101
|
Patwardhan S, Phan J, Smedile F, Vetriani C. The Genome of Varunaivibrio sulfuroxidans Strain TC8 T, a Metabolically Versatile Alphaproteobacterium from the Tor Caldara Gas Vents in the Tyrrhenian Sea. Microorganisms 2023; 11:1366. [PMID: 37374867 DOI: 10.3390/microorganisms11061366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
Varunaivibrio sulfuroxidans type strain TC8T is a mesophilic, facultatively anaerobic, facultatively chemolithoautotrophic alphaproteobacterium isolated from a sulfidic shallow-water marine gas vent located at Tor Caldara, Tyrrhenian Sea, Italy. V. sulfuroxidans belongs to the family Thalassospiraceae within the Alphaproteobacteria, with Magnetovibrio blakemorei as its closest relative. The genome of V. sulfuroxidans encodes the genes involved in sulfur, thiosulfate and sulfide oxidation, as well as nitrate and oxygen respiration. The genome encodes the genes involved in carbon fixation via the Calvin-Benson-Bassham cycle, in addition to genes involved in glycolysis and the TCA cycle, indicating a mixotrophic lifestyle. Genes involved in the detoxification of mercury and arsenate are also present. The genome also encodes a complete flagellar complex, one intact prophage and one CRISPR, as well as a putative DNA uptake mechanism mediated by the type IVc (aka Tad pilus) secretion system. Overall, the genome of Varunaivibrio sulfuroxidans highlights the organism's metabolic versatility, a characteristic that makes this strain well-adapted to the dynamic environmental conditions of sulfidic gas vents.
Collapse
Affiliation(s)
- Sushmita Patwardhan
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jonathan Phan
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Francesco Smedile
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Costantino Vetriani
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
102
|
Safronova V, Sazanova A, Belimov A, Guro P, Kuznetsova I, Karlov D, Chirak E, Yuzikhin O, Verkhozina A, Afonin A, Tikhonovich I. Synergy between Rhizobial Co-Microsymbionts Leads to an Increase in the Efficiency of Plant-Microbe Interactions. Microorganisms 2023; 11:1206. [PMID: 37317180 DOI: 10.3390/microorganisms11051206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Combined inoculation of legumes with rhizobia and plant growth-promoting rhizobacteria or endophytes is a known technique for increasing the efficiency of nitrogen-fixing symbiosis and plant productivity. The aim of this work was to expand knowledge about the synergistic effects between commercial rhizobia of pasture legumes and root nodule bacteria of relict legume species. Pot experiments were performed on common vetch (Vicia sativa L.) and red clover (Trifolium pratense L.) co-inoculated with the participation of the corresponding commercial rhizobial strains (R. leguminosarum bv. viciae RCAM0626 and R. leguminosarum bv. trifolii RCAM1365) and seven strains isolated from nodules of relict legumes inhabiting the Baikal Lake region and the Altai Republic: Oxytropis popoviana, Astragalus chorinensis, O. tragacanthoides and Vicia costata. The inoculation of plants with combinations of strains (commercial strain plus the isolate from relict legume) had a different effect on symbiosis depending on the plant species: the increase in the number of nodules was mainly observed on vetch, whereas increased acetylene reduction activity was evident on clover. It was shown that the relict isolates differ significantly in the set of genes related to different genetic systems that affect plant-microbe interactions. At the same time, they had additional genes that are involved in the formation of symbiosis and determine its effectiveness, but are absent in the used commercial strains: symbiotic genes fix, nif, nod, noe and nol, as well as genes associated with the hormonal status of the plant and the processes of symbiogenesis (acdRS, genes for gibberellins and auxins biosynthesis, genes of T3SS, T4SS and T6SS secretion systems). It can be expected that the accumulation of knowledge about microbial synergy on the example of the joint use of commercial and relict rhizobia will allow in the future the development of methods for the targeted selection of co-microsymbionts to increase the efficiency of agricultural legume-rhizobia systems.
Collapse
Affiliation(s)
- Vera Safronova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Anna Sazanova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Andrey Belimov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Polina Guro
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Irina Kuznetsova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Denis Karlov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Elizaveta Chirak
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Oleg Yuzikhin
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Alla Verkhozina
- Siberian Institute of Plant Physiology and Biochemistry (SIPPB), P.O. Box 1243, 664033 Irkutsk, Russia
| | - Alexey Afonin
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
103
|
Yoon J. Thetidibacter halocola gen. nov., sp. nov., a novel member within the family Roseobacteraceae isolated from seawater. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01832-1. [PMID: 37133556 DOI: 10.1007/s10482-023-01832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
A Gram-staining-negative, strictly aerobic, dark beige-colored, rod-shaped, chemoorganoheterotrophic, and catalase- and oxidase-positive bacterium, designated as KMU-90T, was isolated from coastal seawater in the Republic of Korea, and subjected to a polyphasic study. The novel isolate was able to grow at 0-6.0% NaCl concentrations (w/v), pH 6.5-9.5, and 4-45 °C. The 16S rRNA gene sequences-based phylogeny revealed that the novel marine isolate belongs to the family Roseobacteraceae of class Alphaproteobacteria and that it shared the greatest sequence similarity (97.3%) with Aestuariicoccus marinus NAP41T. The novel strain could be distinguished phenotypically from related representatives of the family Roseobacteraceae. The major (> 10%) fatty acids of strain KMU-90T were C18:1 ω7c and C18:1 ω7c 11-methyl and the only respiratory quinone was ubiquinone-10 (Q-10). Strain KMU-90T contained phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, two unidentified aminolipids, an unidentified phospholipid, and three unidentified glycolipids as polar lipids. The assembled draft genome size of strain KMU-90T was 4.84 Mbp with a DNA G + C content of 66.5%. The average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values between the genomes of strain KMU-90T and its closely related representatives were 77.0-79.0%, 14.6-20.0%, and 60.0-69.9%, respectively. From the polyphasic taxonomic results obtained, the strain is considered to represent a novel genus and a new species of the family Roseobacteraceae, for which the name Thetidibacter halocola gen. nov., sp. nov. is proposed. The type species is T. halocola, with the type strain KMU-90T (= KCCM 90287T = NBRC 113375T).
Collapse
Affiliation(s)
- Jaewoo Yoon
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu, 42601, Republic of Korea.
| |
Collapse
|
104
|
Gupta RS, Kanter-Eivin DA. AppIndels.com server: a web-based tool for the identification of known taxon-specific conserved signature indels in genome sequences. Validation of its usefulness by predicting the taxonomic affiliation of >700 unclassified strains of Bacillus species. Int J Syst Evol Microbiol 2023; 73. [PMID: 37159410 DOI: 10.1099/ijsem.0.005844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Taxon-specific conserved signature indels (CSIs) in genes/proteins provide reliable molecular markers (synapomorphies) for unambiguous demarcation of taxa of different ranks in molecular terms and for genetic, biochemical and diagnostic studies. Because of their predictive abilities, the shared presence of known taxon-specific CSIs in genome sequences has proven useful for taxonomic purposes. However, the lack of a convenient method for identifying the presence of known CSIs in genome sequences has limited their utility for taxonomic and other studies. We describe here a web-based tool/server (AppIndels.com) that identifies the presence of known and validated CSIs in genome sequences and uses this information for predicting taxonomic affiliation. The utility of this server was tested by using a database of 585 validated CSIs, which included 350 CSIs specific for ≈45 Bacillales genera, with the remaining CSIs being specific for members of the orders Neisseriales, Legionellales and Chlorobiales, family Borreliaceae, and some Pseudomonadaceae species/genera. Using this server, genome sequences were analysed for 721 Bacillus strains of unknown taxonomic affiliation. Results obtained showed that 651 of these genomes contained significant numbers of CSIs specific for the following Bacillales genera/families: Alkalicoccus, 'Alkalihalobacillaceae', Alteribacter, Bacillus Cereus clade, Bacillus Subtilis clade, Caldalkalibacillus, Caldibacillus, Cytobacillus, Ferdinandcohnia, Gottfriedia, Heyndrickxia, Lederbergia, Litchfieldia, Margalitia, Mesobacillus, Metabacillus, Neobacillus, Niallia, Peribacillus, Priestia, Pseudalkalibacillus, Robertmurraya, Rossellomorea, Schinkia, Siminovitchia, Sporosarcina, Sutcliffiella, Weizmannia and Caryophanaceae. Validity of the taxon assignment made by the server was examined by reconstructing phylogenomic trees. In these trees, all Bacillus strains for which taxonomic predictions were made correctly branched with the indicated taxa. The unassigned strains likely correspond to taxa for which CSIs are lacking in our database. Results presented here show that the AppIndels server provides a useful new tool for predicting taxonomic affiliation based on shared presence of the taxon-specific CSIs. Some caveats in using this server are discussed.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| | - David A Kanter-Eivin
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| |
Collapse
|
105
|
Dick JM, Tan J. Chemical Links Between Redox Conditions and Estimated Community Proteomes from 16S rRNA and Reference Protein Sequences. MICROBIAL ECOLOGY 2023; 85:1338-1355. [PMID: 35503575 DOI: 10.1007/s00248-022-01988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/28/2022] [Indexed: 05/10/2023]
Abstract
Environmental influences on community structure are often assessed through multivariate analyses in order to relate microbial abundances to separately measured physicochemical variables. However, genes and proteins are themselves chemical entities; in combination with genome databases, differences in microbial abundances directly encode for chemical variability. We predicted that the carbon oxidation state of estimated community proteomes, obtained by combining taxonomic abundances from published 16S rRNA gene sequencing datasets with reference microbial proteomes from the NCBI Reference Sequence (RefSeq) database, would reflect environmental oxidation-reduction conditions. Analysis of multiple datasets confirms the geobiochemical predictions for environmental redox gradients in hydrothermal systems, stratified lakes and marine environments, and shale gas wells. The geobiochemical signal is largest for the steep redox gradients associated with hydrothermal systems and between injected water and produced fluids from shale gas wells, demonstrating that microbial community composition can be a chemical proxy for environmental redox gradients. Although estimates of oxidation state from 16S amplicon and metagenomic sequences are correlated, the 16S-based estimates show stronger associations with redox gradients in some environments.
Collapse
Affiliation(s)
- Jeffrey M Dick
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China.
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Jingqiang Tan
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China
| |
Collapse
|
106
|
Dorneles EMS, Santana JA, Costa ACTRB, Júnior DGJ, Heinemann MB, Lage AP. Equine brucellosis: current understanding and challenges. J Equine Vet Sci 2023:104298. [PMID: 37072072 DOI: 10.1016/j.jevs.2023.104298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/20/2023]
Abstract
Brucellosis in equines, including horses, donkeys, and mules, is characterized by abscesses in tendons, bursae, and joints. Reproductive disorders, which are common in other animals, are rare in both males and females. Joint breeding of horses, cattle, and pigs was found as the main risk factor for equine brucellosis, with the transmission from equines to cattle or among equines possible, although unlikely. Hence, evaluation of the disease in equines can be considered an indirect indicator of the effectiveness of brucellosis control measures employed for other domestic species. Generally, the disease in equines reflects disease status in the sympatric domestic species, mainly cattle. It is important to note that in equines, the disease has no validated diagnostic test, which limits the interpretation of available data. Finally, it is important to mention that equines also represent significant Brucella spp. infection sources for humans. Considering the zoonotic aspect of brucellosis, the significant losses due to infection, and the representativeness of horses, mules, and donkeys in the society, as well as the continuous efforts to control and eradicate the disease in livestock, in this review, we covered the various aspects of brucellosis in equines and compile the sparse and diffuse information on the subject.
