101
|
Özçağlayan Ö, Altunan B, Kurtoğlu Özçağlayan Tİ, Ünal A. The Atrophy of the Vagus Nerve Correlated With Gastrointestinal Non-Motor Symptoms Scores, in Parkinson’s Disease: A Sonography Research Study. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2022. [DOI: 10.1177/87564793221097008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: To investigate the vagus nerve (VN) dimensional changes with Parkinson’s disease (PD), compared with healthy subjects. Additionally, it is important to investigate whether there is any relationships between these changes and patient’s motor and non-motor symptoms (NMS) of PD. Materials and Methods: A cohort of 43 patients with PD formed a group that was compared with 44 patients without PD, denoted as the healthy subject (HS) group. The diameter and areas of VN of study groups were measured using ultrasonography (US). The study groups were further divided into <65 and ≥65 subgroups, to evaluate the possible effect of age on the VN and evaluated relationships of VN dimensions, between subgroups. In the PD group, a correlational analysis was conducted between the diameter and area of the VN and the motor and NMS scores. Results: There was statistically significant difference in right ( P = .002) and left VN diameters ( P = .007) and in right ( P = .001) and left VN areas ( P = .007), between study groups. There was no significant difference in right and left VN diameters and the right and left VN areas, between subgroups. There was moderately negative correlation between gastrointestinal NMS scores and right VN area ( r = −0.499, P = .002), left VN area ( r = −0.499, P = .002), right VN diameter ( r = −0.378, P = .023), left VN diameter ( r = −0.385, P = .021), respectively. Conclusion: The US demonstrated that VN dimensions may possibly reduce in those patients affected by PD. In this cohort, it appears that an increase in gastrointestinal NMS scores may be explained by atrophy of the VN.
Collapse
Affiliation(s)
- Ömer Özçağlayan
- Department of Radiology, Istanbul Oncology Hospital, Istanbul, Turkey
| | - Bengü Altunan
- Department of Neurology, School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | | | - Aysun Ünal
- Department of Neurology, School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| |
Collapse
|
102
|
Soheili M, Alinaghipour A, Salami M. Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations. Life Sci 2022; 301:120605. [DOI: 10.1016/j.lfs.2022.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
|
103
|
Psycho-Neuro-Endocrine-Immunological Basis of the Placebo Effect: Potential Applications beyond Pain Therapy. Int J Mol Sci 2022; 23:ijms23084196. [PMID: 35457014 PMCID: PMC9028312 DOI: 10.3390/ijms23084196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
The placebo effect can be defined as the improvement of symptoms in a patient after the administration of an innocuous substance in a context that induces expectations regarding its effects. During recent years, it has been discovered that the placebo response not only has neurobiological functions on analgesia, but that it is also capable of generating effects on the immune and endocrine systems. The possible integration of changes in different systems of the organism could favor the well-being of the individuals and go hand in hand with conventional treatment for multiple diseases. In this sense, classic conditioning and setting expectations stand out as psychological mechanisms implicated in the placebo effect. Recent advances in neuroimaging studies suggest a relationship between the placebo response and the opioid, cannabinoid, and monoaminergic systems. Likewise, a possible immune response conditioned by the placebo effect has been reported. There is evidence of immune suppression conditioned through the insular cortex and the amygdala, with noradrenalin as the responsible neurotransmitter. Finally, a conditioned response in the secretion of different hormones has been determined in different studies; however, the molecular mechanisms involved are not entirely known. Beyond studies about its mechanism of action, the placebo effect has proved to be useful in the clinical setting with promising results in the management of neurological, psychiatric, and immunologic disorders. However, more research is needed to better characterize its potential use. This review integrates current knowledge about the psycho-neuro-endocrine-immune basis of the placebo effect and its possible clinical applications.
Collapse
|
104
|
Ottaviani MM, Vallone F, Micera S, Recchia FA. Closed-Loop Vagus Nerve Stimulation for the Treatment of Cardiovascular Diseases: State of the Art and Future Directions. Front Cardiovasc Med 2022; 9:866957. [PMID: 35463766 PMCID: PMC9021417 DOI: 10.3389/fcvm.2022.866957] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
The autonomic nervous system exerts a fine beat-to-beat regulation of cardiovascular functions and is consequently involved in the onset and progression of many cardiovascular diseases (CVDs). Selective neuromodulation of the brain-heart axis with advanced neurotechnologies is an emerging approach to corroborate CVDs treatment when classical pharmacological agents show limited effectiveness. The vagus nerve is a major component of the cardiac neuroaxis, and vagus nerve stimulation (VNS) is a promising application to restore autonomic function under various pathological conditions. VNS has led to encouraging results in animal models of CVDs, but its translation to clinical practice has not been equally successful, calling for more investigation to optimize this technique. Herein we reviewed the state of the art of VNS for CVDs and discuss avenues for therapeutic optimization. Firstly, we provided a succinct description of cardiac vagal innervation anatomy and physiology and principles of VNS. Then, we examined the main clinical applications of VNS in CVDs and the related open challenges. Finally, we presented preclinical studies that aim at overcoming VNS limitations through optimization of anatomical targets, development of novel neural interface technologies, and design of efficient VNS closed-loop protocols.
Collapse
Affiliation(s)
- Matteo Maria Ottaviani
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Fabio Vallone
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Silvestro Micera
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Fabio A. Recchia
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
105
|
Wu Y, Tian X, Gao L, Gao L. Low-frequency electrical stimulation promotes the recovery of gastrointestinal motility following gynecological laparoscopy (Review). MEDICINE INTERNATIONAL 2022; 2:13. [PMID: 36699102 PMCID: PMC9829202 DOI: 10.3892/mi.2022.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
The rapid recovery of gastrointestinal transit is critical for clinical recovery following laparoscopic procedures, including gynecological laparoscopies (GLs). Rehabilitation interventions post-surgery may provide significant prevention against early post-operative gastrointestinal motility disorders and maid aid in the acceleration of post-operative recovery in patients undergoing GLs. Among others, low-frequency electrical stimulation (LFES) has been demonstrated to pronouncedly mitigate the symptoms caused by gastrointestinal motility disorders; thus, this has attracted increasing attention over the past decade. The present study aimed to present an overview of the efficacy and application of LFES in gastrointestinal motility recovery following GL procedures.
Collapse
Affiliation(s)
- Yihong Wu
- Nursing College of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaoying Tian
- Nursing College of Jinan University, Guangzhou, Guangdong 510630, P.R. China,Correspondence to: Dr Xiaoying Tian, Nursing College of Jinan University, 601 West Huangpu Avenue, Tianhe, Guangzhou, Guangdong 510630, P.R. China
| | - Lvfen Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Linzhi Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
106
|
Effect of combined epidural-general anesthesia on long-term survival of patients with colorectal cancer: a meta-analysis of cohort studies. Int J Colorectal Dis 2022; 37:725-735. [PMID: 35182173 DOI: 10.1007/s00384-022-04109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE This study aimed to analyze the long-term survival of patients with colorectal cancer after receiving combined epidural-general anesthesia (EGA) or general anesthesia (GA) alone. METHODS The PubMed, MEDLINE, Web of Science, Cochrane Library, and Embase databases were used to search for cohort studies that explored the differences between the effects of EGA and GA on overall survival (OS) and recurrence-free survival (RFS) of patients with colorectal cancer. The hazard ratios (HRs) and their 95% confidence intervals (95%CIs) were used as indicators to evaluate the strength of the effects and were pooled. RESULTS Nine studies were included in the meta-analysis. EGA improved the OS of patients with colorectal cancer compared with GA (HR = 0.904, 95%CI 0.871-0.938, P < 0.05). In the subgroup analysis, EGA was more protective for OS of patients with colon cancer than GA (HR = 0.840, 95%CI 0.732-0.963, P < 0.05), but not for OS of patients with rectal cancer (HR = 0.764, 95%CI 0.398-1.469, P > 0.05). Additionally, EGA could not further prolong RFS in patients with colorectal cancer (HR = 1.015, 95%CI 0.942-1.093, P > 0.05), which was the same in the subgroup analysis of patients with colon cancer (HR = 0.908, 95%CI 0.760-1.085, P > 0.05). CONCLUSION EGA could improve the OS of patients with colorectal cancer, especially those with colon cancer, but it could not improve the OS in the subgroup of patients with rectal cancer. This difference may be due to the immune protective function of the parasympathetic nerve innervating the intestinal tubes above the splenic flexure retained by EGA. Additionally, although EGA has a protective effect on RFS in patients with colorectal cancer, the difference was not significant. The design of this analysis is registered and displayed in the PROSPERO database (CRD42021274864).
Collapse
|
107
|
Therapeutic Anti-Depressant Potential of Microbial GABA Produced by Lactobacillus rhamnosus Strains for GABAergic Signaling Restoration and Inhibition of Addiction-Induced HPA Axis Hyperactivity. Curr Issues Mol Biol 2022; 44:1434-1451. [PMID: 35723354 PMCID: PMC9164062 DOI: 10.3390/cimb44040096] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
The role of the microbiota–gut–brain (MGB) axis in mood regulation and depression treatment has gained attention in recent years, as evidenced by the growing number of animal and human studies that have reported the anti-depressive and associated gamma-aminobutyric acid-ergic (GABAergic) effects of probiotics developed from Lactobacillus rhamnosus bacterial strains in the gut microbiome. The depressive states attenuated by these probiotics in patients suffering from clinical depression also characterize the severe and relapse-inducing withdrawal phase of the addiction cycle, which has been found to arise from the intoxication-enabled hyperregulation of the hypothalamic–pituitary–adrenal (HPA) axis, the body’s major stress response system, and a corresponding attenuation of its main inhibitory system, the gamma-aminobutyric acid (GABA) signaling system. Therefore, the use of probiotics in the treatment of general cases of depression provides hope for a novel therapeutic approach to withdrawal depression remediation. This review discusses potential therapeutic avenues by which probiotic application of Lactobacillus rhamnosus strains can be used to restore the central GABAergic activity responsible for attenuating the depression-inducing HPA axis hyperactivity in addiction withdrawal. Also, information is provided on brain GABAergic signaling from other known GABA-producing strains of gut microbiota.
