101
|
Land J, Abdulahad WH, Sanders JSF, Stegeman CA, Heeringa P, Rutgers A. Regulatory and effector B cell cytokine production in patients with relapsing granulomatosis with polyangiitis. Arthritis Res Ther 2016; 18:84. [PMID: 27044386 PMCID: PMC4820899 DOI: 10.1186/s13075-016-0978-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/18/2016] [Indexed: 12/11/2022] Open
Abstract
Background B cells are capable of producing regulatory and effector cytokines. In patients with granulomatosis with polyangiitis (GPA), skewing of the pro- and anti-inflammatory cytokine balance may affect the risk of relapse. This study aimed to investigate differences in B cell cytokine production in patients with relapsing GPA and in controls, and determine whether this can aid in relapse prediction. Methods Thirteen GPA patients with an upcoming relapse were matched with non-relapsing patients and healthy controls in a retrospective design. The B cell subset distribution was determined from peripheral blood. Cryopreserved peripheral blood mononuclear cells were cultured and intracellular B cell production of regulatory (IL10) and effector (TNFα, IFNγ, IL2, IL6) cytokines was assessed. Finally, serum markers associated with B cell activation (sCD27) and migration (CCL19) were determined. Results GPA patient samples exhibited significantly lower percentages of TNFα+ B cells than controls, an effect that was most pronounced in patients about to relapse. B cell capacity for IL10 production was similar in patients and controls. No significant differences were observed for cytokine production in relapsing and non-relapsing GPA patients. TNFα production correlated strongly with IL2, IFNγ and the percentage of memory B cells. No change in effector cytokines occurred before relapse, while the percentage of IL10+ B cells significantly decreased. GPA patients in remission had increased serum levels of CCL19 and sCD27, and sCD27 levels increased upon active disease. Conclusions While differences in effector B cell cytokine production were observed between patients and controls, monitoring this in GPA did not clearly distinguish patients about to relapse. Prospective measurements of the regulatory cytokine IL10 may have potential for relapse prediction. Memory B cells appear mainly responsible for effector cytokine production. Increased migration of these cells could explain the decreased presence of TNFα+ B cells in the circulation. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0978-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Judith Land
- Department of Rheumatology and Clinical Immunology, AA21, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, AA21, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jan-Stephan F Sanders
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Coen A Stegeman
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, AA21, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
102
|
Meffre E, Louie A, Bannock J, Kim LJY, Ho J, Frear CC, Kardava L, Wang W, Buckner CM, Wang Y, Fankuchen OR, Gittens KR, Chun TW, Li Y, Fauci AS, Moir S. Maturational characteristics of HIV-specific antibodies in viremic individuals. JCI Insight 2016; 1. [PMID: 27152362 DOI: 10.1172/jci.insight.84610] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite the rare appearance of potent HIV-neutralizing mAbs in infected individuals requiring prolonged affinity maturation, little is known regarding this process in the majority of viremic individuals. HIV-infected individuals with chronic HIV viremia have elevated numbers of nonconventional tissue-like memory (TLM) B cells that predominate in blood over conventional resting memory (RM) B cells. Accordingly, we investigated affinity maturation in these 2 memory B cell populations. Analysis of IgG-expressing TLM B cells revealed a higher number of cell divisions compared with RM B cells; however, TLM B cells paradoxically displayed significantly lower frequencies of somatic hypermutation (SHM). To assess Ab reactivity in TLM and RM B cells, single-cell cloning was performed on HIV envelope CD4-binding site-sorted (CD4bs-sorted) B cells from 3 individuals with chronic HIV viremia. Several clonal families were present among the 127 cloned recombinant mAbs, with evidence of crosstalk between TLM and RM B cell populations that was largely restricted to non-VH4 families. Despite evidence of common origins, SHM frequencies were significantly decreased in TLM-derived mAbs compared with SHM frequencies in RM-derived mAbs. However, both cell populations had lower frequencies of SHMs than did broadly neutralizing CD4bs-specific mAbs. There was a significant correlation between SHM frequencies and the HIV-neutralizing capacities of the mAbs. Furthermore, HIV neutralization was significantly higher in the RM-derived mAbs compared with that seen in the TLM-derived mAbs, and both SHM frequencies and neutralizing capacity were lowest in TLM-derived mAbs with high polyreactivity. Thus, deficiencies in memory B cells that arise during chronic HIV viremia provide insight into the inadequacy of the Ab response in viremic individuals.
Collapse
Affiliation(s)
- Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Aaron Louie
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Jason Bannock
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Leo J Y Kim
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Jason Ho
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Cody C Frear
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Wei Wang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Clarisa M Buckner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Yimeng Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Olivia R Fankuchen
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA; Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| |
Collapse
|
103
|
Ingelman-Sundberg HM, Laestadius Å, Chrapkowska C, Mördrup K, Magnusson B, Sundberg E, Nilsson A. Diverse effects on vaccine-specific serum IgG titres and memory B cells upon methotrexate and anti-TNF-α therapy in children with rheumatic diseases: A cross-sectional study. Vaccine 2016; 34:1304-11. [DOI: 10.1016/j.vaccine.2016.01.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/10/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022]
|
104
|
Dunn-Walters DK. The ageing human B cell repertoire: a failure of selection? Clin Exp Immunol 2015; 183:50-6. [PMID: 26332693 DOI: 10.1111/cei.12700] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 12/15/2022] Open
Abstract
B cells undergo a number of different developmental stages, from initial formation of their B cell receptor (BCR) genes to differentiation into antibody-secreting plasma cells. Because the BCR is vital in these differentiation steps, autoreactive and exogenous antigen binding to the BCR exert critical selection pressures to shape the B cell repertoire. Older people are more prone to infectious disease, less able to respond well to vaccination and more likely to have autoreactive antibodies. Here we review evidence of changes in B cell repertoires in older people, which may be a reflection of age-related changes in B cell selection processes.
