101
|
Saha RP, Sharma AR, Singh MK, Samanta S, Bhakta S, Mandal S, Bhattacharya M, Lee SS, Chakraborty C. Repurposing Drugs, Ongoing Vaccine, and New Therapeutic Development Initiatives Against COVID-19. Front Pharmacol 2020; 11:1258. [PMID: 32973505 PMCID: PMC7466451 DOI: 10.3389/fphar.2020.01258] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
As the COVID-19 is still growing throughout the globe, a thorough investigation into the specific immunopathology of SARS-CoV-2, its interaction with the host immune system and pathogen evasion mechanism may provide a clear picture of how the pathogen can breach the host immune defenses in elderly patients and patients with comorbid conditions. Such studies will also reveal the underlying mechanism of how children and young patients can withstand the disease better. The study of the immune defense mechanisms and the prolonged immune memory from patients population with convalescent plasma may help in designing a suitable vaccine candidate not only for the current outbreak but also for similar outbreaks in the future. The vital drug candidates, which are being tested as potential vaccines or therapeutics against COVID-19, include live attenuated vaccine, inactivated or killed vaccine, subunit vaccine, antibodies, interferon treatment, repurposing existing drugs, and nucleic acid-based vaccines. Several organizations around the world have fast-tracked the development of a COVID-19 vaccine, and some drugs already went to phase III of clinical trials. Hence, here, we have tried to take a quick glimpse of the development stages of vaccines or therapeutic approaches to treat this deadly disease.
Collapse
Affiliation(s)
- Rudra P. Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Manoj K. Singh
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Saikat Samanta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Swarnav Bhakta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Snehasish Mandal
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| |
Collapse
|
102
|
Wichgers Schreur PJ, van de Water S, Harmsen M, Bermúdez-Méndez E, Drabek D, Grosveld F, Wernike K, Beer M, Aebischer A, Daramola O, Rodriguez Conde S, Brennan K, Kozub D, Søndergaard Kristiansen M, Mistry KK, Deng Z, Hellert J, Guardado-Calvo P, Rey FA, van Keulen L, Kortekaas J. Multimeric single-domain antibody complexes protect against bunyavirus infections. eLife 2020; 9:52716. [PMID: 32314955 PMCID: PMC7173960 DOI: 10.7554/elife.52716] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/11/2020] [Indexed: 12/25/2022] Open
Abstract
The World Health Organization has included three bunyaviruses posing an increasing threat to human health on the Blueprint list of viruses likely to cause major epidemics and for which no, or insufficient countermeasures exist. Here, we describe a broadly applicable strategy, based on llama-derived single-domain antibodies (VHHs), for the development of bunyavirus biotherapeutics. The method was validated using the zoonotic Rift Valley fever virus (RVFV) and Schmallenberg virus (SBV), an emerging pathogen of ruminants, as model pathogens. VHH building blocks were assembled into highly potent neutralizing complexes using bacterial superglue technology. The multimeric complexes were shown to reduce and prevent virus-induced morbidity and mortality in mice upon prophylactic administration. Bispecific molecules engineered to present two different VHHs fused to an Fc domain were further shown to be effective upon therapeutic administration. The presented VHH-based technology holds great promise for the development of bunyavirus antiviral therapies.
Collapse
Affiliation(s)
| | - Sandra van de Water
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Michiel Harmsen
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Erick Bermúdez-Méndez
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Laboratory of Virology, Wageningen University, Wageningen, Netherlands
| | - Dubravka Drabek
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands.,Harbour Antibodies B.V, Rotterdam, Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands.,Harbour Antibodies B.V, Rotterdam, Netherlands
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Olalekan Daramola
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Sara Rodriguez Conde
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Karen Brennan
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Dorota Kozub
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | | | - Kieran K Mistry
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Ziyan Deng
- Biopharmaceutical Development, R&D BioPharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Jan Hellert
- Structural Virology Unit, Virology Department, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Pablo Guardado-Calvo
- Structural Virology Unit, Virology Department, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Félix A Rey
- Structural Virology Unit, Virology Department, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Lucien van Keulen
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Laboratory of Virology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
103
|
Reese H, Bordelon T, Odeh F, Broussard A, Kormos C, Murphy A, Shanahan C, Menegatti S. Purification of animal immunoglobulin G (IgG) using peptoid affinity ligands. Biotechnol Prog 2020; 36:e2994. [DOI: 10.1002/btpr.2994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Hannah Reese
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh North Carolina USA
| | | | - Fuad Odeh
- LigaTrap LLC Raleigh North Carolina USA
| | | | | | | | - Calvin Shanahan
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh North Carolina USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh North Carolina USA
- Biomanufacturing Training and Education Center (BTEC)North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
104
|
Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. SARS-CoV-2 and Coronavirus Disease 2019: What We Know So Far. Pathogens 2020; 9:E231. [PMID: 32245083 PMCID: PMC7157541 DOI: 10.3390/pathogens9030231] [Citation(s) in RCA: 380] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
In December 2019, a cluster of fatal pneumonia cases presented in Wuhan, China. They were caused by a previously unknown coronavirus. All patients had been associated with the Wuhan Wholefood market, where seafood and live animals are sold. The virus spread rapidly and public health authorities in China initiated a containment effort. However, by that time, travelers had carried the virus to many countries, sparking memories of the previous coronavirus epidemics, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), and causing widespread media attention and panic. Based on clinical criteria and available serological and molecular information, the new disease was called coronavirus disease of 2019 (COVID-19), and the novel coronavirus was called SARS Coronavirus-2 (SARS-CoV-2), emphasizing its close relationship to the 2002 SARS virus (SARS-CoV). The scientific community raced to uncover the origin of the virus, understand the pathogenesis of the disease, develop treatment options, define the risk factors, and work on vaccine development. Here we present a summary of current knowledge regarding the novel coronavirus and the disease it causes.