Collapse
|
108
|
Bergmann-Leitner ES, Bobrov AG, Bolton JS, Rouse MD, Heyburn L, Pavlovic R, Garry BI, Alamneh Y, Long J, Swierczewski B, Tyner S, Getnet D, Sajja VS, Antonic V. Blast Waves Cause Immune System Dysfunction and Transient Bone Marrow Failure in a Mouse Model. Front Bioeng Biotechnol 2022; 10:821169. [PMID: 35392409 PMCID: PMC8980552 DOI: 10.3389/fbioe.2022.821169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/23/2022] [Indexed: 11/29/2022] Open
Abstract
Explosive devices, either conventional or improvised, are common sources of injuries during combat, civil unrest, and terror attacks, resulting in trauma from exposure to blast. A blast wave (BW), a near-instantaneous rise in pressure followed by a negative pressure, propagates through the body in milliseconds and can affect physiology for days/months after exposure. Epidemiological data show that blast-related casualties result in significantly higher susceptibility to wound infections, suggesting long-lasting immune modulatory effects from blast exposure. The mechanisms involved in BW-induced immune changes are poorly understood. We evaluated the effects of BW on the immune system using an established murine model. Animals were exposed to BWs (using an Advanced Blast Simulator), followed by longitudinally sampling for 14 days. Blood, bone marrow, and spleen were analyzed for changes in the 1) complete blood count (CBC), and 2) composition of bone marrow cells (BMC) and splenocytes, and 3) concentrations of systemic cytokines/chemokines. Our data demonstrate that BW results in transient bone marrow failure and long-term changes in the frequency and profile of progenitor cell populations. Viability progressively decreased in hematopoietic stem cells and pluripotent progenitor cells. Significant decrease of CD4+ T cells in the spleen indicates reduced functionality of adaptive immune system. Dynamic changes in the concentrations of several cytokines and chemokines such as IL-1α and IL-17 occurred potentially contributing to dysregulation of immune response after trauma. This work lays the foundation for identifying the potential mechanisms behind BW’s immunosuppressive effects to inform the recognition of this compromised status is crucial for the development of therapeutic interventions for infections to reduce recovery time of wounded patients injured by explosive devices.
Collapse
Affiliation(s)
- Elke S. Bergmann-Leitner
- Biologics Research and Development, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- *Correspondence: Elke S. Bergmann-Leitner, ; Venkatasivasai S. Sajja, ; Vlado Antonic,
| | - Alexander G. Bobrov
- Wound Infections Department, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jessica S. Bolton
- Biologics Research and Development, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Michael D. Rouse
- Wound Infections Department, Naval Research Medical Center, Silver Spring, MD, United States
- Henry M. Jackson Foundation, Rockville, MD, United States
| | - Lanier Heyburn
- Blast Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Radmila Pavlovic
- Wound Infections Department, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Brittany I. Garry
- Wound Infections Department, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Yonas Alamneh
- Wound Infections Department, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Joseph Long
- Blast Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Brett Swierczewski
- Bacterial Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Stuart Tyner
- Military Infectious Diseases Research Program, Frederick, MD, United States
| | - Derese Getnet
- Wound Infections Department, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Venkatasivasai S. Sajja
- Blast Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- *Correspondence: Elke S. Bergmann-Leitner, ; Venkatasivasai S. Sajja, ; Vlado Antonic,
| | - Vlado Antonic
- Wound Infections Department, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- *Correspondence: Elke S. Bergmann-Leitner, ; Venkatasivasai S. Sajja, ; Vlado Antonic,
| |
Collapse
|
109
|
Yang A, Liu B, Inoue T. Role of autonomic system imbalance in neurogenic pulmonary oedema. Eur J Neurosci 2022; 55:1645-1657. [PMID: 35277906 DOI: 10.1111/ejn.15648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023]
Abstract
Neurogenic pulmonary oedema (NPE) is a life-threatening complication that develops rapidly and dramatically after an injury to the central nervous system (CNS). The autonomic system imbalance produced by severe brain damage may play an important role in the development of NPE. Activation of the sympathetic nervous system and inhibition of the vagus nerve system are essential prerequisites for autonomic system imbalance. The more severe the damage, the more pronounced the phenomenon. Sympathetic hyperactivity is associated with increased release of catecholamines from peripheral sympathetic nerve endings, which can cause dramatic changes in haemodynamics and cause pulmonary oedema. On the other hand, the abnormal inflammatory response caused by vagus nerve inhibition may also play an important role in the pathogenesis of NPE. The perspective of autonomic system imbalance seems to perfectly integrate the existing pathogenesis of NPE and can explain the entire development progression of NPE.
Collapse
Affiliation(s)
- Aobing Yang
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Bin Liu
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
110
|
Bellocchi C, Carandina A, Montinaro B, Targetti E, Furlan L, Rodrigues GD, Tobaldini E, Montano N. The Interplay between Autonomic Nervous System and Inflammation across Systemic Autoimmune Diseases. Int J Mol Sci 2022; 23:ijms23052449. [PMID: 35269591 PMCID: PMC8910153 DOI: 10.3390/ijms23052449] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
The autonomic nervous system (ANS) and the immune system are deeply interrelated. The ANS regulates both innate and adaptive immunity through the sympathetic and parasympathetic branches, and an imbalance in this system can determine an altered inflammatory response as typically observed in chronic conditions such as systemic autoimmune diseases. Rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis all show a dysfunction of the ANS that is mutually related to the increase in inflammation and cardiovascular risk. Moreover, an interaction between ANS and the gut microbiota has direct effects on inflammation homeostasis. Recently vagal stimulation techniques have emerged as an unprecedented possibility to reduce ANS dysfunction, especially in chronic diseases characterized by pain and a decreased quality of life as well as in chronic inflammation.
Collapse
Affiliation(s)
- Chiara Bellocchi
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (B.M.); (E.T.); (L.F.); (E.T.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Correspondence: (C.B.); (N.M.)
| | - Angelica Carandina
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (B.M.); (E.T.); (L.F.); (E.T.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
| | - Beatrice Montinaro
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (B.M.); (E.T.); (L.F.); (E.T.)
| | - Elena Targetti
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (B.M.); (E.T.); (L.F.); (E.T.)
| | - Ludovico Furlan
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (B.M.); (E.T.); (L.F.); (E.T.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
| | - Gabriel Dias Rodrigues
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói 24210-130, Brazil
| | - Eleonora Tobaldini
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (B.M.); (E.T.); (L.F.); (E.T.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
| | - Nicola Montano
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (B.M.); (E.T.); (L.F.); (E.T.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Correspondence: (C.B.); (N.M.)
| |
Collapse
|
111
|
Brain Research Bulletin Special Issue: Brain–body communication in health and diseases Brain–spleen axis in health and diseases: a review and future perspective. Brain Res Bull 2022; 182:130-140. [PMID: 35157987 DOI: 10.1016/j.brainresbull.2022.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
|
112
|
Matisz C, Gruber A. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders. Neurosci Biobehav Rev 2022; 133:104497. [DOI: 10.1016/j.neubiorev.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
|
113
|
Association of cardiac autonomic neuropathy assessed by heart rate response during exercise with intradialytic hypotension and mortality in hemodialysis patients. Kidney Int 2022; 101:1054-1062. [DOI: 10.1016/j.kint.2022.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
|
114
|
Mehranfard D, Speth RC. Cholinergic anti-inflammatory pathway and COVID-19. BIOIMPACTS : BI 2022; 12:171-174. [PMID: 35411295 PMCID: PMC8905591 DOI: 10.34172/bi.2022.23980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 01/09/2023]
Abstract
The cholinergic anti-inflammatory pathway (CAP) first described by Wang et al, 2003 has contemporary interest arising from the COVID-19 pandemic. While tobacco smoking has been considered an aggravating factor in the severity of COVID-19 infections, it has been suggested by some that the nicotine derived from tobacco could lessen the severity of COVID-19 infections. This spotlight briefly describes the CAP and its potential role as a therapeutic target for the treatment of COVID-19 infections using vagus nerve stimulation or selective alpha7 nicotinic acetylcholine receptor agonists.
Collapse
Affiliation(s)
- Danial Mehranfard
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Robert C. Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Pharmacology and Physiology, School of Medicine, Georgetown University, Washington, DC, USA
| |
Collapse
|
115
|
Kramer P. Mitochondria-Microbiota Interaction in Neurodegeneration. Front Aging Neurosci 2022; 13:776936. [PMID: 35002678 PMCID: PMC8733591 DOI: 10.3389/fnagi.2021.776936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s and Parkinson’s are the two best-known neurodegenerative diseases. Each is associated with the excessive aggregation in the brain and elsewhere of its own characteristic amyloid proteins. Yet the two afflictions have much in common and often the same amyloids play a role in both. These amyloids need not be toxic and can help regulate bile secretion, synaptic plasticity, and immune defense. Moreover, when they do form toxic aggregates, amyloids typically harm not just patients but their pathogens too. A major port of entry for pathogens is the gut. Keeping the gut’s microbe community (microbiota) healthy and under control requires that our cells’ main energy producers (mitochondria) support the gut-blood barrier and immune system. As we age, these mitochondria eventually succumb to the corrosive byproducts they themselves release, our defenses break down, pathogens or their toxins break through, and the side effects of inflammation and amyloid aggregation become problematic. Although it gets most of the attention, local amyloid aggregation in the brain merely points to a bigger problem: the systemic breakdown of the entire human superorganism, exemplified by an interaction turning bad between mitochondria and microbiota.
Collapse
Affiliation(s)
- Peter Kramer
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
116
|
Li Y, Wu B, Hu C, Hu J, Lian Q, Li J, Ma D. The role of the vagus nerve on dexmedetomidine promoting survival and lung protection in a sepsis model in rats. Eur J Pharmacol 2022; 914:174668. [PMID: 34863997 DOI: 10.1016/j.ejphar.2021.174668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sepsis often results in acute lung injury (ALI). Dexmedetomidine (Dex) was reported to protect cells and organs due to its direct cellular effects. This study aims to investigate the role of vagus nerves on Dex induced lung protection in lipopolysaccharide (LPS)-induced ALI rats. METHODS The bilateral cervical vagus nerve of male Sprague-Dawley rats was sectioned or just exposed as sham surgery. After LPS administration, Dex antagonist yohimbine (YOH) and/or Dex was injected intraperitoneally to rats with or without vagotomy. The severity of ALI was determined with survival curve analysis and lung pathological scores. The plasma concentrations of interleukin 1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), catecholamine and acetylcholine were measured with enzyme-linked immunosorbent assay. RESULTS The median survival time of LPS-induced ALI rats was prolonged by Dex (22 h, 95% CI, [24.46, 92.20]) vs. 14 h, 95% CI, [14.60, 89.57] of the LPS control group, P < 0.05), and the ALI score was reduced by Dex (6.5, 95% CI, [5.23, 8.10] vs. 11.5, 95% CI, [10.23, 13.10] in the LPS group, P < 0.01). However, these protective effects were significantly decreased by either YOH administration or vagotomy. Dex decreased LPS-induced IL-1β, TNF-α, and catecholamine but increased acetylcholine in blood serum; these effects of Dex was partially abolished by vagotomy. CONCLUSIONS Our data suggested that Dex increased vagal nerve tone that partially contributed to its anti-inflammatory and lung-protective effects. The indirect anti-inflammation and direct cytoprotection of Dex are likely through high vagal nerve tone and α2-adrenoceptor activation, respectively.