Collapse
Affiliation(s)
- D K Dunn-Walters
- Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
105
|
Bagnara D, Squillario M, Kipling D, Mora T, Walczak AM, Da Silva L, Weller S, Dunn-Walters DK, Weill JC, Reynaud CA. A Reassessment of IgM Memory Subsets in Humans. THE JOURNAL OF IMMUNOLOGY 2015; 195:3716-24. [PMID: 26355154 DOI: 10.4049/jimmunol.1500753] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/06/2015] [Indexed: 12/22/2022]
Abstract
From paired blood and spleen samples from three adult donors, we performed high-throughput VH sequencing of human B cell subsets defined by IgD and CD27 expression: IgD(+)CD27(+) ("marginal zone [MZ]"), IgD(-)CD27(+) ("memory," including IgM ["IgM-only"], IgG and IgA) and IgD(-)CD27(-) cells ("double-negative," including IgM, IgG, and IgA). A total of 91,294 unique sequences clustered in 42,670 clones, revealing major clonal expansions in each of these subsets. Among these clones, we further analyzed those shared sequences from different subsets or tissues for VH gene mutation, H-CDR3-length, and VH/JH usage, comparing these different characteristics with all sequences from their subset of origin for which these parameters constitute a distinct signature. The IgM-only repertoire profile differed notably from that of MZ B cells by a higher mutation frequency and lower VH4 and higher JH6 gene usage. Strikingly, IgM sequences from clones shared between the MZ and the memory IgG/IgA compartments showed a mutation and repertoire profile of IgM-only and not of MZ B cells. Similarly, all IgM clonal relationships (among MZ, IgM-only, and double-negative compartments) involved sequences with the characteristics of IgM-only B cells. Finally, clonal relationships between tissues suggested distinct recirculation characteristics between MZ and switched B cells. The "IgM-only" subset (including cells with its repertoire signature but higher IgD or lower CD27 expression levels) thus appear as the only subset showing precursor-product relationships with CD27(+) switched memory B cells, indicating that they represent germinal center-derived IgM memory B cells and that IgM memory and MZ B cells constitute two distinct entities.
Collapse
Affiliation(s)
- Davide Bagnara
- Institut Necker-Enfants Malades, INSERM U1151-Centre National de la Recherche Scientifique Unité Mixte de Recherche 8253, Université Paris Descartes, Faculté de Médecine-Site Broussais, 75993 Paris Cedex 14, France
| | - Margherita Squillario
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Università degli Studi di Genova, 16146 Genoa, Italy
| | - David Kipling
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Thierry Mora
- Laboratoire de Physique Statistique, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8550, Université Pierre et Marie Curie and Ecole Normale Supérieure, 75005 Paris, France
| | - Aleksandra M Walczak
- Laboratoire de Physique Théorique, Unité Mixte de Recherche 8549, Centre National de la Recherche Scientifique and Ecole Normale Supérieure, 75005 Paris, France; and
| | - Lucie Da Silva
- Institut Necker-Enfants Malades, INSERM U1151-Centre National de la Recherche Scientifique Unité Mixte de Recherche 8253, Université Paris Descartes, Faculté de Médecine-Site Broussais, 75993 Paris Cedex 14, France
| | - Sandra Weller
- Institut Necker-Enfants Malades, INSERM U1151-Centre National de la Recherche Scientifique Unité Mixte de Recherche 8253, Université Paris Descartes, Faculté de Médecine-Site Broussais, 75993 Paris Cedex 14, France
| | - Deborah K Dunn-Walters
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Jean-Claude Weill
- Institut Necker-Enfants Malades, INSERM U1151-Centre National de la Recherche Scientifique Unité Mixte de Recherche 8253, Université Paris Descartes, Faculté de Médecine-Site Broussais, 75993 Paris Cedex 14, France;
| | - Claude-Agnès Reynaud
- Institut Necker-Enfants Malades, INSERM U1151-Centre National de la Recherche Scientifique Unité Mixte de Recherche 8253, Université Paris Descartes, Faculté de Médecine-Site Broussais, 75993 Paris Cedex 14, France;
| |
Collapse
|
106
|
Complexity of the human memory B-cell compartment is determined by the versatility of clonal diversification in germinal centers. Proc Natl Acad Sci U S A 2015; 112:E5281-9. [PMID: 26324941 DOI: 10.1073/pnas.1511270112] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Our knowledge about the clonal composition and intraclonal diversity of the human memory B-cell compartment and the relationship between memory B-cell subsets is still limited, although these are central issues for our understanding of adaptive immunity. We performed a deep sequencing analysis of rearranged immunoglobulin (Ig) heavy chain genes from biological replicates, covering more than 100,000 memory B lymphocytes from two healthy adults. We reveal a highly similar B-cell receptor repertoire among the four main human IgM(+) and IgG(+) memory B-cell subsets. Strikingly, in both donors, 45% of sequences could be assigned to expanded clones, demonstrating that the human memory B-cell compartment is characterized by many, often very large, B-cell clones. Twenty percent of the clones consisted of class switched and IgM(+)(IgD(+)) members, a feature that correlated significantly with clone size. Hence, we provide strong evidence that the vast majority of Ig mutated B cells--including IgM(+)IgD(+)CD27(+) B cells--are post-germinal center (GC) memory B cells. Clone members showed high intraclonal sequence diversity and high intraclonal versatility in Ig class and IgG subclass composition, with particular patterns of memory B-cell clone generation in GC reactions. In conclusion, GC produce amazingly large, complex, and diverse memory B-cell clones, equipping the human immune system with a versatile and highly diverse compartment of IgM(+)(IgD(+)) and class-switched memory B cells.