Collapse
Affiliation(s)
- Elaine Maria Seles Dorneles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais. Caixa Postal 3037, Campus Universitário, 37200-900, Brazil.
| | - Jordana Almeida Santana
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Campus Pampulha da, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Anna Cecília Trolesi Reis Borges Costa
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais. Caixa Postal 3037, Campus Universitário, 37200-900, Brazil
| | - Danilo Guedes Junqueira Júnior
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Campus Pampulha da, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marcos Bryan Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Professor Orlando Marques de Paiva, 87. Butantã. São Paulo, São Paulo, 05508-270, Brazil
| | - Andrey Pereira Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Campus Pampulha da, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil..
| |
Collapse
|
107
|
Sigida EN, Zdorovenko EL, Shashkov AS, Dmitrenok AS, Fedonenko YP. Structure of the O-specific polysaccharide of Ochrobactrum endophyticum KCTC 42485 T containing 3-(3-hydroxy-2,3-dimethyl-5-oxoprolyl)amino-3,6-dideoxy-d-galactose. Carbohydr Res 2023; 527:108810. [PMID: 37040681 DOI: 10.1016/j.carres.2023.108810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023]
Abstract
Ochrobactrum endophyticum (syn. Brucella endophytica) is an aerobic species of Alphaproteobacteria isolated from healthy roots of Glycyrrhiza uralensis. Here we report the structure of the O-specific polysaccharide obtained by mild acid hydrolysis of the lipopolysaccharide of the type strain KCTC 42485:→3)-α-l-FucpNAc-(1→3)-β-d-QuipNAc-(1→2)-β-d-Fucp3NAcyl-(1→ where Acyl is 3-hydroxy-2,3-dimethyl-5-oxoprolyl. The structure was elucidated using chemical analyses along with 1H and 13C NMR spectroscopy (including 1H,1H COSY, TOCSY, ROESY and 1H,13C HSQC, HMBC, HSQC-TOCSY and HSQC-NOESY experiments). To our knowledge the OPS structure is novel and has not been previously published.
Collapse
Affiliation(s)
- Elena N Sigida
- Institute of Biochemistry and Physiology of Plants and Microorganisms, FRC Saratov Scientific Centre of Russian Academy of Sciences, 13, Prospekt Entuziastov, Saratov, 410049, Russia; N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, Russia.
| | - Evelina L Zdorovenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, Russia
| | - Andrey S Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, Russia
| | - Yulia P Fedonenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, FRC Saratov Scientific Centre of Russian Academy of Sciences, 13, Prospekt Entuziastov, Saratov, 410049, Russia; Chernyshevsky Saratov State University, Ulitsa Astrakhanskaya 83, 410012, Saratov, Russia
| |
Collapse
|
108
|
Li FN, Zheng ZQ, Chen MS, Chen XH, Tuo L. Ancylobacter mangrovi sp. nov., a novel endophytic bacterium isolated form mangrove plant☆. Syst Appl Microbiol 2023; 46:126419. [PMID: 37030242 DOI: 10.1016/j.syapm.2023.126419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Two novel strains GSK1Z-4-2T and MQZ15Z-1 were isolated from branches of mangrove plants collected from Guangxi Zhuang Autonomous Region, China. Both strains were Gram-negative, aerobic, non-flagellated and non-spore-forming bacteria. The comparison of 16S rRNA gene sequences initially indicated that the two strains were assigned to the genus Ancylobacter with sharing the highest similarity to Ancylobacter pratisalsi DSM 102029T (97.3%). The 16S rRNA gene sequence similarity, average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) values between strains GSK1Z-4-2T and MQZ15Z-1 were 99.9%, 97.4% and 77.4%, respectively, which revealed that the two strains belonged to the same species. Phylogenetic analyses based on 16S rRNA gene sequences and the core proteome showed that the two strains formed a well-supported cluster with A. pratisalsi DSM 102029T. Moreover, the ANI and isDDH values between strain GSK1Z-4-2T and A. pratisalsi DSM 102029T were 83.0% and 25.8%, respectively, demonstrating that strain GSK1Z-4-2T was a previously undescribed species. Meanwhile, strains GSK1Z-4-2T and MQZ15Z-1 exhibited most of chemotaxonomic and phenotypic features consistent with the description of the genus Ancylobacter. Based on the polyphasic data, strains GSK1Z-4-2T and MQZ15Z-1 should represent a novel species of the genus Ancylobacter, for which the name Ancylobacter mangrovi sp. nov. is proposed. The type strain is GSK1Z-4-2T (=MCCC 1K07181T = JCM 34924T).
Collapse
Affiliation(s)
- Fei-Na Li
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing 100045, PR China
| | - Zhou-Qing Zheng
- Life Sciences Institute, Zunyi Medical University, Zunyi 563006, PR China
| | - Ming-Sheng Chen
- Life Sciences Institute, Zunyi Medical University, Zunyi 563006, PR China
| | - Xiao-Hui Chen
- Life Sciences Institute, Zunyi Medical University, Zunyi 563006, PR China
| | - Li Tuo
- Life Sciences Institute, Zunyi Medical University, Zunyi 563006, PR China.
| |
Collapse
|
109
|
Du J, Zhang Y, Xin D, Xin Y, Zhang J. Antarcticirhabdus aurantiaca gen. nov., sp. nov., isolated from Antarctic gravel soil. Int J Syst Evol Microbiol 2023; 73. [PMID: 37068122 DOI: 10.1099/ijsem.0.005814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Strain R10T was isolated from a gravel soil sample obtained from Deception Island, Antarctica. The isolate was a Gram-stain-negative, strictly aerobic, motile, short-rod-shaped bacterium, and its colonies were orange yellow in colour. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain R10T belonged to the family Aurantimonadaceae and shared highest sequence similarity with Jiella aquimaris LZB041T (96.3 % sequence similarity), Aurantimonas aggregata R14M6T (96.0 %) and Aureimonas frigidaquae JCM 14755T (96.0 %). Phylogenetic analysis showed that strain R10T affiliated with members of the family Aurantimonadaceae and represented an independent lineage. Growth occurred at 10-37 °C (optimum, 28-32 °C), up to 1.0 % (w/v) NaCl (optimum, 0 %) and pH 5.5-9.0 (optimum, pH 7.0). The major respiratory quinone of strain R10T was Q-10. Its major fatty acids were C18 : 1 ω7c and C16 : 0. The polar lipid profile of strain R10T comprised diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, two unknown phospholipids and two unknown aminophospholipids. The genome of strain R10T was 5.92 Mbp with a G+C content of 69.1 % based on total genome calculations. Average nucleotide identity (ANI) values between R10T and other related species of the family Aurantimonadaceae were found to be low (ANIm <87.0 %, ANIb <75.0 % and OrthoANIu <77.0 %). Furthermore, digital DNA-DNA hybridization (dDDH) and average amino acid identity (AAI) values between strain R10T and the closely related species ranged from 19.5-20.6% and from 60.6-64.0 %, respectively. Based on the results of our phylogenetic, phenotypic, genotypic and chemotaxonomic analyses, it is concluded that strain R10T represents a novel genus and species of the family Aurantimonadaceae, for which the name Antarcticirhabdus aurantiaca gen. nov., sp. nov. is proposed. The type strain is R10T (=KCTC 72466T=CGMCC 1.17155T).
Collapse
Affiliation(s)
- Jie Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ying Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Di Xin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yuhua Xin
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jianli Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
110
|
Hu W, Li Z, Ou H, Wang X, Wang Q, Tao Z, Huang S, Huang Y, Wang G, Pan X. Novosphingobium album sp. nov., Novosphingobium organovorum sp. nov. and Novosphingobium mangrovi sp. nov. with the organophosphorus pesticides degrading ability isolated from mangrove sediments. Int J Syst Evol Microbiol 2023; 73. [PMID: 37115596 DOI: 10.1099/ijsem.0.005843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Members of the genus Novosphingobium were frequently isolated from polluted environments and possess great bioremediation potential. Here, three species, designated B2637T, B2580T and B1949T, were isolated from mangrove sediments and might represent novel species in the genus Novosphingobium based on a polyphasic taxonomy study. Phylogenomic analysis revealed that strains B2580T, B1949T and B2637T clustered with Novosphingobium naphthalenivorans NBRC 102051T, 'N. profundi' F72 and N. decolorationis 502str22T, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between isolates and their closely related species were less than 94 and 54 %, respectively, all below the threshold of species discrimination. The sizes of the genomes of isolates B2580T, B2637T and B1949T ranged from 4.4 to 4.6 Mb, containing 63.3-66.4 % G+C content. Analysis of their genomic sequences identified genes related to pesticide degradation, heavy-metal resistance, nitrogen fixation, antibiotic resistance and sulphur metabolism, revealing the biotechnology potential of these isolates. Except for B2637T, B1949T and B2580T were able to grow in the presence of quinalphos. Results from these polyphasic taxonomic analyses support the affiliation of these strains to three novel species within the genus Novosphingobium, for which we propose the name Novosphingobium album sp. nov. B2580T (=KCTC 72967T=MCCC 1K04555T), Novosphingobium organovorum sp. nov. B1949T (=KCTC 92158T=MCCC 1K03763T) and Novosphingobium mangrovi sp. nov. B2637T (KCTC 72969T=MCCC 1K04460T).
Collapse
Affiliation(s)
- Wenjin Hu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, PR China
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning, 530007, PR China
| | - Zhe Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, PR China
| | - Haisheng Ou
- Guangxi Normal University School of Physical Science and Technology, Guilin, 541004, PR China
| | - Xiaochun Wang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, PR China
| | - Qiaozhen Wang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, PR China
| | - Zhanhua Tao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, PR China
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, PR China
| | - Yuanlin Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, PR China
| | - Guiwen Wang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, PR China
| | - Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, PR China
| |
Collapse
|
111
|
Complete Genome Sequence of Roseibium sp. Strain Sym1, a Bacterial Associate of Symbiodinium linucheae, the Microalgal Symbiont of the Anemone Aiptasia. Microbiol Resour Announc 2023; 12:e0111822. [PMID: 36790190 PMCID: PMC10019159 DOI: 10.1128/mra.01118-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
We sequenced the genome of Roseibium sp. strain Sym1, a strain isolated from a monoculture of a Symbiodiniaceae marine dinoflagellate, Symbiodinium linucheae, a microalgal symbiont of cnidarians. The completed genome consists of one circular chromosome of 6,694,563 bp and four plasmids of 192,102 bp, 160,136 bp, 120,881 bp, and 89,413 bp.
Collapse
|
112
|
Degli Esposti M. The bacterial origin of mitochondria: Incorrect phylogenies and the importance of metabolic traits. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:1-35. [PMID: 36858653 DOI: 10.1016/bs.ircmb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article provides an updated review on the evolution of mitochondria from bacteria, which were likely related to extant alphaproteobacteria. Particular attention is given to the timeline of oxygen history on Earth and the entwined phases of eukaryotic evolution that produced the animals that still populate our planet. Mitochondria of early-branching unicellular eukaryotes and plants appear to retain partial or vestigial traits that were directly inherited from the alphaproteobacterial ancestors of the organelles. Most of such traits define the current aerobic physiology of mitochondria. Conversely, the anaerobic traits that would be essential in the syntrophic associations postulated for the evolution of eukaryotic cells are scantly present in extant alphaproteobacteria, and therefore cannot help defining from which bacterial lineage the ancestors of mitochondria originated. This question has recently been addressed quantitatively, reaching the novel conclusion that marine bacteria related to Iodidimonas may be the living relatives of protomitochondria. Additional evidence is presented that either support or does not contrast this novel view of the bacterial origin of mitochondria.