Collapse
Affiliation(s)
- Firas A. Rabi
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Mazhar S. Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Ghena A. Kasasbeh
- School of Medicine, Yarmouk University, Irbid 21163, Jordan; (G.A.K.); (D.M.S.)
| | - Dunia M. Salameh
- School of Medicine, Yarmouk University, Irbid 21163, Jordan; (G.A.K.); (D.M.S.)
| | - Amjad D. Al-Nasser
- Department of Statistics, Faculty of Sciences, Yarmouk University, Irbid 21163, Jordan;
| |
Collapse
|
105
|
Bergeron HC, Tripp RA. Emerging small and large molecule therapeutics for respiratory syncytial virus. Expert Opin Investig Drugs 2020; 29:285-294. [PMID: 32096420 DOI: 10.1080/13543784.2020.1735349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) causes lower respiratory tract infections and can lead to morbidity and mortality in the infant, elderly and immunocompromised. There is no vaccine and therapeutic interventions are limited. RSV disease research has yielded the development of several prophylactic and therapeutic treatments. Several promising candidates are currently under investigation.Areas covered: Small and large molecule approaches to RSV treatment were examined and categorized by their mechanism of action using data from PubMed, clinicaltrials.gov, and from the sponsoring organizations publicly available pipeline information. These results are prefaced by an overview of RSV to provide the context for rational therapy development.Expert opinion: While small molecule drugs show promise for RSV treatment, we believe that large molecule therapy using anti-RSV G and F protein monoclonal antibodies (mAbs) will most efficaciously and safely ameliorate RSV disease.
Collapse
Affiliation(s)
- Harrison C Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
106
|
Li Z, Zhang M, Zheng S, Song Y, Cheng X, Yu D, Du L, Ren L, Han H, Zhao Y. Genetic removal of the CH1 exon leads to the production of hypofunctional heavy chain-only IgG2a in rats. Transgenic Res 2020; 29:199-213. [PMID: 32078126 DOI: 10.1007/s11248-020-00189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/04/2020] [Indexed: 12/01/2022]
Abstract
Despite great values in many applications, heavy chain-only antibodies (HcAbs) are naturally only produced in camelids and sharks, which are not easy to access and handle. Production of the type of antibodies in small laboratory animals would remarkably facilitate their applications. We previously reported a mouse line in which the CH1 exon of mouse γ1 was deleted that could express heavy chain-only IgG1 antibodies. However, these mice showed an extremely weak IgG1 response to specific antigens when immunized, and we could only achieve single VH domains with low affinity to antigens using these mice. One possibility is that the mouse germline VH repertoire was not sufficient to support the expression of functional heavy chain-only antibodies. In this study, we report the generation of a rat line in which the CH1 exon of the γ2a gene was removed and the γ1 and γ2b genes were silenced. Although the genetically modified rats expressed heavy chain-only IgG2a, they also exhibited a very weak IgG2a response to antigen immunization. Panning of a phage library constructed using IgG2a VH segments amplified from immunized rats identified antigen-specific single VH antibodies, which also exhibited much lower affinity than that of commercial mAbs. Together with our previous report, this study suggests that the simple genetic removal of the CH1 exon does not guarantee the successful expression of functional heavy chain-only antibodies.
Collapse
Affiliation(s)
- Zhenrong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ming Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shunan Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yu Song
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xueqian Cheng
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Di Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lijuan Du
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
107
|
Karges J, Jakubaszek M, Mari C, Zarschler K, Goud B, Stephan H, Gasser G. Synthesis and Characterization of an Epidermal Growth Factor Receptor-Selective Ru II Polypyridyl-Nanobody Conjugate as a Photosensitizer for Photodynamic Therapy. Chembiochem 2020; 21:531-542. [PMID: 31339225 PMCID: PMC7065149 DOI: 10.1002/cbic.201900419] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Indexed: 02/06/2023]
Abstract
There is a current surge of interest in the development of novel photosensitizers (PSs) for photodynamic therapy (PDT), as those currently approved are not completely ideal. Among the tested compounds, we have previously investigated the use of RuII polypyridyl complexes with a [Ru(bipy)2 (dppz)]2+ and [Ru(phen)2 (dppz)]2+ scaffold (bipy=2,2'-bipyridine; dppz=dipyrido[3,2-a:2',3'-c]phenazine; phen=1,10-phenanthroline). These complexes selectively target DNA. However, because DNA is ubiquitous, it would be of great interest to increase the selectivity of our PDT PSs by linking them to a targeting vector in view of targeted PDT. Herein, we present the synthesis, characterization, and in-depth photophysical evaluation of a nanobody-containing RuII polypyridyl conjugate selective for the epidermal growth factor receptor (EGFR) in view of targeted PDT. Using ICP-MS and confocal microscopy, we could demonstrate that our conjugate has high selectivity for the EGFR receptor, which is a crucial oncological target because it is overexpressed and/or deregulated in a variety of solid tumors. However, in contrast to expectations, this conjugate was found to not produce reactive oxygen species (ROS) in cancer cells and is therefore not phototoxic.
Collapse
Affiliation(s)
- Johannes Karges
- Chimie ParisTechPSL UniversityCNRSInstitute of Chemistry for Life and Health SciencesLaboratory for Inorganic Chemical Biology75005ParisFrance
| | - Marta Jakubaszek
- Chimie ParisTechPSL UniversityCNRSInstitute of Chemistry for Life and Health SciencesLaboratory for Inorganic Chemical Biology75005ParisFrance
- Institut CuriePSL UniversityCNRS UMR 14426 rue d'Ulm75005ParisFrance
| | - Cristina Mari
- Department of ChemistryUniversity of ZürichWinterthurerstrasse 1908057ZürichSwitzerland
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden–RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| | - Bruno Goud
- Institut CuriePSL UniversityCNRS UMR 14426 rue d'Ulm75005ParisFrance
| | - Holger Stephan
- Helmholtz-Zentrum Dresden–RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| | - Gilles Gasser
- Chimie ParisTechPSL UniversityCNRSInstitute of Chemistry for Life and Health SciencesLaboratory for Inorganic Chemical Biology75005ParisFrance
| |
Collapse
|
108
|
Kruse RL. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000Res 2020; 9:72. [PMID: 32117569 PMCID: PMC7029759 DOI: 10.12688/f1000research.22211.2] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
A novel coronavirus (2019-nCoV) originating in Wuhan, China presents a potential respiratory viral pandemic to the world population. Current efforts are focused on containment and quarantine of infected individuals. Ultimately, the outbreak could be controlled with a protective vaccine to prevent 2019-nCoV infection. While vaccine research should be pursued intensely, there exists today no therapy to treat 2019-nCoV upon infection, despite an urgent need to find options to help these patients and preclude potential death. Herein, I review the potential options to treat 2019-nCoV in patients, with an emphasis on the necessity for speed and timeliness in developing new and effective therapies in this outbreak. I consider the options of drug repurposing, developing neutralizing monoclonal antibody therapy, and an oligonucleotide strategy targeting the viral RNA genome, emphasizing the promise and pitfalls of these approaches. Finally, I advocate for the fastest strategy to develop a treatment now, which could be resistant to any mutations the virus may have in the future. The proposal is a biologic that blocks 2019-nCoV entry using a soluble version of the viral receptor, angiotensin-converting enzyme 2 (ACE2), fused to an immunoglobulin Fc domain (ACE2-Fc), providing a neutralizing antibody with maximal breath to avoid any viral escape, while also helping to recruit the immune system to build lasting immunity. The ACE2-Fc therapy would also supplement decreased ACE2 levels in the lungs during infection, thereby directly treating acute respiratory distress pathophysiology as a third mechanism of action. The sequence of the ACE2-Fc protein is provided to investigators, allowing its possible use in recombinant protein expression systems to start producing drug today to treat patients under compassionate use, while formal clinical trials are later undertaken. Such a treatment could help infected patients before a protective vaccine is developed and widely available in the coming months to year(s).