Collapse
|
107
|
Steiniger BS. Human spleen microanatomy: why mice do not suffice. Immunology 2015; 145:334-46. [PMID: 25827019 DOI: 10.1111/imm.12469] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 02/06/2023] Open
Abstract
The microanatomical structure of the spleen has been primarily described in mice and rats. This leads to terminological problems with respect to humans and their species-specific splenic microstructure. In mice, rats and humans the spleen consists of the white pulp embedded in the red pulp. In the white pulp, T and B lymphocytes form accumulations, the periarteriolar lymphatic sheaths and the follicles, located around intermediate-sized arterial vessels, the central arteries. The red pulp is a reticular connective tissue containing all types of blood cells. The spleen of mice and rats exhibits an additional well-delineated B-cell compartment, the marginal zone, between white and red pulp. This area is, however, absent in human spleen. Human splenic secondary follicles comprise three zones: a germinal centre, a mantle zone and a superficial zone. In humans, arterioles and sheathed capillaries in the red pulp are surrounded by lymphocytes, especially by B cells. Human sheathed capillaries are related to the splenic ellipsoids of most other vertebrates. Such vessels are lacking in rats or mice, which form an evolutionary exception. Capillary sheaths are composed of endothelial cells, pericytes, special stromal sheath cells, macrophages and B lymphocytes. Human spleens most probably host a totally open circulation system, as connections from capillaries to sinuses were not found in the red pulp. Three stromal cell types of different phenotype and location occur in the human white pulp. Splenic white and red pulp structure is reviewed in rats, mice and humans to encourage further investigations on lymphocyte recirculation through the spleen.
Collapse
Affiliation(s)
- Birte S Steiniger
- Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| |
Collapse
|
108
|
Martin V, Wu YC, Kipling D, Dunn-Walters DK. Age-related aspects of human IgM(+) B cell heterogeneity. Ann N Y Acad Sci 2015; 1362:153-63. [PMID: 26152370 PMCID: PMC4758400 DOI: 10.1111/nyas.12823] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/13/2015] [Accepted: 05/21/2015] [Indexed: 01/31/2023]
Abstract
The CD27+IgD+ B cell population, known as IgM memory, reduces with age. It is thought that this population is responsible for pneumococcal polysaccharide T‐independent responses, and that the age‐related reduction might be partially responsible for the increased susceptibility of older people to bacterial pathogens. There are other IgM+ B cell populations that do not express IgD. We compared the different IgM populations using high‐throughput sequencing of the immunoglobulin (Ig) gene repertoire and multidimensional cell phenotyping and found that the different populations of IgM cells, defined by CD27 and IgD expression, have repertoire differences. Some of these differences are likely indicative of different selection pressures in an immune response, although the older individuals were found to have a changed repertoire in naive B cells, which may contribute to some of the changes seen in memory cells. In addition, even within the CD27+IgD+ IgM memory population there are multiple cell types. We show that the level of IgM expression varies substantially and hypothesize that this distinguishes between T‐dependent and T‐independent types of IgM memory cells. Significant age‐related changes in the relative proportions of these populations may exacerbate the reduction in T‐independent responders in old age.
Collapse
Affiliation(s)
| | - Yu-Chang Wu
- Randall Division of Cell and Molecular Biophysics, King's College London Faculty of Life Sciences and Medicine, Guy's Campus, London, United Kingdom
| | - David Kipling
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | | |
Collapse
|
109
|
Berkowska MA, Schickel JN, Grosserichter-Wagener C, de Ridder D, Ng YS, van Dongen JJM, Meffre E, van Zelm MC. Circulating Human CD27-IgA+ Memory B Cells Recognize Bacteria with Polyreactive Igs. THE JOURNAL OF IMMUNOLOGY 2015; 195:1417-26. [PMID: 26150533 DOI: 10.4049/jimmunol.1402708] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 06/08/2015] [Indexed: 01/01/2023]
Abstract
The vast majority of IgA production occurs in mucosal tissue following T cell-dependent and T cell-independent Ag responses. To study the nature of each of these responses, we analyzed the gene-expression and Ig-reactivity profiles of T cell-dependent CD27(+)IgA(+) and T cell-independent CD27(-)IgA(+) circulating memory B cells. Gene-expression profiles of IgA(+) subsets were highly similar to each other and to IgG(+) memory B cell subsets, with typical upregulation of activation markers and downregulation of inhibitory receptors. However, we identified the mucosa-associated CCR9 and RUNX2 genes to be specifically upregulated in CD27(-)IgA(+) B cells. We also found that CD27(-)IgA(+) B cells expressed Abs with distinct Ig repertoire and reactivity compared with those from CD27(+)IgA(+) B cells. Indeed, Abs from CD27(-)IgA(+) B cells were weakly mutated, often used Igλ chain, and were enriched in polyreactive clones recognizing various bacterial species. Hence, T cell-independent IgA responses are likely involved in the maintenance of gut homeostasis through the production of polyreactive mutated IgA Abs with cross-reactive anti-commensal reactivity.
Collapse
Affiliation(s)
- Magdalena A Berkowska
- Department of Immunology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511; and
| | | | - Dick de Ridder
- The Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, 2628 CD Delft, the Netherlands
| | - Yen Shing Ng
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511; and
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511; and
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands;
| |
Collapse
|
110
|
Snir O, Mesin L, Gidoni M, Lundin KEA, Yaari G, Sollid LM. Analysis of celiac disease autoreactive gut plasma cells and their corresponding memory compartment in peripheral blood using high-throughput sequencing. THE JOURNAL OF IMMUNOLOGY 2015; 194:5703-12. [PMID: 25972486 DOI: 10.4049/jimmunol.1402611] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/17/2015] [Indexed: 11/19/2022]
Abstract
Autoreactive IgA plasma cells (PCs) specific for the enzyme transglutaminase 2 (TG2) are abundant in the small intestine of patients with active celiac disease (CD), and their number drops in patients treated by dietary gluten elimination. Little is known about their characteristics and their role in the disease. In this study, using high-throughput sequencing of the IgH V region (IGHV) genes, we have studied features of TG2-specific PCs and their related B cell clones in peripheral blood. We found that TG2-specific PCs from both untreated and treated patients have acquired lower number of somatic hypermutation and used focused IGHV repertoire with overrepresentation of the IGHV3-48, IGHV4-59, IGHV5-10-1, and IGHV5-51 gene segments. Furthermore, these PCs were clonally expanded and showed signs of affinity maturation. Lineage trees demonstrated shared clones between gut PCs and blood memory B cells, primarily IgAs. Some trees also involved IgG cells, suggesting that anti-TG2 IgA and IgG responses are related. Similarly to TG2-specific PCs, clonally related memory IgA B cells of blood showed lower mutation rates with biased usage of IGHV3-48 and IGHV5-51. Such memory cells were rare in peripheral blood, yet detectable in most patients assessed by production of anti-TG2 Abs in vitro following stimulation of cells from patients who had been on a long-term gluten-free diet. Thus, the Ab response to TG2 in CD, while maintaining its IGHV gene usage, is dynamically regulated in response to gluten exposure with a low degree of maintenance at both PC and memory B cell levels in patients in remission.