Collapse
Affiliation(s)
- Yumo Li
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Binbin Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Cong Hu
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Jie Hu
- Department of Anesthesiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Qingquan Lian
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Li
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom.
| |
Collapse
|
117
|
Craig CF, Filippone RT, Stavely R, Bornstein JC, Apostolopoulos V, Nurgali K. Neuroinflammation as an etiological trigger for depression comorbid with inflammatory bowel disease. J Neuroinflammation 2022; 19:4. [PMID: 34983592 PMCID: PMC8729103 DOI: 10.1186/s12974-021-02354-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with inflammatory bowel disease (IBD) suffer from depression at higher rates than the general population. An etiological trigger of depressive symptoms is theorised to be inflammation within the central nervous system. It is believed that heightened intestinal inflammation and dysfunction of the enteric nervous system (ENS) contribute to impaired intestinal permeability, which facilitates the translocation of intestinal enterotoxins into the blood circulation. Consequently, these may compromise the immunological and physiological functioning of distant non-intestinal tissues such as the brain. In vivo models of colitis provide evidence of increased blood–brain barrier permeability and enhanced central nervous system (CNS) immune activity triggered by intestinal enterotoxins and blood-borne inflammatory mediators. Understanding the immunological, physiological, and structural changes associated with IBD and neuroinflammation may aid in the development of more tailored and suitable pharmaceutical treatment for IBD-associated depression.
Collapse
Affiliation(s)
- Colin F Craig
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhiannon T Filippone
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Joel C Bornstein
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Kulmira Nurgali
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia. .,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia. .,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia. .,Institute for Health and Sport, Victoria University, Level 4 Research Labs, Western Centre for Health Research and Education, Sunshine Hospital, 176 Furlong Road, St Albans, VIC, 3021, Australia.
| |
Collapse
|
118
|
Veiz E, Kieslich SK, Czesnik D, Herrmann-Lingen C, Meyer T, Staab J. Increased Concentrations of Circulating Interleukins following Non-Invasive Vagus Nerve Stimulation: Results from a Randomized, Sham-Controlled, Crossover Study in Healthy Subjects. Neuroimmunomodulation 2022; 29:450-459. [PMID: 35576915 DOI: 10.1159/000524646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The vagus nerve constitutes the main component of the parasympathetic nervous system and plays an important role in the regulation of neuro-immune responses. Invasive stimulation of the vagus nerve produces anti-inflammatory effects; however, data on humoral immune responses of transcutaneous vagus nerve stimulation (tVNS) are rare. Therefore, the present study investigated changes in serum cytokine concentrations of interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor α (TNFα) following a short-term, non-invasive stimulation of the vagus nerve. METHODS Whole blood samples were collected before and after a short-lived application of active tVNS at the inner tragus as well as sham stimulation of the earlobe. Cytokine serum concentrations were determined in two healthy cohorts of younger (n = 20) and older participants (n = 19). Differences between active and sham conditions were analyzed using linear mixed models and post hoc F tests after applying Yeo-Johnson power transformations. This trial was part of a larger study registered on ClinicalTrials.gov (NCT05007743). RESULTS In the young cohort, IL-6 and IL-1β concentrations were significantly increased after active stimulation, whereas they were slightly decreased after sham stimulation (IL-6: p = 0.012; IL-1β: p = 0.012). Likewise, in the older cohort, IL-1β and IL-8 concentrations were significantly elevated after active stimulation and reduced after sham application (IL-8: p = 0.007; IL-1β: p = 0.001). In contrast, circulating TNFα concentrations did not change significantly in either group. CONCLUSION Our results show that active tVNS led to an immediate increase in the serum concentrations of certain pro-inflammatory cytokines such as IL-1β, IL-6, and/or IL-8 in two independent cohorts of healthy study participants.
Collapse
Affiliation(s)
- Elisabeth Veiz
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany
- Department of Neurology, University Medical Centre, Göttingen, Germany
| | - Susann-Kristin Kieslich
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany
| | - Dirk Czesnik
- Department of Neurology, University Medical Centre, Göttingen, Germany
| | - Christoph Herrmann-Lingen
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany,
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany,
| | - Julia Staab
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
119
|
Queiroz SAL, Ton AMM, Pereira TMC, Campagnaro BP, Martinelli L, Picos A, Campos-Toimil M, Vasquez EC. The Gut Microbiota-Brain Axis: A New Frontier on Neuropsychiatric Disorders. Front Psychiatry 2022; 13:872594. [PMID: 35722583 PMCID: PMC9198224 DOI: 10.3389/fpsyt.2022.872594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disorder of integrative areas of the brain, characterized by cognitive decline and disability resulting in negative impacts on the family of the patients and the health care services worldwide. AD involves oxidative stress, neuroinflammation and accelerated apoptosis, accompanied by deposition of amyloid-β peptide plaques and tau protein-based neurofibrillary tangles in the central nervous system. Among the multiple factors that contribute to the onset and evolution of this disease, aging stands out. That is why the prevalence of this disease has increased due to the constant increase in life expectancy. In the hope of finding new, more effective methods to slow the progression of this disease, over the last two decades, researchers have promoted "omics"-based approaches that include the gut microbiota and their reciprocal interactions with different targets in the body. This scientific advance has also led to a better understanding of brain compartments and the mechanisms that affect the integrity of the blood-brain barrier. This review aims to discuss recent advances related to the gut-brain-microbiota axis in AD. Furthermore, considering that AD involves psychiatric symptoms, this review also focuses on the psychiatric factors that interact with this axis (an issue that has not yet been sufficiently addressed in the literature).
Collapse
Affiliation(s)
- Sarha A L Queiroz
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil
| | - Alyne M M Ton
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil
| | - Thiago M C Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil.,Federal Institute of Education, Science and Technology (IFES), Vila Velha, Brazil
| | - Bianca P Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil
| | - Larissa Martinelli
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil
| | - Aitor Picos
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Elisardo C Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil
| |
Collapse
|
120
|
Kostov KH, Kostov H, Larsson PG, Henning O, Eckmann CAC, Lossius MI, Peltola J. Norwegian population-based study of long-term effects, safety, and predictors of response of vagus nerve stimulation treatment in drug-resistant epilepsy: The NORPulse study. Epilepsia 2021; 63:414-425. [PMID: 34935136 DOI: 10.1111/epi.17152] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study was undertaken to evaluate the efficacy of vagus nerve stimulation (VNS) over time, and to determine which patient groups derive the most benefit. METHODS Long-term outcomes are reported in 436 epilepsy patients from a VNS quality registry (52.8% adults, 47.2% children), with a median follow-up of 75 months. Patients were stratified according to evolution of response into constant responders, fluctuating responders, and nonresponders. The effect was evaluated at 6, 12, 24, 36, and 60 months. Multivariate regression analysis was used to identify predictors of response. RESULTS The cumulative probability of ≥50% seizure reduction was 60%; however, 15% of patients showed a fluctuating course. Of those becoming responders, 89.5% (230/257) did so within 2 years. A steady increase in effect was observed among constant responders, with 48.7% (19/39) of those becoming seizure-free and 29.3% (39/133) with ≥75% seizure reduction achieving these effects within 2-5 years. Some effect (25%-<50%) at 6 months was a positive predictor of becoming a responder (odds ratio [OR] = 10.18, p < .0001) and having ≥75% reduction at 2 years (OR = 3.34, p = .03). Patients without intellectual disability had ORs of 3.34 and 3.11 of having ≥75% reduction at 2 and 5 years, respectively, and an OR of 6.22 of being seizure-free at last observation. Patients with unchanged antiseizure medication over the observation period showed better responder rates at 2 (63.0% vs. 43.1%, p = .002) and 5 years (63.4% vs. 46.3%, p = .031) than patients whose antiseizure medication was modified. Responder rates were higher for posttraumatic (70.6%, p = .048) and poststroke epilepsies (75.0%, p = .05) than other etiologies (46.5%). SIGNIFICANCE Our data indicate that the effect of VNS increases over time and that there are important clinical decision points at 6 and 24 months for evaluating and adjusting the treatment. There should be better selection of candidates, as certain patient groups and epilepsy etiologies respond more favorably.
Collapse
Affiliation(s)
| | - Hrisimir Kostov
- National Center for Epilepsy, Oslo University Hospital, Oslo, Norway
| | | | - Oliver Henning
- National Center for Epilepsy, Oslo University Hospital, Oslo, Norway
| | | | - Morten Ingvar Lossius
- National Center for Epilepsy, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jukka Peltola
- Department of Neurology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
121
|
Berger A, Vespa S, Dricot L, Dumoulin M, Iachim E, Doguet P, Vandewalle G, El Tahry R. How Is the Norepinephrine System Involved in the Antiepileptic Effects of Vagus Nerve Stimulation? Front Neurosci 2021; 15:790943. [PMID: 34924947 PMCID: PMC8675889 DOI: 10.3389/fnins.2021.790943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Vagus Nerve Stimulation (VNS) is an adjunctive treatment for patients suffering from inoperable drug-resistant epilepsy. Although a complete understanding of the mediators involved in the antiepileptic effects of VNS and their complex interactions is lacking, VNS is known to trigger the release of neurotransmitters that have seizure-suppressing effects. In particular, norepinephrine (NE) is a neurotransmitter that has been associated with the clinical effects of VNS by preventing seizure development and by inducing long-term plastic changes that could restore a normal function of the brain circuitry. However, the biological requisites to become responder to VNS are still unknown. In this review, we report evidence of the critical involvement of NE in the antiepileptic effects of VNS in rodents and humans. Moreover, we emphasize the hypothesis that the functional integrity of the noradrenergic system could be a determining factor to obtain clinical benefits from the therapy. Finally, encouraging avenues of research involving NE in VNS treatment are discussed. These could lead to the personalization of the stimulation parameters to maximize the antiepileptic effects and potentially improve the response rate to the therapy.