Collapse
Affiliation(s)
- Robert L Kruse
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland, 21287, USA
| |
Collapse
|
109
|
Abstract
A novel coronavirus (2019-nCoV) originating in Wuhan, China presents a potential respiratory viral pandemic to the world population. Current efforts are focused on containment and quarantine of infected individuals. Ultimately, the outbreak could be controlled with a protective vaccine to prevent 2019-nCoV infection. While vaccine research should be pursued intensely, there exists today no therapy to treat 2019-nCoV upon infection, despite an urgent need to find options to help these patients and preclude potential death. Herein, I review the potential options to treat 2019-nCoV in patients, with an emphasis on the necessity for speed and timeliness in developing new and effective therapies in this outbreak. I consider the options of drug repurposing, developing neutralizing monoclonal antibody therapy, and an oligonucleotide strategy targeting the viral RNA genome, emphasizing the promise and pitfalls of these approaches. Finally, I advocate for the fastest strategy to develop a treatment now, which could be resistant to any mutations the virus may have in the future. The proposal is a biologic that blocks 2019-nCoV entry using a soluble version of the viral receptor, angiotensin-converting enzyme 2 (ACE2), fused to an immunoglobulin Fc domain, providing a neutralizing antibody with maximal breath to avoid any viral escape, while also helping to recruit the immune system to build lasting immunity. The sequence of the ACE2-Fc protein is provided to investigators, allowing its possible use in recombinant protein expression systems to start producing drug today to treat patients under compassionate use, while formal clinical trials are later undertaken. Such a treatment could help infected patients before a protective vaccine is developed and widely available in the coming months to year(s).
Collapse
Affiliation(s)
- Robert L Kruse
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland, 21287, USA
| |
Collapse
|
110
|
Akiba H, Tamura H, Caaveiro JMM, Tsumoto K. Computer-guided library generation applied to the optimization of single-domain antibodies. Protein Eng Des Sel 2019; 32:423-431. [PMID: 32167147 DOI: 10.1093/protein/gzaa006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/30/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Computer-guided library generation is a plausible strategy to optimize antibodies. Herein, we report the improvement of the affinity of a single-domain camelid antibody for its antigen using such approach. We first conducted experimental and computational alanine scanning to describe the precise energetic profile of the antibody-antigen interaction surface. Based on this characterization, we hypothesized that in-silico mutagenesis could be employed to guide the development of a small library for phage display with the goal of improving the affinity of an antibody for its antigen. Optimized antibody mutants were identified after three rounds of selection, in which an alanine residue at the core of the antibody-antigen interface was substituted by residues with large side-chains, generating diverse kinetic responses, and resulting in greater affinity (>10-fold) for the antigen.
Collapse
Affiliation(s)
- Hiroki Akiba
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki 567-0085, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroko Tamura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jose M M Caaveiro
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kouhei Tsumoto
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki 567-0085, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Medical Proteomics Laboratory, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8629, Japan
| |
Collapse
|
111
|
Jiang J, Zhang M, Li G, Liu T, Wan Y, Liu Z, Zhu H, Yang Z. Evaluation of 64Cu radiolabeled anti-hPD-L1 Nb6 for positron emission tomography imaging in lung cancer tumor mice model. Bioorg Med Chem Lett 2019; 30:126915. [PMID: 31926788 DOI: 10.1016/j.bmcl.2019.126915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
Recently, we selected a novel anti-hPD-L1-specific HCAb named Nb6 with high affinity (EC50 = 0.65 ng/mL) for potential hPD-L1 targeted non-invasive PET imaging. In this research, Nb6 was conjugated with the bifunctional chelator NCS-Bz-NOTA ((2-[(4-Isothiocyanophenyl) methyl]-1,4,7-triazacy-clononane-1,4,7-triacetic acid)) and further labeled with radio-nuclide 64Cu. 64Cu-NOTA-Nb6 was prepared with over 95% labeling yield, over 99% radiochemical purity and 14-16 GBq/μmol specific activity after PD-10 column purification. It shows good stability in 0.01 M PBS and 5% HSA solutions. 64Cu-NOTA-Nb6 has a high binding affinity to 3.60 nM which was tested by humanlungadenocarcinoma A549 cell lines. Tumor lesion can be clearly observed from 20 h to 38 h by Micro-PET equipment after 64Cu-NOTA-Nb6 administration. The study revealed that 64Cu-NOTA-Nb6 has good lesion detection ability, high ratios between tumor and non-tumor signal and can specifically target A549 xenografted tumor model. Taken together of good stability, high binding affinity, and tumor detection ability, 64Cu labeled Nb6 is a promising radio-tracer in diagnosing of hPD-L1 overexpression tumor, supposed to monitor PD-L1overexpression tumor progression and guide targeted therapy with PET molecular imaging.