Collapse
Affiliation(s)
- Omri Snir
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Luka Mesin
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Moriah Gidoni
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramt Gan 52900, Israel; and
| | - Knut E A Lundin
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway; Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway
| | - Gur Yaari
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramt Gan 52900, Israel; and
| | - Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway;
| |
Collapse
|
111
|
Lafarge ST, Hou S, Pauls SD, Johnston JB, Gibson SB, Marshall AJ. Differential expression and function of CD27 in chronic lymphocytic leukemia cells expressing ZAP-70. Leuk Res 2015; 39:773-8. [PMID: 26002513 DOI: 10.1016/j.leukres.2015.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 12/25/2022]
Abstract
Chronic lymphocytic leukemia is a malignancy driven by abberant B cell signaling and survival. Leukemic B cells accumulate in the peripheral blood and the lymphoid organs where contact with stromal cells and T cells provide critical survival signals. Clinical severity of CLL is associated with several prognostic markers including expression of the kinase ZAP-70. ZAP-70 expression enhances signaling via the B cell antigen receptor and is associated with increased cell adhesion and migration capacity. Here we report that ZAP-70-positive CLL patients display significantly higher expression of the TNF superfamily receptor and memory marker CD27 than do ZAP-70 negative patients. CD27 expression by CLL was acutely elevated upon BCR cross-linking, or upon ectopic expression of ZAP-70. CD27 expression correlated with functional capacity to adhere to stromal cells and antibody blockade of CD27 impaired CLL binding to stroma. These results provide the first evidence for differential expression of CD27 among CLL prognostic groups, suggest a role for ZAP-70 dependent signaling in CD27 induction and implicate CD27 in cell-cell interactions with the lymphoid tissue microenvironment.
Collapse
Affiliation(s)
- Sandrine T Lafarge
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada; CancerCare Manitoba, Manitoba Institute of Cell Biology, Winnipeg, MB, Canada
| | - Sen Hou
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada
| | - Samantha D Pauls
- University of Manitoba, Department of Biochemistry and Medical Genetics, Winnipeg, MB, Canada
| | - James B Johnston
- CancerCare Manitoba, Manitoba Institute of Cell Biology, Winnipeg, MB, Canada
| | - Spencer B Gibson
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada; CancerCare Manitoba, Manitoba Institute of Cell Biology, Winnipeg, MB, Canada; University of Manitoba, Department of Biochemistry and Medical Genetics, Winnipeg, MB, Canada
| | - Aaron J Marshall
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada; University of Manitoba, Department of Biochemistry and Medical Genetics, Winnipeg, MB, Canada.
| |
Collapse
|
112
|
Becerra E, Scully MA, Leandro MJ, Heelas EO, Westwood JP, De La Torre I, Cambridge G. Effect of rituximab on B cell phenotype and serum B cell-activating factor levels in patients with thrombotic thrombocytopenic purpura. Clin Exp Immunol 2015; 179:414-25. [PMID: 25339550 DOI: 10.1111/cei.12472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2014] [Indexed: 12/14/2022] Open
Abstract
Autoantibodies inhibiting the activity of the metalloproteinase, ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13), underlie the pathogenesis of thrombotic thrombocytopenic purpura (TTP). Rituximab (RTX) combined with plasma-exchange (PEX) is an effective treatment in TTP. Patients can remain in remission for extended periods following PEX/RTX, and this is associated with continuing reduction in antibodies to ADAMTS13. Factors controlling B cell differentiation to autoantibody production, including stimulation through the B cell receptor and interactions with the B cell-activating factor (BAFF), may thus impact length of remission. In this cross-sectional study, we measured naive and memory B cell phenotypes [using CD19/immunoglobulin (Ig)D/CD27] following PEX/RTX treatment in TTP patients at B cell return (n=6) and in 12 patients in remission 10-68 months post-RTX. We also investigated relationships among serum BAFF, soluble CD23 (sCD23(-) a surrogate measure of acquiring B memory (CD27(+) ) phenotype) and BAFF receptor (BAFF-R) expression. At B cell return after PEX/RTX, naive B cells predominated and BAFF-R expression was reduced compared to healthy controls (P<0.001). In the remission group, despite numbers of CD19(+) B cells within normal limits in most patients, the percentage and absolute numbers of pre-switch and memory B cells remained low, with sCD23 levels at the lower end of the normal range. BAFF levels were correlated inversely with BAFF-R expression and time after therapy. In conclusion, the long-term effects of RTX therapy in patients with TTP included slow regeneration of memory B cell subsets and persistently reduced BAFF-R expression across all B cell subpopulations. This may reflect the delay in selection and differentiation of potentially autoreactive (ADAMTS13-specific) B cells, resulting in relatively long periods of low disease activity after therapy.
Collapse
Affiliation(s)
- E Becerra
- Department of Rheumatology, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
113
|
Wu YCB, James LK, Vander Heiden JA, Uduman M, Durham SR, Kleinstein SH, Kipling D, Gould HJ. Influence of seasonal exposure to grass pollen on local and peripheral blood IgE repertoires in patients with allergic rhinitis. J Allergy Clin Immunol 2015; 134:604-12. [PMID: 25171866 PMCID: PMC4151999 DOI: 10.1016/j.jaci.2014.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/11/2014] [Accepted: 04/25/2014] [Indexed: 11/18/2022]
Abstract
Background Previous studies of immunoglobulin gene sequences in patients with allergic diseases using low-throughput Sanger sequencing have limited the analytic depth for characterization of IgE repertoires. Objectives We used a high-throughput, next-generation sequencing approach to characterize immunoglobulin heavy-chain gene (IGH) repertoires in patients with seasonal allergic rhinitis (AR) with the aim of better understanding the underlying disease mechanisms. Methods IGH sequences in matched peripheral blood and nasal biopsy specimens from nonallergic healthy control subjects (n = 3) and patients with grass pollen–related AR taken in season (n = 3) or out of season (n = 4) were amplified and pyrosequenced on the 454 GS FLX+ System. Results A total of 97,610 IGH (including 8,135 IgE) sequences were analyzed. Use of immunoglobulin heavy-chain variable region gene families 1 (IGHV1) and 5 (IGHV5) was higher in IgE clonotypic repertoires compared with other antibody classes independent of atopic status. IgE repertoires measured inside the grass pollen season were more diverse and more mutated (particularly in the biopsy specimens) and had more evidence of antigen-driven selection compared with those taken outside of the pollen season or from healthy control subjects. Clonal relatedness was observed for IgE between the blood and nasal biopsy specimens. Furthermore in patients with AR, but not healthy control subjects, we found clonal relatedness between IgE and IgG classes. Conclusion This is the first report that exploits next-generation sequencing to determine local and peripheral blood IGH repertoires in patients with respiratory allergic disease. We demonstrate that natural pollen exposure was associated with changes in IgE repertoires that were suggestive of ongoing germinal center reactions. Furthermore, these changes were more often apparent in nasal biopsy specimens compared with peripheral blood and in patients with AR compared with healthy control subjects.
