101
|
Zhu LY, Wu XY, Liu XD, Zheng DF, Li HS, Yang B, Zhang J, Chang Q. Aggressive Medulloblastoma-Derived Exosomal miRNAs Promote In Vitro Invasion and Migration of Tumor Cells Via Ras/MAPK Pathway. J Neuropathol Exp Neurol 2020; 79:734-745. [PMID: 32417918 DOI: 10.1093/jnen/nlaa041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/06/2020] [Accepted: 04/23/2020] [Indexed: 11/12/2022] Open
Abstract
Medulloblastomas (MBs) are currently divided into 4 molecular subgroups: WNT, SHH, Group 3, and Group 4. Among them, Group 3 MB has the worst prognosis, and 40%-50% of Group 3 cases are already metastatic at the time of diagnosis. Emerging evidence indicates that exosomes drive tumor invasion, but very little is known about exosomes in MBs. In this study, we initially discovered that exosomes isolated from Group 3 MB cell lines altered in vitro behaviors of a less invasive SHH MB cell line and yielded a much more aggressive phenotype. RNA-sequencing analysis revealed 7 exosomal miRNAs with markedly different expression levels between the SHH and Group 3 MB cell lines. They were all predicted to be related to the Ras/MAPK pathway according to the Kyoto Encyclopedia of Genes and Genomes data analysis. Increased expression of miR-181a-5p, miR-125b-5p, and let-7b-5p was further confirmed in Group 3 MB cells with real-time PCR and was shown to increase in vitro invasion and migratory abilities of tumor cells through the activation of ERK in Ras/MAPK pathway. Collectively, our findings suggest that exosomal miRNAs have a critical role in MB progression in vitro and might serve as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Liang-Yi Zhu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center
| | - Xiao-Yu Wu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center
| | - Xiao-Dan Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center.,Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center
| | - Dan-Feng Zheng
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center.,Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center
| | - Hai-Shuang Li
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center
| | - Bao Yang
- Department of Neuro-surgery, Tiantan Hospital, Capital University of Medical Science (BY), Beijing, China
| | - Jing Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center.,Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center.,Department of Pathology, University of Washington, Seattle, Washington
| | - Qing Chang
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center.,Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center
| |
Collapse
|
102
|
Elangovan S, Gajendrareddy P, Ravindran S, Salem AK. Emerging local delivery strategies to enhance bone regeneration. ACTA ACUST UNITED AC 2020; 15:062001. [PMID: 32647095 PMCID: PMC10148649 DOI: 10.1088/1748-605x/aba446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In orthopedics and dentistry there is an increasing need for novel biomaterials and clinical strategies to achieve predictable bone regeneration. These novel molecular strategies have the potential to eliminate the limitations of currently available approaches. Specifically, they have the potential to reduce or eliminate the need to harvest autogenous bone, and the overall complexity of the clinical procedures. In this review, emerging tissue engineering strategies that have been, or are currently being, developed based on the current understanding of bone biology, development and wound healing will be discussed. In particular, protein/peptide based approaches, DNA/RNA therapeutics, cell therapy, and the use of exosomes will be briefly covered. The review ends with a summary of the current status of these approaches, their clinical translational potentials and their challenges.