Collapse
Affiliation(s)
- Jinquan Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Meixin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, PR China; Department of Radiation Medicine, School of Basic Medical Science, Peking University, Beijing 100191, PR China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai 201203, PR China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, PR China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai 201203, PR China
| | - Zhaofei Liu
- Department of Radiation Medicine, School of Basic Medical Science, Peking University, Beijing 100191, PR China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, PR China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, PR China.
| |
Collapse
|
112
|
Erdes S, Mazurov VI, Dubinina TV, Gaydukova IZ, Lapshina SA, Zonova EV, Krechikova DG, Plaksina TV, Reshetko OV, Smakotina SA, Shesternya PА, Gordeev IG, Makulova TG, Povarova TV, Raskina TA, Soroka NF, Pristrom AM, Kunder EV, Usacheva YV, Stukalina EY, Eremeeva AV, Chernyaeva EV, Ivanov RA. Efficacy and safety of a new original interleukin 17A inhibitor in the treatment of patients with active ankylosing spondylitis: results of a basic (BCD-085-3/AILAS) and extended (BCD-085-3ext/AILAS-II) phase II clinical trial. RHEUMATOLOGY SCIENCE AND PRACTICE 2019. [DOI: 10.14412/1995-4484-2019-668-677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sh. Erdes
- V.A. Nasonova Research Institute of Rheumatology
| | - V. I. Mazurov
- I.I. Mechnikov NorthWestern State Medical University, Ministry of Health of Russia
| | | | - I. Z. Gaydukova
- I.I. Mechnikov NorthWestern State Medical University, Ministry of Health of Russia
| | - S. A. Lapshina
- Kazan State Medical University, Ministry of Health of Russia
| | | | | | - T. V. Plaksina
- N.A. Semashko Nizhny Novgorod Regional Clinical Hospital
| | | | | | - P. А. Shesternya
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of Russia
| | - I. G. Gordeev
- O.M. Filatov City Clinical Hospital Fifteen, Moscow Healthcare Department
| | | | - T. V. Povarova
- Railway Clinical Hospital at the Saratov II Station, OAO «RZhD»
| | - T. A. Raskina
- Kemerovo State Medical University, Ministry of Health of Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Huen J, Yan Z, Iwashkiw J, Dubey S, Gimenez MC, Ortiz ME, Patel SV, Jones MD, Riazi A, Terebiznik M, Babaei S, Shahinas D. A Novel Single Domain Antibody Targeting FliC Flagellin of Salmonella enterica for Effective Inhibition of Host Cell Invasion. Front Microbiol 2019; 10:2665. [PMID: 31849856 PMCID: PMC6901939 DOI: 10.3389/fmicb.2019.02665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/01/2019] [Indexed: 11/26/2022] Open
Abstract
The enteric pathogen, Salmonella enterica is a major cause of human gastroenteritis globally and with increasing bacterial resistance to antibiotics, alternative solutions are urgently needed. Single domain antibodies (sdAbs), the smallest antibody fragments that retain antigen binding specificity and affinity, are derived from variable heavy-chain only fragments (VHH) of camelid heavy-chain-only immunoglobulins. SdAbs typically contain a single disulfide bond simplifying recombinant protein production in microbial systems. These factors make sdAbs ideally suited for the development of effective anti-bacterial therapeutics. To this end, we generated an anti-Salmonella VHH library from which we screened for high affinity sdAbs. We present a novel sdAb (Abi-Se07) that targets the Salmonella virulence factor, FliC, required for bacterial motility and invasion of host cells. We demonstrate that Abi-Se07 bound FliC with a K D of 16.2 ± 0.1 nM. In addition, Abi-Se07 exhibited cross-serovar binding to whole cells of S. enterica serovar Typhimurium, Heidelberg, and Hadar. Abi-Se07 significantly inhibited bacterial motility and significantly reduced S. enterica colonization in a more native environment of chicken jejunum epithelium. Taken together, we have identified a novel anti-Salmonella sdAb and discuss future efforts toward therapeutic development.
Collapse
Affiliation(s)
- Jennifer Huen
- AbCelex Technologies Inc., Mississauga, ON, Canada
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Zhun Yan
- AbCelex Technologies Inc., Mississauga, ON, Canada
| | | | | | - Maria C. Gimenez
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Maria E. Ortiz
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| | | | | | - Ali Riazi
- AbCelex Technologies Inc., Mississauga, ON, Canada
| | - Mauricio Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Saeid Babaei
- AbCelex Technologies Inc., Mississauga, ON, Canada
| | - Dea Shahinas
- AbCelex Technologies Inc., Mississauga, ON, Canada
| |
Collapse
|
114
|
Oh J, Warshaviak DT, Mkrtichyan M, Munguia ML, Lin A, Chai F, Pigott C, Kang J, Gallo M, Kamb A. Single variable domains from the T cell receptor β chain function as mono- and bifunctional CARs and TCRs. Sci Rep 2019; 9:17291. [PMID: 31754147 PMCID: PMC6872726 DOI: 10.1038/s41598-019-53756-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/31/2019] [Indexed: 01/21/2023] Open
Abstract
Cell therapy using T cell receptors (TCRs) and chimeric antigen receptors (CARs) represents a new wave of immunotherapies garnering considerable attention and investment. Further progress in this area of medicine depends in part on improving the functional capabilities of the engineered components, while maintaining the overall size of recombinant constructs to ensure their compatibility with existing gene delivery vehicles. We describe a single-variable-domain TCR (svd TCR) that utilizes only the variable domain of the β chain (Vβ). This Vβ module not only works in TCR and CAR formats, but also can be used to create single-chain bispecific CARs and TCRs. Comparison of individual ligand-binding Vβ domains in different formats suggests that the lone Vβ sequence controls the sensitivity and a major part of the specificity of the CAR or TCR construct, regardless of signaling format, in Jurkat and primary T cells.
