Affairs, Pancreatic Cancer Action Network (PanCAN), Manhattan Beach, CA, USA
| |
Collapse
|
115
|
Xu Y, Wang Y, Chen Q, Yao T, Qiu J, Ni L, Chen H, Liang T. A protein-based prognostic model for pancreatic ductal adenocarcinoma: Construction and validation. Pancreatology 2023; 23:1003-1013. [PMID: 37923686 DOI: 10.1016/j.pan.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Probing relevant proteomic biomarkers may facilitate effective pancreatic adenocarcinoma (PDAC) diagnosis, treatment and prevention. Here, we developed a protein-based prognostic model for PDAC by using relevant proteomic biomarkers data from The Cancer Genome Atlas (TCGA). METHODS We obtained PDAC's proteomic and clinical data from TCGA and used various analytical tools to identify differentially expressed proteins between normal and cancer tissues. We constructed our protein-based prognostic model and confirmed its accuracy using receiver operating characteristic curve and Kaplan-Meier survival analyses. We elucidated clinical factor-signature protein correlations by clinical correlation assessments and protein coexpression networks. We also used immunohistochemistry (protein expression assessment), Gene Set Enrichment Analysis (protein role identification) and CIBERSORT (infiltrating immune cell distribution assessment). RESULTS CIITA, BRAF_pS445, AR, YTHDF2, IGFBP2 and CDK1_pT14 were identified as PDAC-associated prognostic proteins. All risk scores calculated using our model provided 1-, 3-, 5-year survival probability at 70 % accuracy. The reliability of our model was validated by the GEO as well. In high- and low-risk groups, age, sex, T- and N- stage disparities were significant, and prognostic and coexpressed proteins correlated. PDAC tissues demonstrated significant CDK1_pT14 overexpression but significant BRAF_pS445, YTHDF2, and IGFBP2 underexpression. Downstream proteins of BRAF were validated by IHC. Low-risk tissues demonstrated more naïve B cells, eosinophils, activated NK cells and regulatory T cells, whereas high-risk tissues demonstrated more activated memory T cells, monocytes, neutrophils, dendritic cells and resting NK cells. CONCLUSIONS Our protein-based prognostic model for PDAC, along with six signature proteins, might aid in predicting PDAC prognosis and therapeutic targets.
Collapse
Affiliation(s)
- Yonghao Xu
- Laboratory of Animal Research Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China
| | - Yisu Wang
- Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qi Chen
- Laboratory of Animal Research Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tao Yao
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Junyu Qiu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lei Ni
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hui Chen
- Laboratory of Animal Research Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
116
|
Xiang Y, Wang L, Cheng Y, An H, Zhang C, Wang J, Tong Y, Yan D. Integrative Analysis of PAIP2B to Identify a Novel Biomarker for Pancreatic Ductal Adenocarcinoma. Glob Med Genet 2023; 10:388-394. [PMID: 38116489 PMCID: PMC10730282 DOI: 10.1055/s-0043-1777789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
The aim of the study was to evaluate the potential diagnostic and prognostic value of gene, Poly A-Binding Protein Interacting Protein 2B ( PAIP2B ) in pancreatic cancer. We used the gene expression data and clinical information of pancreatic adenocarcinoma patients from The Cancer Genome Atlas database and Gene Expression Omnibus database to analyze the expression of PAIP2B in pancreatic cancer samples, and validated the expression of PAIP2B in tumor tissue, using bioinformatics technology to explore the prognostic value of PAIP2B and its possible biological function. A significantly lower level of PAIP2B was observed in pancreatic cancer patients than in controls, and validated by immunohistochemistry. PAIP2B reduced the proliferation and invasion of cancer cells and had a significantly high expression in early stage. Patients with lower levels of PAIP2B had a significantly shorter median survival time than those with higher levels. DNA demethylation played an important role in PAIP2B expression. In addition, PAIP2B expression was significantly associated with the tumor-infiltrating immune cells, especially T cells CD8, T cells CD4 memory resting, macrophages M0, and dendritic cells resting. Our study also found that PAIP2B regulated miRNA function leading to disease progression in pancreatic cancer patients. Our study explored the potential value of PAIP2B as a biological link between prognosis and pancreatic cancer, and provided reference for the follow-up study on the role of PAIP2B in pancreatic cancer.
Collapse
Affiliation(s)
- Yaoxian Xiang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Li Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yurong Cheng
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Huanjuan An
- Department of Hematology, Peking University Shougang Hospital, Beijing, China
| | - Chan Zhang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yingying Tong
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Dong Yan
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
117
|
Leonhardt CS, Stamm T, Hank T, Prager G, Strobel O. Defining oligometastatic pancreatic cancer: a systematic review and critical synthesis of consensus. ESMO Open 2023; 8:102067. [PMID: 37988953 PMCID: PMC10774968 DOI: 10.1016/j.esmoop.2023.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/14/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Small retrospective series suggest that local consolidative treatment (LCT) may improve survival in oligometastatic pancreatic ductal adenocarcinoma (PDAC). However, no uniform definition of oligometastatic disease (OMD) in PDAC exists; this impedes meaningful conclusions. PATIENTS AND METHODS A systematic literature search using PubMed, Web of Science, and Cochrane CENTRAL registries for studies and protocols reporting on definitions and/or LCT of OMD in PDAC was performed. The primary endpoint was the definition of OMD. Levels of agreement were categorized as consensus (≥75% agreement between studies), fair agreement (50%-74%), and absent/poor agreement (<50%). RESULTS After screening of 5374 abstracts, the full text of 218 studies was assessed, of which 76 were included in the qualitative synthesis. The majority of studies were retrospective (n = 66, 87%), two were prospective studies and eight were study protocols. Studies investigated mostly liver (n = 38, 51%) and lung metastases (n = 15, 20%). Across studies, less than one-half (n = 32, 42%) reported a definition of OMD, while 44 (58%) did not. Involvement was limited to a single organ (consensus). Additional criteria for defining OMD were the number of lesions (consensus), metastatic site (poor agreement), metastatic size (poor agreement), treatment possibilities (poor agreement), and biomarker response (poor agreement). Liver OMD could involve three or fewer lesions (consensus) and synchronous disease (fair agreement), while lung metastases could involve two or fewer lesions and metachronous disease (consensus). The large majority of studies were at a high risk of bias or did not include any control groups. CONCLUSION Definitions of OMD were not used or varied widely between studies hampering across-study comparability and highlighting an unmet need for a consensus. The present study is part of a multistep process that aims to develop an interdisciplinary consensus on OMD in pancreatic cancer.
Collapse
Affiliation(s)
- C-S Leonhardt
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna
| | - T Stamm
- Institute of Outcomes Research, Center for Medical Data Science, Medical University of Vienna; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna
| | - T Hank
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna
| | - G Prager
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - O Strobel
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna.
| |
Collapse
|
118
|
Cao K, Xia Y, Yao J, Han X, Lambert L, Zhang T, Tang W, Jin G, Jiang H, Fang X, Nogues I, Li X, Guo W, Wang Y, Fang W, Qiu M, Hou Y, Kovarnik T, Vocka M, Lu Y, Chen Y, Chen X, Liu Z, Zhou J, Xie C, Zhang R, Lu H, Hager GD, Yuille AL, Lu L, Shao C, Shi Y, Zhang Q, Liang T, Zhang L, Lu J. Large-scale pancreatic cancer detection via non-contrast CT and deep learning. Nat Med 2023; 29:3033-3043. [PMID: 37985692 PMCID: PMC10719100 DOI: 10.1038/s41591-023-02640-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most deadly solid malignancy, is typically detected late and at an inoperable stage. Early or incidental detection is associated with prolonged survival, but screening asymptomatic individuals for PDAC using a single test remains unfeasible due to the low prevalence and potential harms of false positives. Non-contrast computed tomography (CT), routinely performed for clinical indications, offers the potential for large-scale screening, however, identification of PDAC using non-contrast CT has long been considered impossible. Here, we develop a deep learning approach, pancreatic cancer detection with artificial intelligence (PANDA), that can detect and classify pancreatic lesions with high accuracy via non-contrast CT. PANDA is trained on a dataset of 3,208 patients from a single center. PANDA achieves an area under the receiver operating characteristic curve (AUC) of 0.986-0.996 for lesion detection in a multicenter validation involving 6,239 patients across 10 centers, outperforms the mean radiologist performance by 34.1% in sensitivity and 6.3% in specificity for PDAC identification, and achieves a sensitivity of 92.9% and specificity of 99.9% for lesion detection in a real-world multi-scenario validation consisting of 20,530 consecutive patients. Notably, PANDA utilized with non-contrast CT shows non-inferiority to radiology reports (using contrast-enhanced CT) in the differentiation of common pancreatic lesion subtypes. PANDA could potentially serve as a new tool for large-scale pancreatic cancer screening.