Collapse
|
113
|
Xu CH, Chen G, Liu Y, Xiao W, Cui XL, Ding ZG, Liu WH, Wang YX. Azospirillum Aestuarii sp. nov., a Novel Nitrogen-Fixting and Aerobic Denitrifying Bacteria Isolated from an Estuary of a Freshwater River. Curr Microbiol 2023; 80:113. [PMID: 36823402 DOI: 10.1007/s00284-023-03213-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
A novel Gram-staining negative, aerobic, rod-shaped bacterium, designated strain YIM DDC1T, was isolated from an estuary sediment sample of Dongda River flowing into Dianchi lake in Yunnan, southwest China. The strain displayed growth at 10-40 °C (optimum of 28 °C), pH 5.0-9.0 (optimum of 7.0-8.0) and in presence of 0-3% (w/v) NaCl (optimum of 0-1%). Strain YIM DDC1T comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and two unidentified aminolipids as the predominant polar lipids; the ubiquinone 10 as the major respiratory quinone; and summed feature 8 (C18:1ω6c and/or C18:1ω7c), summed feature 3 (C16:1ω7c and/or C16:1ω6c) and C18:1 2-OH as the major cellular fatty acids. Analysis of 16S rRNA showed that YIM DDC1T represents a member of the genus Azospirillum, and was closely related to A. brasilense ATCC 29145 T (98.9%), A. baldaniorum Sp245T (98.2%), A. argentinense Az39T (98.2%) and A. formosense CC-Nfb-7 T (98.2%). The draft genome size was 7.15 Mbp with a 68.4% G + C content. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain YIM DDC1T and the aforementioned closely related strains exhibited similarity in the range of 93.8-93.5% and 53.7-52.7%, respectively. nif gene cluster (nifHDK) and denitrification genes ((napA, nirS, nirK, norBC and nosZ) detected in the genome indicated its potential nitrogen fixation and full-fledged denitrifying function. Based on combined genotypic and phenotypic data, strain YIM DDC1T represents a novel species of the genus Azospirillum, for which the name Azospirillum aestuarii sp. nov. is proposed. The type strain is YIM DDC1T (= KCTC 42887 T = CGMCC 1.17325 T).
Collapse
Affiliation(s)
- Can-Hai Xu
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Gen Chen
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Yan Liu
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Wei Xiao
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Xiao-Long Cui
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Zhang-Gui Ding
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Wei-Hong Liu
- College of Agriculture and Biological Sciences, Dali University, Dali, Yunnan, 671003, People's Republic of China
| | - Yong-Xia Wang
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China.
| |
Collapse
|
114
|
Munson E, Lawhon SD, Burbick CR, Zapp A, Villaflor M, Thelen E. An Update on Novel Taxa and Revised Taxonomic Status of Bacteria Isolated from Domestic Animals Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0028122. [PMID: 36533907 PMCID: PMC9945509 DOI: 10.1128/jcm.00281-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Novel bacterial taxonomy and nomenclature revisions can have significant impacts on clinical practice, disease epidemiology, and veterinary microbiology laboratory operations. Expansion of research on the microbiota of humans, animals, and insects has significant potential impacts on the taxonomy of organisms of clinical interest. Implications of taxonomic changes may be especially important when considering zoonotic diseases. Here, we address novel taxonomy and nomenclature revisions of veterinary significance. Noteworthy discussion centers around descriptions of novel mastitis pathogens in Streptococcaceae, Staphylococcaceae, and Actinomycetaceae; bovine reproductive tract pathogens in Corynebacteriaceae; novel members of Mannheimia spp., Leptospira spp., and Mycobacterium spp.; the transfer of Ochrobactrum spp. to Brucella spp.; and revisions to the genus Mycoplasma.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
115
|
Lawhon SD, Burbick CR, Munson E, Zapp A, Thelen E, Villaflor M. Update on Novel Taxa and Revised Taxonomic Status of Bacteria Isolated from Nondomestic Animals Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0142522. [PMID: 36533958 PMCID: PMC9945507 DOI: 10.1128/jcm.01425-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Revisions and new additions to bacterial taxonomy can have a significant widespread impact on clinical practice, infectious disease epidemiology, veterinary microbiology laboratory operations, and wildlife conservation efforts. The expansion of genome sequencing technologies has revolutionized our knowledge of the microbiota of humans, animals, and insects. Here, we address novel taxonomy and nomenclature revisions of veterinary significance that impact bacteria isolated from nondomestic wildlife, with emphasis being placed on bacteria that are associated with disease in their hosts or were isolated from host animal species that are culturally significant, are a target of conservation efforts, or serve as reservoirs for human pathogens.
Collapse
Affiliation(s)
- Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
116
|
Isolation and Genomics of Futiania mangrovii gen. nov., sp. nov., a Rare and Metabolically Versatile Member in the Class Alphaproteobacteria. Microbiol Spectr 2023; 11:e0411022. [PMID: 36541777 PMCID: PMC9927469 DOI: 10.1128/spectrum.04110-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mangrove microorganisms are a major part of the coastal ecosystem and are directly associated with nutrient cycling. Despite their ecological significance, the collection of culturable mangrove microbes is limited due to difficulties in isolation and cultivation. Here, we report the isolation and genome sequence of strain FT118T, the first cultured representative of a previously uncultivated order UBA8317 within Alphaproteobacteria, based on the combined results of 16S rRNA gene similarity, phylogenomic, and average amino acid identity analyses. We propose Futianiales ord. nov. and Futianiaceae fam. nov. with Futiania as the type genus, and FT118T represents the type species with the name Futiania mangrovii gen. nov, sp. nov. The 16S rRNA gene sequence comparison reveals that this novel order is a rare member but has a ubiquitous distribution across various habitats worldwide, which is corroborated by the experimental confirmation that this isolate can physiologically adapt to a wide range of oxygen levels, temperatures, pH and salinity levels. Biochemical characterization, genomic annotation, and metatranscriptomic analysis of FT118T demonstrate that it is metabolically versatile and active in situ. Genomic analysis reveals adaptive features of Futianiales to fluctuating mangrove environments, including the presence of high- and low-affinity terminal oxidases, N-type ATPase, and the genomic capability of producing various compatible solutes and polyhydroxybutyrate, which possibly allow for the persistence of this novel order across various habitats. Collectively, these results expand the current culture collection of mangrove microorganisms, providing genomic insights of how this novel taxon adapts to fluctuating environments and the culture reference to unravel possible microbe-environment interactions. IMPORTANCE The rare biosphere constitutes an essential part of the microbial community and may drive nutrient cycling and other geochemical processes. However, the difficulty in microbial isolation and cultivation has hampered our understanding of the physiology and ecology of uncultured rare lineages. In this study, we successfully isolated a novel alphaproteobacterium, designated as FT118T, and performed a combination of phenotypic, phylogenetic, and phylogenomic analyses, confirming that this isolate represents the first cultured member of a previously uncultivated order UBA8317 within Alphaproteobacteria. It is a rare species with a ubiquitous distribution across different habitats. Genomic and metatranscriptomic analyses demonstrate that it is metabolically versatile and active in situ, suggesting its potential role in nutrient cycling despite being scarce. This work not only expands the current phylogeny of isolated Alphaproteobacteria but also provides genomic and culture reference to unravel microbial adaptation strategies in mangrove sediments and possible microbe-environment interactions.
Collapse
|
117
|
Ancylobacter moscoviensis sp. nov., novel facultatively methylotrophic bacteria from activated sludge and the reclassification of Starkeya novella (Starkey 1934) Kelly et al. 2000 as Ancylobacter novellus comb. nov., Starkeya koreensis Im et al. 2006 as Ancylobacter koreensis comb.nov., Angulomicrobium tetraedrale Vasil'eva et al. 1986 as Ancylobacter tetraedralis comb. nov., Angulomicrobium amanitiforme Fritz et al. 2004 as Ancylobacter amanitiformis comb. nov., and Methylorhabdus multivorans Doronina et al. 1996 as Ancylobacter multivorans comb. nov., and emended description of the genus Ancylobacter. Antonie Van Leeuwenhoek 2023; 116:153-170. [PMID: 36462112 DOI: 10.1007/s10482-022-01788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/23/2022] [Indexed: 12/04/2022]
Abstract
Three novel facultatively methylotrophic bacteria, strains 3CT, 1A, 8P, were isolated from activated sludges. The isolates were aerobic, Gram-stain-negative, non-motile, non-spore forming rods multiplying by binary fission. The predominant polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethylethanolamine, phosphatidylmonomethylethanolamine, and diphosphatidylglycerol. The major fatty acids of cells were С18:1ω7c, C19:0ω8c cyclo and C16:0. Levels of 16S rRNA gene similarity indicates that the closely relatives are representatives of the genera Starkeya, Ancylobacter, Angulomicrobium and Methylorhabdus (96.4-99.4%). Genomic comparisons of 3CT and its closest relatives, S. novella DSM 506T and S. koreensis Jip08T, shared 87.3 and 86.8% nucleotide identity and 28.3 and 26.8% digital DNA-DNA hybridization values, respectively. The average amino acid identities between the strain 3CT and representatives of Starkeya, Ancylobacter and Angulomicrobium were in the range of 75.6-84.3%, which combines these strains into a single genus and gives rise to their reclassification. Based on polyphasic analyses, the strains 3CT, 1A, 8P represents a novel species of the genus Ancylobacter, for which the name Ancylobacter moscoviensis sp. nov. is proposed. The type strain is 3CT (= VKM B-3218T = KCTC 62336T). Furthermore, we also suggested the reclassification of Starkeya novella as Ancylobacter novellus comb. nov., Starkeya koreensis as Ancylobacter koreensis comb. nov., Angulomicrobium tetraedrale as Ancylobacter tetraedralis comb. nov., Angulomicrobium amanitiforme as Ancylobacter amanitiformis comb. nov. and Methylorhabdus multivorans as Ancylobacter multivorans comb. nov. with the emended description of the genus Ancylobacter.
Collapse
|
118
|
Guzman J, Won M, Poehlein A, Sombolestani AS, Mayorga-Ch D, Laureys D, Clippeleer JD, Kämpfer P, Daniel R, Vilcinskas A, Vandamme P, Kwon SW. Aristophania vespae gen. nov., sp. nov., isolated from wasps, is related to Bombella and Oecophyllibacter, isolated from bees and ants. Int J Syst Evol Microbiol 2023; 73. [PMID: 36749681 DOI: 10.1099/ijsem.0.005699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acetic acid bacteria (family Acetobacteraceae) are found in the gut of most insects. Two clades are currently recognized: Commensalibacter-Entomobacter and Bombella-Oecophyllibacter. The latter group is only found in hymenopteran insects and the described species have been isolated from bees and ants. In this study, two new strains DDB2-T1T (=KACC 21507T=LMG 31759T) and DM15PD (=CCM 9165=DSM 112731=KACC 22353=LMG 32454) were isolated from wasps collected in the Republic of Korea and Germany, respectively. Molecular and phenotypic analysis revealed that the strains are closely related, with 16S rRNA gene sequences showing 100 % identity and genomic average nucleotide identity (ANI) values ≥99 %. The closest related species based on type strain 16S rRNA gene sequences are Swingsia samuiensis, Acetobacter peroxydans, Bombella favorum and Bombella intestini (94.8-94.7% identity), whereas the closest related species based on type strain genome analysis are Saccharibacter floricola and Bombella intestini (ANI values of 68.8 and 68.2 %, respectively). The reconstruction of a phylogenomic tree based on 107 core proteins revealed that the branch leading to DDB2-T1T and DM15PD is localized between Oecophyllibacter and Saccharibacter-Bombella. Further genomic distance metrics such as ANI, percentage of conserved proteins and alignment fraction values were consistent with these strains belonging to a new genus. The key phenotypic characteristics were one MALDI-TOF-MS peak (m/z=4601.9±2.0) and the ability to produce acid from d-arabinose. Based on this polyphasic approach, including phylogenetics, phylogenomics, genome distance calculations, ecology and phenotypic characteristics, we propose to name the novel strains Aristophania vespae gen. nov., sp. nov., with the type strain DDB2-T1T (=KACC 21507T=LMG 31759T).