Collapse
Affiliation(s)
- Satheesh Elangovan
- Department of Periodontics, The University of Iowa College of Dentistry, Iowa City, IA 52242, United States of America
| | | | | | | |
Collapse
|
103
|
Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration. Biomaterials 2020; 269:120539. [PMID: 33243424 DOI: 10.1016/j.biomaterials.2020.120539] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Transplantation of synovial fluid-derived mesenchymal stem cells (SF-MSCs) is a viable therapy for cartilage degeneration of osteoarthritis (OA). But controlling chondrogenic differentiation of the transplanted SF-MSCs in the joints remains a challenge. Kartogenin (KGN) is a small molecule that has been discovered to induce differentiation of SF-MSCs to chondrocytes both in vitro and in vivo. The clinical application of KGN however is limited by its low water solubility. KGN forms precipitates in the cell, resulting in low effective concentration and thus limiting its chondrogesis-promoting activity. Here we report that targeted delivery of KGN to SF-MSCs by engineered exosomes leads to even dispersion of KGN in the cytosol, increases its effective concentration in the cell, and strongly promotes the chondrogenesis of SF-MSCs in vitro and in vivo. Fusing an MSC-binding peptide E7 with the exosomal membrane protein Lamp 2b yields exosomes with E7 peptide displayed on the surface (E7-Exo) that has SF-MSC targeting capability. KGN delivered by E7-Exo efficiently enters SF-MSCs and induces higher degree of cartilage differentiation than KGN alone or KGN delivered by exosomes without E7. Co-administration of SF-MSCs with E7-Exo/KGN in the knee joints via intra-articular injection also shows more pronounced therapeutic effects in a rat OA model than KGN alone or KGN delivered by exosomes without E7. Altogether, transplantation of SF-MSCs with in situ chondrogenesis enabled by E7-Exo delivered KGN holds promise towards as an advanced stem cell therapy for OA.
Collapse
|
104
|
Li L, Wang Y, Yu X, Bao Y, An L, Wei X, Yu W, Liu B, Li J, Yang J, Xia Y, Liu G, Cao F, Zhang X, Zhao D. Bone marrow mesenchymal stem cell-derived exosomes promote plasminogen activator inhibitor 1 expression in vascular cells in the local microenvironment during rabbit osteonecrosis of the femoral head. Stem Cell Res Ther 2020; 11:480. [PMID: 33176873 PMCID: PMC7656701 DOI: 10.1186/s13287-020-01991-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Nontraumatic osteonecrosis of the femoral head (NONFH) is a highly disabling orthopedic disease in young individuals. Plasminogen activator inhibitor 1 (PAI-1) has been reported to be positively associated with NONFH. We aimed to investigate the dysregulating PAI-1 in bone marrow mesenchymal stem cells (BMMSCs) and vascular cells in rabbit steroid-induced NONFH. Methods To verify the hypothesis that BMMSCs could promote thrombus formation in a paracrine manner, we collected exosomes from glucocorticoid-treated BMMSCs (GB-Exo) to determine their regulatory effects on vascular cells. microRNA sequencing was conducted to find potential regulators in GB-Exo. Utilizing gain-of-function and knockdown approaches, we testified the regulatory effect of microRNA in exosomes. Results The expression of PAI-1 was significantly increased in the local microenvironment of the femoral head in the ONFH model. GB-Exo promoted PAI-1 expression in vascular smooth muscle cells and vascular endothelial cells. We also revealed that miR-451-5p in GB-Exo plays a crucial role for the elevated PAI-1. Moreover, we identified miR-133b-3p and tested its role as a potential inhibitor of PAI-1. Conclusions This study provided considerable evidence for BMMSC exosomal miR-mediated upregulation of the fibrinolytic regulator PAI-1 in vascular cells. The disruption of coagulation and low fibrinolysis in the femoral head will eventually lead to a disturbance in the microcirculation of NONFH. We believe that our findings could be of great significance for guiding clinical trials in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-01991-2.
Collapse
Affiliation(s)
- Lu Li
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China.,Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Yikai Wang
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China.,Medical College of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Xiaobing Yu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Lijia An
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Xiaowei Wei
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Weiting Yu
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Baoyi Liu
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China.,Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Junlei Li
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Jiahui Yang
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Yan Xia
- Department of Pathology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Ge Liu
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Fang Cao
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Xiuzhi Zhang
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Dewei Zhao
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China. .,Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China.