Collapse
Affiliation(s)
- Kai Cao
- Department of Radiology, Shanghai Institution of Pancreatic Disease, Shanghai, China
| | - Yingda Xia
- DAMO Academy, Alibaba Group, New York, NY, USA
| | - Jiawen Yao
- Hupan Laboratory, Hangzhou, China
- Damo Academy, Alibaba Group, Hangzhou, China
| | - Xu Han
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Lukas Lambert
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tingting Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Gang Jin
- Department of Surgery, Shanghai Institution of Pancreatic Disease, Shanghai, China
| | - Hui Jiang
- Department of Pathology, Shanghai Institution of Pancreatic Disease, Shanghai, China
| | - Xu Fang
- Department of Radiology, Shanghai Institution of Pancreatic Disease, Shanghai, China
| | - Isabella Nogues
- Department of Biostatistics, Harvard University T.H. Chan School of Public Health, Cambridge, MA, USA
| | - Xuezhou Li
- Department of Radiology, Shanghai Institution of Pancreatic Disease, Shanghai, China
| | - Wenchao Guo
- Hupan Laboratory, Hangzhou, China
- Damo Academy, Alibaba Group, Hangzhou, China
| | - Yu Wang
- Hupan Laboratory, Hangzhou, China
- Damo Academy, Alibaba Group, Hangzhou, China
| | - Wei Fang
- Hupan Laboratory, Hangzhou, China
- Damo Academy, Alibaba Group, Hangzhou, China
| | - Mingyan Qiu
- Hupan Laboratory, Hangzhou, China
- Damo Academy, Alibaba Group, Hangzhou, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tomas Kovarnik
- Department of Invasive Cardiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michal Vocka
- Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Yimei Lu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yingli Chen
- Department of Surgery, Shanghai Institution of Pancreatic Disease, Shanghai, China
| | - Xin Chen
- Department of Radiology, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Jian Zhou
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chuanmiao Xie
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Rong Zhang
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hong Lu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Gregory D Hager
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Alan L Yuille
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Le Lu
- DAMO Academy, Alibaba Group, New York, NY, USA
| | - Chengwei Shao
- Department of Radiology, Shanghai Institution of Pancreatic Disease, Shanghai, China.
| | - Yu Shi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | - Ling Zhang
- DAMO Academy, Alibaba Group, New York, NY, USA.
| | - Jianping Lu
- Department of Radiology, Shanghai Institution of Pancreatic Disease, Shanghai, China.
| |
Collapse
|
119
|
Mima K, Hamada T, Inamura K, Baba H, Ugai T, Ogino S. The microbiome and rise of early-onset cancers: knowledge gaps and research opportunities. Gut Microbes 2023; 15:2269623. [PMID: 37902043 PMCID: PMC10730181 DOI: 10.1080/19490976.2023.2269623] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
Accumulating evidence indicates an alarming increase in the incidence of early-onset cancers, which are diagnosed among adults under 50 years of age, in the colorectum, esophagus, extrahepatic bile duct, gallbladder, liver, stomach, pancreas, as well as the bone marrow (multiple myeloma), breast, head and neck, kidney, prostate, thyroid, and uterine corpus (endometrium). While the early-onset cancer studies have encompassed research on the wide variety of organs, this article focuses on research on digestive system cancers. While a minority of early-onset cancers in the digestive system are associated with cancer-predisposing high penetrance germline genetic variants, the majority of those cancers are sporadic and multifactorial. Although potential etiological roles of diets, lifestyle, environment, and the microbiome from early life to adulthood (i.e. in one's life course) have been hypothesized, exact contribution of each of these factors remains uncertain. Diets, lifestyle patterns, and environmental exposures have been shown to alter the oral and intestinal microbiome. To address the rising trend of early-onset cancers, transdisciplinary research approaches including lifecourse epidemiology and molecular pathological epidemiology frameworks, nutritional and environmental sciences, multi-omics technologies, etc. are needed. We review current evidence and discuss emerging research opportunities, which can improve our understanding of their etiologies and help us design better strategies for prevention and treatment to reduce the cancer burden in populations.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
120
|
Elshami M, Hoehn RS, Ammori JB, Hardacre JM, Selfridge JE, Bajor D, Mohamed A, Chakrabarti S, Mahipal A, Winter JM, Ocuin LM. Disparities in guideline-compliant care for patients with pancreatic ductal adenocarcinoma at minority-versus non-minority-serving hospitals. HPB (Oxford) 2023; 25:1502-1512. [PMID: 37558565 DOI: 10.1016/j.hpb.2023.07.903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/15/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND We examined disparities in guideline-compliant care at minority-serving hospitals (MSH) versus non-MSH among patients with localized or metastatic pancreatic adenocarcinoma (PDAC). METHODS Patients with PDAC were identified within the National Cancer Database (2004-2018). Guideline-compliant care was defined as surgery + chemotherapy ± radiation therapy for localized and chemotherapy for metastatic disease. Facilities in the top decile of minority patients treated were considered MSH. RESULTS A total of 190,950 patients were identified and most (59.6%) had metastatic disease. Overall, 6.4% of patients with localized and 8.2% of patients with metastatic disease were treated at MSH. Patients treated at MSH were less likely to receive guideline-compliant care (localized: OR = 0.78, 95% CI: 0.67-0.91; metastatic: OR = 0.77, 95% CI: 0.67-0.88). Minority patients were less likely to receive guideline-compliant care at non-MSH (localized: OR = 0.71, 95% CI: 0.67-0.75; metastatic: OR = 0.85, 95% CI: 0.82-0.89) or MSH (localized: OR = 0.85, 95% CI: 0.74-0.98; metastatic: OR = 0.91, 95% CI: 0.82-0.99). Patients treated at non-MSH or MSH who received guideline-compliant care were more likely to have higher OS regardless of stage or race. CONCLUSIONS MSH patients were less likely to receive guideline-compliant care and minority patients were less likely to receive guideline-compliant care regardless of MSH status. Guideline-compliant care was associated with improved OS.
Collapse
Affiliation(s)
- Mohamedraed Elshami
- Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Richard S Hoehn
- Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - John B Ammori
- Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jeffrey M Hardacre
- Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jennifer E Selfridge
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - David Bajor
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Amr Mohamed
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Sakti Chakrabarti
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Amit Mahipal
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Jordan M Winter
- Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Lee M Ocuin
- Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
121
|
Zhou Y, Jin J, Ji Y, Zhang J, Fu N, Chen M, Wang J, Qin K, Jiang Y, Cheng D, Deng X, Shen B. TP53 missense mutation reveals gain-of-function properties in small-sized KRAS transformed pancreatic ductal adenocarcinoma. J Transl Med 2023; 21:872. [PMID: 38037073 PMCID: PMC10691048 DOI: 10.1186/s12967-023-04742-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Although the molecular features of pancreatic ductal adenocarcinoma (PDAC) have been well described, the impact of detailed gene mutation subtypes on disease progression remained unclear. This study aimed to evaluate the impact of different TP53 mutation subtypes on clinical characteristics and outcomes of patients with PDAC. METHODS We included 639 patients treated with PDAC in Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine between Jan 2019 and Jun 2021. The genomic alterations of PDAC were analyzed, and the association of TP53 mutation subtypes and other core gene pathway alterations with patients' clinical characteristics were evaluated by Chi-squared test, Kaplan-Meier method and Cox regression model. RESULTS TP53 missense mutation was significantly associated with poor differentiation in KRASmut PDAC (50.7% vs. 36.1%, P = 0.001). In small-sized (≤ 2 cm) KRASmut tumors, significantly higher LNs involvement (54.8% vs. 23.5%, P = 0.010) and distal metastic rate (20.5% vs. 2.9%, P = 0.030) were observed in those with TP53 missense mutation instead of truncating mutation. Compared with TP53 truncating mutation, missense mutation was significantly associated with reduced DFS (6.6 [5.6-7.6] vs. 9.2 [5.2-13.3] months, HR 0.368 [0.200-0.677], P = 0.005) and OS (9.6 [8.0-11.1] vs. 18.3 [6.7-30.0] months, HR 0.457 [0.248-0.842], P = 0.012) in patients who failed to receive chemotherapy, while higher OS (24.2 [20.8-27.7] vs. 23.8 [19.0-28.5] months, HR 1.461 [1.005-2.124], P = 0.047) was observed in TP53missense cases after chemotherapy. CONCLUSIONS TP53 missense mutation was associated with poor tumor differentiation, and revealed gain-of-function properties in small-sized KRAS transformed PDAC. Nonetheless, it was not associated with insensitivity to chemotherapy, highlighting the neoadjuvant therapy before surgery as the potential optimized strategy for the treatment of a subset of patients.
Collapse
Affiliation(s)
- Yiran Zhou
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiabin Jin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchen Ji
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqiang Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ningzhen Fu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengmin Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Qin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongfeng Cheng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
122
|
Li XL, Liu ZP, Dai HS, Yin XY, Chen ZY. A commentary on 'The experience of neoadjuvant chemotherapy versus upfront surgery in resectable pancreatic cancer. A cross sectional study' - a correspondence. Int J Surg 2023; 109:4347-4348. [PMID: 38259003 PMCID: PMC10720794 DOI: 10.1097/js9.0000000000000680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 01/24/2024]
Affiliation(s)
| | | | | | | | - Zhi-Yu Chen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| |
Collapse
|
123
|
Jing T, Xu X, Wu C, Wei D, Yuan L, Huang Y, Liu Y, Wang B. POH1 facilitates pancreatic carcinogenesis through MYC-driven acinar-to-ductal metaplasia and is a potential therapeutic target. Cancer Lett 2023; 577:216444. [PMID: 37844756 DOI: 10.1016/j.canlet.2023.216444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Pancreatic acinar cells undergo acinar-to-ductal metaplasia (ADM), a necessary process for pancreatic ductal adenocarcinoma (PDAC) initiation. However, the regulatory role of POH1, a deubiquitinase linked to several types of cancer, in ADM and PDAC is unclear. In this study, we investigated the role of POH1 in ADM and PDAC using murine models. Our findings suggest that pancreatic-specific deletion of Poh1 alleles attenuates ADM and impairs pancreatic carcinogenesis, improving murine survival. Mechanistically, POH1 deubiquitinates and stabilizes the MYC protein, which potentiates ADM and PDAC. Furthermore, POH1 is highly expressed in PDAC samples, and clinical evidence establishes a positive correlation between aberrantly expressed POH1 and poor prognosis in PDAC patients. Targeting POH1 with a specific small-molecule inhibitor significantly reduces pancreatic tumor formation, highlighting POH1 as a promising therapeutic target for PDAC treatment. Overall, POH1-mediated MYC deubiquitination is crucial for ADM and PDAC onset, and targeting POH1 could be an effective strategy for PDAC treatment, offering new avenues for PDAC targeted therapy.