Collapse
Affiliation(s)
- Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Miyoung Won
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Atena Sadat Sombolestani
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Daniela Mayorga-Ch
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - David Laureys
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jessika De Clippeleer
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Kämpfer
- Institute for Applied Microbiology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
119
|
Gam ZBA, Thioye A, Cayol JL, Postec A, Bartoli-Joseph M, Vandecasteele C, Erauso G, Labat M. Thermospira aquatica gen. nov., sp. nov., a novel thermophilic spirochete isolated from a Tunisian hot spring, and description of the novel family Thermospiraceae. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748411 DOI: 10.1099/ijsem.0.005690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A novel thermophilic, anaerobic bacterium, strain F1F22T, was isolated from hot spring water collected in northern Tunisia. The cells were non-motile, Gram-negative and helical with hooked ends, 0.5×10-32 µm in size. Growth of the strain was observed at 45-70 °C (optimum, 55 °C), in 0.0-1.0 % (w/v) NaCl (optimum without NaCl) and at pH 6.5-8.5 (optimum, pH 7.5). Yeast extract was required for growth, and the strain grew on glucose, sucrose and maltose. The major fatty acids were C16:0 (40.2 %), iso-C16: 0 (30.2 %) and C16 :0 DMA (14.5 %). The genome consisted of a circular chromosome (2.5 Mb) containing 2672 predicted protein-encoding genes with a G+C content of 43.15 mol %. Based on a comparative 16S rRNA gene sequence analysis, strain F1F22T formed a deeply branching lineage within the phylum Spirochaetota, class Spirochaetia, order Brevinematales, and had only low sequence similarity to other species of the phylum (lower than 83 %). Genome-based analysis of average nucleotide identity and digital DNA-DNA hybridization of strain F1F22T with Treponema caldarium DSM 7334T, Brevinema andersonii ATCC 43811T and Spirochaeta thermophila DSM 6578T showed values between 63.26 and 63.52 %, and between 20 and 25 %. Hence, we propose strain F1F22T as a representative of a novel family (Thermospiraceae fam. nov.), genus and species of Brevinematales: Thermospira aquatica gen. nov., sp. nov. (type strain F1F22T=JCM 31314T=DSM 101182T).
Collapse
Affiliation(s)
- Zouhaier Ben Ali Gam
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| | - Abdoulaye Thioye
- Université Cheikh Anta Diop, Ecole Supérieure Polytechnique, Laboratoire de Microbiologie Appliquée et de Génie Industriel, BP 5005, Dakar-Fann, Dakar, Sénégal
| | - Jean-Luc Cayol
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| | - Anne Postec
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| | - Manon Bartoli-Joseph
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| | | | - Gaël Erauso
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| | - Marc Labat
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| |
Collapse
|
120
|
Rai A, Suresh G, Ria B, L V, Pk S, Ipsita S, Sasikala C, Venkata Ramana C. Phylogenomic analysis of the genus Alcanivorax: proposal for division of this genus into the emended genus Alcanivorax and two novel genera Alloalcanivorax gen. nov. and Isoalcanivorax gen. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748586 DOI: 10.1099/ijsem.0.005672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The members of the genus Alcanivorax are key players in the removal of petroleum hydrocarbons from polluted marine environments. More than half of the species were described in the last decade using 16S rRNA gene phylogeny and genomic-based metrics. However, the 16S rRNA gene identity (<94 %) between some members of the genus Alcanivorax suggested their imprecise taxonomic status. In this study, we examined the taxonomic positions of Alcanivorax species using 16S rRNA phylogeny and further validated them using phylogenomic-related indexes such as digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), average amino acid identity (AAI), percentage of conserved proteins (POCP) and comparative genomic studies. ANI and dDDH values confirmed that all the Alcanivorax species were well described at the species level. The phylotaxogenomic analysis showed that Alcanivorax species formed three clades. The inter-clade values of AAI and POCP were less than 70 %. The pan-genome evaluation depicted that the members shared 1223 core genes and its number increased drastically when analysed clade-wise. Therefore, these results necessitate the transfer of clade II and clade III members into Isoalcanivorax gen. nov. and Alloalcanivorax gen. nov., respectively, along with the emended description of the genus Alcanivorax sensu stricto.
Collapse
Affiliation(s)
- Anusha Rai
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Gandham Suresh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Biswas Ria
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Vighnesh L
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Sreya Pk
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Sahu Ipsita
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Chintalapati Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad-500 085, India
| | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| |
Collapse
|
121
|
Munson E, Carroll KC. Update on Accepted Novel Bacterial Isolates Derived from Human Clinical Specimens and Taxonomic Revisions Published in 2020 and 2021. J Clin Microbiol 2023; 61:e0028222. [PMID: 36533910 PMCID: PMC9879126 DOI: 10.1128/jcm.00282-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A number of factors, including microbiome analyses and the increased utilization of whole-genome sequencing in the clinical microbiology laboratory, has contributed to the explosion of novel prokaryotic species discovery, as well as bacterial taxonomy revision. This review attempts to summarize such changes relative to human clinical specimens that occurred in 2020 and 2021, per primary publication in the International Journal of Systematic and Evolutionary Microbiology or acceptance on Validation Lists published by the International Journal of Systematic and Evolutionary Microbiology. Of particular significance among valid and effectively published taxa within the past 2 years were novel Corynebacterium spp., coagulase-positive staphylococci, Pandoraea spp., and members of family Yersiniaceae. Noteworthy taxonomic revisions include those within the Bacillus and Lactobacillus genera, family Staphylococcaceae (including unifications of subspecies designations to species level taxa), Elizabethkingia spp., and former members of Clostridium spp. and Bacteroides spp. Revisions within the Brucella genus have the potential to cause deleterious effects unless the relevance of such changes is properly communicated by microbiologists to stakeholders in clinical practice, infection prevention, and public health.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C. Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
122
|
Carroll KC, Munson E, Butler-Wu SM, Patrick S. Point-Counterpoint: What's in a Name? Clinical Microbiology Laboratories Should Use Nomenclature Based on Current Taxonomy. J Clin Microbiol 2023; 61:e0173222. [PMID: 36625570 PMCID: PMC9879091 DOI: 10.1128/jcm.01732-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION The mnemonic SPICE (Serratia, Pseudomonas, indole-positive Proteus, Citrobacter, and Enterobacter) has served as a reminder to consider when a Gram-negative organism may carry a chromosomal copy of blaampC, with the associated risk of developing resistance to first-, second-, and third-generation cephalosporins. However, in 2017, there was a well-founded proposal to rename Enterobacter aerogenes to Klebsiella aerogenes, based on whole-genome sequencing (WGS), and the SPICE mnemonic lost its relevance. With the increased use of WGS for taxonomy, it seems like bacteria and fungi are undergoing constant name changes. These changes create unique challenges for clinical microbiology laboratories, who would like to issue reports that are readily understood and that help clinicians determine empirical antibiotic therapy, interpret antimicrobial resistance, and understand clinical significance. In this Point-Counterpoint, Drs. Karen Carroll and Erik Munson discuss the pros of updating bacterial taxonomy and why clinical labs must continue to update reporting, while Drs. Susan Butler-Wu and Sheila Patrick argue for caution in adopting new names for microorganisms.
Collapse
Affiliation(s)
- Karen C. Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Susan M. Butler-Wu
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Sheila Patrick
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
123
|
Xue H, Tu Y, Ma T, Jiang N, Piao C, Li Y. Taxonomic Study of Three Novel Paenibacillus Species with Cold-Adapted Plant Growth-Promoting Capacities Isolated from Root of Larix gmelinii. Microorganisms 2023; 11:130. [PMID: 36677422 PMCID: PMC9867441 DOI: 10.3390/microorganisms11010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Exploration of the novel species of the genus Paenibacillus with plant-growth promoting characteristics at the low-temperature environment is of great significance for the development of psychrotolerant biofertilizer in forestry and agriculture. During the course of isolation of root endophytes of Larix gmelinii in the island frozen soil, three strains designated as T3-5-0-4, N1-5-1-14 and N5-1-1-5 were isolated. The three strains showed plant growth-promoting properties at the low temperature, such as phosphate solubilization, indole-3-acetic acid biosynthesis and siderophore production. According to pairwise sequence analyses of the 16S rRNA genes, the three strains represent putatively novel taxa within the genus Paenibacillus. The strains have typical chemotaxonomic characteristics of the genus Paenibacillus by having meso-diaminopimelic acid as diagnostic diamino acid, anteiso-C15:0 as the predominant fatty acid and MK-7 as the predominant menaquinone. The polar lipid profiles of all strains contained diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The sizes of the genomes of the stains ranged from 5.66 to 9.07 Mb and the associated G+C contents ranged from 37.9% to 44.7%. Polyphasic taxonomic study including determination of genome relatedness indices revealed that the strains are representatives of three novel species in the genus Paenibacillus. Consequently, isolates T3-5-0-4, N1-5-1-14 and N5-1-1-5 are proposed as novel species for which the names of Paenibacillus endoradicis sp. nov. (CFCC15691T = KCTC43441T), Paenibacillus radicibacter sp. nov, (CFCC15694T = KCTC43442T) and Paenibacillus radicis sp. nov. (CFCC15710T = KCTC43173T), respectively. Moreover, analysis for biosynthetic genes showed that the strains have potential for plant growth-promoting characteristics, plant rhizospheres colonization and low-temperature adaption, most of which are consistent with the results of the bioactivity test.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong Li
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
124
|
Shevtsov A, Cloeckaert A, Berdimuratova K, Shevtsova E, Shustov AV, Amirgazin A, Karibayev T, Kamalova D, Zygmunt MS, Ramanculov Y, Vergnaud G. Brucella abortus in Kazakhstan, population structure and comparison with worldwide genetic diversity. Front Microbiol 2023; 14:1106994. [PMID: 37032899 PMCID: PMC10073595 DOI: 10.3389/fmicb.2023.1106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Brucella abortus is the main causative agent of brucellosis in cattle, leading to severe economic consequences in agriculture and affecting public health. The zoonotic nature of the infection increases the need to control the spread and dynamics of outbreaks in animals with the incorporation of high resolution genotyping techniques. Based on such methods, B. abortus is currently divided into three clades, A, B, and C. The latter includes subclades C1 and C2. This study presents the results of whole-genome sequencing of 49 B. abortus strains isolated in Kazakhstan between 1947 and 2015 and of 36 B. abortus strains of various geographic origins isolated from 1940 to 2004. In silico Multiple Locus Sequence Typing (MLST) allowed to assign strains from Kazakhstan to subclades C1 and to a much lower extend C2. Whole-genome Single-Nucleotide Polymorphism (wgSNP) analysis of the 46 strains of subclade C1 with strains of worldwide origins showed clustering with strains from neighboring countries, mostly North Caucasia, Western Russia, but also Siberia, China, and Mongolia. One of the three Kazakhstan strains assigned to subclade C2 matched the B. abortus S19 vaccine strain used in cattle, the other two were genetically close to the 104 M vaccine strain. Bayesian phylodynamic analysis dated the introduction of B. abortus subclade C1 into Kazakhstan to the 19th and early 20th centuries. We discuss this observation in view of the history of population migrations from Russia to the Kazakhstan steppes.