Collapse
Affiliation(s)
- Alexandre Berger
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Synergia Medical SA, Mont-Saint-Guibert, Belgium.,GIGA-Cyclotron Research Center-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Simone Vespa
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Manon Dumoulin
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Evelina Iachim
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Department of Pediatric Neurology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Gilles Vandewalle
- GIGA-Cyclotron Research Center-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Riëm El Tahry
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Center for Refractory Epilepsy, Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
122
|
Iturriaga R, Del Rio R, Alcayaga J. Carotid Body Inflammation: Role in Hypoxia and in the Anti-inflammatory Reflex. Physiology (Bethesda) 2021; 37:128-140. [PMID: 34866399 DOI: 10.1152/physiol.00031.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Emergent evidence indicates that the carotid body (CB) chemoreceptors may sense systemic inflammatory molecules, and is an afferent-arm of the anti-inflammatory reflex. Moreover, a pro-inflammatory milieu within the CB is involved in the enhanced CB chemosensory responsiveness to oxygen following sustained and intermittent hypoxia. In this review, we focus on the physio-pathological participation of CBs in inflammatory diseases, such as sepsis and intermittent hypoxia.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiologia. Departamento de Fisiologia. Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Pontificia Universidad Catolica de Chile, Santiago-1, Región, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Santiago, Chile
| | - Rodrigo Del Rio
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Santiago, Chile.,Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
123
|
Febo-Rodriguez L, Chumpitazi BP, Sher AC, Shulman RJ. Gastric accommodation: Physiology, diagnostic modalities, clinical relevance, and therapies. Neurogastroenterol Motil 2021; 33:e14213. [PMID: 34337824 DOI: 10.1111/nmo.14213] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/09/2021] [Accepted: 05/31/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Gastric accommodation is an essential gastric motor function which occurs following ingestion of a meal. Impaired gastric fundic accommodation (IFA) is associated with dyspeptic symptoms. Gastric accommodation is mediated by the vagal pathway with several important physiologic factors such as duodenal nutrient feedback playing a significant role. IFA has been described as a pathophysiologic factor in several gastrointestinal disorders including functional dyspepsia, diabetic gastropathy, post-Nissen fundoplication, postsurgical gastrectomy, and rumination syndrome. Modalities for gastric accommodation assessment include gastric barostat, intragastric meal distribution via scintigraphy, drinking tests (eg, water load), SPECT, MRI, 2D and 3D ultrasound, and intragastric high-resolution manometry. Several treatment options including sumatriptan, buspirone, tandospirone, ondansetron, and acotiamide may improve symptoms by increasing post-meal gastric volume. PURPOSE Our aim is to provide an overview of the physiology, diagnostic modalities, and therapies for IFA. A literature search was conducted on PubMed, Google Scholar, and other sources to identify relevant studies available until December 2020. Gastric accommodation is an important gastric motor function which if impaired, is associated with several upper gastrointestinal disorders. There are an increasing number of gastric accommodation testing modalities; however, each has facets which warrant consideration. Evidence regarding potentially effective therapies for IFA is growing.
Collapse
Affiliation(s)
- Liz Febo-Rodriguez
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Miami, Miami, Florida, USA
| | - Bruno P Chumpitazi
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas, USA.,United States Department of Agriculture, Agriculture Research Services, Children's Nutrition Research Center, Houston, Texas, USA
| | - Andrew C Sher
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas, USA
| | - Robert J Shulman
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas, USA.,United States Department of Agriculture, Agriculture Research Services, Children's Nutrition Research Center, Houston, Texas, USA
| |
Collapse
|
124
|
The Emerging Scenario of the Gut-Brain Axis: The Therapeutic Actions of the New Actor Kefir against Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:antiox10111845. [PMID: 34829716 PMCID: PMC8614795 DOI: 10.3390/antiox10111845] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The fact that millions of people worldwide suffer from Alzheimer’s disease (AD) or Parkinson’s disease (PD), the two most prevalent neurodegenerative diseases (NDs), has been a permanent challenge to science. New tools were developed over the past two decades and were immediately incorporated into routines in many laboratories, but the most valuable scientific contribution was the “waking up” of the gut microbiota. Disturbances in the gut microbiota, such as an imbalance in the beneficial/pathogenic effects and a decrease in diversity, can result in the passage of undesired chemicals and cells to the systemic circulation. Recently, the potential effect of probiotics on restoring/preserving the microbiota was also evaluated regarding important metabolite and vitamin production, pathogen exclusion, immune system maturation, and intestinal mucosal barrier integrity. Therefore, the focus of the present review is to discuss the available data and conclude what has been accomplished over the past two decades. This perspective fosters program development of the next steps that are necessary to obtain confirmation through clinical trials on the magnitude of the effects of kefir in large samples.
Collapse
|
125
|
Glinert A, Turjeman S, Elliott E, Koren O. Microbes, metabolites and (synaptic) malleability, oh my! The effect of the microbiome on synaptic plasticity. Biol Rev Camb Philos Soc 2021; 97:582-599. [PMID: 34734461 PMCID: PMC9298272 DOI: 10.1111/brv.12812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/10/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
The microbiome influences the emotional and cognitive phenotype of its host, as well as the neurodevelopment and pathophysiology of various brain processes and disorders, via the well‐established microbiome–gut–brain axis. Rapidly accumulating data link the microbiome to severe neuropsychiatric disorders in humans, including schizophrenia, Alzheimer's and Parkinson's. Moreover, preclinical work has shown that perturbation of the microbiome is closely associated with social, cognitive and behavioural deficits. The potential of the microbiome as a diagnostic and therapeutic tool is currently undercut by a lack of clear mechanistic understanding of the microbiome–gut–brain axis. This review establishes the hypothesis that the mechanism by which this influence is carried out is synaptic plasticity – long‐term changes to the physical and functional neuronal structures that enable the brain to undertake learning, memory formation, emotional regulation and more. By examining the different constituents of the microbiome–gut–brain axis through the lens of synaptic plasticity, this review explores the diverse aspects by which the microbiome shapes the behaviour and mental wellbeing of the host. Key elements of this complex bi‐directional relationship include neurotransmitters, neuronal electrophysiology, immune mediators that engage with both the central and enteric nervous systems and signalling cascades that trigger long‐term potentiation of synapses. The importance of establishing mechanistic correlations along the microbiome–gut–brain axis cannot be overstated as they hold the potential for furthering current understanding regarding the vast fields of neuroscience and neuropsychiatry. This review strives to elucidate the promising theory of microbiome‐driven synaptic plasticity in the hope of enlightening current researchers and inspiring future ones.
Collapse
Affiliation(s)
- Ayala Glinert
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Evan Elliott
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| |
Collapse
|
126
|
Chen P, Wang Q, Wan X, Yang M, Liu C, Xu C, Hu B, Feng J, Luo Z. Wireless electrical stimulation of the vagus nerves by ultrasound-responsive programmable hydrogel nanogenerators for anti-inflammatory therapy in sepsis. NANO ENERGY 2021; 89:106327. [DOI: 10.1016/j.nanoen.2021.106327] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
|
127
|
Huang Z, Tang J, Ji K. Exercise prevents HFD-induced insulin resistance risk: involvement of TNF-α level regulated by vagus nerve-related anti-inflammatory pathway in the spleen. Diabetol Metab Syndr 2021; 13:124. [PMID: 34717724 PMCID: PMC8556891 DOI: 10.1186/s13098-021-00712-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Regular physical exercise can improve insulin resistance in insulin target tissues. However, the mechanisms about the beneficial effect of exercise on insulin resistance are not yet fully resolved. This study was carried out to address whether insulin resistance improvement by exercise is involved in an anti-inflammatory pathway in the spleen in high-fat diet (HFD) feeding mice. METHODS Male C57Bl/6J mice with or without subdiaphragmatic vagotomy (sVNS) were subjected to medium-intensity treadmill exercise during HFD feeding. Glucose tolerance test and insulin tolerance test were detected, and spleen acetylcholine level, choline acetyltransferase activity (ChAT), protein kinase C (PKC) and tumor necrosis factor-alpha (TNF-α) were assayed. RESULTS We found that exercise significantly improves HFD-induced glucose intolerance and insulin resistance, along with an increase in acetylcholine level, ChAT activity, and PKC activity, and decrease in TNF-α level in the system and the spleen from HFD-fed mice. However, sVNS abolished the beneficial effect of exercise on glucose intolerance and insulin resistance, decreased acetylcholine level, ChAT activity, and PKC activity, and increase TNF-α level of the spleen in HFD-mice exercise intervention. CONCLUSIONS These data reveal that the prevention of HFD-associated insulin resistance by exercise intervention involves reducing splenic TNF-α level, which is mediated by cholinergic anti-inflammatory activity via influencing PKC activity, ChAT activity, and acetylcholine concentration in mice spleen.
Collapse
Affiliation(s)
- Zhengxi Huang
- Department of Physical Education, Wuhan College, No 333, Huangjiahu Road, Wuhan, 430212, Hubei Province, China
| | - Jialing Tang
- Department of Physical Education, Central South University, Changsha, 410083, Hunan Province, China.
| | - Kai Ji
- College of Physical Education, Wuhan Sports University, Wuhan, 430212, Hubei Province, China.
| |
Collapse
|
128
|
Salliss ME, Farland LV, Mahnert ND, Herbst-Kralovetz MM. The role of gut and genital microbiota and the estrobolome in endometriosis, infertility and chronic pelvic pain. Hum Reprod Update 2021; 28:92-131. [PMID: 34718567 DOI: 10.1093/humupd/dmab035] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Endometriosis is a chronic, burdensome condition that is historically understudied. Consequently, there is a lack of understanding of the etiology of the disease and its associated symptoms, including infertility and chronic pelvic pain (CPP). Endometriosis development is influenced by estrogen metabolism and inflammation, which are modulated by several factors including the microbiome and the estrobolome (the collection of genes encoding estrogen-metabolizing enzymes in the gut microbiome). Therefore, there is increasing interest in understanding the role of microbiota in endometriosis etiology. OBJECTIVE AND RATIONALE To date, there is no cure for endometriosis and treatment options often are ineffective. This manuscript will review the potential relationship between the microbiome and endometriosis, infertility and CPP and highlight the available data on the microbiome in relation to endometriosis and its related symptoms. The overarching goal of this manuscript is to inform future microbiome research that will lead to a deeper understanding of the etiology of the disease and possible diagnostic modalities and treatments. The potential impact of the microbiome on estrogen regulation modulated by the estrobolome, as well as inflammation and other endometriosis-promoting mechanisms within the genital tract, will be reviewed. The methodological limitations of microbiome-related studies will be critically assessed to provide improved guidelines for future microbiome and clinical studies. SEARCH METHODS PubMed databases were searched using the following keywords: endometriosis AND microbiome, infertility AND microbiome, pelvic pain AND microbiome, IVF (in-vitro fertilization) AND microbiome, endometriosis AND infertility. Clinical and preclinical animal trials that were eligible for review, and related to microbiome and endometriosis, infertility or CPP were included. All available manuscripts were published in 2002-2021. OUTCOMES In total, 28 clinical and 6 animal studies were included in the review. In both human and animal studies, bacteria were enriched in endometriosis groups, although there was no clear consensus on specific microbiota compositions that were associated with endometriosis, and no studies included infertility or CPP with endometriosis. However, bacterial vaginosis-associated bacteria and Lactobacillus depletion in the cervicovaginal microbiome were associated with endometriosis and infertility in the majority (23/28) of studies. Interpretation of endometrial studies is limited owing to a variety of methodological factors, discussed in this review. In addition, metadata outlining antibiotic usage, age, race/ethnicity, menopausal status and timing of sample collection in relation to diagnosis of endometriosis was not consistently reported. Animal studies (6/6) support a bidirectional relationship between the gut microbiota and endometriosis onset and progression. WIDER IMPLICATIONS There is evidence that a dysbiotic gut or genital microbiota is associated with multiple gynecologic conditions, with mounting data supporting an association between the microbiome and endometriosis and infertility. These microbiomes likely play a role in the gut-brain axis, which further supports a putative association with the spectrum of symptoms associated with endometriosis, including infertility and CPP. Collectively, this review highlights the demand for more rigorous and transparent methodology and controls, consistency across the field, and inclusion of key demographic and clinical characteristics of disease and comparison participants. Rigorous study designs will allow for a better understanding of the potential role of the microbiome in endometriosis etiology and the relationship to other disorders of the female reproductive tract.