Collapse
Affiliation(s)
- Tiantian Jing
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Xiaoli Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Chengsi Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Dianhui Wei
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Lili Yuan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yiwen Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yizhen Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Boshi Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
124
|
Han L, Jiang Y, Shi M, Gan L, Wu Z, Xue M, Zhu Y, Xiong C, Wang T, Lin X, Shen B, Jiang L, Chen H. LIPH contributes to glycolytic phenotype in pancreatic ductal adenocarcinoma by activating LPA/LPAR axis and maintaining ALDOA stability. J Transl Med 2023; 21:838. [PMID: 37990271 PMCID: PMC10664664 DOI: 10.1186/s12967-023-04702-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND LIPH, a membrane-associated phosphatidic acid-selective phospholipase A1a, can produce LPA (Lysophosphatidic acid) from PA (Phosphatidic acid) on the outer leaflet of the plasma membrane. It is well known that LIPH dysfunction contributes to lipid metabolism disorder. Previous study shows that LIPH was found to be a potential gene related to poor prognosis with pancreatic ductal adenocarcinoma (PDAC). However, the biological functions of LIPH in PDAC remain unclear. METHODS Cell viability assays were used to evaluate whether LIPH affected cell proliferation. RNA sequencing and immunoprecipitation showed that LIPH participates in tumor glycolysis by stimulating LPA/LPAR axis and maintaining aldolase A (ALDOA) stability in the cytosol. Subcutaneous, orthotopic xenograft models and patient-derived xenograft PDAC model were used to evaluate a newly developed Gemcitabine-based therapy. RESULTS LIPH was significantly upregulated in PDAC and was related to later pathological stage and poor prognosis. LIPH downregulation in PDAC cells inhibited colony formation and proliferation. Mechanistically, LIPH triggered PI3K/AKT/HIF1A signaling via LPA/LPAR axis. LIPH also promoted glycolysis and de novo synthesis of glycerolipids by maintaining ALDOA stability in the cytosol. Xenograft models show that PDAC with high LIPH expression levels was sensitive to gemcitabine/ki16425/aldometanib therapy without causing discernible side effects. CONCLUSION LIPH directly bridges PDAC cells and tumor microenvironment to facilitate aberrant aerobic glycolysis via activating LPA/LPAR axis and maintaining ALDOA stability, which provides an actionable gemcitabine-based combination therapy with limited side effects.
Collapse
Affiliation(s)
- Lijie Han
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Yongsheng Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Lina Gan
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Zhichong Wu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Meilin Xue
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Cheng Xiong
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Ting Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2Nd Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
125
|
Greendyk JD, Allen WE, Alexander HR, Beninato T, Eskander MF, Grandhi MS, Kennedy TJ, Langan RC, Maggi JC, De S, Court CM, Ecker BL. Association between SMAD4 Mutations and GATA6 Expression in Paired Pancreatic Ductal Adenocarcinoma Tumor Specimens: Data from Two Independent Molecularly-Characterized Cohorts. Biomedicines 2023; 11:3058. [PMID: 38002058 PMCID: PMC10669842 DOI: 10.3390/biomedicines11113058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Several molecular biomarkers have been identified to guide induction treatment selection for localized pancreatic ductal adenocarcinoma (PDAC). SMAD4 alterations and low GATA6 expression/modified "Moffitt" basal-like phenotype have each been associated with inferior survival uniquely for patients receiving 5-FU-based therapies. SMAD4 may directly regulate the expression of GATA6 in PDAC, pointing to a common predictive biomarker. To evaluate the relationship between SMAD4 mutations and GATA6 expression in human PDAC tumors, patients with paired SMAD4 mutation and GATA6 mRNA expression data in the TCGA and CPTAC were identified. In 321 patients (TCGA: n = 180; CPTAC: n = 141), the rate of SMAD4 alterations was 26.8%. The rate of SMAD4 alteration did not vary per tertile of normalized GATA6 expression (TCGA: p = 0.928; CPTAC: p = 0.828). In the TCGA, SMAD4 alterations and the basal-like phenotype were each associated with worse survival (log rank p = 0.077 and p = 0.080, respectively), but their combined presence did not identify a subset with uniquely inferior survival (p = 0.943). In the CPTAC, the basal-like phenotype was associated with significantly worse survival (p < 0.001), but the prognostic value was not influenced by the combined presence of SMAD4 alterations (p = 0.960). SMAD4 alterations were not associated with poor clinico-pathological features such as poor tumor grade, advanced tumor stage, positive lymphovascular invasion (LVI), or positive perineural invasion (PNI), compared with SMAD4-wildtype. Given that SMAD4 mutations were not associated with GATA6 expression or Moffitt subtype in two independent molecularly characterized PDAC cohorts, distinct biomarker-defined clinical trials are necessary.
Collapse
Affiliation(s)
- Joshua D. Greendyk
- Rutgers New Jersey Medical School, Rutgers Health, Newark, NJ 07103, USA; (J.D.G.); (W.E.A.)
| | - William E. Allen
- Rutgers New Jersey Medical School, Rutgers Health, Newark, NJ 07103, USA; (J.D.G.); (W.E.A.)
| | - H. Richard Alexander
- Rutgers Cancer Institute of New Jersey, Rutgers Health, New Brunswick, NJ 08901, USA; (H.R.A.); (T.B.); (M.F.E.); (M.S.G.); (T.J.K.); (R.C.L.); (J.C.M.); (S.D.)
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Toni Beninato
- Rutgers Cancer Institute of New Jersey, Rutgers Health, New Brunswick, NJ 08901, USA; (H.R.A.); (T.B.); (M.F.E.); (M.S.G.); (T.J.K.); (R.C.L.); (J.C.M.); (S.D.)
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Mariam F. Eskander
- Rutgers Cancer Institute of New Jersey, Rutgers Health, New Brunswick, NJ 08901, USA; (H.R.A.); (T.B.); (M.F.E.); (M.S.G.); (T.J.K.); (R.C.L.); (J.C.M.); (S.D.)
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Miral S. Grandhi
- Rutgers Cancer Institute of New Jersey, Rutgers Health, New Brunswick, NJ 08901, USA; (H.R.A.); (T.B.); (M.F.E.); (M.S.G.); (T.J.K.); (R.C.L.); (J.C.M.); (S.D.)
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Timothy J. Kennedy
- Rutgers Cancer Institute of New Jersey, Rutgers Health, New Brunswick, NJ 08901, USA; (H.R.A.); (T.B.); (M.F.E.); (M.S.G.); (T.J.K.); (R.C.L.); (J.C.M.); (S.D.)
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Russell C. Langan
- Rutgers Cancer Institute of New Jersey, Rutgers Health, New Brunswick, NJ 08901, USA; (H.R.A.); (T.B.); (M.F.E.); (M.S.G.); (T.J.K.); (R.C.L.); (J.C.M.); (S.D.)
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
- Cooperman Barnabas Medical Center, Livingston, NJ 07039, USA
| | - Jason C. Maggi
- Rutgers Cancer Institute of New Jersey, Rutgers Health, New Brunswick, NJ 08901, USA; (H.R.A.); (T.B.); (M.F.E.); (M.S.G.); (T.J.K.); (R.C.L.); (J.C.M.); (S.D.)
- Cooperman Barnabas Medical Center, Livingston, NJ 07039, USA
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, Rutgers Health, New Brunswick, NJ 08901, USA; (H.R.A.); (T.B.); (M.F.E.); (M.S.G.); (T.J.K.); (R.C.L.); (J.C.M.); (S.D.)
| | - Colin M. Court
- Department of Surgical Oncology, University of Texas San Antonio, San Antonio, TX 78249, USA;
| | - Brett L. Ecker
- Rutgers Cancer Institute of New Jersey, Rutgers Health, New Brunswick, NJ 08901, USA; (H.R.A.); (T.B.); (M.F.E.); (M.S.G.); (T.J.K.); (R.C.L.); (J.C.M.); (S.D.)
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
- Cooperman Barnabas Medical Center, Livingston, NJ 07039, USA
| |
Collapse
|
126
|
Du X, Yi X, Zou X, Chen Y, Tai Y, Ren X, He X. PCDH1, a poor prognostic biomarker and potential target for pancreatic adenocarcinoma metastatic therapy. BMC Cancer 2023; 23:1102. [PMID: 37957639 PMCID: PMC10642060 DOI: 10.1186/s12885-023-11474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is an aggressive solid tumour characterised by few early symptoms, high mortality, and lack of effective treatment. Therefore, it is important to identify new potential therapeutic targets and prognostic biomarkers of PAAD. METHODS The Cancer Genome Atlas and Genotype-Tissue Expression databases were used to identify the expression and prognostic model of protocadherin 1 (PCDH1). The prognostic performance of risk factors and diagnosis of patients with PAAD were evaluated by regression analysis, nomogram, and receiver operating characteristic curve. Paraffin sections were collected from patients for immunohistochemistry (IHC) analysis. The expression of PCDH1 in cells obtained from primary tumours or metastatic biopsies was identified using single-cell RNA sequencing (scRNA-seq). Real-time quantitative polymerase chain reaction (qPCR) and western blotting were used to verify PCDH1 expression levels and the inhibitory effects of the compounds. RESULTS The RNA and protein levels of PCDH1 were significantly higher in PAAD cells than in normal pancreatic ductal cells, similar to those observed in tissue sections from patients with PAAD. Aberrant methylation of the CpG site cg19767205 and micro-RNA (miRNA) hsa-miR-124-1 may be important reasons for the high PCDH1 expression in PAAD. Up-regulated PCDH1 promotes pancreatic cancer cell metastasis. The RNA levels of PCDH1 were significantly down-regulated following flutamide treatment. Flutamide reduced the percentage of PCDH1 RNA level in PAAD cells Panc-0813 to < 50%. In addition, the PCDH1 protein was significantly down-regulated after Panc-0813 cells were incubated with 20 µM flutamide and proves to be a potential therapeutic intervention for PAAD. CONCLUSION PCDH1 is a key prognostic biomarker and promoter of PAAD metastasis. Additionally, flutamide may serve as a novel compound that down-regulates PCDH1 expression as a potential treatment for combating PAAD progression and metastasis.