Collapse
Affiliation(s)
- Yu-Chang B Wu
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; Medical Research Council and Asthma UK Centre, Allergic Mechanisms in Asthma, London, United Kingdom.
| | - Louisa K James
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; Medical Research Council and Asthma UK Centre, Allergic Mechanisms in Asthma, London, United Kingdom
| | - Jason A Vander Heiden
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Conn
| | - Mohamed Uduman
- Department of Pathology, Yale School of Medicine, New Haven, Conn
| | - Stephen R Durham
- Medical Research Council and Asthma UK Centre, Allergic Mechanisms in Asthma, London, United Kingdom; Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Conn; Department of Pathology, Yale School of Medicine, New Haven, Conn
| | - David Kipling
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Hannah J Gould
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; Medical Research Council and Asthma UK Centre, Allergic Mechanisms in Asthma, London, United Kingdom
| |
Collapse
|
114
|
Palanichamy A, Apeltsin L, Kuo TC, Sirota M, Wang S, Pitts SJ, Sundar PD, Telman D, Zhao LZ, Derstine M, Abounasr A, Hauser SL, von Büdingen HC. Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci Transl Med 2015; 6:248ra106. [PMID: 25100740 DOI: 10.1126/scitranslmed.3008930] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In multiple sclerosis (MS), lymphocyte--in particular B cell--transit between the central nervous system (CNS) and periphery may contribute to the maintenance of active disease. Clonally related B cells exist in the cerebrospinal fluid (CSF) and peripheral blood (PB) of MS patients; however, it remains unclear which subpopulations of the highly diverse peripheral B cell compartment share antigen specificity with intrathecal B cell repertoires and whether their antigen stimulation occurs on both sides of the blood-brain barrier. To address these questions, we combined flow cytometric sorting of PB B cell subsets with deep immune repertoire sequencing of CSF and PB B cells. Immunoglobulin (IgM and IgG) heavy chain variable (VH) region repertoires of five PB B cell subsets from MS patients were compared with their CSF Ig-VH transcriptomes. In six of eight patients, we identified peripheral CD27(+)IgD(-) memory B cells, CD27(hi)CD38(hi) plasma cells/plasmablasts, or CD27(-)IgD(-) B cells that had an immune connection to the CNS compartment. Pinpointing Ig class-switched B cells as key component of the immune axis thought to contribute to ongoing MS disease activity strengthens the rationale of current B cell-targeting therapeutic strategies and may lead to more targeted approaches.
Collapse
Affiliation(s)
| | | | - Tracy C Kuo
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Marina Sirota
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Shengzhi Wang
- Department of Neurology, UCSF, San Francisco, CA 94148 USA
| | - Steven J Pitts
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Purnima D Sundar
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Dilduz Telman
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Lora Z Zhao
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Mia Derstine
- Department of Neurology, UCSF, San Francisco, CA 94148 USA
| | - Aya Abounasr
- Department of Neurology, UCSF, San Francisco, CA 94148 USA
| | | | | |
Collapse
|
115
|
Abstract
The B cell receptor (BCR) repertoire is highly diverse. Repertoire diversity is achieved centrally by somatic recombination of immunoglobulin (Ig) genes and peripherally by somatic hypermutation and Ig heavy chain class-switching. Throughout these processes, there is selection for functional gene rearrangements, selection against gene combinations resulting in self-reactive BCRs, and selection for BCRs with high affinity for exogenous antigens after challenge. Hence, investigation of BCR repertoires from different groups of B cells can provide information on stages of B cell development and shed light on the etiology of B cell pathologies. In most instances, the third complementarity determining region of the Ig heavy chain (CDR-H3) contributes the majority of amino acids to the antibody/antigen binding interface. Although CDR-H3 spectratype analysis provides information on the overall diversity of BCR repertoires, this fairly simple technique analyzes the relative quantities of CDR-H3 regions of each size, within a range of approximately 10-80 bp, without sequence detail and thus is limited in scope. High-throughput sequencing (HTS) techniques on the Roche 454 GS FLX Titanium system, however, can generate a wide coverage of Ig sequences to provide more qualitative data such as V, D, and J usage as well as detailed CDR3 sequence information. Here we present protocols in detail for CDR-H3 spectratype analysis and HTS of human BCR repertoires.
Collapse
Affiliation(s)
- Yu-Chang Wu
- Randall Division of Cell and Molecular Biophysics, King's College London School of Biomedical Science, London, UK
| | - David Kipling
- Department of Pathology, Cardiff University, Cardiff, UK
| | - Deborah Dunn-Walters
- Department of Immunobiology, King's College London School of Medicine, Strand, London, SE1 9RT, UK.
| |
Collapse
|
116
|
Berkowska MA, Heeringa JJ, Hajdarbegovic E, van der Burg M, Thio HB, van Hagen PM, Boon L, Orfao A, van Dongen JJ, van Zelm MC. Human IgE+ B cells are derived from T cell–dependent and T cell–independent pathways. J Allergy Clin Immunol 2014; 134:688-697.e6. [DOI: 10.1016/j.jaci.2014.03.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 03/14/2014] [Accepted: 03/25/2014] [Indexed: 12/11/2022]
|
117
|
Fernández ER, Olivera GC, Quebrada Palacio LP, González MN, Hernandez-Vasquez Y, Sirena NM, Morán ML, Ledesma Patiño OS, Postan M. Altered distribution of peripheral blood memory B cells in humans chronically infected with Trypanosoma cruzi. PLoS One 2014; 9:e104951. [PMID: 25111833 PMCID: PMC4128741 DOI: 10.1371/journal.pone.0104951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/15/2014] [Indexed: 12/15/2022] Open
Abstract
Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans.