Collapse
Affiliation(s)
- Mary E Salliss
- Department of Obstetrics and Gynecology, University of Arizona-College of Medicine, Phoenix, AZ, USA.,Department of Biology and Biochemistry, Bath University, Bath, UK
| | - Leslie V Farland
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.,Department of Obstetrics and Gynecology, University of Arizona-College of Medicine Tucson, Tucson, AZ, USA
| | - Nichole D Mahnert
- Department of Obstetrics and Gynecology, University of Arizona-College of Medicine, Phoenix, AZ, USA.,Department of Obstetrics and Gynecology, Banner-University Medical Center Phoenix, Phoenix, AZ, USA
| | - Melissa M Herbst-Kralovetz
- Department of Obstetrics and Gynecology, University of Arizona-College of Medicine, Phoenix, AZ, USA.,Department of Basic Medical Sciences, University of Arizona-College of Medicine, Phoenix, AZ, USA
| |
Collapse
|
129
|
Martins DF, Viseux FJF, Salm DC, Ribeiro ACA, da Silva HKL, Seim LA, Bittencourt EB, Bianco G, Moré AOO, Reed WR, Mazzardo-Martins L. The role of the vagus nerve in fibromyalgia syndrome. Neurosci Biobehav Rev 2021; 131:1136-1149. [PMID: 34710514 DOI: 10.1016/j.neubiorev.2021.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/08/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022]
Abstract
Fibromyalgia (FM) syndrome is a common illness characterized by chronic widespread pain, sleep problems, fatigue, and cognitive difficulties. Dysfunctional neurotransmitter systems that influence the body's endogenous stress response systems are thought to underlie many of the major FM-related symptoms. A model of FM pathogenesis suggests biological and psychosocial variables interact to influence the genetic predisposition, but the precise mechanisms remain unclear. The Polyvagal Theory provides a theoretical framework from which to investigate potential biological mechanisms. The vagus nerve (VN) has anti-inflammatory properties via its afferent and efferent fibers. A low vagal tone (as assessed by low heart rate variability), has been observed in painful and inflammatory diseases, including FM, while the ventral branch of the VN is linked to emotional expression and social engagement. These anti-inflammatory and psychological (limbic system) properties of the VN may possess therapeutic potential in treating FM. This review paper summarizes the scientific literature regarding the potential role of the VN in transducing and/or therapeutically managing FM signs and symptoms.
Collapse
Affiliation(s)
- Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx), Physiotherapy Graduate Course, University of Southern Santa Catarina, Palhoça, SC, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, SC, Brazil.
| | - Frederic J F Viseux
- Laboratoire d'Automatique, de Mécanique et d'Informatique industrielle et Humaine (LAMIH), UMR CNRS 8201, Université Polytechnique des Hauts-de-France, Valenciennes, France; Centre d'Evaluation et de Traitement de la Douleur (CETD), Hôpital Jean Bernard, Centre Hospitalier de Valenciennes, F-59322 Valenciennes, France
| | - Daiana C Salm
- Experimental Neuroscience Laboratory (LaNEx), Physiotherapy Graduate Course, University of Southern Santa Catarina, Palhoça, SC, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, SC, Brazil
| | - Anny Caroline Avelino Ribeiro
- Experimental Neuroscience Laboratory (LaNEx), Physiotherapy Graduate Course, University of Southern Santa Catarina, Palhoça, SC, Brazil
| | - Helen Kassiana Lopes da Silva
- Experimental Neuroscience Laboratory (LaNEx), Physiotherapy Graduate Course, University of Southern Santa Catarina, Palhoça, SC, Brazil
| | - Lynsey A Seim
- Hospital Internal Medicine, 4500 San Pablo Road, Mayo Clinic, Jacksonville, FL, USA
| | | | - Gianluca Bianco
- Research Laboratory of Posturology and Neuromodulation RELPON, Department of Human Neuroscience, Sapienza University, Rome, Italy; Istituto di Formazione in Agopuntura e Neuromodulazione IFAN, Rome, Italy
| | - Ari Ojeda Ocampo Moré
- Integrative Medicine and Acupuncture Service, University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - William R Reed
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, USA; Rehabilitation Science Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leidiane Mazzardo-Martins
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
130
|
Topical Neck Cooling Prolongs Survival of Rats with Intra-Abdominal Feculent Sepsis by Activation of the Vagus Nerve. Int J Mol Sci 2021; 22:ijms22189828. [PMID: 34575994 PMCID: PMC8465551 DOI: 10.3390/ijms22189828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
Global hypothermia prolongs survival in rats with intraabdominal feculent sepsis by inhibiting inflammatory responses. We hypothesized that topical neck cooling (TNC) has similar benefits. Septic shock was induced by cecal ligation and incision (CLI) in Sprague Dawley rats. Rats were randomized to sham laparotomy, control with CLI, CLI with TNC, or vagotomy at the gastroesophageal junction before CLI and TNC. Two more groups underwent peritoneal washout with and without TNC two hours after CLI. TNC significantly lowered neck skin temperature (16.7 ± 1.4 vs. 30.5 ± 0.6 °C, p < 0.05) while maintaining core body normothermia. TNC rats recovered from anesthesia 70 min earlier than the control (p < 0.05). Three hours following CLI, the control and vagotomy with TNC groups had significantly more splenic contraction, fewer circulating leukocytes and higher plasma IL-1β, IL-10 and TNF-α levels than TNC rats (p < 0.05). TNC prolonged survival duration after CLI by a median of four hours vs. control (p < 0.05), but no benefit was seen if vagotomy preceded TNC. Peritoneal washout alone increased survival by 3 h (9.2 (7.8–10.5) h). Survival duration increased dramatically with TNC preceding washout, to a 56% survival rate (>10 days). TNC significantly prolonged the survival of rats with severe intraabdominal sepsis by inhibiting systemic proinflammatory responses by activating vagal anti-inflammatory pathways.
Collapse
|
131
|
Morris R, Umeukeje G, Bu K, Cheng F. The Association Between Use of Rivastigmine and Pneumonia: Systematic Analysis of FDA Adverse Event Reporting System. J Alzheimers Dis 2021; 83:1061-1071. [PMID: 34397417 DOI: 10.3233/jad-210662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pneumonia is an inflammatory condition induced by infection of the lungs and is frequently a cause of morbidity and mortality among patients with Alzheimer's disease (AD). Some studies have shown a correlation between acetylcholinesterase inhibitor use and elevated pneumonia risk. OBJECTIVE The purpose of this study was to perform a comparative analysis of the number of reported pneumonia cases in individuals prescribed rivastigmine relative to the association between pneumonia risk for other therapeutics including over-the-counter drugs and other AD therapeutics, as reported to the FDA Adverse Event Reporting System (FAERS) database. METHODS A disproportionality analysis was conducted to investigate the association between using rivastigmine and risk of pneumonia. Age, gender, dosage, route of administration, temporality, and geographic distribution of reported cases were also assessed. RESULTS Patients prescribed rivastigmine were more likely to report pneumonia as an adverse event than many drugs except galantamine. Males were found to be 46%more likely than females to report pneumonia as an adverse event while likelihood of pneumonia diagnosis increases 3-5-fold in patients older than 65 years of age. CONCLUSION The observed elevated frequency of aspiration pneumonia in patients prescribed rivastigmine may be due to an induced cholinergic crisis that is selective for the medulla oblongata, resulting in gastrointestinal distress, impaired swallowing, heightened salivation, and labored breathing. The observed elevated frequency of infectious pneumonia in patients prescribed rivastigmine may also be linked to overstimulation of neurons in the medulla oblongata and downstream suppression of localized inflammatory responses.
Collapse
Affiliation(s)
- Robert Morris
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Gibret Umeukeje
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Kun Bu
- Department of Mathematics & Statistics, College of Art and Science, University of South Florida, Tampa, FL, USA
| | - Feng Cheng
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA.,Department of Biostatistics & Epidemiology, College of Public Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|
132
|
Abstract
Interactions between the immune system and the nervous system have been described mostly in the context of diseases. More recent studies have begun to reveal how certain immune cell-derived soluble effectors, the cytokines, can influence host behaviour even in the absence of infection. In this Review, we contemplate how the immune system shapes nervous system function and how it controls the manifestation of host behaviour. Interactions between these two highly complex systems are discussed here also in the context of evolution, as both may have evolved to maximize an organism's ability to respond to environmental threats in order to survive. We describe how the immune system relays information to the nervous system and how cytokine signalling occurs in neurons. We also speculate on how the brain may be hardwired to receive and process information from the immune system. Finally, we propose a unified theory depicting a co-evolution of the immune system and host behaviour in response to the evolutionary pressure of pathogens.