Collapse
Affiliation(s)
- Julyun Oh
- A2 Biotherapeutics, Inc. 30301 Agoura Rd., Agoura Hills, CA, 91301, USA
| | | | | | | | - Abby Lin
- Innovative Targeting Solutions, Inc. 290-2985 Virtual Way, Vancouver, BC, V5M 4X7, Canada
| | - Falene Chai
- Innovative Targeting Solutions, Inc. 290-2985 Virtual Way, Vancouver, BC, V5M 4X7, Canada
| | - Craig Pigott
- Innovative Targeting Solutions, Inc. 290-2985 Virtual Way, Vancouver, BC, V5M 4X7, Canada
| | - Jaspal Kang
- Innovative Targeting Solutions, Inc. 290-2985 Virtual Way, Vancouver, BC, V5M 4X7, Canada
| | - Michael Gallo
- Innovative Targeting Solutions, Inc. 290-2985 Virtual Way, Vancouver, BC, V5M 4X7, Canada
| | - Alexander Kamb
- A2 Biotherapeutics, Inc. 30301 Agoura Rd., Agoura Hills, CA, 91301, USA.
| |
Collapse
|
115
|
Structural and thermodynamic basis for the recognition of the substrate-binding cleft on hen egg lysozyme by a single-domain antibody. Sci Rep 2019; 9:15481. [PMID: 31664051 PMCID: PMC6820745 DOI: 10.1038/s41598-019-50722-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/10/2019] [Indexed: 01/06/2023] Open
Abstract
Single-domain antibodies (VHHs or nanobodies), developed from heavy chain-only antibodies of camelids, are gaining attention as next-generation therapeutic agents. Despite their small size, the high affinity and specificity displayed by VHHs for antigen molecules rival those of IgGs. How such small antibodies achieve that level of performance? Structural studies have revealed that VHHs tend to recognize concave surfaces of their antigens with high shape-complementarity. However, the energetic contribution of individual residues located at the binding interface has not been addressed in detail, obscuring the actual mechanism by which VHHs target the concave surfaces of proteins. Herein, we show that a VHH specific for hen egg lysozyme, D3-L11, not only displayed the characteristic binding of VHHs to a concave region of the surface of the antigen, but also exhibited a distribution of energetic hot-spots like those of IgGs and conventional protein-protein complexes. The highly preorganized and energetically compact interface of D3-L11 recognizes the concave epitope with high shape complementarity by the classical lock-and-key mechanism. Our results shed light on the fundamental basis by which a particular VHH accommodate to the concave surface of an antigens with high affinity in a specific manner, enriching the mechanistic landscape of VHHs.
Collapse
|
116
|
Lecocq Q, De Vlaeminck Y, Hanssens H, D'Huyvetter M, Raes G, Goyvaerts C, Keyaerts M, Devoogdt N, Breckpot K. Theranostics in immuno-oncology using nanobody derivatives. Am J Cancer Res 2019; 9:7772-7791. [PMID: 31695800 PMCID: PMC6831473 DOI: 10.7150/thno.34941] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/11/2019] [Indexed: 12/25/2022] Open
Abstract
Targeted therapy and immunotherapy have become mainstream in cancer treatment. However, only patient subsets benefit from these expensive therapies, and often responses are short‐lived or coincide with side effects. A growing modality in precision oncology is the development of theranostics, as this enables patient selection, treatment and monitoring. In this approach, labeled compounds and an imaging technology are used to diagnose patients and select the best treatment option, whereas for therapy, related compounds are used to target cancer cells or the tumor stroma. In this context, nanobodies and nanobody-directed therapeutics have gained interest. This interest stems from their high antigen specificity, small size, ease of labeling and engineering, allowing specific imaging and design of therapies targeting antigens on tumor cells, immune cells as well as proteins in the tumor environment. This review provides a comprehensive overview on the state-of-the-art regarding the use of nanobodies as theranostics, and their importance in the emerging field of personalized medicine.
Collapse
|
117
|
Optimization of Anti-CXCL10 Nanobody Expression Using Response Surface Methodology and Evaluation of its Anti-metastatic Effect on Breast Cancer cells. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09941-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
118
|
Non-affinity purification of a nanobody by void-exclusion anion exchange chromatography and multimodal weak cation exchange chromatography. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
119
|
Almagro JC, Pedraza-Escalona M, Arrieta HI, Pérez-Tapia SM. Phage Display Libraries for Antibody Therapeutic Discovery and Development. Antibodies (Basel) 2019; 8:antib8030044. [PMID: 31544850 PMCID: PMC6784186 DOI: 10.3390/antib8030044] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/24/2023] Open
Abstract
Phage display technology has played a key role in the remarkable progress of discovering and optimizing antibodies for diverse applications, particularly antibody-based drugs. This technology was initially developed by George Smith in the mid-1980s and applied by John McCafferty and Gregory Winter to antibody engineering at the beginning of 1990s. Here, we compare nine phage display antibody libraries published in the last decade, which represent the state of the art in the discovery and development of therapeutic antibodies using phage display. We first discuss the quality of the libraries and the diverse types of antibody repertoires used as substrates to build the libraries, i.e., naïve, synthetic, and semisynthetic. Second, we review the performance of the libraries in terms of the number of positive clones per panning, hit rate, affinity, and developability of the selected antibodies. Finally, we highlight current opportunities and challenges pertaining to phage display platforms and related display technologies.
Collapse
Affiliation(s)
- Juan C Almagro
- GlobalBio, Inc., 320, Cambridge, MA 02138, USA.
- UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico.
| | - Martha Pedraza-Escalona
- CONACyT-UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Hugo Iván Arrieta
- CONACyT-UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Sonia Mayra Pérez-Tapia
- CONACyT-UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
120
|
Godakova SA, Noskov AN, Vinogradova ID, Ugriumova GA, Solovyev AI, Esmagambetov IB, Tukhvatulin AI, Logunov DY, Naroditsky BS, Shcheblyakov DV, Gintsburg AL. Camelid VHHs Fused to Human Fc Fragments Provide Long Term Protection Against Botulinum Neurotoxin A in Mice. Toxins (Basel) 2019; 11:E464. [PMID: 31394847 PMCID: PMC6723419 DOI: 10.3390/toxins11080464] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
The bacterium Clostridium botulinum is the causative agent of botulism-a severe intoxication caused by botulinum neurotoxin (BoNT) and characterized by damage to the nervous system. In an effort to develop novel C. botulinum immunotherapeutics, camelid single-domain antibodies (sdAbs, VHHs, or nanobodies) could be used due to their unique structure and characteristics. In this study, VHHs were produced using phage display technology. A total of 15 different monoclonal VHHs were selected based on their comlementarity-determining region 3 (CDR3) sequences. Different toxin lethal dose (LD50) challenges with each selected phage clone were conducted in vivo to check their neutralizing potency. We demonstrated that modification of neutralizing VHHs with a human immunoglobulin G (IgG)1 Fc (fragment crystallizable) fragment (fusionbody, VHH-Fc) significantly increased the circulation time in the blood (up to 14 days). At the same time, VHH-Fc showed the protective activity 1000 times higher than monomeric form when challenged with 5 LD50. Moreover, VHH-Fcs remained protective even 14 days after antibody administration. These results indicate that this VHH-Fc could be used as an effective long term antitoxin protection against botulinum type A.