| |
Collapse
|
105
|
Potential Therapeutic Effects of Exosomes in Regenerative Endodontics. Arch Oral Biol 2020; 120:104946. [PMID: 33129129 DOI: 10.1016/j.archoralbio.2020.104946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 10/04/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This review aims to describe the basic characteristics of exosomes, and summarize their possible source and potential biological effects in pulp regeneration, providing new insights into the therapeutic role of exosomes for regenerative endodontics in the future. DESIGN A comprehensive review of scientific literature related to exosomes potentially used for pulp regeneration was conducted. RESULTS Dental mesenchymal stem cells (MSCs) play an important role in dental pulp regeneration. MSC-derived exosomes, as important biotransmitters in intercellular communication, have been shown to replicate the therapeutic effects of their parental cells. These exosomes have better stability, lower immunogenicity, higher safety and clinical efficiency, making it possible to apply them in pulp regeneration. Existing research suggests that exosomes could trigger the regeneration of dentin/pulp-like tissue in vivo, which may attribute to their role in promoting pulp angiogenesis, regulating dental cell proliferation, migration and differentiation, and providing neuroprotection. CONCLUSIONS The applications of exosomes in the treatment of pulp regeneration have great potential, and exosomes may become ideal therapeutic biomaterial in regenerative endodontics.
Collapse
|
106
|
Asgarpour K, Shojaei Z, Amiri F, Ai J, Mahjoubin-Tehran M, Ghasemi F, ArefNezhad R, Hamblin MR, Mirzaei H. Exosomal microRNAs derived from mesenchymal stem cells: cell-to-cell messages. Cell Commun Signal 2020; 18:149. [PMID: 32917227 PMCID: PMC7488404 DOI: 10.1186/s12964-020-00650-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Exosomes are extracellular vesicles characterized by their size, source, release mechanism and contents. MicroRNAs (miRNAs) are single stranded non-coding RNAs transcribed from DNA. Exosomes and miRNAs are widespread in eukaryotic cells, especially in mesenchymal stem cells (MSCs). MSCs are used for tissue regeneration, and also exert paracrine, anti-inflammatory and immunomodulatory effects. However, the use of MSCs is controversial, especially in the presence or after the remission of a tumor, due to their secretion of growth factors and their migration ability. Instead of intact MSCs, MSC-derived compartments or substances could be used as practical tools for diagnosis, follow up, management and monitoring of diseases. Herein, we discuss some aspects of exosomal miRNAs derived from MSCs in the progression, diagnosis and treatment of various diseases. Video Abstract.
Collapse
Affiliation(s)
- Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Zahra Shojaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amiri
- School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine (SATM), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Reza ArefNezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran.
| |
Collapse
|
107
|
Taghavi-Farahabadi M, Mahmoudi M, Mahdaviani SA, Baghaei K, Rayzan E, Hashemi SM, Rezaei N. Improving the function of neutrophils from chronic granulomatous disease patients using mesenchymal stem cells' exosomes. Hum Immunol 2020; 81:614-624. [PMID: 32891471 DOI: 10.1016/j.humimm.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/10/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
In chronic granulomatous disease (CGD) patients, reactive oxygen species (ROS) production by neutrophils is impaired. So, they are susceptible to infections. Studies showed that, mesenchymal stem cells (MSCs) have protective effects on the function of neutrophils and an approach that MSCs use to apply their effects, is secreting soluble factors and exosomes. So, we investigated the effects of MSC-exosomes and MSC-conditioned media (MSC-CM) on the function and apoptosis of neutrophils in CGD patients. In this study, neutrophils were isolated from healthy donors and CGD patients and then incubated with exosomes or CM that were prepared from MSCs. Then, neutrophil respiratory burst, apoptosis and phagocytosis capacity were evaluated by NBT assay, Annexin V-PI method and Giemsa staining. It was demonstrated that both MSC-exosomes and CM could improve the phagocytosis capacity and ROS production of neutrophils in CGD patients and healthy donors. In contrast to the healthy group, in CGD patients, exosomes significantly reduced the percentage of viable neutrophils. This report indicated that MSC exosomes and CM could increase the function of the neutrophils isolated from CGD patients. But decreasing the number of the living cells is one of the limitations of them. However, it is hoped that this intervention will be developed in future studies to minimize its limitations.