Collapse
|
133
|
Gonçalves RA, De Felice FG. The crosstalk between brain and periphery: Implications for brain health and disease. Neuropharmacology 2021; 197:108728. [PMID: 34331960 DOI: 10.1016/j.neuropharm.2021.108728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
Mounting evidence indicates that signaling molecules identified primarily in the peripheral circulation can affect cognitive function in physiological and pathological conditions, including in the development of several neurological diseases. However, considering the properties of the vascular blood-brain barrier (BBB), circulating lipophobic molecules would not be expected to cross this vascular structure. Thus, if and how peripheral lipophobic molecules, such as hormones and cytokines, reach the brain to exert their reported effects remains to be better established. In this review, we will discuss evidence for and against the ability of molecules in the circulation, such as insulin, cytokines, and irisin to reach the brain and mediate the crosstalk between peripheral tissues and the central nervous system (CNS). We hypothesize that in addition to entering the brain via receptor-mediated transcytosis, these circulating molecules can have their transport facilitated by extracellular vesicles or under pathological conditions when the BBB is disrupted. We also discuss the possibility that these circulating molecules access the brain by acting directly on circumventricular organs, which lack the BBB, by local synthesis in the choroid plexus, and via activation of afferent vagal nerves. Advancing the understanding of mechanisms implicated in the transport of blood-borne molecules to the CNS will help us elucidate the contribution of peripheral factors to brain health and disease, and will enable the development of minimally invasive strategies to deliver therapeutic drugs to the brain in neurological disorders.
Collapse
Affiliation(s)
- Rafaella A Gonçalves
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Fernanda G De Felice
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Psychiatry, Queen's University, Kingston, ON K7L 3N6, Canada; D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
134
|
Chapman SJ, Naylor M, Czoski Murray CJ, Tolan D, Stocken DD, Jayne DG. Non-invasive, vagus nerve stimulation to reduce ileus after colorectal surgery: protocol for a feasibility trial with nested mechanistic studies. BMJ Open 2021; 11:e046313. [PMID: 34290065 PMCID: PMC8296772 DOI: 10.1136/bmjopen-2020-046313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Ileus is a common and distressing condition characterised by gut dysfunction after surgery. While a number of interventions have aimed to curtail its impact on patients and healthcare systems, ileus is still an unmet challenge. Electrical stimulation of the vagus nerve is a promising new treatment due to its role in modulating the neuro-immune axis through a novel anti-inflammatory reflex. The protocol for a feasibility study of non-invasive vagus nerve stimulation (nVNS), and a programme of mechanistic and qualitative studies, is described. METHODS AND ANALYSIS This is a participant-blinded, parallel-group, randomised, sham-controlled feasibility trial (IDEAL Stage 2b) of self-administered nVNS. One hundred forty patients planned for elective, minimally invasive, colorectal surgery will be randomised to four schedules of nVNS before and after surgery. Feasibility outcomes include assessments of recruitment and attrition, adequacy of blinding and compliance to the intervention. Clinical outcomes include bowel function and length of hospital stay. A series of mechanistic substudies exploring the impact of nVNS on inflammation and bowel motility will inform the design of the final stimulation schedule. Semistructured interviews with participants will explore experiences and perceptions of the intervention, while interviews with patients who decline participation will explore barriers to recruitment. ETHICS AND DISSEMINATION The protocol has been approved by the Tyne and Wear South National Health Service (NHS) Research Ethics Committee (19/NE/0217) on 2 July 2019. Feasibility, mechanistic and qualitative findings will be disseminated to national and international partners through peer-reviewed publications, academic conferences, social media channels and stakeholder engagement activities. The findings will build a case for or against progression to a definitive randomised assessment as well as informing key elements of study design. TRIAL REGISTRATION NUMBER ISRCTN62033341.
Collapse
Affiliation(s)
- Stephen J Chapman
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Maureen Naylor
- West Riding of Yorkshire Ileostomy Association, Leeds, UK
| | | | | | - Deborah D Stocken
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - David G Jayne
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| |
Collapse
|
135
|
Xu J, Wu Z, Zhang M, Liu S, Zhou L, Yang C, Liu C. The Role of the Gastrointestinal System in Neuroinvasion by SARS-CoV-2. Front Neurosci 2021; 15:694446. [PMID: 34276298 PMCID: PMC8283125 DOI: 10.3389/fnins.2021.694446] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the most devastating pandemics in history. SARS-CoV-2 has infected more than 100 million people worldwide, leading to more than 3.5 million deaths. Initially, the clinical symptoms of SARS-CoV-2 infection were thought to be restricted to the respiratory system. However, further studies have revealed that SARS-CoV-2 can also afflict multiple other organs, including the gastrointestinal tract and central nervous system. The number of gastrointestinal and neurological manifestations after SARS-CoV-2 infection has been rapidly increasing. Most importantly, patients infected with SARS-CoV-2 often exhibit comorbid symptoms in the gastrointestinal and neurological systems. This review aims to explore the pathophysiological mechanisms of neuroinvasion by SARS-CoV-2. SARS-CoV-2 may affect the nervous system by invading the gastrointestinal system. We hope that this review can provide novel ideas for the clinical treatment of the neurological symptoms of SARS-CoV-2 infection and references for developing prevention and treatment strategies.
Collapse
Affiliation(s)
- Jiali Xu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijiang Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
136
|
Liu Y, Forsythe P. Vagotomy and insights into the microbiota-gut-brain axis. Neurosci Res 2021; 168:20-27. [DOI: 10.1016/j.neures.2021.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
|
137
|
Azabou E, Bao G, Costantino F, Jacota M, Lazizi C, Nkam L, Rottman M, Roux AL, Chevallier S, Grimaldi L, Breban M. Randomized Cross Over Study Assessing the Efficacy of Non-invasive Stimulation of the Vagus Nerve in Patients With Axial Spondyloarthritis Resistant to Biotherapies: The ESNV-SPA Study Protocol. Front Hum Neurosci 2021; 15:679775. [PMID: 34276328 PMCID: PMC8278783 DOI: 10.3389/fnhum.2021.679775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/31/2021] [Indexed: 01/04/2023] Open
Abstract
Axial spondyloarthritis (SpA), is a major cause of chronic pain and disability that profoundly alters the quality of life of patients. Nearly half of patients with SpA usually develop drug resistance. Non-pharmacological treatments targeting inflammation are an attractive alternative to drug administration. Vagus nerve stimulation (VNS), by promoting a cholinergic anti-inflammatory reflex holds promise for treating inflammatory disease. Inflammatory reflex signaling, which is enhanced by electrically stimulating the vagus nerve, significantly reduces cytokine production and attenuates disease severity in animal models of endotoxemia, sepsis, colitis, and other preclinical models of inflammatory diseases. It has been proposed that vagal efferent fibers release acetylcholine (Ach), which can interact with α7-subunit-containing nicotinic receptors expressed by tissue macrophages and other immune cells to rapidly inhibit the synthesis/release of pro-inflammatory cytokines such as TNFα, IL-1β, IL-6, and IL-18. External vagal nerve stimulation devices are now available that do not require surgery nor implantation to non-invasively stimulate the vagal nerve. This double-blind randomized cross-over clinical trial aims to study the change in SpA disease activity, according to Assessment in Ankylosing Spondylitis 20 (ASAS20) definition, after 12 weeks of non-invasive VNS treatment vs. non-specific dummy stimulation (control group). One hundred and twenty adult patients with drug resistant SpA, meeting the ASAS classification criteria, will be included in the study. Patients will be randomized into two parallel groups according to a cross over design: either active VNS for 12 weeks, then dummy stimulation for 12 weeks, or dummy stimulation for 12 weeks, then active VNS for 12 weeks. The two stimulation periods will be separated by a 4 weeks wash-out period. A transcutaneous auricular vagus nerve stimulator Tens Eco Plus SCHWA MEDICOTM France will be used in this study. The active VNS stimulation will be applied in the cymba conchae of the left ear upon the auricular branch of the vagus nerve, using low intensity (2–5 mA), once à week, during 1 h. Dummy stimulation will be performed under the same conditions and parameters as active VNS stimulation, but at an irrelevant anatomical site: the left ear lobule. This multicenter study was registered on ClinicalTrials.gov: NCT04286373.
Collapse
Affiliation(s)
- Eric Azabou
- Clinical Neurophysiology and Neuromodulation Unit, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Guillaume Bao
- Clinical Neurophysiology and Neuromodulation Unit, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Félicie Costantino
- Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France.,Rheumatology Department, AP-HP, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France.,Laboratory of Excellence Inflamex, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Madalina Jacota
- Clinical Research Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France, University of Versailles Saint-Quentin en Yvelines, Paris-Saclay University, Paris, France
| | - Chanez Lazizi
- Clinical Research Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France, University of Versailles Saint-Quentin en Yvelines, Paris-Saclay University, Paris, France
| | - Lionelle Nkam
- Clinical Research Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France, University of Versailles Saint-Quentin en Yvelines, Paris-Saclay University, Paris, France
| | - Martin Rottman
- Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France.,Microbiology Laboratory, Raymond Poincaré Hospital, AP-HP Paris Saclay University, Paris, France
| | - Anne-Laure Roux
- Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France.,Microbiology Laboratory, Raymond Poincaré Hospital, AP-HP Paris Saclay University, Paris, France
| | - Sylvain Chevallier
- Versailles Engineering Systems Laboratory (LISV), University of Versailles Saint Quentin en Yvelines (UVSQ), Vélizy, France
| | - Lamiae Grimaldi
- Clinical Research Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France, University of Versailles Saint-Quentin en Yvelines, Paris-Saclay University, Paris, France
| | - Maxime Breban
- Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France.,Rheumatology Department, AP-HP, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France.,Laboratory of Excellence Inflamex, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
138
|
Hajiasgharzadeh K, Khabbazi A, Mokhtarzadeh A, Baghbanzadeh A, Asadzadeh Z, Adlravan E, Baradaran B. Cholinergic anti-inflammatory pathway and connective tissue diseases. Inflammopharmacology 2021; 29:975-986. [PMID: 34125373 DOI: 10.1007/s10787-021-00812-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/24/2021] [Indexed: 11/29/2022]
Abstract
Connective tissue diseases (CTDs) consist of an extensive range of heterogeneous medical conditions, which are caused by immune-mediated chronic inflammation and influences the various connective tissues of the body. They include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, vasculitis, Sjögren's syndrome, Behcet's disease, and many other autoimmune CTDs. To date, several anti-inflammatory approaches have been developed to reduce the severity of inflammation or its subsequent organ manifestations. As a logical mechanism to harnesses the undesired inflammation, some studies investigated the role of the intrinsic cholinergic anti-inflammatory pathway (CAP) in the modulation of chronic inflammation. Many different experimental and clinical models have been developed to evaluate the therapeutic significance of the CAP in CTDs. On the other hand, an issue that is less emphasized in this regard is the presence of autonomic neuropathy in CTDs, which influences the efficiency of CAP in such clinical settings. This condition occurs during CTDs and is a well-known complication of patients suffering from them. The advantages and limitations of CAP in the control of inflammatory responses and its possible therapeutic benefits in the treatment of CTDs are the main subjects of the current study. Therefore, this narrative review article is provided based on the recent findings of the complicated role of CAP in CTDs which were retrieved by searching Science Direct, PubMed, Google Scholar, and Web of Science. It seems that delineating the complex influences of CAP would be of great interest in designing novel surgical or pharmacological therapeutic strategies for CTDs therapy.