Collapse
Affiliation(s)
- Alexandr Shevtsov
- National Center for Biotechnology, Astana, Kazakhstan
- *Correspondence: Alexandr Shevtsov,
| | | | | | | | | | | | | | | | | | - Yerlan Ramanculov
- National Center for Biotechnology, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Gilles Vergnaud
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Gilles Vergnaud,
| |
Collapse
|
125
|
Pereira CR, de Jesus Sousa T, Lima da Silva A, Gonçalves Dos Santos R, Minharro S, Costa Custódio DA, Pickard DJ, O'Callaghan D, Foster JT, de Castro Soares S, Juca Ramos RT, Góes-Neto A, Matiuzzi da Costa M, Lage AP, Azevedo V, Seles Dorneles EM. First report and whole-genome sequencing of Pseudochrobactrum saccharolyticum in Latin America. Microbes Infect 2023; 25:105018. [PMID: 35940401 DOI: 10.1016/j.micinf.2022.105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/24/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023]
Abstract
The Brucellaceae family comprises microorganisms similar both phenotypically and genotypically, making it difficult to identify the etiological agent of these infections. This study reports the first isolation, identification, and characterization of Pseudochrobactrum saccharolyticum (strain 115) from Latin America. Strain 115 was isolated in 2007 from a bovine in Brazil and was initially classified as Brucella spp. by classical microbiological tests and bcsp31 PCR. The antimicrobial susceptibility of strain 115 was tested against drugs used to treat human brucellosis by minimal inhibitory concentration test. Subsequently, the whole genome of the strain was sequenced, assembled, and characterized. Phylogenetic trees built from 16S rRNA and recA gene sequences enabled the classification of strain 115 as Pseudochrobactrum spp. Phylogenomic analysis using Single Nucleotide Polymorphisms and Average Nucleotide Identity allowed the classification of the strain as P. saccharolyticum. Additionally, a Tetra Correlation Search identified one related genome from the same species, which was compared with strain 115 by analyzing genomic islands. This is the first identification and whole-genome sequence of P. saccharolyticum in Latin America and highlights a challenge in the diagnosis of bovine brucellosis, which could be solved by including the sequencing of 16S rRNA and recA genes in routine diagnostics.
Collapse
Affiliation(s)
- Carine Rodrigues Pereira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Thiago de Jesus Sousa
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra Lima da Silva
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Roselane Gonçalves Dos Santos
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sílvia Minharro
- Centro de Ciência da Saúde - Medicina - Araguaína, Universidade Federal de Tocantins, Tocantins, Brazil
| | - Dirceia Aparecida Costa Custódio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Derek J Pickard
- Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - David O'Callaghan
- IVBIC, INSERM, Universite de Montpellier, Nimes, France; CNR Brucella, Laboratoire de Microbiologie, CHU Nimes, Nimes, France
| | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Siomar de Castro Soares
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Ciências Naturais, Universidade Federal Do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Rommel Thiago Juca Ramos
- Instituto de Ciências Biológicas, Centro de Genômica e Biologia de Sistemas, Universidade Federal Do Pará, Belém, Pará, Brazil
| | - Aristóteles Góes-Neto
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mateus Matiuzzi da Costa
- Universidade Federal Do Vale Do São Francisco, Departamento de Zootecnia, Petrolina, Pernambuco, Brazil
| | - Andrey Pereira Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine Maria Seles Dorneles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
126
|
Pascual DW, Goodwin ZI, Bhagyaraj E, Hoffman C, Yang X. Activation of mucosal immunity as a novel therapeutic strategy for combating brucellosis. Front Microbiol 2022; 13:1018165. [PMID: 36620020 PMCID: PMC9814167 DOI: 10.3389/fmicb.2022.1018165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Brucellosis is a disease of livestock that is commonly asymptomatic until an abortion occurs. Disease in humans results from contact of infected livestock or consumption of contaminated milk or meat. Brucella zoonosis is primarily caused by one of three species that infect livestock, Bacillus abortus in cattle, B. melitensis in goats and sheep, and B. suis in pigs. To aid in disease prophylaxis, livestock vaccines are available, but are only 70% effective; hence, improved vaccines are needed to mitigate disease, particularly in countries where disease remains pervasive. The absence of knowing which proteins confer complete protection limits development of subunit vaccines. Instead, efforts are focused on developing new and improved live, attenuated Brucella vaccines, since these mimic attributes of wild-type Brucella, and stimulate host immune, particularly T helper 1-type responses, required for protection. In considering their development, the new mutants must address Brucella's defense mechanisms normally active to circumvent host immune detection. Vaccination approaches should also consider mode and route of delivery since disease transmission among livestock and humans is believed to occur via the naso-oropharyngeal tissues. By arming the host's mucosal immune defenses with resident memory T cells (TRMs) and by expanding the sources of IFN-γ, brucellae dissemination from the site of infection to systemic tissues can be prevented. In this review, points of discussion focus on understanding the various immune mechanisms involved in disease progression and which immune players are important in fighting disease.
Collapse
|
127
|
Azospirillum Endophyticum sp. nov., an Endophyte of Paris Polyphylla Smith var. Yunnanensis. Curr Microbiol 2022; 80:34. [PMID: 36508041 DOI: 10.1007/s00284-022-03142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
A Gram-negative, facultative anaerobic bacterial strain, designated YIM B02556T, was isolated from the root of Paris polyphylla Smith var. yunnanensis collected from Yunnan Province, southwest China. By using a polyphasic approach, its taxonomic position was investigated. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YIM B02556T belonged to the genus Azospirillum and the 16S rRNA gene sequence similarity values of strain YIM B02556T to the type strains of members of this genus ranged from 94.9 to 98.3%. Overall genome relatedness index (OGRI) analysis estimated based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between YIM B02556T and other Azospirillum species type strains were <90.8% and <37.8%, lower than the limit of species circumscription. Cells of the strain were characterized as oxidase- and catalase-positive, with motility provided by flagella. The growth conditions of the strain were found to occur at 20-40 °C (optimum, 35 °C), and pH 6.0-9.5 (optimum, pH 7.5). Strain YIM B02556T can tolerate 2% NaCl concentration. Strain YIM B02556T contained Q-10 as the major ubiquinone. The major fatty acids were C18:1 ω7c and summed feature three (C16:1 ω7c and/or C16:1 ω6c). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. Based on polyphasic analysis, strain YIM B02556T could be differentiated genotypically and phenotypically from recognized species of the genus Azospirillum. Therefore, the isolate represents a novel species, for which the name Azospirillum endophyticum is proposed. The type strain is YIM B02556T (=JCM 34631T=CGMCC 1.18654T).
Collapse
|
128
|
Spanka DT, Grützner J, Jäger A, Klug G. A Small RNA, UdsC, Interacts with the R poHII mRNA and Affects the Motility and Stress Resistance of Rhodobacter sphaeroides. Int J Mol Sci 2022; 23:ijms232415486. [PMID: 36555125 PMCID: PMC9779115 DOI: 10.3390/ijms232415486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
sRNAs have an important role in the regulation of bacterial gene expression. The sRNA, UdsC, of Rhodobacter sphaeroides is derived from the 3' UTR of the RSP_7527 mRNA, which encodes a hypothetical protein. Here, we showed the effect of UdsC on the resistance of Rhodobacter sphaeroides to hydrogen peroxide and on its motility. In vitro binding assays supported the direct interaction of UdsC with the 5' UTR of the rpoHII mRNA. RpoHII is an alternative sigma factor with an important role in stress responses in R. sphaeroides, including its response to hydrogen peroxide. We also demonstrated that RpoHII controls the expression of the torF gene, which encodes an important regulator of motility genes. This strongly suggested that the observed effect of UdsC on TorF expression is indirect and mediated by RpoHII.
Collapse
|
129
|
Göker M. Filling the gaps: missing taxon names at the ranks of class, order and family. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748602 DOI: 10.1099/ijsem.0.005638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The International Code of Nomenclature of Prokaryotes (ICNP) recently underwent some major modifications regarding the higher taxonomic ranks. On the one hand, the phylum category was introduced into the ICNP, which rapidly led to the valid publication of more than forty names of phyla. On the other hand, a decision on the retroactivity of Rule 8 regarding the names of classes was made, which removed most of the nomenclatural uncertainty that had affected those names during the last decade. However, it turned out that a number of names at the ranks of class, order and family are either not validly published or are validly published but illegitimate, although these names occur in the literature and are based on the type genus of a phylum with a validly published name. A closer examination of the literature for these and similar cases indicates that the names are unavailable under the ICNP either because of minor formal errors in the original descriptions, because another name should have been adopted for the taxon when the name was proposed, because of taxonomic uncertainties that were settled in the meantime, or because the names were placed on the list of rejected names. The purpose of this article is to fill the gaps by providing the missing formal descriptions and to ensure that the resulting taxon names are attributed to the original authors who did the taxonomic work.
Collapse
Affiliation(s)
- Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| |
Collapse
|
130
|
Delgadillo-Ordoñez N, Raimundo I, Barno AR, Osman EO, Villela H, Bennett-Smith M, Voolstra CR, Benzoni F, Peixoto RS. Red Sea Atlas of Coral-Associated Bacteria Highlights Common Microbiome Members and Their Distribution across Environmental Gradients-A Systematic Review. Microorganisms 2022; 10:microorganisms10122340. [PMID: 36557593 PMCID: PMC9787610 DOI: 10.3390/microorganisms10122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
The Red Sea is a suitable model for studying coral reefs under climate change due to its strong environmental gradient that provides a window into future global warming scenarios. For instance, corals in the southern Red Sea thrive at temperatures predicted to occur at the end of the century in other biogeographic regions. Corals in the Red Sea thrive under contrasting thermal and environmental regimes along their latitudinal gradient. Because microbial communities associated with corals contribute to host physiology, we conducted a systematic review of the known diversity of Red Sea coral-associated bacteria, considering geographic location and host species. Our assessment comprises 54 studies of 67 coral host species employing cultivation-dependent and cultivation-independent techniques. Most studies have been conducted in the central and northern Red Sea, while the southern and western regions remain largely unexplored. Our data also show that, despite the high diversity of corals in the Red Sea, the most studied corals were Pocillopora verrucosa, Dipsastraea spp., Pleuractis granulosa, and Stylophora pistillata. Microbial diversity was dominated by bacteria from the class Gammaproteobacteria, while the most frequently occurring bacterial families included Rhodobacteraceae and Vibrionaceae. We also identified bacterial families exclusively associated with each of the studied coral orders: Scleractinia (n = 125), Alcyonacea (n = 7), and Capitata (n = 2). This review encompasses 20 years of research in the Red Sea, providing a baseline compendium for coral-associated bacterial diversity.