Collapse
Affiliation(s)
- Svetlana A Godakova
- Department of Genetics and Bacteria Molecular Biology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Anatoly N Noskov
- Department of Bacteriology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Irina D Vinogradova
- Department of Bacteriology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Galina A Ugriumova
- Department of Bacteriology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Andrey I Solovyev
- Department of Bacteriology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Ilias B Esmagambetov
- Department of Genetics and Bacteria Molecular Biology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Amir I Tukhvatulin
- Department of Medical Microbiology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Denis Y Logunov
- Department of Medical Microbiology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Boris S Naroditsky
- Department of Genetics and Bacteria Molecular Biology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Dmitry V Shcheblyakov
- Department of Genetics and Bacteria Molecular Biology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia.
| | - Aleksandr L Gintsburg
- Department of Genetics and Bacteria Molecular Biology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| |
Collapse
|
121
|
Bao F, Wang L, Zhao X, Lu T, Na AM, Wang X, Cao J, Du Y. Preparation and characterization of a single-domain antibody specific for the porcine epidemic diarrhea virus spike protein. AMB Express 2019; 9:104. [PMID: 31300902 PMCID: PMC6626092 DOI: 10.1186/s13568-019-0834-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/05/2019] [Indexed: 11/10/2022] Open
Abstract
Porcine epidemic diarrhea (PED) is a diarrheal disease of swine caused by porcine epidemic diarrhea virus (PEDV). It is characterized by acute watery diarrhea, dehydration and vomiting in swine of all ages and is especially fatal for neonatal and postweaning piglets. The spike protein of PEDV plays an important role in mediating virus attachment and fusion to target cells, and recent studies also reported that the neutralizing epitopes of the spike protein were mainly located in the S1 subunit, which makes it a candidate for vaccine development and clinical diagnosis. In this study, we successfully constructed an immune phage display single-domain antibody library with a library size of 3.4 × 106. A single-domain antibody, named S7, specific for the spike protein of PEDV was identified from the phage display single-domain antibody library. S7 could be expressed in a soluble form in E. coli, bound to the spike protein of PEDV in ELISA and stained the PEDV virus in Vero cells, but it showed no neutralization activity on PEDV. These results indicated the potent application of the S7 antibody as an imaging probe or as a candidate for the development of a diagnostic assay.
Collapse
|
122
|
Kittisopikul M, Virtanen L, Taimen P, Goldman RD. Quantitative Analysis of Nuclear Lamins Imaged by Super-Resolution Light Microscopy. Cells 2019; 8:E361. [PMID: 31003483 PMCID: PMC6524165 DOI: 10.3390/cells8040361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/13/2019] [Accepted: 04/14/2019] [Indexed: 11/20/2022] Open
Abstract
The nuclear lamina consists of a dense fibrous meshwork of nuclear lamins, Type V intermediate filaments, and is ~14 nm thick according to recent cryo-electron tomography studies. Recent advances in light microscopy have extended the resolution to a scale allowing for the fine structure of the lamina to be imaged in the context of the whole nucleus. We review quantitative approaches to analyze the imaging data of the nuclear lamina as acquired by structured illumination microscopy (SIM) and single molecule localization microscopy (SMLM), as well as the requisite cell preparation techniques. In particular, we discuss the application of steerable filters and graph-based methods to segment the structure of the four mammalian lamin isoforms (A, C, B1, and B2) and extract quantitative information.
Collapse
Affiliation(s)
- Mark Kittisopikul
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Laura Virtanen
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, 20520 Turku, Finland.
| | - Pekka Taimen
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, 20520 Turku, Finland.
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland.
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
123
|
Martínez-Jothar L, Beztsinna N, van Nostrum CF, Hennink WE, Oliveira S. Selective Cytotoxicity to HER2 Positive Breast Cancer Cells by Saporin-Loaded Nanobody-Targeted Polymeric Nanoparticles in Combination with Photochemical Internalization. Mol Pharm 2019; 16:1633-1647. [PMID: 30817164 PMCID: PMC6448105 DOI: 10.1021/acs.molpharmaceut.8b01318] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 01/02/2023]
Abstract
In cancer treatment, polymeric nanoparticles (NPs) can serve as a vehicle for the delivery of cytotoxic proteins that have intracellular targets but that lack well-defined mechanisms for cellular internalization, such as saporin. In this work, we have prepared PEGylated poly(lactic acid- co-glycolic acid- co-hydroxymethyl glycolic acid) (PLGHMGA) NPs for the selective delivery of saporin in the cytosol of HER2 positive cancer cells. This selective uptake was achieved by decorating the surface of the NPs with the 11A4 nanobody that is specific for the HER2 receptor. Confocal microscopy observations showed rapid and extensive uptake of the targeted NPs (11A4-NPs) by HER2 positive cells (SkBr3) but not by HER2 negative cells (MDA-MB-231). This selective uptake was blocked upon preincubation of the cells with an excess of nanobody. Nontargeted NPs (Cys-NPs) were not taken up by either type of cells. Importantly, a dose-dependent cytotoxic effect was only observed on SkBr3 cells when these were treated with saporin-loaded 11A4-NPs in combination with photochemical internalization (PCI), a technique that uses a photosensitizer and local light exposure to facilitate endosomal escape of entrapped nanocarriers and biomolecules. The combined use of saporin-loaded 11A4-NPs and PCI strongly inhibited cell proliferation and decreased cell viability through induction of apoptosis. Also the cytotoxic effect could be reduced by an excess of nanobody, reinforcing the selectivity of this system. These results suggest that the combination of the targeting nanobody on the NPs with PCI are effective means to achieve selective uptake and cytotoxicity of saporin-loaded NPs.