Collapse
Affiliation(s)
- Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorder Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics Experts, Universal Scientific Education and Research Network, Tehran University of Medical Sciences, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
108
|
Huang P, Wang L, Li Q, Tian X, Xu J, Xu J, Xiong Y, Chen G, Qian H, Jin C, Yu Y, Cheng K, Qian L, Yang Y. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res 2020; 116:353-367. [PMID: 31119268 DOI: 10.1093/cvr/cvz139] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS Naturally secreted nanovesicles, known as exosomes, play important roles in stem cell-mediated cardioprotection. We have previously demonstrated that atorvastatin (ATV) pretreatment improved the cardioprotective effects of mesenchymal stem cells (MSCs) in a rat model of acute myocardial infarction (AMI). The aim of this study was to investigate if exosomes derived from ATV-pretreated MSCs exhibit more potent cardioprotective function in a rat model of AMI and if so to explore the underlying mechanisms. METHODS AND RESULTS Exosomes were isolated from control MSCs (MSC-Exo) and ATV-pretreated MSCs (MSCATV-Exo) and were then delivered to endothelial cells and cardiomyocytes in vitro under hypoxia and serum deprivation (H/SD) condition or in vivo in an acutely infarcted Sprague-Dawley rat heart. Regulatory genes and pathways activated by ATV pretreatment were explored using genomics approaches and functional studies. In vitro, MSCATV-Exo accelerated migration, tube-like structure formation, and increased survival of endothelial cells but not cardiomyocytes, whereas the exosomes derived from MSCATV-Exo-treated endothelial cells prevented cardiomyocytes from H/SD-induced apoptosis. In a rat AMI model, MSCATV-Exo resulted in improved recovery in cardiac function, further reduction in infarct size and reduced cardiomyocyte apoptosis compared to MSC-Exo. In addition, MSCATV-Exo promoted angiogenesis and inhibited the elevation of IL-6 and TNF-α in the peri-infarct region. Mechanistically, we identified lncRNA H19 as a mediator of the role of MSCATV-Exo in regulating expression of miR-675 and activation of proangiogenic factor VEGF and intercellular adhesion molecule-1. Consistently, the cardioprotective effects of MSCATV-Exo was abrogated when lncRNA H19 was depleted in the ATV-pretreated MSCs and was mimicked by overexpression of lncRNA H19. CONCLUSION Exosomes obtained from ATV-pretreated MSCs have significantly enhanced therapeutic efficacy for treatment of AMI possibly through promoting endothelial cell function. LncRNA H19 mediates, at least partially, the cardioprotective roles of MSCATV-Exo in promoting angiogenesis.
Collapse
Affiliation(s)
- Peisen Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China.,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qing Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Xiaqiu Tian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Jun Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Junyan Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Yuyan Xiong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Guihao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Haiyan Qian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Chen Jin
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Yuan Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Ke Cheng
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill and Raleigh, NC 27599, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| |
Collapse
|
109
|
Ma ZJ, Yang JJ, Lu YB, Liu ZY, Wang XX. Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World J Stem Cells 2020; 12:814-840. [PMID: 32952861 PMCID: PMC7477653 DOI: 10.4252/wjsc.v12.i8.814] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/23/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with marked potential for regenerative medicine because of their strong immunosuppressive and regenerative abilities. The therapeutic effects of MSCs are based in part on their secretion of biologically active factors in extracellular vesicles known as exosomes. Exosomes have a diameter of 30-100 nm and mediate intercellular communication and material exchange. MSC-derived exosomes (MSC-Exos) have potential for cell-free therapy for diseases of, for instance, the kidney, liver, heart, nervous system, and musculoskeletal system. Hence, MSC-Exos are an alternative to MSC-based therapy for regenerative medicine. We review MSC-Exos and their therapeutic potential for a variety of diseases and injuries.