Collapse
Affiliation(s)
- Nathalia Delgadillo-Ordoñez
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Inês Raimundo
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Adam R. Barno
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Eslam O. Osman
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Helena Villela
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Morgan Bennett-Smith
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Christian R. Voolstra
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Francesca Benzoni
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Raquel S. Peixoto
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Correspondence:
| |
Collapse
|
131
|
Sugo Y, Tamura H, Ishikita H. Electron Transfer Route between Quinones in Type-II Reaction Centers. J Phys Chem B 2022; 126:9549-9558. [PMID: 36374126 PMCID: PMC9707520 DOI: 10.1021/acs.jpcb.2c05713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/28/2022] [Indexed: 11/16/2022]
Abstract
In photosynthetic reaction centers from purple bacteria (PbRCs) and photosystem II (PSII), the photoinduced charge separation is terminated by an electron transfer between the primary (QA) and secondary (QB) quinones. Here, we investigate the electron transfer route, calculating the superexchange coupling (HQA-QB) for electron transfer from QA to QB in the protein environment. HQA-QB is significantly larger in PbRC than in PSII. In superexchange electron tunneling, the electron transfer via unoccupied molecular orbitals of the nonheme Fe complex (QA → Fe → QB) is pronounced in PbRC, whereas the electron transfer via occupied molecular orbitals (Fe → QB followed by QA → Fe) is pronounced in PSII. The significantly large HQA-QB is caused by a water molecule that donates the H-bond to the ligand Glu-M234 in PbRC. The corresponding water molecule is absent in PSII due to the existence of D1-Tyr246. HQA-QB increases in response to the Ser-L223···QB H-bond formation caused by an extension of the H-bond network, which facilitates charge delocalization over the QB site. This explains the observed discrepancy in the QA-to-QB electron transfer between PbRC and PSII, despite their structural similarity.
Collapse
Affiliation(s)
- Yu Sugo
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
| | - Hiroyuki Tamura
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| |
Collapse
|
132
|
Anianabacter salinae gen. nov., sp. nov. ASV31T, a Facultative Alkaliphilic and Extremely Halotolerant Bacterium Isolated from Brine of a Millennial Continental Saltern. DIVERSITY 2022. [DOI: 10.3390/d14111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During a prokaryotic diversity study in Añana Salt Valley, a new Rhodobacteraceae member, designated ASV31T, was isolated from Santa Engracia spring water. It was extremely halotolerant, tolerating up to 23% NaCl, and facultatively alkaliphilic, growing at pH 6.5–9.5 (optimum at 7.0–9.5). The isolate was a Gram-negative, rod-shaped, aerobic and non-motile bacterium that formed beige-to-pink colonies on marine agar. According to a 16S rRNA gene-based phylogenetic analysis, strain ASV31T forms a distinct branch of the family Rhodobacteraceae, with Thioclava pacifica DSM 10166T being its closest type strain (95.3%). This was confirmed with a phylogenomic tree and the values of ANI (73.9%), dDDH (19.3%), AAI (63.5%) and POCP (56.0%), which were below the genus/species level boundary. Additionally, an ability to degrade aromatic compounds and biosynthesise secondary metabolites was suggested by the genome of strain ASV31T. Distinguishing fatty acid profiles and polar lipid content were also observed. The genome size was 3.6 Mbp, with a DNA G+C content of 65.7%. Based on the data obtained, it was considered that strain ASV31T (=CECT 30309T = LMG 32242T) represents a new species of a new genus in the family Rhodobacteraceae, for which the name Anianabacter salinae gen. nov., sp. nov. is proposed.
Collapse
|
133
|
Behrendt U, Spanner T, Augustin J, Zak DH, Horn MA, Kolb S, Ulrich A. Consumption of N2O by Flavobacterium azooxidireducens sp. nov. Isolated from Decomposing Leaf Litter of Phragmites australis (Cav.). Microorganisms 2022; 10:microorganisms10112304. [PMID: 36422374 PMCID: PMC9697520 DOI: 10.3390/microorganisms10112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
Microorganisms acting as sinks for the greenhouse gas nitrous oxide (N2O) are gaining increasing attention in the development of strategies to control N2O emissions. Non-denitrifying N2O reducers are of particular interest because they can provide a real sink without contributing to N2O release. The bacterial strain under investigation (IGB 4-14T), isolated in a mesocosm experiment to study the litter decomposition of Phragmites australis (Cav.), is such an organism. It carries only a nos gene cluster with the sec-dependent Clade II nosZ and is able to consume significant amounts of N2O under anoxic conditions. However, consumption activity is considerably affected by the O2 level. The reduction of N2O was not associated with cell growth, suggesting that no energy is conserved by anaerobic respiration. Therefore, the N2O consumption of strain IGB 4-14T rather serves as an electron sink for metabolism to sustain viability during transient anoxia and/or to detoxify high N2O concentrations. Phylogenetic analysis of 16S rRNA gene similarity revealed that the strain belongs to the genus Flavobacterium. It shares a high similarity in the nos gene cluster composition and the amino acid similarity of the nosZ gene with various type strains of the genus. However, phylogenomic analysis and comparison of overall genome relatedness indices clearly demonstrated a novel species status of strain IGB 4-14T, with Flavobacterium lacus being the most closely related species. Various phenotypic differences supported a demarcation from this species. Based on these results, we proposed a novel species Flavobacterium azooxidireducens sp. nov. (type strain IGB 4-14T = LMG 29709T = DSM 103580T).
Collapse
Affiliation(s)
- Undine Behrendt
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
- Correspondence: (U.B.); (A.U.); Tel.: +49-33432-82460 (U.B.); +49-33432-82345 (A.U.)
| | - Tobias Spanner
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Jürgen Augustin
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Dominik H. Zak
- Institute for Ecoscience, Aarhus University, C.F. Møllersvej, Bygning 1331, 8000 Aarhus, Denmark
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin, Müggelseedamm 301, D-12587 Berlin, Germany
| | - Marcus A. Horn
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Steffen Kolb
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Andreas Ulrich
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
- Correspondence: (U.B.); (A.U.); Tel.: +49-33432-82460 (U.B.); +49-33432-82345 (A.U.)
| |
Collapse
|
134
|
Heo J, Sombolestani AS, Laureys D, De Clippeleer J, Won M, Vandamme P, Kwon SW. Acetobacter vaccinii sp. nov., a novel acetic acid bacterium isolated from blueberry fruit ( Vaccinium corymbosum L.). Int J Syst Evol Microbiol 2022; 72. [PMID: 36748597 DOI: 10.1099/ijsem.0.005614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Strain C17-3T was isolated from blueberry fruits collected from a farmland located in Damyang-gun, Jeollanam-do, Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences allocated strain C17-3T to the genus Acetobacter, where it occupied a rather isolated line of descent with Acetobacter ghanensis 430AT and Acetobacter lambici LMG 27439T as the nearest neighbours (98.9 % sequence similarity to both species). The highest average nucleotide identity and digital DNA-DNA hybridization values were 76.3 % and 21.7 % with Acetobacter garciniae TBRC 12339T; both values were well below the cutoff values for species delineation. Cells are strictly aerobic, Gram-stain-negative rods, catalase-positive and oxidase-negative. The DNA G+C content calculated from the genome sequence was 59.2 %. Major fatty acids were summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) and C19 : 0cyclo ω8c. The major isoprenoid quinone was ubiquinone 9. On the basis of the results of phylogenetic analyses, phenotypic features and genomic comparisons, it is proposed that strain C17-3T represents a novel species of the genus Acetobacter and the name Acetobacter vaccinii sp. nov. is proposed. The type strain is C17-3T (= KACC 21233T = LMG 31758T).
Collapse
Affiliation(s)
- Jun Heo
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Atena Sadat Sombolestani
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - David Laureys
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Jessika De Clippeleer
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Miyoung Won
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|
135
|
Foligné B, Menetrey Q, Titécat M. Letter to the Editor: Focus on Zymomonas spp for the sake of clarity. Compr Rev Food Sci Food Saf 2022; 21:4507-4508. [PMID: 36349466 DOI: 10.1111/1541-4337.13078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Benoit Foligné
- Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Quentin Menetrey
- Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Marie Titécat
- Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| |
Collapse
|
136
|
Salvato F, Vintila S, Finkel OM, Dangl JL, Kleiner M. Evaluation of Protein Extraction Methods for Metaproteomic Analyses of Root-Associated Microbes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:977-988. [PMID: 35876747 DOI: 10.1094/mpmi-05-22-0116-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metaproteomics is a powerful tool for the characterization of metabolism, physiology, and functional interactions in microbial communities, including plant-associated microbiota. However, the metaproteomic methods that have been used to study plant-associated microbiota are very laborious and require large amounts of plant tissue, hindering wider application of these methods. We optimized and evaluated different protein extraction methods for metaproteomics of plant-associated microbiota in two different plant species (Arabidopsis and maize). Our main goal was to identify a method that would work with low amounts of input material (40 to 70 mg) and that would maximize the number of identified microbial proteins. We tested eight protocols, each comprising a different combination of physical lysis method, extraction buffer, and cell-enrichment method on roots from plants grown with synthetic microbial communities. We assessed the performance of the extraction protocols by liquid chromatography-tandem mass spectrometry-based metaproteomics and found that the optimal extraction method differed between the two species. For Arabidopsis roots, protein extraction by beating whole roots with small beads provided the greatest number of identified microbial proteins and improved the identification of proteins from gram-positive bacteria. For maize, vortexing root pieces in the presence of large glass beads yielded the greatest number of microbial proteins identified. Based on these data, we recommend the use of these two methods for metaproteomics with Arabidopsis and maize. Furthermore, detailed descriptions of the eight tested protocols will enable future optimization of protein extraction for metaproteomics in other dicot and monocot plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Fernanda Salvato
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, U.S.A
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, U.S.A
| | - Omri M Finkel
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Jeffery L Dangl
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, U.S.A
| |
Collapse
|
137
|
He W, Fan J, Ya T, Zhang M, Zhang T, Wang X. Response of microbial interactions in activated sludge to chlortetracycline. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120035. [PMID: 36030958 DOI: 10.1016/j.envpol.2022.120035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/30/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Chlortetracycline (CTC) has attracted increasing attention due to its potential environmental risks. However, its effects on bacterial communities and microbial interactions in activated sludge systems remain unclear. To verify these issues, a lab-scale sequencing batch reactor (SBR) exposed to different concentrations of CTC (0, 0.05, 0.5, 1 mg/L) was carried out for 106 days. The results showed that the removal efficiencies of COD, TN, and TP were negatively affected, and the system functions could gradually recover at low CTC concentrations (≤0.05 mg/L), but high CTC concentrations (≥0.5 mg/L) caused irreversible damage. CTC significantly altered bacterial diversity and the overall bacterial community structure, and stimulated the emergence of many taxa with antibiotic resistance. Molecular ecological network analysis showed that low concentrations of CTC increased network complexity and enhanced microbial interactions, while high concentrations of CTC had the opposite effect. Sub-networks analysis of dominant phyla (Bacteriodota, Proteobacteria, and Actionobacteriota) and dominant genera (Propioniciclava, a genus from the family Pleomorphomonadaceae and WCHB1-32) also showed the same pattern. In addition, keystone species identified by Z-P analysis had low relative abundance, but they were important in maintaining the stable performance of the system. In summary, low concentrations of CTC enhanced the complexity and stability of the activated sludge system. While high CTC concentrations destabilized the stability of the overall network and then caused effluent water quality deterioration. This study provides insights into our understanding of response in the bacteria community and their network interactions under tetracycline antibiotics in activated sludge system.