Collapse
Affiliation(s)
- Xingyi Du
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China
- Nanhu Laboratory, Jiaxing, 314002, China
| | - Xiaoyu Yi
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, 100850, China
- Nanhu Laboratory, Jiaxing, 314002, China
| | - Xiaocui Zou
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuan Chen
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, 100850, China
- Nanhu Laboratory, Jiaxing, 314002, China
| | - Yanhong Tai
- Department of Pathology, No.307 Hospital of PLA, Beijing, 100071, China
| | - Xuhong Ren
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Xinhua He
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Nanhu Laboratory, Jiaxing, 314002, China.
| |
Collapse
|
127
|
Lu F, Wang X, Tian J, Li X. Early versus delayed computed tomography-guided celiac plexus neurolysis for palliative pain management in patients with advanced pancreatic cancer: a retrospective cohort study. Front Neurol 2023; 14:1292758. [PMID: 38020651 PMCID: PMC10661893 DOI: 10.3389/fneur.2023.1292758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Abdominal and back pain is the most frequent symptom in patients with pancreatic cancer, with pain management being extremely challenging. This study aimed to evaluate pain control, opioid consumption, pain-interfered quality of life, and survival after early and delayed computed tomography (CT)-guided celiac plexus neurolysis (CPN). Methods A retrospective analysis of pancreatic cancer patients receiving CPN for pain (n = 56) between June 2018 and June 2021 was done. The patients were grouped as early group (n = 22) and delayed group (n = 34) on the basis of the presence of persistent refractory pain according to expert consensus on refractory cancer pain. Results Both groups were comparable in demographic characteristics and baseline pain conditions measured using the numeric rating scale (5.77 ± 1.23 vs. 6.27 ± 1.21; p = 0.141). The pain scores were significantly reduced in both groups; early CPN resulted in significantly lower scores from 3 to 5 months. The opioid consumption gradually decreased to a minimum at 2 weeks but increased at 1 month (35.56 ± 30.14 mg and 50.48 ± 47.90 mg, respectively); significantly larger consumption from 2 to 4 months was seen in the delayed group. The total pain interference was lower than baseline in all patients, with significant improvement after early CPN in sleep, appetite, enjoyment of life, and mood. The average survival time of the two groups was comparable. Conclusion Early application of CT-guided CPN for patients with advanced pancreatic cancer may help reduce pain exacerbation and opioids consumption, without influencing the survival.
Collapse
Affiliation(s)
- Fan Lu
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojia Wang
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Tian
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuehan Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
128
|
Yang J, Liu S, Li Y, Fan Z, Meng Y, Zhou B, Zhang G, Zhan H. FABP4 in macrophages facilitates obesity-associated pancreatic cancer progression via the NLRP3/IL-1β axis. Cancer Lett 2023; 575:216403. [PMID: 37741433 DOI: 10.1016/j.canlet.2023.216403] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Obesity is an essential risk factor for pancreatic cancer (PC). Macrophage-induced inflammation plays a pivotal role in obesity-associated carcinogenesis and disease progression; however, the underlying molecular mechanisms remain unclear. In this study, we found that fatty acid-binding protein 4 (FABP4) overexpressed in serum of obese patients and was associated with poor overall survival. In vivo and in vitro experiments have revealed that FABP4 induces macrophage-related inflammation to promote cancer cell migration, invasion and metastasis under obese conditions. Mechanistically, FABP4 participates in transferring saturated fatty acid to induce macrophages pyroptosis in a caspase-1/GSDMD-dependent manner and mediates NOD-like receptor thermal protein domain associated protein 3 (NLRP3)/IL-1β axis in macrophages, which further regulates epithelial-mesenchymal transition signals to promote the migration, invasion, and metastasis of PC cells. Our results suggest that FABP4 in macrophages is a crucial regulator of the NLRP3/IL-1β axis to promote the progression of PC under obese conditions, which could act as a promising molecular target for treating of PC patients with obesity.
Collapse
Affiliation(s)
- Jian Yang
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Shujie Liu
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yongzheng Li
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yufan Meng
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guangyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China.
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
129
|
Dong X, Wang K, Yang H, Cheng R, Li Y, Hou Y, Chang J, Yuan L. The Nomogram predicting the overall survival of patients with pancreatic cancer treated with radiotherapy: a study based on the SEER database and a Chinese cohort. Front Endocrinol (Lausanne) 2023; 14:1266318. [PMID: 37955009 PMCID: PMC10634587 DOI: 10.3389/fendo.2023.1266318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Objective Patients with pancreatic cancer (PC) have a poor prognosis. Radiotherapy (RT) is a standard palliative treatment in clinical practice, and there is no effective clinical prediction model to predict the prognosis of PC patients receiving radiotherapy. This study aimed to analyze PC's clinical characteristics, find the factors affecting PC patients' prognosis, and construct a visual Nomogram to predict overall survival (OS). Methods SEER*Stat software was used to collect clinical data from the Surveillance, Epidemiology, and End Results (SEER) database of 3570 patients treated with RT. At the same time, the relevant clinical data of 115 patients were collected from the Affiliated Cancer Hospital of Zhengzhou University. The SEER database data were randomly divided into the training and internal validation cohorts in a 7:3 ratio, with all patients at The Affiliated Cancer Hospital of Zhengzhou University as the external validation cohort. The lasso regression was used to screen the relevant variables. All non-zero variables were included in the multivariate analysis. Multivariate Cox proportional risk regression analysis was used to determine the independent prognostic factors. The Kaplan-Meier(K-M) method was used to plot the survival curves for different treatments (surgery, RT, chemotherapy, and combination therapy) and calculate the median OS. The Nomogram was constructed to predict the survival rates at 1, 3, and 5 years, and the time-dependent receiver operating characteristic curves (ROC) were plotted with the calculated curves. Calculate the area under the curve (AUC), the Bootstrap method was used to plot the calibration curve, and the clinical efficacy of the prediction model was evaluated using decision curve analysis (DCA). Results The median OS was 25.0, 18.0, 11.0, and 4.0 months in the surgery combined with chemoradiotherapy (SCRT), surgery combined with radiotherapy, chemoradiotherapy (CRT), and RT alone cohorts, respectively. Multivariate Cox regression analysis showed that age, N stage, M stage, chemotherapy, surgery, lymph node surgery, and Grade were independent prognostic factors for patients. Nomogram models were constructed to predict patients' OS. 1-, 3-, and 5-year Time-dependent ROC curves were plotted, and AUC values were calculated. The results suggested that the AUCs were 0.77, 0.79, and 0.79 for the training cohort, 0.79, 0.82, and 0.81 for the internal validation cohort, and 0.73, 0.93, and 0.88 for the external validation cohort. The calibration curves Show that the model prediction probability is in high agreement with the actual observation probability, and the DCA curve shows a high net return. Conclusion SCRT significantly improves the OS of PC patients. We developed and validated a Nomogram to predict the OS of PC patients receiving RT.
Collapse
Affiliation(s)
- Xiaotao Dong
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kunlun Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Yang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruilan Cheng
- Department of Hematology and Oncology, Shenzhen Children’s Hospital Affiliated to China Medical University, Shenzhen, China
| | - Yan Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanqi Hou
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiali Chang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
130
|
Hinestrosa JP, Sears RC, Dhani H, Lewis JM, Schroeder G, Balcer HI, Keith D, Sheppard BC, Kurzrock R, Billings PR. Development of a blood-based extracellular vesicle classifier for detection of early-stage pancreatic ductal adenocarcinoma. COMMUNICATIONS MEDICINE 2023; 3:146. [PMID: 37857666 PMCID: PMC10587093 DOI: 10.1038/s43856-023-00351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has an overall 5-year survival rate of just 12.5% and thus is among the leading causes of cancer deaths. When detected at early stages, PDAC survival rates improve substantially. Testing high-risk patients can increase early-stage cancer detection; however, currently available liquid biopsy approaches lack high sensitivity and may not be easily accessible. METHODS Extracellular vesicles (EVs) were isolated from blood plasma that was collected from a training set of 650 patients (105 PDAC stages I and II, 545 controls). EV proteins were analyzed using a machine learning approach to determine which were the most informative to develop a classifier for early-stage PDAC. The classifier was tested on a validation cohort of 113 patients (30 PDAC stages I and II, 83 controls). RESULTS The training set demonstrates an AUC of 0.971 (95% CI = 0.953-0.986) with 93.3% sensitivity (95% CI: 86.9-96.7) at 91.0% specificity (95% CI: 88.3-93.1). The trained classifier is validated using an independent cohort (30 stage I and II cases, 83 controls) and achieves a sensitivity of 90.0% and a specificity of 92.8%. CONCLUSIONS Liquid biopsy using EVs may provide unique or complementary information that improves early PDAC and other cancer detection. EV protein determinations herein demonstrate that the AC Electrokinetics (ACE) method of EV enrichment provides early-stage detection of cancer distinct from normal or pancreatitis controls.
Collapse
Affiliation(s)
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Brenden-Colson Center for Pancreatic Cancer, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR, USA
| | | | | | | | | | - Dove Keith
- Brenden-Colson Center for Pancreatic Cancer, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Brett C Sheppard
- Brenden-Colson Center for Pancreatic Cancer, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin, Milwaukee, WI, USA
- Worldwide Innovative Network for Personalized Cancer Medicine, Chevilly-Larue, France
| | | |
Collapse
|
131
|
Tran LC, Özdemir BC, Berger MD. The Role of Immune Checkpoint Inhibitors in Metastatic Pancreatic Cancer: Current State and Outlook. Pharmaceuticals (Basel) 2023; 16:1411. [PMID: 37895882 PMCID: PMC10609661 DOI: 10.3390/ph16101411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors, characterized by its aggressive tumor biology and poor prognosis. While immune checkpoint inhibitors (ICIs) play a major part in the treatment algorithm of various solid tumors, there is still no evidence of clinical benefit from ICI in patients with metastatic PDAC (mPDAC). This might be due to several reasons, such as the inherent low immunogenicity of pancreatic cancer, the dense stroma-rich tumor microenvironment that precludes an efficient migration of antitumoral effector T cells to the cancer cells, and the increased proportion of immunosuppressive immune cells, such as regulatory T cells (Tregs), cancer-associated fibroblasts (CAFs), and myeloid-derived suppressor cells (MDSCs), facilitating tumor growth and invasion. In this review, we provide an overview of the current state of ICIs in mPDAC, report on the biological rationale to implement ICIs into the treatment strategy of pancreatic cancer, and discuss preclinical studies and clinical trials in this field. Additionally, we shed light on the challenges of implementing ICIs into the treatment strategy of PDAC and discuss potential future directions.