Collapse
Affiliation(s)
- Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614756, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614756, Tabriz, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Elham Adlravan
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran. .,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
139
|
Garrett A, Rakhilin N, Wang N, McKey J, Cofer G, Anderson RB, Capel B, Johnson GA, Shen X. Mapping the peripheral nervous system in the whole mouse via compressed sensing tractography. J Neural Eng 2021; 18. [PMID: 33979784 DOI: 10.1088/1741-2552/ac0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/12/2021] [Indexed: 11/12/2022]
Abstract
Objective.The peripheral nervous system (PNS) connects the central nervous system with the rest of the body to regulate many physiological functions and is therapeutically targeted to treat diseases such as epilepsy, depression, intestinal dysmotility, chronic pain, and more. However, we still lack understanding of PNS innervation in most organs because the large span, diffuse nature, and small terminal nerve bundle fibers have precluded whole-organism, high resolution mapping of the PNS. We sought to produce a comprehensive peripheral nerve atlas for use in future interrogation of neural circuitry and selection of targets for neuromodulation.Approach.We used diffusion tensor magnetic resonance imaging (DT-MRI) with high-speed compressed sensing to generate a tractogram of the whole mouse PNS. The tractography generated from the DT-MRI data is validated using lightsheet microscopy on optically cleared, antibody stained tissue.Main results.Herein we demonstrate the first comprehensive PNS tractography in a whole mouse. Using this technique, we scanned the whole mouse in 28 h and mapped PNS innervation and fiber network in multiple organs including heart, lung, liver, kidneys, stomach, intestines, and bladder at 70µm resolution. This whole-body PNS tractography map has provided unparalleled information; for example, it delineates the innervation along the gastrointestinal tract by multiple sacral levels and by the vagal nerves. The map enabled a quantitative tractogram that revealed relative innervation of the major organs by each vertebral foramen as well as the vagus nerve.Significance.This novel high-resolution nerve atlas provides a potential roadmap for future neuromodulation therapies and other investigations into the neural circuits which drive homeostasis and disease throughout the body.
Collapse
Affiliation(s)
- Aliesha Garrett
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America
| | - Nikolai Rakhilin
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America
| | - Nian Wang
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Jennifer McKey
- Department of Cell Biology, School of Medicine, Duke University, Durham, NC, United States of America
| | - Gary Cofer
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Robert Bj Anderson
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Blanche Capel
- Department of Cell Biology, School of Medicine, Duke University, Durham, NC, United States of America
| | - G Allan Johnson
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America
| |
Collapse
|
140
|
Stakenborg N, Boeckxstaens GE. Bioelectronics in the brain-gut axis: focus on inflammatory bowel disease (IBD). Int Immunol 2021; 33:337-348. [PMID: 33788920 PMCID: PMC8183669 DOI: 10.1093/intimm/dxab014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence shows that intestinal homeostasis is mediated by cross-talk between the nervous system, enteric neurons and immune cells, together forming specialized neuroimmune units at distinct anatomical locations within the gut. In this review, we will particularly discuss how the intrinsic and extrinsic neuronal circuitry regulates macrophage function and phenotype in the gut during homeostasis and aberrant inflammation, such as observed in inflammatory bowel disease (IBD). Furthermore, we will provide an overview of basic and translational IBD research using these neuronal circuits as a novel therapeutic tool. Finally, we will highlight the different challenges ahead to make bioelectronic neuromodulation a standard treatment for intestinal immune-mediated diseases.
Collapse
Affiliation(s)
- Nathalie Stakenborg
- Center of Intestinal Neuro-immune Interaction, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Herestraat 49, O&N1 bus 701, Leuven 3000, Belgium
| | - Guy E Boeckxstaens
- Center of Intestinal Neuro-immune Interaction, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Herestraat 49, O&N1 bus 701, Leuven 3000, Belgium
| |
Collapse
|
141
|
Mental health during the COVID-19 pandemic and beyond: The importance of the vagus nerve for biopsychosocial resilience. Neurosci Biobehav Rev 2021; 125:1-10. [PMID: 33582230 PMCID: PMC8106638 DOI: 10.1016/j.neubiorev.2021.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/22/2022]
Abstract
The COVID-19 pandemic has led to widespread increases in mental health problems, including anxiety and depression. The development of these and other psychiatric disorders may be related to changes in immune, endocrine, autonomic, cognitive, and affective processes induced by a SARS-CoV-2 infection. Interestingly, many of these same changes can be triggered by psychosocial stressors such as social isolation and rejection, which have become increasingly common due to public policies aimed at reducing the spread of SARS-CoV-2. The present review aims to shed light on these issues by describing how viral infections and stress affect mental health. First, we describe the multi-level mechanisms linking viral infection and life stress exposure with risk for psychopathology. Then, we summarize how resilience can be enhanced by targeting vagus nerve function by, for example, applying transcutaneous vagus nerve stimulation and targeting lifestyle factors, such as exercise. With these biopsychosocial insights in mind, researchers and healthcare professionals will be better equipped to reduce risk for psychopathology and increase resilience during this challenging pandemic period and beyond.
Collapse
|
142
|
Pavlov VA. The evolving obesity challenge: targeting the vagus nerve and the inflammatory reflex in the response. Pharmacol Ther 2021; 222:107794. [PMID: 33310156 PMCID: PMC8027699 DOI: 10.1016/j.pharmthera.2020.107794] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Obesity and the metabolic syndrome (MetS), which have reached pandemic proportions significantly increase the risk for type 2 diabetes, cardiovascular disease, and other serious conditions. Recent data with COVID-19 patients indicate that obesity also is a significant risk factor for this novel viral disease and poor outcome of associated critical illness. These findings considerably change the view of obesity as a driver of serious, but slowly-progressing chronic diseases, and emphasize the urgency to explore new therapeutic approaches. Inflammation is a recognized driver of metabolic derangements in obesity and MetS, and a core feature of COVID-19 pathobiology. Recent advances in our understanding of inflammatory regulation have highlighted the role of the nervous system and the vagus nerve-based inflammatory reflex. Current bioelectronic and pharmacological therapeutic explorations centered on the inflammatory reflex offer new approaches for conditions characterized by immune and metabolic dysregulation and for ameliorating the escalating burden of obesity, MetS, and COVID-19.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA.
| |
Collapse
|
143
|
You XY, Zhang HY, Han X, Wang F, Zhuang PW, Zhang YJ. Intestinal Mucosal Barrier Is Regulated by Intestinal Tract Neuro-Immune Interplay. Front Pharmacol 2021; 12:659716. [PMID: 34135754 PMCID: PMC8201607 DOI: 10.3389/fphar.2021.659716] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease, irritable bowel syndrome and severe central nervous system injury can lead to intestinal mucosal barrier damage, which can cause endotoxin/enterobacteria translocation to induce infection and is closely related to the progression of metabolic diseases, cardiovascular and cerebrovascular diseases, tumors and other diseases. Hence, repairing the intestinal barrier represents a potential therapeutic target for many diseases. Enteral afferent nerves, efferent nerves and the intrinsic enteric nervous system (ENS) play key roles in regulating intestinal physiological homeostasis and coping with acute stress. Furthermore, innervation actively regulates immunity and induces inherent and adaptive immune responses through complex processes, such as secreting neurotransmitters or hormones and regulating their corresponding receptors. In addition, intestinal microorganisms and their metabolites play a regulatory role in the intestinal mucosal barrier. This paper primarily discusses the interactions between norepinephrine and β-adrenergic receptors, cholinergic anti-inflammatory pathways, nociceptive receptors, complex ENS networks, gut microbes and various immune cells with their secreted cytokines to summarize the key roles in regulating intestinal inflammation and improving mucosal barrier function.
Collapse
Affiliation(s)
- Xin-Yu You
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han-Yu Zhang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Han
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fang Wang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng-Wei Zhuang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-Jun Zhang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
144
|
Bauer EE, Shoeman A, Buhr TJ, Daniels KM, Lyte M, Clark PJ. Voluntary binge-patterned alcohol drinking and sex-specific influences on monoamine-related neurochemical signatures in the mouse gut and brain. Alcohol Clin Exp Res 2021; 45:996-1012. [PMID: 33704774 DOI: 10.1111/acer.14592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/30/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Altered monoamine (i.e., serotonin, dopamine, and norepinephrine) activity following episodes of alcohol abuse plays key roles not only in the motivation to ingest ethanol, but also physiological dysfunction related to its misuse. Although monoamine activity is essential for physiological processes that require coordinated communication across the gut-brain axis (GBA), relatively little is known about how alcohol misuse may affect monoamine levels across the GBA. Therefore, we evaluated monoamine activity across the mouse gut and brain following episodes of binge-patterned ethanol drinking. METHODS Monoamine and select metabolite neurochemical concentrations were analyzed by ultra-high-performance liquid chromatography in gut and brain regions of female and male C57BL/6J mice following "Drinking in the Dark" (DID), a binge-patterned ethanol ingestion paradigm. RESULTS First, we found that alcohol access had an overall small effect on gut monoamine-related neurochemical concentrations, primarily influencing dopamine activity. Second, neurochemical patterns between the small intestine and the striatum were correlated, adding to recent evidence of modulatory activity between these areas. Third, although alcohol access robustly influenced activity in brain areas in the mesolimbic dopamine system, binge exposure also influenced monoaminergic activity in the hypothalamic region. Finally, sex differences were observed in the concentrations of neurochemicals within the gut, which was particularly pronounced in the small intestine. CONCLUSION Together, these data provide insights into the influence of alcohol abuse and biological sex on monoamine-related neurochemical changes across the GBA, which could have important implications for GBA function and dysfunction.