Collapse
Affiliation(s)
- Esteban R. Fernández
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Gabriela C. Olivera
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Luz P. Quebrada Palacio
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela N. González
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Yolanda Hernandez-Vasquez
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia María Sirena
- Centro de Enfermedad de Chagas y Patología Regional, Hospital Independencia, Santiago del Estero, Argentina
| | - María L. Morán
- Centro de Enfermedad de Chagas y Patología Regional, Hospital Independencia, Santiago del Estero, Argentina
| | - Oscar S. Ledesma Patiño
- Centro de Enfermedad de Chagas y Patología Regional, Hospital Independencia, Santiago del Estero, Argentina
| | - Miriam Postan
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
118
|
Della Valle L, Dohmen SE, Verhagen OJHM, Berkowska MA, Vidarsson G, Ellen van der Schoot C. The majority of human memory B cells recognizing RhD and tetanus resides in IgM+ B cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:1071-9. [PMID: 24965774 DOI: 10.4049/jimmunol.1400706] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
B cell memory to T cell-dependent (TD) Ags are considered to largely reside in class-switched CD27(+) cells. However, we previously observed that anti-RhD (D) Igs cloned from two donors, hyperimmunized with D(+) erythrocytes, were predominantly of the IgM isotype. We therefore analyzed in this study the phenotype and frequency of D- and tetanus toxoid-specific B cells by culturing B cells in limiting dilution upon irradiated CD40L-expressing EL4.B5 cells and testing the culture supernatant. Most Ag-specific B cells for both TD Ags were found to reside in the IgM-expressing B cells, including CD27(-) B cells, in both hyperimmunized donors and nonhyperimmunized volunteers. Only shortly after immunization a sharp increase in Ag-specific CD27(+)IgG(+) B cells was observed. Next, B cells were enriched with D(+) erythrocyte ghosts and sorted as single cells. Sequencing of IGHV, IGLV, IGKV, and BCL6 genes from these D-specific B cell clones demonstrated that both CD27(-)IgM(+) and CD27(+)IgM(+) B cells harbored somatic mutations, documenting their Ag-selected nature. Furthermore, sequencing revealed a clonal relationship between the CD27(-)IgM(+), CD27(+)IgM(+), and CD27(+)IgG(+) B cell subsets. These data strongly support the recently described multiple layers of memory B cells to TD Ags in mice, where IgM(+) B cells represent a memory reservoir which can re-enter the germinal center and ensure replenishment of class-switched memory CD27(+) B cells from Ag-experienced precursors.
Collapse
Affiliation(s)
- Luciana Della Valle
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; and
| | - Serge E Dohmen
- Department of Internal Medicine, BovenIJ Hospital, 1034 CS Amsterdam, the Netherlands
| | - Onno J H M Verhagen
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; and
| | - Magdalena A Berkowska
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; and
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; and
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; and
| |
Collapse
|
119
|
Redemption of autoantibodies on anergic B cells by variable-region glycosylation and mutation away from self-reactivity. Proc Natl Acad Sci U S A 2014; 111:E2567-75. [PMID: 24821781 DOI: 10.1073/pnas.1406974111] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The best-understood mechanisms for achieving antibody self/non-self discrimination discard self-reactive antibodies before they can be tested for binding microbial antigens, potentially creating holes in the repertoire. Here we provide evidence for a complementary mechanism: retaining autoantibodies in the repertoire displayed as low levels of IgM and high IgD on anergic B cells, masking a varying proportion of autoantibody-binding sites with carbohydrates, and removing their self-reactivity by somatic hypermutation and selection in germinal centers (GCs). Analysis of human antibody sequences by deep sequencing of isotype-switched memory B cells or in IgG antibodies elicited against allogeneic RhD+ erythrocytes, vaccinia virus, rotavirus, or tetanus toxoid provides evidence for reactivation of anergic IgM(low) IgD+ IGHV4-34+ B cells and removal of cold agglutinin self-reactivity by hypermutation, often accompanied by mutations that inactivated an N-linked glycosylation sequon in complementarity-determining region 2 (CDR2). In a Hy10 antibody transgenic model where anergic B cells respond to a biophysically defined lysozyme epitope displayed on both foreign and self-antigens, cell transfers revealed that anergic IgM(low) IgD+ B cells form twice as many GC progeny as naïve IgM(hi) IgD+ counterparts. Their GC progeny were rapidly selected for CDR2 mutations that blocked 72% of antigen-binding sites with N-linked glycan, decreased affinity 100-fold, and then cleared the binding sites of blocking glycan. These results provide evidence for a mechanism to acquire self/non-self discrimination by somatic mutation away from self-reactivity, and reveal how varying the efficiency of N-glycosylation provides a mechanism to modulate antibody avidity.