Collapse
Affiliation(s)
- Lucía Martínez-Jothar
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Nataliia Beztsinna
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Cornelus F. van Nostrum
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Sabrina Oliveira
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Division
of Cell Biology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
124
|
Toxin Neutralization Using Alternative Binding Proteins. Toxins (Basel) 2019; 11:toxins11010053. [PMID: 30658491 PMCID: PMC6356946 DOI: 10.3390/toxins11010053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/07/2019] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
Animal toxins present a major threat to human health worldwide, predominantly through snakebite envenomings, which are responsible for over 100,000 deaths each year. To date, the only available treatment against snakebite envenoming is plasma-derived antivenom. However, despite being key to limiting morbidity and mortality among snakebite victims, current antivenoms suffer from several drawbacks, such as immunogenicity and high cost of production. Consequently, avenues for improving envenoming therapy, such as the discovery of toxin-sequestering monoclonal antibodies against medically important target toxins through phage display selection, are being explored. However, alternative binding protein scaffolds that exhibit certain advantages compared to the well-known immunoglobulin G scaffold, including high stability under harsh conditions and low cost of production, may pose as possible low-cost alternatives to antibody-based therapeutics. There is now a plethora of alternative binding protein scaffolds, ranging from antibody derivatives (e.g., nanobodies), through rationally designed derivatives of other human proteins (e.g., DARPins), to derivatives of non-human proteins (e.g., affibodies), all exhibiting different biochemical and pharmacokinetic profiles. Undeniably, the high level of engineerability and potentially low cost of production, associated with many alternative protein scaffolds, present an exciting possibility for the future of snakebite therapeutics and merit thorough investigation. In this review, a comprehensive overview of the different types of binding protein scaffolds is provided together with a discussion on their relevance as potential modalities for use as next-generation antivenoms.
Collapse
|
125
|
Pulgar VM. Transcytosis to Cross the Blood Brain Barrier, New Advancements and Challenges. Front Neurosci 2019; 12:1019. [PMID: 30686985 PMCID: PMC6337067 DOI: 10.3389/fnins.2018.01019] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/18/2018] [Indexed: 01/21/2023] Open
Abstract
The blood brain barrier (BBB) presents a formidable challenge to the delivery of drugs into the brain. Several strategies aim to overcome this obstacle and promote efficient and specific crossing through BBB of therapeutically relevant agents. One of those strategies uses the physiological process of receptor-mediated transcytosis (RMT) to transport cargo through the brain endothelial cells toward brain parenchyma. Recent developments in our understanding of intracellular trafficking and receptor binding as well as in protein engineering and nanotechnology have potentiated the opportunities for treatment of CNS diseases using RMT. In this mini-review, the current understanding of BBB structure is discussed, and recent findings exemplifying critical advances in RMT-mediated brain drug delivery are briefly presented.
Collapse
Affiliation(s)
- Victor M Pulgar
- Department of Pharmaceutical Sciences, Campbell University, Buies Creek, NC, United States.,Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
126
|
Jank L, Pinto-Espinoza C, Duan Y, Koch-Nolte F, Magnus T, Rissiek B. Current Approaches and Future Perspectives for Nanobodies in Stroke Diagnostic and Therapy. Antibodies (Basel) 2019; 8:antib8010005. [PMID: 31544811 PMCID: PMC6640704 DOI: 10.3390/antib8010005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022] Open
Abstract
Antibody-based biologics are the corner stone of modern immunomodulatory therapy. Though highly effective in dampening systemic inflammatory processes, their large size and Fc-fragment mediated effects hamper crossing of the blood brain barrier (BBB). Nanobodies (Nbs) are single domain antibodies derived from llama or shark heavy-chain antibodies and represent a new generation of biologics. Due to their small size, they display excellent tissue penetration capacities and can be easily modified to adjust their vivo half-life for short-term diagnostic or long-term therapeutic purposes or to facilitate crossing of the BBB. Furthermore, owing to their characteristic binding mode, they are capable of antagonizing receptors involved in immune signaling and of neutralizing proinflammatory mediators, such as cytokines. These qualities combined make Nbs well-suited for down-modulating neuroinflammatory processes that occur in the context of brain ischemia. In this review, we summarize recent findings on Nbs in preclinical stroke models and how they can be used as diagnostic and therapeutic reagents. We further provide a perspective on the design of innovative Nb-based treatment protocols to complement and improve stroke therapy.
Collapse
Affiliation(s)
- Larissa Jank
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Carolina Pinto-Espinoza
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Yinghui Duan
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
127
|
Mahajan S, Vita R, Shackelford D, Lane J, Schulten V, Zarebski L, Jespersen MC, Marcatili P, Nielsen M, Sette A, Peters B. Epitope Specific Antibodies and T Cell Receptors in the Immune Epitope Database. Front Immunol 2018; 9:2688. [PMID: 30515166 PMCID: PMC6255941 DOI: 10.3389/fimmu.2018.02688] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022] Open
Abstract
The Immune Epitope Database (IEDB) is a free public resource which catalogs experiments characterizing immune epitopes. To accommodate data from next generation repertoire sequencing experiments, we recently updated how we capture and query epitope specific antibodies and T cell receptors. Specifically, we are now storing partial receptor sequences sufficient to determine CDRs and VDJ gene usage which are commonly identified by repertoire sequencing. For previously captured full length receptor sequencing data, we have calculated the corresponding CDR sequences and gene usage information using IMGT numbering and VDJ gene nomenclature format. To integrate information from receptors defined at different levels of resolution, we grouped receptors based on their host species, receptor type and CDR3 sequence. As of August 2018, we have cataloged sequence information for more than 22,510 receptors in 18,292 receptor groups, shown to bind to more than 2,241 distinct epitopes. These data are accessible as full exports and through a new dedicated query interface. The later combines the new ability to search by receptor characteristics with previously existing capability to search by epitope characteristics such as the infectious agent the epitope is derived from, or the kind of immune response involved in its recognition. We expect that this comprehensive capture of epitope specific immune receptor information will provide new insights into receptor-epitope interactions, and facilitate the development of novel tools that help in the analysis of receptor repertoire data.