Collapse
Affiliation(s)
| | | | - Martin D. Berger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
132
|
Sun K, Zhang X, Lao M, He L, Wang S, Yang H, Xu J, Tang J, Hong Z, Song J, Guo C, Li M, Liu X, Chen Y, Zhang H, Zhou J, Lin J, Zhang S, Hong Y, Huang J, Liang T, Bai X. Targeting leucine-rich repeat serine/threonine-protein kinase 2 sensitizes pancreatic ductal adenocarcinoma to anti-PD-L1 immunotherapy. Mol Ther 2023; 31:2929-2947. [PMID: 37515321 PMCID: PMC10556191 DOI: 10.1016/j.ymthe.2023.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is not sensitive to immune checkpoint blockade therapy, and negative feedback of tumor immune evasion might be partly responsible. We isolated CD8+ T cells and cultured them in vitro. Proteomics analysis was performed to compare changes in Panc02 cell lines cultured with conditioned medium, and leucine-rich repeat kinase 2 (LRRK2) was identified as a differential gene. LRRK2 expression was related to CD8+ T cell spatial distribution in PDAC clinical samples and upregulated by CD8+ T cells via interferon gamma (IFN-γ) simulation in vitro. Knockdown or pharmacological inhibition of LRRK2 activated an anti-pancreatic cancer immune response in mice, which meant that LRRK2 acted as an immunosuppressive gene. Mechanistically, LRRK2 phosphorylated PD-L1 at T210 to inhibit its ubiquitination-mediated proteasomal degradation. LRRK2 inhibition attenuated PD-1/PD-L1 blockade-mediated, T cell-induced upregulation of LRRK2/PD-L1, thus sensitizing the mice to anti-PD-L1 therapy. In addition, adenosylcobalamin, the activated form of vitamin B12, which was found to be a broad-spectrum inhibitor of LRRK2, could inhibit LRRK2 in vivo and sensitize PDAC to immunotherapy as well, which potentially endows LRRK2 inhibition with clinical translational value. Therefore, PD-L1 blockade combined with LRRK2 inhibition could be a novel therapy strategy for PDAC.
Collapse
Affiliation(s)
- Kang Sun
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Lihong He
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Sicheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Jianghui Tang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Zhengtao Hong
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Jinyuan Song
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Chengxiang Guo
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Muchun Li
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Xinyuan Liu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Yan Chen
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Hanjia Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Jingxing Zhou
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Jieru Lin
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Sirui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Yifan Hong
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Jinyan Huang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
133
|
Xiang X, Chen X, He Y, Wang Y, Xia W, Ye S, Wang S, Xiao Y, Li Q, Wang X, Luo W, Li J. Pancreatic cancer challenge in 52 Asian countries: age-centric insights and the role of modifiable risk factors (1990-2019). Front Oncol 2023; 13:1271370. [PMID: 37849795 PMCID: PMC10577443 DOI: 10.3389/fonc.2023.1271370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Background Pancreatic cancer is renowned for its elevated incidence and mortality rates on a global scale. The disease burden of pancreatic cancer is anticipated to increase, particularly in Asia, due to its vast and rapidly aging population. Methods Data from the Global Burden of Disease 2019 were analyzed for pancreatic cancer burden across 52 countries in Asia, including the incidence, mortality, and disability-adjusted life years (DALY) for pancreatic cancer, with a focus on risk factors such as high body mass index (BMI), elevated fasting plasma glucose, and smoking. We applied the Estimated Annual Percentage Change, the Age-Period-Cohort model, and decomposition analysis to evaluate incidence trends and effects. Results From 1990 to 2019, both incidence and mortality rates of pancreatic cancer in Asia significantly increased, with an average annual standardized incidence rate change of 1.73%. Males consistently exhibited higher rates than females, with smoking as a key risk factor. Central Asia reported the highest rates, and South Asia the lowest. The incidence rose with age, peaking in those aged 70~74. The disease burden increased in all age groups, particularly in populations aged 55 and above, representing 84.41% of total cases in 2019, up from 79.01% in 1990. Pancreatic cancer ranked the fifth in incidence among six major gastrointestinal tumors but presented a significant growth rate of mortality and DALY. Conclusion With the growing, aging population in Asia, the pancreatic cancer burden is projected to escalate, bringing a significant public health challenge. Hence, comprehensive public health strategies emphasizing early detection, risk modification, and optimized treatment of pancreatic cancer are imperative.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Weiwei Luo
- *Correspondence: Weiwei Luo, ; Jingbo Li,
| | - Jingbo Li
- *Correspondence: Weiwei Luo, ; Jingbo Li,
| |
Collapse
|
134
|
Oflas D, Canaz F, Özer İ, Demir L, Çolak E. Significance of High-Mobility Group A Protein 2 Expression in Pancreatic Ductal Adenocarcinoma and Ampullary Adenocarcinoma. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:1014-1024. [PMID: 37787719 PMCID: PMC10645280 DOI: 10.5152/tjg.2023.22881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/03/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND/AIMS Pancreatic and ampullary adenocarcinoma (AAC) are quite resistant to chemotherapy with high metastasis potential. Our study aimed to interpret high-mobility group A protein 2 (HMGA2) expression in benign and precursor pancreatic lesions and pancreatic and ampullary carcinoma and to evaluate its relationship with epithelial-mesenchymal transition (EMT) and clinicopathological parameters. MATERIALS AND METHODS In this study, normal-appearing pancreas, chronic pancreatitis (CP), low- (L) and high (H)-grade pancreatic intraepithelial neoplasia (PanIN), pancreatic ductal adenocarcinoma (PDAC), and AAC were evaluated with the immunohistochemical marker of HMGA2. Vimentin and E-cadherin immunohistochemical stains were applied in PDAC and AAC. RESULTS The HMGA2 expression was not detected in normal-appearing pancreas, CP, and L-PanIN. A statistically significant expression was observed in PDAC and H-PanIN (P < .001). A statistically significant correlation was found between loss of membranous E-cadherin expression and vimentin positivity and HMGA2 expression (P > .05). The HMGA2 expression was observed to increase the risk of diseaserelated death and decrease overall survival (OS) in AAC and the neoplasia group (P = .002 and P = .016, respectively). There was no significant difference in OS and risk of death in PDAC (P > .05) with respect to HMGA2 positivity. CONCLUSION High-mobility group A protein 2 is a helpful immunohistochemical marker in differentiating CP from PDAC. It also plays a role in EMT and may serve as a potential new prognostic agent and therapeutic target in tumors of the periampullary region, especially AAC.
Collapse
Affiliation(s)
- Damla Oflas
- Department of Pathology, Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Funda Canaz
- Department of Pathology, Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - İlter Özer
- Department of General Surgery, Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Lütfiye Demir
- Department of Medical Oncology, Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Ertuğrul Çolak
- Department of Biostatistics, Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| |
Collapse
|
135
|
Chen Q, Guo H, Jiang H, Hu Z, Yang X, Yuan Z, Gao Y, Zhang G, Bai Y. S100A2 induces epithelial-mesenchymal transition and metastasis in pancreatic cancer by coordinating transforming growth factor β signaling in SMAD4-dependent manner. Cell Death Discov 2023; 9:356. [PMID: 37758734 PMCID: PMC10533899 DOI: 10.1038/s41420-023-01661-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor and is associated with a poor prognosis. Treatment strategies for PDAC are largely ineffective primarily because of delay in its diagnosis and limited efficacy of systematic treatment. S100A2 is associated with the proliferation, migration, and differentiation of several tumors; however, its effects on PDAC and the associated molecular mechanisms remain to be explored. We studied the mechanisms underlying the effect of S100A2 on epithelial-mesenchymal transition (EMT) and metastasis in PDAC cells. We found that the level of S100A2 remarkably increased and was associated with poor PDAC prognosis. The overexpression of S100A2 in PANC-1 cells also induced EMT, in addition to increasing the invasion and migration of PDAC cells, whereas the knockdown of S100A2 markedly inhibited cell metastasis. Furthermore, S100A2 was found to enhance metastatic abilities in vivo. The overexpression of S100A2 increased SMAD4 expression, whereas the knockdown of S100A2 reduced SMAD4 expression. SMAD4 overexpression could effectively rescue the effects of S100A2 knockdown on EMT. S100A2 mechanistically activated the transforming growth factor (TGF)-β/Smad2/3 signaling pathway, upregulated SMAD4 expression, induced EMT, and increased PANC-1 cell metastasis. In conclusion, the S100A2/SMAD4 axis modulates EMT to accelerate PDAC development. Our results supplement and enrich the understanding of the pathogenesis underlying PDAC and provide a new theoretical basis and strategy targeting S100A2 for the diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Qinbo Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Haojie Jiang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Zujian Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Yuanyuan Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Ge Zhang
- Department of Orthopedics, The First Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
| |
Collapse
|
136
|
Qian B, Liu Q, Wang C, Lu S, Ke S, Yin B, Li X, Yu H, Wu Y, Ma Y. Identification of MIR600HG/hsa-miR-342-3p/ANLN network as a potential prognosis biomarker associated with lmmune infiltrates in pancreatic cancer. Sci Rep 2023; 13:15919. [PMID: 37741887 PMCID: PMC10517933 DOI: 10.1038/s41598-023-43174-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Pancreatic cancer is one of the tumors with the worst prognosis, causing serious harm to human health. The RNA network and immune response play an important role in tumor progression. While a systematic RNA network linked to the tumor immune response remains to be further explored in pancreatic cancer. Based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, the MIR600HG/hsa-miR-342-3p/ANLN network was determined. WB and IHC were used to confirm the high expression of ANLN in pancreatic cancer. The prognostic model based on the RNA network could effectively predict the survival prognosis of patients. The analysis of immune infiltration showed that the MIR600HG/hsa-miR-342-3p/ANLN network altered the level of infiltration of T helper 2 (Th2) and effector memory T (Tem) cells. Furthermore, we found that the chemokines chemokine ligand (CCL) 5 and CCL14 may play a key role in immune cell infiltration mediated by the RNA network. In conclusion, this study constructed a prognostic model based on the MIR600HG/hsa-miR-342-3p/ANLN network and found that it may function in tumor immunity.