Collapse
Affiliation(s)
- Wenshan He
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingkai Fan
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tao Ya
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
138
|
Endophytic Bosea spartocytisi sp. nov. Coexists with rhizobia in root nodules of Spartocytisus supranubius growing in soils of Teide National Park (Canary Islands). Syst Appl Microbiol 2022; 45:126374. [DOI: 10.1016/j.syapm.2022.126374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
139
|
Sun X, Lin D, Han Y, Sun J, Ye J, Chen B, Tang K. Roseovarius carneus sp. nov., a novel bacterium isolated from a coastal phytoplankton bloom in Xiamen. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A Gram-stain-negative, non-motile, ovoid or short rod shaped and aerobic marine bacterium, designated as strain LXJ103T, was isolated from a coastal phytoplankton bloom in Xiamen, PR China. Cells were oxidase- and catalase-positive. Strain LXJ103T grew at 4–40 °C (optimum, 28–37 °C), at pH 6–10 (optimum, pH 8.5) and with 1–15 % (w/v) NaCl (optimum, 3 %). The major cellular fatty acids (>10 %) were iso-C18 : 1
ω7c/iso-C18 : 1
ω6c (70.2 %) and C16 : 0 (10.3 %). The following polar lipids were found to be present: phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and five unknown glycolipids. The predominant respiratory quinone was ubiquinone-10. Strain LXJ103T exhibited the highest 16S rRNA gene sequence similarity to
Roseovarius litorisediminis
D1-W8T (96.97 %). The phylogenetic trees based on 16S rRNA gene sequences showed that strain LXJ103T was a member of the genus
Roseovarius
. The draft genome size of strain LXJ103T is 3.05 Mb with a genomic G+C content of 61.22 mol%. The digital DNA–DNA genome hybridization value of strain LXJ103T compared with the most similar type strain
R. litorisediminis
CECT 8287T was 18.80 %. The average nucleotide identity value between strain LXJ103T and
R. litorisediminis
CECT 8287T was 72.60 %. On the basis of polyphasic data, strain LXJ103T represents a novel species of the genus
Roseovarius
, for which the name Roseovarius carneus sp. nov. is proposed. The type strain is LXJ103T (=CGMCC 1.19168T=MCCC 1K06527T=JCM 34778T).
Collapse
Affiliation(s)
- Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Dan Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Yu Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Jia Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Jianing Ye
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Beihan Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | | |
Collapse
|
140
|
Slobodkina G, Ratnikova N, Merkel A, Kevbrin V, Kuchierskaya A, Slobodkin A. Lithoautotrophic lifestyle of the widespread genus Roseovarius revealed by physiological and genomic characterization of Roseovarius autotrophicus sp. nov. FEMS Microbiol Ecol 2022; 98:6724241. [PMID: 36166357 DOI: 10.1093/femsec/fiac113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022] Open
Abstract
The genus Roseovarius, a member of the ecologically important Roseobacter-clade, is widespread throughout the world. A facultatively anaerobic lithoautotrophic bacterium (strain SHN287T), belonging to the genus Roseovarius, was isolated with molecular hydrogen as an electron donor and nitrate as an electron acceptor from a terrestrial mud volcano. Strain SHN287T possessed metabolic features not reported for Roseovarius such as chemolithoautotrophic growth with oxidation of molecular hydrogen or sulfur compounds, anaerobic growth and denitrification. Based on the phenotypic and phylogenetic characteristics, the new isolate is considered to represent a novel species of the genus Roseovarius, for which the name Roseovarius autotrophicus sp. nov. is proposed. The type strain is SHN287T (= KCTC 15916T = VKM B-3404T). An amended description of the genus Roseovarius is provided. Comparison of 46 Roseovarius genomes revealed that (i) a full set of genes for the Calvin-Benson cycle is present only in two strains: SHN287T and Roseovarius salinarum; (ii) respiratory H2-uptake [NiFe] hydrogenases are specific for a phylogenetically distinct group, including SHN287T-related strains; (iii) the Sox enzymatic complex is encoded in most of the studied genomes; and (iv) denitrification genes are widespread and randomly distributed among the genus. The metabolic characteristics found in R. autotrophicus sp. nov. expand the ecological role of the genus Roseovarius.
Collapse
Affiliation(s)
- Galina Slobodkina
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | - Nataliya Ratnikova
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | - Alexander Merkel
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | - Vadim Kevbrin
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | | | - Alexander Slobodkin
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| |
Collapse
|
141
|
Devosia litorisediminis sp. nov., isolated from a sand dune. Arch Microbiol 2022; 204:623. [DOI: 10.1007/s00203-022-03181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/03/2022] [Accepted: 01/19/2022] [Indexed: 11/02/2022]
|
142
|
Vasilyeva L, Grouzdev D, Koziaeva V, Berestovskaya Y, Novikov A, Pimenov N. Prosthecodimorpha staleyi gen. nov., sp. nov., Novel Prosthecate Bacteria within the Family Ancalomicrobiaceae and Reclassification of the Polyphyletic Genus Prosthecomicrobium. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722601105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
143
|
Tian J, Xu L, Zhang X, Sun JQ. Acuticoccus kalidii sp. nov., a 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophyte from a root of Kalidium cuspidatum. Int J Syst Evol Microbiol 2022; 72. [PMID: 36251750 DOI: 10.1099/ijsem.0.005521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
A 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing, Gram-stain-negative, strictly aerobic, non-motile, yellow-reddish, oval-shaped bacterial strain, designated M5D2P5T, was isolated from a root of Kalidium cuspidatum, in Tumd Right Banner, Inner Mongolia, PR China. M5D2P5T grew at 10-40 °C (optimum 30-35 °C), pH 5.0-10.0 (optimum pH 8.0) and with 0-7% NaCl (optimum 3.0 %). The strain was positive for catalase and oxidase. The phylogenetic trees based on 16S rRNA gene sequences indicated that M5D2P5T clustered with Acuticoccus yangtzensis JL1095T, and shared 98.0, 97.3, 97.2, 96.9 and less than 96.9 % 16S rRNA gene similarities to A. yangtzensis JL1095T, Acuticoccus mangrovi B2012T, Acuticoccus sediminis PTG4-2T, Acuticoccus kandeliae J103T, and all the other type strains, respectively. However, the phylogenomic tree showed it clustered with A. kandeliae J103T. M5D2P5T contained Q-10 as the major respiratory quinone, as well as two minor respiratory quinones, Q-7 and Q-8. Its major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified phospholipid, an unidentified glycolipid, and four unidentified lipids. The genomic DNA G+C content was 66.5 %. The digital DNA-DNA hybridization score and the average nucleotide identity based on blast values of M5D2P5T to A. yangtzensis JL1095T, A. kandeliae J103T, A. mangrovi B2012T, and A. sediminis PTG4-2T, were 20.8, 23.7, 20.7, and 21.5 %, and 73.3, 79.5, 74.4, and 73.7 %, respectively. The phylogenetic and phenotypic characteristics allowed the discrimination of M5D2P5T from its phylogenetic relatives. The novel species Acuticoccus kalidii sp. nov. is therefore proposed, and the type strain is M5D2P5T (=CGMCC 1.19149T=KCTC 92132T).
Collapse
Affiliation(s)
- Jing Tian
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Lian Xu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xu Zhang
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Ji-Quan Sun
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| |
Collapse
|
144
|
Duhamel S, Hamilton CW, Pálsson S, Björnsdóttir SH. Microbial Response to Increased Temperatures Within a Lava-Induced Hydrothermal System in Iceland: An Analogue for the Habitability of Volcanic Terrains on Mars. ASTROBIOLOGY 2022; 22:1176-1198. [PMID: 35920884 DOI: 10.1089/ast.2021.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fossil hydrothermal systems on Mars are important exploration targets because they may have once been habitable and could still preserve evidence of microbial life. We investigated microbial communities within an active lava-induced hydrothermal system associated with the 2014-2015 eruption of Holuhraun in Iceland as a Mars analogue. In 2016, the microbial composition in the lava-heated water differed substantially from that of the glacial river and spring water sources that fed into the system. Several taxonomic and metabolic groups were confined to the water emerging from the lava and some showed the highest sequence similarities to subsurface ecosystems, including to the predicted thermophilic and deeply branching Candidatus Acetothermum autotrophicum. Measurements show that the communities were affected by temperature and other environmental factors. In particular, comparing glacial river water incubated in situ (5.7°C, control) with glacial water incubated within a lava-heated stream (17.5°C, warm) showed that microbial abundance, richness, and diversity increased in the warm treatment compared with the control, with the predicted major metabolism shifting from lithotrophy toward organotrophy and possibly phototrophy. In addition, thermophilic bacteria isolated from the lava-heated water and a nearby acidic hydrothermal system included the known endospore-formers Geobacillus stearothermophilus and Paenibacillus cisolokensis as well as a potentially novel taxon within the order Hyphomicrobiales. Similar lava-water interactions on Mars could therefore have generated habitable environments for microbial communities.
Collapse
Affiliation(s)
- Solange Duhamel
- Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
- Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | | | - Snæbjörn Pálsson
- Department of Biology, University of Iceland, Reykjavík, Iceland
| | | |
Collapse
|
145
|
Fufina TY, Tretchikova OA, Khristin AM, Khatypov RA, Vasilieva LG. Properties of Mutant Photosynthetic Reaction Centers of Purple Non-Sulfur Bacteria Cereibacter sphaeroides with M206 Ile→Gln Substitution. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1149-1158. [PMID: 36273883 DOI: 10.1134/s000629792210008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 06/16/2023]
Abstract
In the structure of photosynthetic reaction center (RC) of the purple bacterium Cereibacter sphaeroides the highly conserved amino acid residue Ile-M206 is located near the bacteriochlorophyll dimer P, which is the primary electron donor, and the monomeric bacteriochlorophyll BA, which is the nearest electron acceptor. Since Ile-M206 is close to the C2-acetyl group of bacteriochlorophyll PB, the hydroxyl group of Tyr-M210, and to the C9-keto group of bacteriochlorophyll BA, as well as to the water molecule near the latter group, this site can be used for introducing mutations in order to study mechanisms of primary photochemical processes in the RC. Previously it was shown that the Ile→Glu substitution at the M204 position (analog of M206 in the RC of C. sphaeroides) in the RC of the closely related purple non-sulfur bacterium Rhodobacter capsulatus significantly affected kinetics of the P+HA- state formation, whereas the M204 Ile→Gln substitution led to the loss of BChl BA molecule from the complex structure. In the present work, it is shown that the single I(M206)Q or double I(M206)Q + F(M208)A amino acid substitutions in the RC of C. sphaeroides do not change the pigment composition and do not markedly influence redox potential of the primary electron donor. However, substitution of Ile M206 by Gln affected positions and amplitudes of the absorption bands of bacteriochlorophylls, increased lifetime of the primary electron donor P* excited state from 3.1 ps to 22 ps, and decreased quantum yield of the P+QA- state formation to 60%. These data suggest significant changes in the pigment-protein interactions in the vicinity of the primary electron donor P and the nearest electron acceptor BA. A considerable decrease was also noticed in the resistance of the mutant RC to thermal denaturation, which was more pronounced in the RC with the double substitution I(M206)Q + F(M208)A. This was likely associated with the disruption of the dense packing of the protein near bacteriochlorophylls PB and BA. Possible reasons for different effects of identical mutations on the properties of two highly homologous RCs from closely related purple non-sulfur bacteria are discussed.