Collapse
Affiliation(s)
- Ella E Bauer
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Allyse Shoeman
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Trevor J Buhr
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Karrie M Daniels
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA
| | - Peter J Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| |
Collapse
|
145
|
Kanova M, Kohout P. Serotonin-Its Synthesis and Roles in the Healthy and the Critically Ill. Int J Mol Sci 2021; 22:ijms22094837. [PMID: 34063611 PMCID: PMC8124334 DOI: 10.3390/ijms22094837] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) plays two important roles in humans-one central and the other peripheral-depending on the location of the 5-HT pools of on either side of the blood-brain barrier. In the central nervous system it acts as a neurotransmitter, controlling such brain functions as autonomic neural activity, stress response, body temperature, sleep, mood and appetite. This role is very important in intensive care, as in critically ill patients multiple serotoninergic agents like opioids, antiemetics and antidepressants are frequently used. High serotonin levels lead to altered mental status, deliria, rigidity and myoclonus, together recognized as serotonin syndrome. In its role as a peripheral hormone, serotonin is unique in controlling the functions of several organs. In the gastrointestinal tract it is important for regulating motor and secretory functions. Apart from intestinal motility, energy metabolism is regulated by both central and peripheral serotonin signaling. It also has fundamental effects on hemostasis, vascular tone, heart rate, respiratory drive, cell growth and immunity. Serotonin regulates almost all immune cells in response to inflammation, following the activation of platelets.
Collapse
Affiliation(s)
- Marcela Kanova
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ostrava, 70852 Ostrava-Poruba, Czech Republic
- Institute of Physiology and Pathophysiology, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300 Ostrava-Vítkovice, Czech Republic
- Correspondence: ; Tel.: +420-59737-2707
| | - Pavel Kohout
- Department of Internal Medicine, 3rd Faculty of Medicine, Charles University Prague and Teaching Thomayer Hospital, 14059 Prague, Czech Republic;
| |
Collapse
|
146
|
Eberhardson M, Levine YA, Tarnawski L, Olofsson PS. The brain-gut axis, inflammatory bowel disease and bioelectronic medicine. Int Immunol 2021; 33:349-356. [PMID: 33912906 DOI: 10.1093/intimm/dxab018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
The hallmark of inflammatory bowel diseases (IBD) is chronic intestinal inflammation with typical onset in adolescents and young adults. An abundance of neutrophils is seen in the inflammatory lesions, but adaptive immunity is also an important player in the chronicity of the disease. There is an unmet need for new treatment options since modern medicines such as biological therapy with anti-cytokine antibodies still leave a substantial number of patients with persisting disease activity. The role of the central nervous system and its interaction with the gut in the pathophysiology of IBD have been brought to attention both in animal models and in humans after the discovery of the inflammatory reflex. The suggested control of gut immunity by the brain-gut axis represents a novel therapeutic target suitable for bioelectronic intervention. In this review, we discuss the role of the inflammatory reflex in gut inflammation and the recent advances in the treatment of IBD by intervening with the brain-gut axis through bioelectronic devices.
Collapse
Affiliation(s)
- Michael Eberhardson
- Department of Gastroenterology and Hepatology, University Hospital of Linköping, 581 91 Linköping, Sweden.,Department of Medicine, Center for Bioelectronic Medicine, Bioclinicum, Karolinska Institutet, 171 64 Stockholm, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Yaakov A Levine
- Department of Medicine, Center for Bioelectronic Medicine, Bioclinicum, Karolinska Institutet, 171 64 Stockholm, Sweden.,SetPoint Medical, Valencia, CA 91355, USA
| | - Laura Tarnawski
- Department of Medicine, Center for Bioelectronic Medicine, Bioclinicum, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Peder S Olofsson
- Department of Medicine, Center for Bioelectronic Medicine, Bioclinicum, Karolinska Institutet, 171 64 Stockholm, Sweden.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| |
Collapse
|
147
|
Steriade C, Titulaer MJ, Vezzani A, Sander JW, Thijs RD. The association between systemic autoimmune disorders and epilepsy and its clinical implications. Brain 2021; 144:372-390. [PMID: 33221878 DOI: 10.1093/brain/awaa362] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Systemic autoimmune disorders occur more frequently in patients with epilepsy than in the general population, suggesting shared disease mechanisms. The risk of epilepsy is elevated across the spectrum of systemic autoimmune disorders but is highest in systemic lupus erythematosus and type 1 diabetes mellitus. Vascular and metabolic factors are the most important mediators between systemic autoimmune disorders and epilepsy. Systemic immune dysfunction can also affect neuronal excitability, not only through innate immune activation and blood-brain barrier dysfunction in most epilepsies but also adaptive immunity in autoimmune encephalitis. The presence of systemic autoimmune disorders in subjects with acute seizures warrants evaluation for infectious, vascular, toxic and metabolic causes of acute symptomatic seizures, but clinical signs of autoimmune encephalitis should not be missed. Immunosuppressive medications may have antiseizure properties and trigger certain drug interactions with antiseizure treatments. A better understanding of mechanisms underlying the co-existence of epilepsy and systemic autoimmune disorders is needed to guide new antiseizure and anti-epileptogenic treatments. This review aims to summarize the epidemiological evidence for systemic autoimmune disorders as comorbidities of epilepsy, explore potential immune and non-immune mechanisms, and provide practical implications on diagnostic and therapeutic approach to epilepsy in those with comorbid systemic autoimmune disorders.
Collapse
Affiliation(s)
- Claude Steriade
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Maarten J Titulaer
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, Bucks, UK.,Stichting Epilepsie Instellingen Nederland - (SEIN), Heemstede, The Netherlands
| | - Roland D Thijs
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Stichting Epilepsie Instellingen Nederland - (SEIN), Heemstede, The Netherlands.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
148
|
Bonaz B, Sinniger V, Pellissier S. Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases. Front Neurosci 2021; 15:650971. [PMID: 33828455 PMCID: PMC8019822 DOI: 10.3389/fnins.2021.650971] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
The vagus nerve is a mixed nerve, comprising 80% afferent fibers and 20% efferent fibers. It allows a bidirectional communication between the central nervous system and the digestive tract. It has a dual anti-inflammatory properties via activation of the hypothalamic pituitary adrenal axis, by its afferents, but also through a vago-vagal inflammatory reflex involving an afferent (vagal) and an efferent (vagal) arm, called the cholinergic anti-inflammatory pathway. Indeed, the release of acetylcholine at the end of its efferent fibers is able to inhibit the release of tumor necrosis factor (TNF) alpha by macrophages via an interneuron of the enteric nervous system synapsing between the efferent vagal endings and the macrophages and releasing acetylcholine. The vagus nerve also synapses with the splenic sympathetic nerve to inhibit the release of TNF-alpha by splenic macrophages. It can also activate the spinal sympathetic system after central integration of its afferents. This anti-TNF-alpha effect of the vagus nerve can be used in the treatment of chronic inflammatory bowel diseases, represented by Crohn’s disease and ulcerative colitis where this cytokine plays a key role. Bioelectronic medicine, via vagus nerve stimulation, may have an interest in this non-drug therapeutic approach as an alternative to conventional anti-TNF-alpha drugs, which are not devoid of side effects feared by patients.
Collapse
Affiliation(s)
- Bruno Bonaz
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| | - Valérie Sinniger
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| | - Sonia Pellissier
- Laboratoire Inter-Universitaire de Psychologie Personnalité, Cognition, Changement Social, University Grenoble Alpes, University Savoie Mont Blanc, Grenoble, France
| |
Collapse
|
149
|
van Son J, Koekkoek LL, La Fleur SE, Serlie MJ, Nieuwdorp M. The Role of the Gut Microbiota in the Gut-Brain Axis in Obesity: Mechanisms and Future Implications. Int J Mol Sci 2021; 22:ijms22062993. [PMID: 33804250 PMCID: PMC7999163 DOI: 10.3390/ijms22062993] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022] Open
Abstract
Interaction between the gut and the brain is essential for energy homeostasis. In obesity, this homeostasis is disrupted, leading to a positive energy balance and weight gain. Obesity is a global epidemic that affects individual health and strains the socioeconomic system. Microbial dysbiosis has long been reported in obesity and obesity-related disorders. More recent literature has focused on the interaction of the gut microbiota and its metabolites on human brain and behavior. Developing strategies that target the gut microbiota could be a future approach for the treatment of obesity. Here, we review the microbiota–gut–brain axis and possible therapeutic options.
Collapse
Affiliation(s)
- Jamie van Son
- Department of Endocrinology and Metabolism, Amsterdam UMC, location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.v.S.); (L.L.K.); (S.E.L.F.); (M.J.S.)
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Laura L. Koekkoek
- Department of Endocrinology and Metabolism, Amsterdam UMC, location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.v.S.); (L.L.K.); (S.E.L.F.); (M.J.S.)
| | - Susanne E. La Fleur
- Department of Endocrinology and Metabolism, Amsterdam UMC, location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.v.S.); (L.L.K.); (S.E.L.F.); (M.J.S.)
| | - Mireille J. Serlie
- Department of Endocrinology and Metabolism, Amsterdam UMC, location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.v.S.); (L.L.K.); (S.E.L.F.); (M.J.S.)
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
150
|
Analysis of gut microbiota and intestinal integrity markers of inpatients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110076. [PMID: 32827611 DOI: 10.1016/j.pnpbp.2020.110076] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022]
Abstract
Previous studies have reported on the relationship between gut microbiota and major depressive disorder (MDD). However, there remain gaps in literature concerning the role of the intestinal barrier and microflora in the pathogenesis of depression. This study analyzes the potential causative relationship between gut microbiota and inflammatory and gut integrity markers and clinical symptoms in inpatients with depressive episodes. Sixteen inpatients (50% females) being treated with escitalopram (5-20 mg daily) in standardized conditions were included in the study. The composition of fecal microbiota was evaluated at baseline and endpoint using 16S rRNA sequencing. A significant correlation between depression severity was found, as measured with HDRS24 (Hamilton Depression Rating Scale-24 item), and the following abundance in bacteria: positive correlation with Paraprevotella (r = 0.80, q = 0.012), strong, negative correlations with Clostridiales (r = -0.70, q = 0.016), Clostridia (r = -0.71, q = 0.026), Firmicutes (r = -0.67. q = 0.032), and the RF32 order (r = -0.70, p = 0.016) in the Alphaproteobacteria (r = -0.66, q = 0.031). After six weeks of treatment, clinical outcomes were found to have a negative correlation with levels of plasma intestinal fatty acid-binding protein (IFABP) at the beginning of the study. Still they had a positive correlation with changes in fecal calprotectin during hospitalization. In conclusion, gut microbiota was associated with the severity of depressive symptoms. However, these findings do not serve as predictors of symptomatic improvement during antidepressant treatment in inpatient treatment for MDD. In turn, intestinal integrity and inflammation markers were associated with the response to treatment of patients with MDD and symptom severity. Additional studies are needed to confirm and extend these findings.
Collapse
|