Collapse
|
120
|
Descatoire M, Weller S, Irtan S, Sarnacki S, Feuillard J, Storck S, Guiochon-Mantel A, Bouligand J, Morali A, Cohen J, Jacquemin E, Iascone M, Bole-Feysot C, Cagnard N, Weill JC, Reynaud CA. Identification of a human splenic marginal zone B cell precursor with NOTCH2-dependent differentiation properties. ACTA ACUST UNITED AC 2014; 211:987-1000. [PMID: 24733829 PMCID: PMC4010902 DOI: 10.1084/jem.20132203] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Identification in humans of a bona fide marginal zone B cell population, which differentiates from a splenic marginal zone precursor through a NOTCH2 signaling pathway. Mouse splenic marginal zone precursors (MZPs) differentiate into marginal zone B (MZB) cells under a signaling pathway involving Notch2 and its ligand, delta-like 1 ligand (Dll1). We report the identification of an MZP subset in the spleen of young children. These MZPs differentiate into MZ-like B cells in vitro in the presence of OP9 cells expressing human DLL1, as demonstrated by the up-regulation of classical MZB cell markers. A set of diagnostic genes discriminating IgM+IgD+CD27+ blood and splenic MZB cells from switched B cells was identified (up-regulation of SOX7, down-regulation of TOX, COCH, and HOPX), and their expression during the induction assay mirrored the one of MZB cells. Moreover, Alagille patients with a NOTCH2 haploinsufficiency display a marked reduction of IgM+IgD+CD27+ B cells in blood, whereas their switched memory B cells are not affected. Altogether, these results argue in favor of the existence of a rodent-like MZB cell lineage in humans.
Collapse
Affiliation(s)
- Marc Descatoire
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine-Site Broussais, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Moir S, Fauci AS. Insights into B cells and HIV-specific B-cell responses in HIV-infected individuals. Immunol Rev 2014; 254:207-24. [PMID: 23772622 DOI: 10.1111/imr.12067] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human immunodeficiency virus (HIV) disease is associated with dysregulation and dysfunction involving all major lymphocyte populations, including B cells. Such perturbations occur early in the course of infection and are driven in large part by immune activation resulting from ongoing HIV replication leading to bystander effects on B cells. While most of the knowledge regarding immune cell abnormalities in HIV-infected individuals has been gained from studies conducted on the peripheral blood, it is clear that the virus is most active and most damaging in lymphoid tissues. Here, we discuss B-cell perturbations in HIV-infected individuals, focusing on the skewing of B-cell subsets that circulate in the peripheral blood and their counterparts that reside in lymphoid tissues. This review also highlights recent advances in evaluating HIV-specific B-cell responses both in the memory B-cell compartment, as well as in circulating antibody-secreting plasmablasts and the more differentiated plasma cells residing in tissues. Finally, we consider how knowledge gained by investigating B cells in HIV-infected individuals may help inform the development of an effective antibody-based HIV vaccine.
Collapse
Affiliation(s)
- Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
122
|
Tete SM, Newling M, Westra J, de Haan A, Bijl M, Sahota SS, Bos NA. Hampered influenza-specific IgG B cell responses whereas IgM and IgA responses are maintained in monoclonal gammopathy of undetermined significance. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2052-434x-2-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
123
|
Yin L, Hou W, Liu L, Cai Y, Wallet MA, Gardner BP, Chang K, Lowe AC, Rodriguez CA, Sriaroon P, Farmerie WG, Sleasman JW, Goodenow MM. IgM Repertoire Biodiversity is Reduced in HIV-1 Infection and Systemic Lupus Erythematosus. Front Immunol 2013; 4:373. [PMID: 24298273 PMCID: PMC3828670 DOI: 10.3389/fimmu.2013.00373] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/30/2013] [Indexed: 12/25/2022] Open
Abstract
Background: HIV-1 infection or systemic lupus erythematosus (SLE) disrupt B cell homeostasis, reduce memory B cells, and impair function of IgG and IgM antibodies. Objective: To determine how disturbances in B cell populations producing polyclonal antibodies relate to the IgM repertoire, the IgM transcriptome in health and disease was explored at the complementarity determining region 3 (CDRH3) sequence level. Methods: 454-deep pyrosequencing in combination with a novel analysis pipeline was applied to define populations of IGHM CDRH3 sequences based on absence or presence of somatic hypermutations (SHM) in peripheral blood B cells. Results: HIV or SLE subjects have reduced biodiversity within their IGHM transcriptome compared to healthy subjects, mainly due to a significant decrease in the number of unique combinations of alleles, although recombination machinery was intact. While major differences between sequences without or with SHM occurred among all groups, IGHD and IGHJ allele use, CDRH3 length distribution, or generation of SHM were similar among study cohorts. Antiretroviral therapy failed to normalize IGHM biodiversity in HIV-infected individuals. All subjects had a low frequency of allelic combinations within the IGHM repertoire similar to known broadly neutralizing HIV-1 antibodies. Conclusion: Polyclonal expansion would decrease overall IgM biodiversity independent of other mechanisms for development of the B cell repertoire. Applying deep sequencing as a strategy to follow development of the IgM repertoire in health and disease provides a novel molecular assessment of multiple points along the B cell differentiation pathway that is highly sensitive for detecting perturbations within the repertoire at the population level.
Collapse
Affiliation(s)
- Li Yin
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida , Gainesville, FL , USA ; Florida Center for AIDS Research, University of Florida , Gainesville, FL , USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Toapanta FR, Bernal PJ, Sztein MB. Diverse phosphorylation patterns of B cell receptor-associated signaling in naïve and memory human B cells revealed by phosphoflow, a powerful technique to study signaling at the single cell level. Front Cell Infect Microbiol 2012; 2:128. [PMID: 23087912 PMCID: PMC3473368 DOI: 10.3389/fcimb.2012.00128] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/01/2012] [Indexed: 11/13/2022] Open
Abstract
Following interaction with cognate antigens, B cells undergo cell activation, proliferation, and differentiation. Ligation of the B cell receptor (BCR) leads to the phosphorylation of BCR-associated signaling proteins within minutes of antigen binding, a process with profound consequences for the fate of the cells and development of effector immunity. Phosphoflow allows a rapid evaluation of various signaling pathways in complex heterogenous cell subsets. This novel technique was used in combination with multi-chromatic flow cytometry (FC) and fluorescent-cell barcoding (FCB) to study phosphorylation of BCR-associated signaling pathways in naïve and memory human B cell subsets. Proteins of the initiation (Syk), propagation (Btk, Akt), and integration (p38MAPK and Erk1/2) signaling units were studied. Switched memory (Sm) CD27+ and Sm CD27- phosphorylation patterns were similar when stimulated with anti-IgA or -IgG. In contrast, naïve and unswitched memory (Um) cells showed significant differences following IgM stimulation. Enhanced phosphorylation of Syk was observed in Um cells, suggesting a lower activation threshold. This is likely the result of higher amounts of IgM on the cell surface, higher pan-Syk levels, and enhanced susceptibility to phosphatase inhibition. All other signaling proteins evaluated also showed some degree of enhanced phosphorylation in Um cells. Furthermore, both the phospholipase C-γ2 (PLC-γ2) and phosphatidylinositol 3-kinase (PI3K) pathways were activated in Um cells, while only the PI3K pathway was activated on naïve cells. Um cells were the only ones that activated signaling pathways when stimulated with fluorescently labeled S. Typhi and S. pneumoniae. Finally, simultaneous evaluation of signaling proteins at the single cell level (multiphosphorylated cells) revealed that interaction with gram positive and negative bacteria resulted in complex and diverse signaling patterns. Phosphoflow holds great potential to accelerate vaccine development by identifying signaling profiles in good/poor responders.