Collapse
Affiliation(s)
- Baolin Qian
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shounan Lu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanjia Ke
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjun Yu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaohua Wu
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Ma
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
137
|
Brown M, O'Connor D, Turkington R, Eatock M, Vince R, Hulme C, Bowdery R, Robinson R, Wadsley J, Maraveyas A, Prue G. Feasibility of delivering supervised exercise training following surgical resection and during adjuvant chemotherapy for pancreatic ductal adenocarcinoma (PRECISE): a case series. BMC Sports Sci Med Rehabil 2023; 15:116. [PMID: 37735664 PMCID: PMC10514993 DOI: 10.1186/s13102-023-00722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is an aggressive neoplasm, with surgical resection and adjuvant chemotherapy the only curative treatment. Treatment-related toxicities place a considerable burden on patients although exercise training has shown promise is helping to manage such adversities and facilitate rehabilitation. The feasibility and safety of exercise training as a supportive therapy during adjuvant chemotherapy remains unknown. METHODS Patients with PDAC were screened post-surgical resection and enrolled in a 16-week, progressive, concurrent exercise programme alongside their chemotherapy regimen. Feasibility was the primary objective detailing recruitment, retention and adherence rates throughout as well as the safety and fidelity of the intervention. Secondarily, the impact on functional fitness and patient-reported outcomes was captured at baseline, post-intervention and 3-month follow up. RESULTS Eight patients consented to participate in this trial, with five proceeding to enrol in exercise training. Concurrent exercise training is feasible and safe during adjuvant chemotherapy and prevented an expected decline in functional fitness and patient-reported outcomes during this time. DISCUSSION This case series provides preliminary evidence that concurrent exercise training during adjuvant therapy is safe, feasible and well tolerated, preventing an expected decline in functional fitness, muscular strength and health-related quality of life (HRQoL). Given the adverse effects of treatment, these findings are promising and provide further evidence for the inclusion of exercise training as a standard of care for surgical rehabilitation and managing treatment-related toxicities. Future research should explore the impact of exercise training during neoadjuvant chemotherapy, with prehabilitation now standard practice for borderline resectable disease. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04305067, prospectively registered 12/03/2020, https://classic. CLINICALTRIALS gov/ct2/show/NCT04305067 .
Collapse
Affiliation(s)
- Malcolm Brown
- School of Nursing and Midwifery, Queen's University Belfast Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Dominic O'Connor
- School of Health Sciences, The University of Nottingham, Nottingham, England, UK
| | - Richard Turkington
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
- The Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | - Martin Eatock
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
- The Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | - Rebecca Vince
- School of Sport, Exercise and Rehabilitation Sciences, University of Hull, Hull, England, UK
| | - Claire Hulme
- Department of Health and Community Sciences, University of Exeter Medical School, Exeter, England, UK
| | - Roy Bowdery
- Pancreatic Cancer UK Research Involvement Network, London, England, UK
| | - Rebecca Robinson
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England, UK
| | - Jonathan Wadsley
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, England, UK
| | | | - Gillian Prue
- School of Nursing and Midwifery, Queen's University Belfast Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
138
|
Su J, Li R, Chen Z, Liu S, Zhao H, Deng S, Zeng L, Xu Z, Zhao S, Zhou Y, Li M, He X, Liu J, Xue C, Bai R, Zhuang L, Zhou Q, Zhang S, Chen R, Huang X, Lin D, Zheng J, Zhang J. N 6-methyladenosine Modification of FZR1 mRNA Promotes Gemcitabine Resistance in Pancreatic Cancer. Cancer Res 2023; 83:3059-3076. [PMID: 37326469 DOI: 10.1158/0008-5472.can-22-3346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
The therapeutic options for treating pancreatic ductal adenocarcinoma (PDAC) are limited, and resistance to gemcitabine, a cornerstone of PDAC chemotherapy regimens, remains a major challenge. N6-methyladenosine (m6A) is a prevalent modification in mRNA that has been linked to diverse biological processes in human diseases. Herein, by characterizing the global m6A profile in a panel of gemcitabine-sensitive and gemcitabine-insensitive PDAC cells, we identified a key role for elevated m6A modification of the master G0-G1 regulator FZR1 in regulating gemcitabine sensitivity. Targeting FZR1 m6A modification augmented the response to gemcitabine treatment in gemcitabine-resistant PDAC cells both in vitro and in vivo. Mechanistically, GEMIN5 was identified as a novel m6A mediator that specifically bound to m6A-modified FZR1 and recruited the eIF3 translation initiation complex to accelerate FZR1 translation. FZR1 upregulation maintained the G0-G1 quiescent state and suppressed gemcitabine sensitivity in PDAC cells. Clinical analysis further demonstrated that both high levels of FZR1 m6A modification and FZR1 protein corresponded to poor response to gemcitabine. These findings reveal the critical function of m6A modification in regulating gemcitabine sensitivity in PDAC and identify the FZR1-GEMIN5 axis as a potential target to enhance gemcitabine response. SIGNIFICANCE Increased FZR1 translation induced by m6A modification engenders a gemcitabine-resistant phenotype by inducing a quiescent state and confers a targetable vulnerability to improve treatment response in PDAC.
Collapse
Affiliation(s)
- Jiachun Su
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Clinical Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ziming Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shaoqiu Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongzhe Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuang Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lingxing Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zilan Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Sihan Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yifan Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaowei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chunling Xue
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruihong Bai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lisha Zhuang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Quanbo Zhou
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rufu Chen
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xudong Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dongxin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jialiang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
139
|
Huo Q, Li K, Sun X, Zhuang A, Minami K, Tamari K, Ogawa K, Fishel ML, Li BY, Yokota H. The inhibition of pancreatic cancer progression by K-Ras-overexpressing mesenchymal stem cell-derived secretomes. Sci Rep 2023; 13:15036. [PMID: 37699930 PMCID: PMC10497626 DOI: 10.1038/s41598-023-41835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor survival. To explore an uncharted function of K-Ras proto-oncogene, K-Ras was activated in mesenchymal stem cells (MSCs) and the effects of MSC conditioned medium (CM) on PDAC were examined. Overexpression of K-Ras elevated PI3K signaling in MSCs, and K-Ras/PI3K-activated MSC-derived CM reduced the proliferation and migration of tumor cells, as well as the growth of ex vivo freshly isolated human PDAC cultures. CM's anti-tumor capability was additive with Gemcitabine, a commonly used chemotherapeutic drug in the treatment of PDAC. The systemic administration of CM in a mouse model suppressed the colonization of PDAC in the lung. MSC CM was enriched with Moesin (MSN), which acted as an extracellular tumor-suppressing protein by interacting with CD44. Tumor-suppressive CM was also generated by PKA-activated peripheral blood mononuclear cells. Collectively, this study demonstrated that MSC CM can be engineered to act as a tumor-suppressive agent by activating K-Ras and PI3K, and the MSN-CD44 regulatory axis is in part responsible for this potential unconventional option in the treatment of PDAC.
Collapse
Affiliation(s)
- Qingji Huo
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Kexin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Xun Sun
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Adam Zhuang
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Kazumasa Minami
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Melissa L Fishel
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
140
|
Stefàno E, Cossa LG, De Castro F, De Luca E, Vergaro V, My G, Rovito G, Migoni D, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. Evaluation of the Antitumor Effects of Platinum-Based [Pt( η1-C 2H 4-OR)(DMSO)(phen)] + (R = Me, Et) Cationic Organometallic Complexes on Chemoresistant Pancreatic Cancer Cell Lines. Bioinorg Chem Appl 2023; 2023:5564624. [PMID: 37727647 PMCID: PMC10506884 DOI: 10.1155/2023/5564624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies with an increasing incidence and a high mortality rate, due to its rapid progression, invasiveness, and resistance to anticancer therapies. In this work, we evaluated the antiproliferative and antimigratory activities of the two organometallic compounds, [Pt(η1-C2H4-OMe)(DMSO)(phen)]Cl (1) and [Pt(η1-C2H4-OEt)(DMSO)(phen)]Cl (2), on three human pancreatic ductal adenocarcinoma cell lines with different sensitivity to cisplatin (Mia PaCa-2, PANC-1, and YAPC). The two cationic analogues showed superimposable antiproliferative effects on the tested cells, without significant differences depending on alkyl chain length (Me or Et). On the other hand, they demonstrated to be more effective than cisplatin, especially on YAPC cancer cells. For the interesting cytotoxic activity observed on YAPC, further biological assays were performed, on this cancer cell line, to evaluate the apoptotic and antimetastatic properties of the considered platinum compounds (1 and 2). The cytotoxicity of 1 and 2 compounds appeared to be related to their intracellular accumulation, which was much faster than that of cisplatin. Both 1 and 2 compounds significantly induced apoptosis and cell cycle arrest, with a high accumulation of sub-G1 phase cells, compared to cisplatin. Moreover, phenanthroline-containing complexes caused a rapid loss of mitochondria membrane potential, ΔΨM, if compared to cisplatin, probably due to their cationic and lipophilic properties. On 3D tumor spheroids, 1 and 2 significantly reduced migrated area more than cisplatin, confirming an antimetastatic ability.
Collapse
Affiliation(s)
- Erika Stefàno
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Luca Giulio Cossa
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Federica De Castro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Erik De Luca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Viviana Vergaro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Giulia My
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Gianluca Rovito
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Santo Marsigliante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| |
Collapse
|
141
|
Du Y, Hou S, Chen Z, Li W, Li X, Zhou W. Comprehensive Analysis Identifies PKP3 Overexpression in Pancreatic Cancer Related to Unfavorable Prognosis. Biomedicines 2023; 11:2472. [PMID: 37760912 PMCID: PMC10526039 DOI: 10.3390/biomedicines11092472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Plakophilin 3 (PKP3) affects cell signal transduction and cell adhesion and performs a crucial function in tumorigenesis. The current investigation evaluated the predictive significance and underlying processes of PKP3 within pancreatic cancer (PC) tissues. The assessment of differences in PKP3 expression was conducted through an analysis of RNA-seq data acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Additionally, clinical samples were collected to validate the findings. The predictive significance of PKP3 was investigated by analyzing survival data derived from TCGA and clinical specimens. PKP3's biological function was assessed via phenotypic experiments after the suppression of PKP3 expression within PC cells. Functional enrichment analysis, encompassing KEGG, GO, and GSEA, was employed to assess the underlying mechanism of PKP3. Immune infiltration analysis was conducted in the present investigation to determine the association between PKP3 and tumor-infiltrating immune cells (TICs). In PC tissues, PKP3 expression was abnormally upregulated and correlated with a negative prognosis in individuals with PC. PKP3 can promote the progression, migration, and invasive capacity of PC cells and is relevant to the regulation of the PI3K-Akt and MAPK signaling pathways. Immune infiltration analysis demonstrated that PKP3 impeded CD8+ T-cell infiltration and immune cytokine expression within the tumor microenvironment. The PKP3 protein was identified as a prospective independent predictive indicator and represents a viable approach for immunotherapy in the context of PC. PKP3 may impact prognosis by broadly inhibiting immune cell infiltration and promoting the activation of tumor-associated signaling pathways.