Collapse
Affiliation(s)
- Zhan-Jun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Jing-Jing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yu-Bao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Zhao-Yang Liu
- Department of Medical Imaging, Shanxi Medical University, Jinzhong 030600, Shaanxi Province, China
| | - Xue-Xi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
110
|
Vikartovska Z, Kuricova M, Farbakova J, Liptak T, Mudronova D, Humenik F, Madari A, Maloveska M, Sykova E, Cizkova D. Stem Cell Conditioned Medium Treatment for Canine Spinal Cord Injury: Pilot Feasibility Study. Int J Mol Sci 2020; 21:ijms21145129. [PMID: 32698543 PMCID: PMC7404210 DOI: 10.3390/ijms21145129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) involves nerve damage and often leads to motor, sensory and autonomic dysfunctions. In the present study, we have designed a clinical protocol to assess the feasibility of systemic delivery of allogenic canine bone marrow tissue-derived mesenchymal stem cell conditioned medium (BMMSC CM) to dogs with SCI. Four client-owned dogs with chronic SCI lasting more than six months underwent neurological and clinical evaluation, MRI imaging and blood tests before being enrolled in this study. All dogs received four intravenous infusions with canine allogenic BMMSC CM within one month. Between the infusions the dogs received comprehensive physiotherapy, which continued for three additional months. No adverse effects or complications were observed during the one, three and six months follow-up periods. Neither blood chemistry panel nor hematology profile showed any significant changes. All dogs were clinically improved as assessed using Olby locomotor scales after one, three and six months of BMMSC CM treatment. Furthermore, goniometric measurements revealed partial improvement in the range of joint motion. Bladder function improved in two disabled dogs. We conclude that multiple delivery of allogenic cell-derived conditioned medium to dogs with chronic SCI is feasible, and it might be clinically beneficial in combination with physiotherapy.
Collapse
Affiliation(s)
- Zuzana Vikartovska
- Center of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (Z.V.); (F.H.); (M.M.)
- University Veterinary Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (M.K.); (J.F.); (T.L.); (A.M.)
| | - Maria Kuricova
- University Veterinary Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (M.K.); (J.F.); (T.L.); (A.M.)
| | - Jana Farbakova
- University Veterinary Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (M.K.); (J.F.); (T.L.); (A.M.)
| | - Tomas Liptak
- University Veterinary Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (M.K.); (J.F.); (T.L.); (A.M.)
| | - Dagmar Mudronova
- Department of Microbiology and Immunology, Institute of Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia;
| | - Filip Humenik
- Center of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (Z.V.); (F.H.); (M.M.)
| | - Aladar Madari
- University Veterinary Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (M.K.); (J.F.); (T.L.); (A.M.)
| | - Marcela Maloveska
- Center of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (Z.V.); (F.H.); (M.M.)
| | - Eva Sykova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia;
| | - Dasa Cizkova
- Center of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia; (Z.V.); (F.H.); (M.M.)
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia;
- Correspondence:
| |
Collapse
|
111
|
Faruqu FN, Zhou S, Sami N, Gheidari F, Lu H, Al‐Jamal KT. Three-dimensional culture of dental pulp pluripotent-like stem cells (DPPSCs) enhances Nanog expression and provides a serum-free condition for exosome isolation. FASEB Bioadv 2020; 2:419-433. [PMID: 32676582 PMCID: PMC7354694 DOI: 10.1096/fba.2020-00025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
Stem cell-derived exosomes have been identified as novel cell-free therapeutics for regenerative medicine. Three-dimensional (3D) culture of stem cells were reported to improve their "stemness" and therapeutic efficacy. This work focused on establishing serum-free 3D culture of dental pulp pluripotent-like stem cells (DPPSCs)-a newly characterized pluripotent-like stem cell for exosome production. DPPSCs were expanded in regular 2D culture in human serum-supplemented (HS)-medium and transferred to a micropatterned culture plate for 3D culture in HS-medium (default) and medium supplemented with KnockOut™ serum replacement (KO-medium). Bright-field microscopy observation throughout the culture period (24 days) revealed that DPPSCs in KO-medium formed spheroids of similar morphology and size to that in HS-medium. qRT-PCR analysis showed similar Oct4A gene expression in DPPSC spheroids in both HS-medium and KO-medium, but Nanog expression significantly increased in the latter. Vesicles isolated from DPPSC spheroids in KO-medium in the first 12 days of culture showed sizes that fall within the exosomal size range by nanoparticle tracking analysis (NTA) and express the canonical exosomal markers. It is concluded that 3D culture of DPPSCs in KO-medium provided an optimal serum-free condition for successful isolation of DPPSC-derived exosomes for subsequent applications in regenerative medicine.