Collapse
Affiliation(s)
- Tatiana Yu Fufina
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Olga A Tretchikova
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anton M Khristin
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ravil A Khatypov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Lyudmila G Vasilieva
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
146
|
Timsy T, Behrendt U, Ulrich A, Foesel BU, Spanner T, Neumann-Schaal M, Wolf J, Schloter M, Horn MA, Kolb S. Genomic evidence for two pathways of formaldehyde oxidation and denitrification capabilities of the species Paracoccus methylovorus sp. nov. Int J Syst Evol Microbiol 2022; 72. [PMID: 36861375 DOI: 10.1099/ijsem.0.005581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Three strains (H4-D09T, S2-D11 and S9-F39) of a member of the genus Paracoccus attributed to a novel species were isolated from topsoil of temperate grasslands. The genome sequence of the type strain H4-D09T exhibited a complete set of genes required for denitrification as well as methylotrophy. The genome of H4-D09T included genes for two alternative pathways of formaldehyde oxidation. Besides the genes for the canonical glutathione (GSH)-dependent formaldehyde oxidation pathway, all genes for the tetrahydrofolate-formaldehyde oxidation pathway were identified. The strain has the potential to utilize methanol and/or methylamine as a single carbon source as evidenced by the presence of methanol dehydrogenase (mxaFI) and methylamine dehydrogenase (mau) genes. Apart from dissimilatory denitrification genes (narA, nirS, norBC and nosZ), genes for assimilatory nitrate (nasA) and nitrite reductases (nirBD) were also identified. The results of phylogenetic analysis based on 16S rRNA genes coupled with riboprinting revealed that all three strains represented the same species of genus Paracoccus. Core genome phylogeny of the type strain H4-D09T indicated that Paracoccus thiocyanatus and Paracoccus denitrificans are the closest phylogenetic neighbours. The average nucleotide index (ANI) and digital DNA-DNA hybridization (dDDH) with the closest phylogenetic neighbours revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The major respiratory quinone is Q-10, and the predominant cellular fatty acids are C18 : 1ω7c, C19 : 0cyclo ω7c, and C16 : 0, which correspond to those detected in other members of the genus. The polar lipid profile consists of a diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), aminolipid (AL), glycolipid (GL) and an unidentified lipid (L).On the basis of our results, we concluded that the investigated isolates represent a novel species of the genus Paracoccus, for which the name Paracoccus methylovorus sp. nov. (type strain H4-D09T=LMG 31941T= DSM 111585T) is proposed.
Collapse
Affiliation(s)
- Timsy Timsy
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany.,Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Undine Behrendt
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Andreas Ulrich
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Bärbel U Foesel
- Research Unit Molecular Epidemiology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tobias Spanner
- Institute of Microbiology, Leibniz University of Hannover, Hannover, Germany
| | - Meina Neumann-Schaal
- Research Group Bacterial Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Jacqueline Wolf
- Research Group Bacterial Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University of Hannover, Hannover, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany.,Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
147
|
Hu Z, Chen Y, Lai Q, Yu Z, Shao Z, Dong C. Zavarzinia marina sp. nov., a novel hydrocarbon-degrading bacterium isolated from deep chlorophyll maximum layer seawater of the West Pacific Ocean and emended description of the genus Zavarzinia. Int J Syst Evol Microbiol 2022; 72. [PMID: 36251753 DOI: 10.1099/ijsem.0.005527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
A Gram-stain-negative, motile, non-spore-forming, strictly aerobic and rod-shaped bacterial strain, Adcm-6AT, was isolated from a seawater sample collected from the deep chlorophyll maximum layer in the West Pacific Ocean. Strain Adcm-6AT grew at 20-37 °C (optimum, 28-32 °C), at pH 6-11 (pH 7) and in the presence of 0-6 % (1-2 %) NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequences indicated that it belonged to the genus Zavarzinia and had 97.7 and 96.9 % sequence similarity to Zavarzinia compransoris DSM 1231T and Zavarzinia aquatilis JCM 32263T, respectively. Digital DNA-DNA hybridization and average nucleotide identity values between strain Adcm-6AT and the two type strains were 22.2-22.9 % and 79.7-80.4 %, respectively. The principal fatty acids were C19:0 cyclo ω8c, summed feature 8 (C18:1 ω6c and/or C18:1 ω7c) and C16:0. The predominant respiratory quinone was Q-10. The polar lipids were diphosphatidylglycerol, two phosphatidylethanolamines, two phosphatidyglycerols and an unidentified lipid. The genomic DNA G+C content of strain Adcm-6AT was 67.7 %. Based on phylogenetic analysis and genomic-based relatedness indices, as well as phenotypic and genotypic characteristics, strain Adcm-6AT represents a novel species within the genus Zavarzinia, for which the name Zavarzinia marina sp. nov. is proposed. The type strain is Adcm-6AT (=MCCC M24951T=KCTC 82849T).
Collapse
Affiliation(s)
- Ziyan Hu
- College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Yongqing Chen
- College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Ziquan Yu
- College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| |
Collapse
|
148
|
Díaz Rodríguez CA, Díaz-García L, Bunk B, Spröer C, Herrera K, Tarazona NA, Rodriguez-R LM, Overmann J, Jiménez DJ. Novel bacterial taxa in a minimal lignocellulolytic consortium and their potential for lignin and plastics transformation. ISME COMMUNICATIONS 2022; 2:89. [PMID: 37938754 PMCID: PMC9723784 DOI: 10.1038/s43705-022-00176-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2023]
Abstract
The understanding and manipulation of microbial communities toward the conversion of lignocellulose and plastics are topics of interest in microbial ecology and biotechnology. In this study, the polymer-degrading capability of a minimal lignocellulolytic microbial consortium (MELMC) was explored by genome-resolved metagenomics. The MELMC was mostly composed (>90%) of three bacterial members (Pseudomonas protegens; Pristimantibacillus lignocellulolyticus gen. nov., sp. nov; and Ochrobactrum gambitense sp. nov) recognized by their high-quality metagenome-assembled genomes (MAGs). Functional annotation of these MAGs revealed that Pr. lignocellulolyticus could be involved in cellulose and xylan deconstruction, whereas Ps. protegens could catabolize lignin-derived chemical compounds. The capacity of the MELMC to transform synthetic plastics was assessed by two strategies: (i) annotation of MAGs against databases containing plastic-transforming enzymes; and (ii) predicting enzymatic activity based on chemical structural similarities between lignin- and plastics-derived chemical compounds, using Simplified Molecular-Input Line-Entry System and Tanimoto coefficients. Enzymes involved in the depolymerization of polyurethane and polybutylene adipate terephthalate were found to be encoded by Ps. protegens, which could catabolize phthalates and terephthalic acid. The axenic culture of Ps. protegens grew on polyhydroxyalkanoate (PHA) nanoparticles and might be a suitable species for the industrial production of PHAs in the context of lignin and plastic upcycling.
Collapse
Affiliation(s)
- Carlos Andrés Díaz Rodríguez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Laura Díaz-García
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Department of Chemical and Biological Engineering, Advanced Biomanufacturing Centre, University of Sheffield, Sheffield, UK
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Katherine Herrera
- Department of Civil and Environmental Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig University of Technology, Braunschweig, Germany
| | - Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
149
|
Sandhu M, Paul AT, Proćków J, de la Lastra JMP, Jha PN. PCB-77 biodegradation potential of biosurfactant producing bacterial isolates recovered from contaminated soil. Front Microbiol 2022; 13:952374. [PMID: 36225351 PMCID: PMC9549355 DOI: 10.3389/fmicb.2022.952374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants widely distributed in the environment and possess deleterious health effects. The main objective of the study was to obtain bacterial isolates from PCB-contaminated soil for enhanced biodegradation of PCB-77. Selective enrichment resulted in the isolation of 33 strains of PCB-contaminated soil nearby Bhilai steel plant, Chhattisgarh, India. Based on the prominent growth using biphenyl as the sole carbon source and the confirmation of its degradation by GC-MS/MS analysis, four isolates were selected for further study. The isolates identified by 16S rRNA gene sequencing were Pseudomonas aeruginosa MAPB-2, Pseudomonas plecoglossicida MAPB-6, Brucella anthropi MAPB-9, and Priestia megaterium MAPB-27. The isolate MAPB-9 showed a degradation of 66.15% biphenyl, while MAPB-2, MAPB-6, and MAPB-27 showed a degradation of 62.06, 57.02, and 56.55%, respectively in 48 h. Additionally, the degradation ability of these strains was enhanced with addition of co-metabolite glucose (0.2%) in the culture medium. Addition of glucose showed 100% degradation of biphenyl by MAPB-9, in 48 h, while MAPB-6, MAPB-2, and MAPB-27 showed 97.1, 67.5, and 53.3% degradation, respectively as analyzed by GC-MS/MS. Furthermore, in the presence of inducer, PCB-77 was found to be 59.89, 30.49, 27.19, and 4.43% degraded by MAPB-6, MAPB-9, MAPB-2, and MAPB-27, respectively in 7 d. The production of biosurfactants that aid in biodegradation process were observed in all the isolates. This was confirmed by ATR-FTIR analysis that showed the presence of major functional groups (CH2, CH3, CH, = CH2, C–O–C, C-O) of the biosurfactant. The biosurfactants were further identified by HPTLC and GC-MS/MS analysis. Present study is the first to report PCB-77 degradation potential of Pseudomonas aeruginosa, B. anthropi, Pseudomonas plecoglossicida, and Priestia megaterium. Similarly, this is the first report on Pseudomonas plecoglossicida and Priestia megaterium for PCB biodegradation. Our results suggest that the above isolates can be used for the biodegradation of biphenyl and PCB-77 in PCB-contaminated soil.
Collapse
Affiliation(s)
- Monika Sandhu
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Atish T. Paul
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - José Manuel Pérez de la Lastra
- Biotecnología de Macromoléculas, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Spain
- José Manuel Pérez de la Lastra,
| | - Prabhat N. Jha
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
- *Correspondence: Prabhat N. Jha,
| |
Collapse
|
150
|
Whitman WB, Chuvochina M, Hedlund BP, Hugenholtz P, Konstantinidis KT, Murray AE, Palmer M, Parks DH, Probst AJ, Reysenbach AL, Rodriguez-R LM, Rossello-Mora R, Sutcliffe I, Venter SN. Development of the SeqCode: A proposed nomenclatural code for uncultivated prokaryotes with DNA sequences as type. Syst Appl Microbiol 2022; 45:126305. [PMID: 36049255 PMCID: PMC9489671 DOI: 10.1016/j.syapm.2022.126305] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/15/2022]
Abstract
Over the last fifteen years, genomics has become fully integrated into prokaryotic systematics. The genomes of most type strains have been sequenced, genome sequence similarity is widely used for delineation of species, and phylogenomic methods are commonly used for classification of higher taxonomic ranks. Additionally, environmental genomics has revealed a vast diversity of as-yet-uncultivated taxa. In response to these developments, a new code of nomenclature, the Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode), has been developed over the last two years to allow naming of Archaea and Bacteria using DNA sequences as the nomenclatural types. The SeqCode also allows naming of cultured organisms, including fastidious prokaryotes that cannot be deposited into culture collections. Several simplifications relative to the International Code of Nomenclature of Prokaryotes (ICNP) are implemented to make nomenclature more accessible, easier to apply and more readily communicated. By simplifying nomenclature with the goal of a unified classification, inclusive of both cultured and uncultured taxa, the SeqCode will facilitate the naming of taxa in every biome on Earth, encourage the isolation and characterization of as-yet-uncultivated taxa, and promote synergies between the ecological, environmental, physiological, biochemical, and molecular biological disciplines to more fully describe prokaryotes.
Collapse
Affiliation(s)
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Australia
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Australia
| | | | - Alison E Murray
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, USA
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - Donovan H Parks
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Australia
| | - Alexander J Probst
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology and Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | | | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innrain 15 / 01-05, Innsbruck 6020, Austria
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Diversity, Mediterranean Institute of Advanced Studies (CSIC-UIB), Esporles, Illes Balears, Spain
| | - Iain Sutcliffe
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|