Collapse
Affiliation(s)
- Yan Du
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Shuang Hou
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Zhou Chen
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Wancheng Li
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Xin Li
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Wence Zhou
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
142
|
Canakis A, Sharaiha RZ. Radiofrequency ablation for pancreatobiliary disease: an updated review. Ann Gastroenterol 2023; 36:497-503. [PMID: 37664225 PMCID: PMC10433252 DOI: 10.20524/aog.2023.0828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023] Open
Abstract
Endoscopic radiofrequency ablation (RFA) has emerged as a minimally invasive treatment option in cases of malignant biliary obstruction, pancreatic cancer, and other pancreatic cystic neoplasms. Intraductal biliary RFA is safe, effective, and confers a survival advantage over stenting alone, where it should be used an adjunct to biliary stenting. Endoscopic ultrasound-guided RFA can also provide pancreatic cyst resolution in patients who are not ideal operative candidates. The aim of this review is to describe the endoscopic applications and associated outcomes of RFA.
Collapse
Affiliation(s)
- Andrew Canakis
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland (Andrew Canakis)
| | - Reem Z. Sharaiha
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York (Reem Z. Sharaiha), USA
| |
Collapse
|
143
|
Sun J, Zhu S. Identifying the role of hypoxia-related lncRNAs in pancreatic cancer. Genomics 2023; 115:110665. [PMID: 37315872 DOI: 10.1016/j.ygeno.2023.110665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/30/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play important roles in hypoxia-induced tumor processes. However, the prognostic value of hypoxia-related lncRNAs in pancreatic cancer is limited. METHODS Hypoxia-related lncRNAs were identified by coexpression analysis and the LncTarD database. LASSO analysis was performed to develop a prognostic model. The function of TSPOAP1-AS1 was studied in vitro and in vivo. RESULTS We recognized a set of fourteen hypoxia-related lncRNAs for the construction of a prognostic model. The prognostic model displayed excellent performance in predicting the prognosis of pancreatic cancer patients. The overexpression of TSPOAP1-AS1, a hypoxia-related lncRNA, attenuated the proliferation and invasion of pancreatic cancer cells. HIF-1α bound to the promoter of TSPOAP1-AS1 and impaired its transcription under hypoxia. CONCLUSION The hypoxia-related lncRNA assessment model might be a potential strategy for prognostic prediction in pancreatic cancer. The fourteen lncRNAs contained in the model could be helpful for uncovering the mechanisms of pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Jing Sun
- The Stomatology Center of Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Academician workstation for Oral & Maxillofacial Regenerative Medicine, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shuai Zhu
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
144
|
Segoviano-Ramirez JC, Esparza-Rodriguez N, Carcano-Diaz K, Diaz-Perez RN, Palma-Nicolas JP, Hernandez-Bello R, Garcia-Juarez J. Structural and functional integrity of endocrine pancreas post administration of Karwinskia humboldtiana fruit to Wistar rats: a possible therapeutic application for cancer of exocrine origin. Histol Histopathol 2023; 38:989-997. [PMID: 36896890 DOI: 10.14670/hh-18-603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
AIMS Pancreatic adenocarcinoma represents a therapeutic challenge due to the high toxicity of antineoplastic treatments and secondary effects of pancreatectomy. T-514, a toxin isolated from Karwinskia humboldtiana (Kh) has shown antineoplastic activity on cell lines. In acute intoxication with Kh, we reported apoptosis on the exocrine portion of pancreas. One of the mechanisms of antineoplastic agents is the induction of apoptosis, therefore our main objective was to evidence structural and functional integrity of the islets of Langerhans after the administration of Kh fruit in Wistar rats. METHODS TUNEL assay and immunolabelling against activated caspase-3 were used to detect apoptosis. Also, immunohistochemical tests were performed to search for glucagon and insulin. Serum amylase enzyme activity was also quantified as a molecular marker of pancreatic damage. RESULTS Evidence of toxicity on the exocrine portion, by positivity in the TUNEL assay and activated caspase-3, was found. On the contrary, the endocrine portion remained structurally and functionally intact, without apoptosis, and presenting positivity in the identification of glucagon and insulin. CONCLUSIONS These results demonstrated that Kh fruit induces selective toxicity on the exocrine portion and establish a precedent to evaluate T-514 as a potential treatment against pancreatic adenocarcinoma without affecting the islets of Langerhans.
Collapse
Affiliation(s)
- Juan Carlos Segoviano-Ramirez
- Center for Research and Development in Health Sciences, Bioimaging Unit, Autonomous University of Nuevo Leon (UANL), México
- Department of Pathology, Faculty of Medicine, Autonomous University of Nuevo Leon (UANL), México
| | - Nallely Esparza-Rodriguez
- Department of Histology, Faculty of Medicine, Autonomous University of Nuevo Leon (UANL), Madero y Dr. Aguirre Pequeño, Mitras Centro, México
- General Directorate of Quality and Health Education (DGCES), Secretary of Health, México City, México
| | | | - Rosa Nelly Diaz-Perez
- Department of Histology, Faculty of Medicine, Autonomous University of Nuevo Leon (UANL), Madero y Dr. Aguirre Pequeño, Mitras Centro, México
| | | | - Romel Hernandez-Bello
- Department of Microbiology, Faculty of Medicine, Autonomous University of Nuevo Leon (UANL), México
| | - Jaime Garcia-Juarez
- Department of Histology, Faculty of Medicine, Autonomous University of Nuevo Leon (UANL), Madero y Dr. Aguirre Pequeño, Mitras Centro, México
- Center for Research and Development in Health Sciences, Bioimaging Unit, Autonomous University of Nuevo Leon (UANL), Gonzalitos y Dr. Carlos Canseco, Mitras Centro, México.
| |
Collapse
|
145
|
Du Y, Dong S, Jiang W, Li M, Li W, Li X, Zhou W. Integration of Single-Cell RNA Sequencing and Bulk RNA Sequencing Reveals That TAM2-Driven Genes Affect Immunotherapeutic Response and Prognosis in Pancreatic Cancer. Int J Mol Sci 2023; 24:12787. [PMID: 37628967 PMCID: PMC10454560 DOI: 10.3390/ijms241612787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Tumor-associated macrophages M2 (TAM2), which are highly prevalent infiltrating immune cells in the stroma of pancreatic cancer (PC), have been found to induce an immunosuppressive tumor microenvironment, thus enhancing tumor initiation and progression. However, the immune therapy response and prognostic significance of regulatory genes associated with TAM2 in PC are currently unknown. Based on TCGA transcriptomic data and single-cell sequencing data from the GEO database, we identified TAM2-driven genes using the WGCNA algorithm. Molecular subtypes based on TAM2-driven genes were clustered using the ConsensusClusterPlus algorithm. The study constructed a prognostic model based on TAM2-driven genes through Lasso-COX regression analysis. A total of 178 samples obtained by accessing TCGA were accurately categorized into two molecular subtypes, including the high-TAM2 infiltration (HMI) cluster and the low-TAM2 infiltration (LMI) cluster. The HMI cluster exhibits a poor prognosis, a malignant tumor phenotype, immune-suppressive immune cell infiltration, resistance to immunotherapy, and a high number of genetic mutations, while the LMI cluster is the opposite. The prognostic model composed of six hub genes from TAM2-driven genes exhibits a high degree of accuracy in predicting the prognosis of patients with PC and serves as an independent risk factor. The induction of TAM2 was employed as a means of verifying these six gene expressions, revealing the significant up-regulation of BCAT1, BST2, and MERTK in TAM2 cells. In summary, the immunophenotype and prognostic model based on TAM2-driven genes offers a foundation for the clinical management of PC. The core TAM2-driven genes, including BCAT1, BST2, and MERTK, are involved in regulating tumor progression and TAM2 polarization, which are potential targets for PC therapy.
Collapse
Affiliation(s)
- Yan Du
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Y.D.); (S.D.); (W.J.); (M.L.); (W.L.)
| | - Shi Dong
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Y.D.); (S.D.); (W.J.); (M.L.); (W.L.)
| | - Wenkai Jiang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Y.D.); (S.D.); (W.J.); (M.L.); (W.L.)
| | - Mengyao Li
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Y.D.); (S.D.); (W.J.); (M.L.); (W.L.)
| | - Wancheng Li
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Y.D.); (S.D.); (W.J.); (M.L.); (W.L.)
| | - Xin Li
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Wence Zhou
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Y.D.); (S.D.); (W.J.); (M.L.); (W.L.)
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
146
|
Kang YE, Yoon JH, Park NH, Ahn YC, Lee EJ, Son CG. Prevalence of cancer-related fatigue based on severity: a systematic review and meta-analysis. Sci Rep 2023; 13:12815. [PMID: 37550326 PMCID: PMC10406927 DOI: 10.1038/s41598-023-39046-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023] Open
Abstract
Cancer-related fatigue (CRF) affects therapeutic compliance and clinical outcomes including recurrence and mortality. This study aimed to comprehensively and comparatively assess the severity-based prevalence of CRF. From two public databases (PubMed and Cochrane Library), we extracted data containing information on both prevalence and severity of fatigue in cancer patients through December 2021. We conducted a meta-analysis to produce point estimates using random effects models. Subgroup analyses were used to assess the prevalence and severity by the organ/system tumor development, treatment phase, therapeutic type, sex and assessment method. A total of 151 data (57 studies, 34,310 participants, 11,805 males and 22,505 females) were selected, which indicated 43.0% (95% CI 39.2-47.2) of fatigue prevalence. The total CRF prevalence including 'mild' level of fatigue was 70.7% (95% CI 60.6-83.3 from 37 data). The prevalence of 'severe' fatigue significantly varied by organ/system types of cancer origin (highest in brain tumors 39.7% vs. lowest in gynecologic tumors 3.9%) and treatment phase likely 15.9% (95% CI 8.1-31.3) before treatment, 33.8% (95% CI 27.7-41.2) ongoing treatment, and 24.1% (95% CI 18.6-31.2) after treatment. Chemotherapy (33.1%) induced approximately 1.5-fold higher prevalence for 'severe' CRF than surgery (22.0%) and radiotherapy (24.2%). The self-reported data for 'severe' CRF was 20-fold higher than those assessed by physicians (23.6% vs. 1.6%). Female patients exhibited a 1.4-fold higher prevalence of 'severe' fatigue compared to males. The present data showed quantitative feature of the prevalence and severity of CRF based on the cancer- or treatment-related factors, sex, and perspective of patient versus physician. In the context of the medical impact of CRF, our results provide a comparative reference to oncologists or health care providers making patient-specific decision.