Collapse
Affiliation(s)
- Farid N. Faruqu
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| | - Shuai Zhou
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| | - Noor Sami
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| | - Fatemeh Gheidari
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| | - Han Lu
- Genomics CentreKing’s College LondonLondonUK
| | | |
Collapse
|
112
|
Zhang J, Cui X, Guo J, Cao C, Zhang Z, Wang B, Zhang L, Shen D, Lim K, Woodfield T, Tang J, Zhang J. Small but significant: Insights and new perspectives of exosomes in cardiovascular disease. J Cell Mol Med 2020; 24:8291-8303. [PMID: 32578938 PMCID: PMC7412413 DOI: 10.1111/jcmm.15492] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/17/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a major health problem worldwide, and health professionals are still actively seeking new and effective approaches for CVDs treatment. Presently, extracellular vesicles, particularly exosomes, have gained its popularity for CVDs treatment because of their function as messengers for inter- and extra-cellular communications to promote cellular functions in cardiovascular system. However, as a newly developed field, researchers are still trying to fully understand the role of exosomes, and their mechanism in mediating cardiac repair process. Therefore, a comprehensive review of this topic can be timely and favourable. In this review, we summarized the basic biogenesis and characterization of exosomes and then further extended the focus on the circulating exosomes in cellular communication and stem cell-derived exosomes in cardiac disease treatment. In addition, we covered interactions between the heart and other organs through exosomes, leading to the diagnostic characteristics of exosomes in CVDs. Future perspectives and limitations of exosomes in CVDs were also discussed with a special focus on exploring the potential delivery routes, targeting the injured tissue and engineering novel exosomes, as well as its potential as one novel target in the metabolism-related puzzle.
Collapse
Affiliation(s)
- Jianchao Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Xiaolin Cui
- Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand.,Medical Technologies Center of Research Excellence, Christchurch, New Zealand
| | - Jiacheng Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Chang Cao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Zenglei Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Bo Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Deliang Shen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Khoon Lim
- Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand.,Medical Technologies Center of Research Excellence, Christchurch, New Zealand
| | - Tim Woodfield
- Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand.,Medical Technologies Center of Research Excellence, Christchurch, New Zealand
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| |
Collapse
|
113
|
Exosomes Derived from Stem Cells from the Apical Papilla Promote Dentine-Pulp Complex Regeneration by Inducing Specific Dentinogenesis. Stem Cells Int 2020; 2020:5816723. [PMID: 32565828 PMCID: PMC7273441 DOI: 10.1155/2020/5816723] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/26/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
Regenerative endodontic procedures (REPs) are a new option for the treatment of dental pulp or periapical diseases in permanent teeth with open apices. Histologically, the new tissues formed in the root canal after REPs are mainly cementum- or bone-like mineralised tissues, but not the real dentine-pulp complex. Therefore, how to promote dentine-pulp complex regeneration and improve the clinical effects of REPs has become a prominent research topic. Stem cells from apical papilla (SCAP) are derived from the dental papilla that can differentiate into primary odontoblasts and dental pulp cells that produce root dentine and dental pulp. Exosomes are the key regulator for the paracrine activity of stem cells and can influence the function of recipient cells. In this study, SCAP-derived exosomes (SCAP-Exo) were introduced into the root fragment containing bone marrow mesenchymal stem cells (BMMSCs) and transplanted subcutaneously into immunodeficient mice. We observed that dental pulp-like tissues were present and the newly formed dentine was deposited onto the existing dentine in the root canal. Afterwards, the effects of SCAP-Exo on the dentinogenesis of BMMSCs were elucidated in vitro. We found that the gene and protein expression of dentine sialophosphoprotein and mineralised nodule formation in BMMSCs treated with SCAP-Exo were significantly increased. In summary, SCAP-Exo were endocytosed by BMMSCs and obviously improved their specific dentinogenesis. The use of exosomes derived from dental stem cells could comprise a potential therapeutic approach for dentine-pulp complex regeneration in REPs.