Collapse
Affiliation(s)
- Franklin R Toapanta
- Department of Medicine, Center for Vaccine Development, University of Maryland Baltimore, MD, USA
| | | | | |
Collapse
|
125
|
Kaminski DA, Wei C, Qian Y, Rosenberg AF, Sanz I. Advances in human B cell phenotypic profiling. Front Immunol 2012; 3:302. [PMID: 23087687 PMCID: PMC3467643 DOI: 10.3389/fimmu.2012.00302] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/10/2012] [Indexed: 12/11/2022] Open
Abstract
To advance our understanding and treatment of disease, research immunologists have been called-upon to place more centralized emphasis on impactful human studies. Such endeavors will inevitably require large-scale study execution and data management regulation (“Big Biology”), necessitating standardized and reliable metrics of immune status and function. A well-known example setting this large-scale effort in-motion is identifying correlations between eventual disease outcome and T lymphocyte phenotype in large HIV-patient cohorts using multiparameter flow cytometry. However, infection, immunodeficiency, and autoimmunity are also characterized by correlative and functional contributions of B lymphocytes, which to-date have received much less attention in the human Big Biology enterprise. Here, we review progress in human B cell phenotyping, analysis, and bioinformatics tools that constitute valuable resources for the B cell research community to effectively join in this effort.
Collapse
Affiliation(s)
- Denise A Kaminski
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Rochester, NY, USA
| | | | | | | | | |
Collapse
|
126
|
Molecular signature in HCV-positive lymphomas. Clin Dev Immunol 2012; 2012:623465. [PMID: 22952554 PMCID: PMC3431075 DOI: 10.1155/2012/623465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) is a positive, single-stranded RNA virus, which has been associated to different subtypes of B-cell non-Hodgkin lymphoma (B-NHL). Cumulative evidence suggests an HCV-related antigen driven process in the B-NHL development. The underlying molecular signature associated to HCV-related B-NHL has to date remained obscure. In this review, we discuss the recent developments in this field with a special mention to different sets of genes whose expression is associated with BCR coupled to Blys signaling which in turn was found to be linked to B-cell maturation stages and NF-κb transcription factor. Even if recent progress on HCV-B-NHL signature has been made, the precise relationship between HCV and lymphoma development and phenotype signature remain to be clarified.
Collapse
|
127
|
Wu YCB, Kipling D, Dunn-Walters DK. Age-Related Changes in Human Peripheral Blood IGH Repertoire Following Vaccination. Front Immunol 2012; 3:193. [PMID: 22787463 PMCID: PMC3391689 DOI: 10.3389/fimmu.2012.00193] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/20/2012] [Indexed: 01/10/2023] Open
Abstract
Immune protection against pulmonary infections, such as seasonal flu and invasive pneumonia, is severely attenuated with age, and vaccination regimes for the elderly people often fail to elicit effective immune response. We have previously shown that influenza and pneumococcal vaccine responses in the older population are significantly impaired in terms of serum antibody production, and have shown repertoire differences by CDR-H3 spectratype analysis. Here we report a detailed analysis of the B cell repertoire in response to vaccine, including a breakdown of sequences by class and subclass. Clustering analysis of high-throughput sequencing data enables us to visualize the response in terms of expansions of clonotypes, changes in CDR-H3 characteristics, and somatic hypermutation as well as identifying the commonly used IGH genes. We have highlighted a number of significant age-related changes in the B cell repertoire. Interestingly, in light of the fact that IgG is the most prevalent serum antibody and the most widely used as a correlate of protection, the most striking age-related differences are in the IgA response, with defects also seen in the IgM repertoire. In addition there is a skewing toward IgG2 in the IgG sequences of the older samples at all time points. This analysis illustrates the importance of antibody classes other than IgG and has highlighted a number of areas for future consideration in vaccine studies of the elderly.
Collapse
Affiliation(s)
- Yu-Chang Bryan Wu
- Department of Immunobiology, King's College London School of Medicine London, UK
| | | | | |
Collapse
|
128
|
Fink K. Origin and Function of Circulating Plasmablasts during Acute Viral Infections. Front Immunol 2012; 3:78. [PMID: 22566959 PMCID: PMC3341968 DOI: 10.3389/fimmu.2012.00078] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/27/2012] [Indexed: 12/25/2022] Open
Abstract
Activated B cells proliferate and differentiate into antibody-producing cells, long-lived plasma cells, and memory B cells after immunization or infection. Repeated encounter of the same antigen triggers the rapid re-activation of pre-existing specific memory B cells, which then potentially enter new germinal center reactions and differentiate into short-lived plasmablasts or remain in the system as memory B cells. Short-lived class-switched IgG and IgA plasmablasts appear in the circulation transiently and the frequency of these cells can be remarkably high. The specificities and affinities of single plasmablasts in humans have been reported for several viral infections, so far most extensively for influenza and HIV. In general, the immunoglobulin variable regions of plasmablasts are highly mutated and diverse, suggesting that plasmablasts are derived from memory B cells, yet it is unclear which memory B cell subsets are activated and whether activated memory B cells adapt or mature before differentiation. This review summarizes what is known about the phenotype and the origin of human plasmablasts in the context of viral infections and whether these cells can be predictors of long-lived immunity.
Collapse
Affiliation(s)
- Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research ASTAR Singapore
| |
Collapse
|