Collapse
Affiliation(s)
- Swapnil Mahajan
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Randi Vita
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Deborah Shackelford
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Jerome Lane
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Veronique Schulten
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Laura Zarebski
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Martin Closter Jespersen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Paolo Marcatili
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Alessandro Sette
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego, La Jolla, CA, United States
| | - Bjoern Peters
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
128
|
Abstract
Bispecific antibodies have moved from being an academic curiosity with therapeutic promise to reality, with two molecules being currently commercialized (Hemlibra® and Blincyto®) and many more in clinical trials. The success of bispecific antibodies is mainly due to the continuously growing number of mechanisms of actions (MOA) they enable that are not accessible to monoclonal antibodies. One of the earliest MOA of bispecific antibodies and currently the one with the largest number of clinical trials is the redirecting of the cytotoxic activity of T-cells for oncology applications, now extending its use in infective diseases. The use of bispecific antibodies for crossing the blood-brain barrier is another important application because of its potential to advance the therapeutic options for neurological diseases. Another noteworthy application due to its growing trend is enabling a more tissue-specific delivery or activity of antibodies. The different molecular solutions to the initial hurdles that limited the development of bispecific antibodies have led to the current diverse set of bispecific or multispecific antibody formats that can be grouped into three main categories: IgG-like formats, antibody fragment-based formats, or appended IgG formats. The expanded applications of bispecific antibodies come at the price of additional challenges for clinical development. The rising complexity in their structure may increase the risk of immunogenicity and the multiple antigen specificity complicates the selection of relevant species for safety assessment.
Collapse
Affiliation(s)
- Bushra Husain
- Protein Chemistry Department, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Diego Ellerman
- Protein Chemistry Department, Genentech Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
129
|
Kovaltsuk A, Leem J, Kelm S, Snowden J, Deane CM, Krawczyk K. Observed Antibody Space: A Resource for Data Mining Next-Generation Sequencing of Antibody Repertoires. THE JOURNAL OF IMMUNOLOGY 2018; 201:2502-2509. [PMID: 30217829 DOI: 10.4049/jimmunol.1800708] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/19/2018] [Indexed: 11/19/2022]
Abstract
Abs are immune system proteins that recognize noxious molecules for elimination. Their sequence diversity and binding versatility have made Abs the primary class of biopharmaceuticals. Recently, it has become possible to query their immense natural diversity using next-generation sequencing of Ig gene repertoires (Ig-seq). However, Ig-seq outputs are currently fragmented across repositories and tend to be presented as raw nucleotide reads, which means nontrivial effort is required to reuse the data for analysis. To address this issue, we have collected Ig-seq outputs from 55 studies, covering more than half a billion Ab sequences across diverse immune states, organisms (primarily human and mouse), and individuals. We have sorted, cleaned, annotated, translated, and numbered these sequences and make the data available via our Observed Antibody Space (OAS) resource at http://antibodymap.org The data within OAS will be regularly updated with newly released Ig-seq datasets. We believe OAS will facilitate data mining of immune repertoires for improved understanding of the immune system and development of better biotherapeutics.
Collapse
Affiliation(s)
- Aleksandr Kovaltsuk
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | - Jinwoo Leem
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | | | | | - Charlotte M Deane
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | - Konrad Krawczyk
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| |
Collapse
|
130
|
Yang S, Li L, Yin S, Shang Y, Khan MUZ, He X, Yuan L, Gao X, Liu X, Cai J. Single-domain antibodies as promising experimental tools in imaging and isolation of porcine epidemic diarrhea virus. Appl Microbiol Biotechnol 2018; 102:8931-8942. [PMID: 30143837 PMCID: PMC7080177 DOI: 10.1007/s00253-018-9324-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
Single-domain antibody (sdAb) or nanobody possesses specific features non-accessible for conventional antibodies that make them suitable for research and biotechnological applications. Porcine epidemic diarrhea virus (PEDV) causes lethal diarrhea in piglets, resulting in great economic losses all over the world. To detect and isolate PEDV rapidly and accurately is important for the control and further research of the clinical PEDV strains. In this study, four sdAb fragments (sdAb-Mc19/29/30/37) targeting the membrane (M) protein of PEDV were selected from sdAb library that was constructed through M protein-immunized Camelus bactrianus. The selected sdAb-Mcs were solubly expressed in Escherichia coli. The functional characteristics analysis revealed that the recombinant sdAb-Mcs have excellent binding activity and specificity to M protein but have no neutralizing activity to PEDV. For further application, sdAb-Mc37 was conjugated with quantum dots to synthesize a nanoprobe for imaging PEDV in vero cells. The observed fluorescence in vero cells clearly reflects that PEDV virions can be reliably recognized and labeled by the nanoprobe. Furthermore, the sdAb-Mc29 was conjugated with superparamagnetic nanobeads to construct immunomagnetic nanobeads (IMNBs) used to isolate PEDV. One PEDV strain was successfully isolated from clinical fecal sample, suggesting IMNBs as a novel and efficient tool suitable for PEDV isolation from clinical samples. This study provided a novel application and substantiated the suitability of sdAb as a specific binder for the isolation of viruses.
Collapse
Affiliation(s)
- Shunli Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China
| | - Li Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China
| | - Shuanghui Yin
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China.
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China
| | - Muhammad Umar Zafar Khan
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China
| | - Xueyang He
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China
| | - Li Yuan
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China
| | - Xue Gao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China.,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
131
|
Mitchell LS, Colwell LJ. Comparative analysis of nanobody sequence and structure data. Proteins 2018; 86:697-706. [PMID: 29569425 PMCID: PMC6033041 DOI: 10.1002/prot.25497] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/25/2018] [Accepted: 03/20/2018] [Indexed: 02/04/2023]
Abstract
Nanobodies are a class of antigen‐binding protein derived from camelids that achieve comparable binding affinities and specificities to classical antibodies, despite comprising only a single 15 kDa variable domain. Their reduced size makes them an exciting target molecule with which we can explore the molecular code that underpins binding specificity—how is such high specificity achieved? Here, we use a novel dataset of 90 nonredundant, protein‐binding nanobodies with antigen‐bound crystal structures to address this question. To provide a baseline for comparison we construct an analogous set of classical antibodies, allowing us to probe how nanobodies achieve high specificity binding with a dramatically reduced sequence space. Our analysis reveals that nanobodies do not diversify their framework region to compensate for the loss of the VL domain. In addition to the previously reported increase in H3 loop length, we find that nanobodies create diversity by drawing their paratope regions from a significantly larger set of aligned sequence positions, and by exhibiting greater structural variation in their H1 and H2 loops.
Collapse
Affiliation(s)
- Laura S Mitchell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Lucy J Colwell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|