Collapse
Affiliation(s)
- Ye-Eun Kang
- Research Center for CFS/ME, Daejeon Oriental Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Ji-Hae Yoon
- Research Center for CFS/ME, Daejeon Oriental Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Na-Hyun Park
- Research Center for CFS/ME, Daejeon Oriental Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Yo-Chan Ahn
- Department of Health Service Management, Daejeon University, Daejeon, Republic of Korea
| | - Eun-Jung Lee
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Chang-Gue Son
- Research Center for CFS/ME, Daejeon Oriental Hospital of Daejeon University, Daejeon, Republic of Korea.
- East-West Cancer Center of Daejeon Hospital, Daejeon University, Daejeon, Republic of Korea.
| |
Collapse
|
147
|
Zhong JJ, Ye YQ. Construction and validation of a nomogram model for predicting early death in patients with metastatic pancreatic adenocarcinoma based on SEER database. Shijie Huaren Xiaohua Zazhi 2023; 31:577-588. [DOI: 10.11569/wcjd.v31.i14.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma is a highly aggressive malignancy that presents a considerable risk of early death (survival time ≤ 3 mo). As such, it is of great significance to develop an effective nomogram for predicting the likelihood of early death in patients with metastatic pancreatic adenocarcinoma.
AIM To construct and validate a predictive nomogram model for early death in patients with metastatic pancreatic adenocar-cinoma.
METHODS We extracted data from the SEER database of 18603 eligible patients with metastatic pancreatic adenocarcinoma from 2010 to 2015, and randomly divided them into training and validation cohorts in a 7:3 ratio. Univariate and multivariate logistic regression analyses were performed on the training cohort to identify the risk factors for early death, based on which a nomogram was constructed. The performance of the nomogram was verified by receiver operating characteristic (ROC) curve and calibration curve analyses in both the training and validation cohorts. The clinical practicability of the nomogram was evaluated by decision curve analysis (DCA).
RESULTS Age, sex, primary site, grade, T stage, N stage, brain metastasis, bone metastasis, liver metastasis, lung metastasis, surgery, radiotherapy, and chemotherapy were identified as independent risk factors for early death in patients with metastatic pancreatic adenocarcinoma. Based on these variables, a nomogram was constructed. The areas under the ROC curves of the nomogram in the training and validation cohorts were 0.810 (95% confidence interval [CI]: 0.802-0.811) and 0.802 (95%CI: 0.790-0.813), respectively, indicating good discrimination. The calibration curves showed good calibration degrees in both cohorts, and the DCA results demonstrated that the nomogram had better clinical net benefit in predicting early mortality compared with TNM stage.
CONCLUSION The constructed nomogram has good predictive ability for early death in patients with metastatic pancreatic adeno-carcinoma. This will help clinicians develop individualized treatment plans for these patients.
Collapse
Affiliation(s)
- Jia-Jun Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Yan-Qing Ye
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| |
Collapse
|
148
|
Yu X, Sun R, Yang X, He X, Guo H, Ou C. The NT5DC family: expression profile and prognostic value in pancreatic adenocarcinoma. J Cancer 2023; 14:2274-2288. [PMID: 37576396 PMCID: PMC10414034 DOI: 10.7150/jca.85811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a malignant tumor with high morbidity and mortality rates. The NT5DC family is an evolutionarily-conserved family of 5'-nucleosidases that catalyze the intracellular hydrolysis of nucleotides. Although the NT5DC family has been linked to the initiation and growth of several cancers, its function in PAAD remains unclear. A series of bioinformatic analyses was used to ascertain the expression, prognosis, gene changes, functional enrichment, and immune regulatory functions of the NT5DC family in PAAD. NT5C2 and NT5DC1/2 mRNA and protein levels are increased in PAAD. Furthermore, the high mRNA expressions of NT5C2, NT5DC2, and NT5DC4 indicate a poor prognosis in patients with PAAD. The enrichment of biological processes and gene expression in the NT5DC family in PAAD were investigated using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses. Further investigations into immune infiltration revealed a close relationship between NT5DC gene expression and immune cell infiltration. These findings provide new insights into the biological function and prognostic value of the NT5DC gene family in PAAD.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ru Sun
- Department of blood transfusion, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hongbin Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
149
|
Chang C, Li X, Cheng K, Cai Z, Xiong J, Lv W, Li R, Zhang P, Cao D. A Phase I Study of Gemcitabine/Nab-Paclitaxel/S-1 Chemotherapy in Patients With Locally Advanced or Metastatic Pancreatic Ductal Adenocarcinoma. Oncologist 2023; 28:e575-e584. [PMID: 35930304 PMCID: PMC10322137 DOI: 10.1093/oncolo/oyac146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Systemic chemotherapy is the primary treatment in patients with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). More effective treatment options are highly awaited. The aim of this study was to evaluate the toxicity and feasibility of gemcitabine/nab-paclitaxel/S-1 (GAS) chemotherapy on a 21-day cycle in patients with locally advanced or metastatic PDAC, determine the dose-limiting toxicity (DLT) and the maximum tolerated dose (MTD) of S-1 in this regimen, and explore preliminary efficacy. METHODS Eligible patients with locally advanced or metastatic PDAC received GAS chemotherapy on a 21-day cycle. Fixed-dose nab-paclitaxel (125 mg/m2) and gemcitabine (1000 mg/m2) were given intravenously on days 1 and 8. Different doses of S-1 were given orally twice daily from day 1 to day 14 in a 3+3 dose escalation design. According to patients` body surface area, the dose-escalation design was as follows: patients with a body surface area of 1.25-1.5 m2 received S-1 40 mg/day initially and the dose was increased to 60 mg or 80 mg. Patients with a body surface area of more than 1.5 m2 received S-1 60 mg/day initially and the dose was increased to 80 mg or 100 mg. The primary endpoints were to evaluate the toxicity and determine the DLT and MTD of S-1. The secondary endpoint was to evaluate efficacy, including best objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS). adverse events (AEs) were evaluated according to the NCI-CTCAE 5.0. Tumor response was assessed using the RECIST 1.1. RESULTS A total of 21 eligible patients were included. Due to the infrequence of patients with a body surface area of 1.25-1.5 m2, only 2 patients were included in cohort of S-1 40 mg. The dose-escalation for patients in this group failed to be enrolled completely. For patients with a body surface area of more than 1.5 m2, 3 DLTs in 7 patients were detected at cohort of S-1 100 mg (grade 3 thrombocytopenia with hemorrhage, grade 3 rash, and grade 3 mucositis/stomatitis). S-1 80 mg/day (body surface area: >1.5 m2) was considered to be the MTD in GAS chemotherapy on a 21-day cycle. No grade 4 AEs or treatment-related deaths were observed. The most commonly occurring hematologic AE of any grade was anemia (38.1%). The most frequent nonhematologic AEs of any grade were peripheral neuropathy (38.1%), dyspepsia (23.8%), constipation (23.8%), and alopecia (23.8%). Response assessment showed that the best ORR was 36.8% (7 of 19 patients) and the DCR was 94.7% (18 of 19 patients). The median PFS was 5.3 (95% CI, 4.6 to 6.0) months and the median OS was 10.3 (95% CI, 8.1 to 12.5) months. CONCLUSION GAS chemotherapy (21-day cycle) with nab-paclitaxel 125 mg/m2, gemcitabine 1000 mg/m2, and S-1 80 mg/day (body surface area: >1.5 m2) was found to have acceptable toxicity and significant clinical control in patients with locally advanced or metastatic PDAC. We conclude that further trials with this combination are warranted. (Trial Identifier: ChiCTR1900027833 [chictr.org]).
Collapse
Affiliation(s)
- Chen Chang
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xiaofen Li
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ke Cheng
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Zhaolun Cai
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Junjie Xiong
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Wanrui Lv
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ruizhen Li
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Pei Zhang
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
150
|
Lin HJ, Liu Y, Caroland K, Lin J. Polarization of Cancer-Associated Macrophages Maneuver Neoplastic Attributes of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:3507. [PMID: 37444617 DOI: 10.3390/cancers15133507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Mounting evidence links the phenomenon of enhanced recruitment of tumor-associated macrophages towards cancer bulks to neoplastic growth, invasion, metastasis, immune escape, matrix remodeling, and therapeutic resistance. In the context of cancer progression, naïve macrophages are polarized into M1 or M2 subtypes according to their differentiation status, gene signatures, and functional roles. While the former render proinflammatory and anticancer effects, the latter subpopulation elicits an opposite impact on pancreatic ductal adenocarcinoma. M2 macrophages have gained increasing attention as they are largely responsible for molding an immune-suppressive landscape. Through positive feedback circuits involving a paracrine manner, M2 macrophages can be amplified by and synergized with neighboring neoplastic cells, fibroblasts, endothelial cells, and non-cell autonomous constituents in the microenvironmental niche to promote an advanced disease state. This review delineates the molecular cues expanding M2 populations that subsequently convey notorious clinical outcomes. Future therapeutic regimens shall comprise protocols attempting to abolish environmental niches favoring M2 polarization; weaken cancer growth typically assisted by M2; promote the recruitment of tumoricidal CD8+ T lymphocytes and dendritic cells; and boost susceptibility towards gemcitabine as well as other chemotherapeutic agents.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA
| | - Kailey Caroland
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, 108 N. Greene Street, Baltimore, MD 21201, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, 108 N. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|