Collapse
|
114
|
Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Attenuate LPS-Induced ARDS by Modulating Macrophage Polarization Through Inhibiting Glycolysis in Macrophages. Shock 2020; 54:828-843. [PMID: 32433208 DOI: 10.1097/shk.0000000000001549] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages play a key role in the development of sepsis-induced acute respiratory distress syndrome (ARDS). Recent evidence has proved that glycolysis plays an important role in regulating macrophage polarization through metabolic reprogramming. Bone marrow mesenchymal stem cells (BMSCs) can alleviate sepsis-induced lung injury and possess potent immunomodulatory and immunosuppressive properties via secreting exosomes. However, it is unknown whether BMSCs-derived exosomes exert their therapeutic effect against sepsis-induced lung injury by inhibiting glycolysis in macrophages. Therefore, the present study aimed to evaluate the anti-inflammatory effects of exosomes released from BMSCs on acute lung injury induced by lipopolysaccharide (LPS) in mice and explored the possible underlying mechanisms in vitro and in vivo. We found that BMSCs inhibited M1 polarization and promoted M2 polarization in MH-S cells (a murine alveolar macrophage cell line) by releasing exosomes. Further experiments showed that exosomes secreted by BMSCs modulated LPS-treated MH-S cells polarization by inhibiting cellular glycolysis. Moreover, our results showed that BMSCs-derived exosomes down-regulated the expression of several essential proteins of glycolysis via inhibition of hypoxia-inducible factor 1 (HIF-1)α. Finally, a model of LPS-induced ARDS in mice was established, we found that BMSCs-derived exosomes ameliorated the LPS-induced inflammation and lung pathological damage. Meanwhile, we found that intratracheal delivery of BMSCs-derived exosomes effectively down-regulated LPS-induced glycolysis in mice lung tissue. These findings reveal new mechanisms of BMSCs-derived exosomes in regulating macrophage polarization which may provide novel strategies for the prevention and treatment of LPS-induced ARDS.
Collapse
|
115
|
Chen YR, Yan X, Yuan FZ, Ye J, Xu BB, Zhou ZX, Mao ZM, Guan J, Song YF, Sun ZW, Wang XJ, Chen ZY, Wang DY, Fan BS, Yang M, Song ST, Jiang D, Yu JK. The Use of Peripheral Blood-Derived Stem Cells for Cartilage Repair and Regeneration In Vivo: A Review. Front Pharmacol 2020; 11:404. [PMID: 32308625 PMCID: PMC7145972 DOI: 10.3389/fphar.2020.00404] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background Peripheral blood (PB) is a potential source of chondrogenic progenitor cells that can be used for cartilage repair and regeneration. However, the cell types, isolation and implantation methods, seeding dosage, ultimate therapeutic effect, and in vivo safety remain unclear. Methods PubMed, Embase, and the Web of Science databases were systematically searched for relevant reports published from January 1990 to December 2019. Original articles that used PB as a source of stem cells to repair cartilage in vivo were selected for analysis. Results A total of 18 studies were included. Eight human studies used autologous nonculture-expanded PB-derived stem cells (PBSCs) as seed cells with the blood cell separation isolation method, and 10 animal studies used autologous, allogenic or xenogeneic culture-expanded PB-derived mesenchymal stem cells (PB-MSCs), or nonculture-expanded PBSCs as seed cells. Four human and three animal studies surgically implanted cells, while the remaining studies implanted cells by single or repeated intra-articular injections. 121 of 130 patients (in 8 human clinical studies), and 230 of 278 animals (in 6 veterinary clinical studies) using PBSCs for cartilage repair achieved significant clinical improvement. All reviewed articles indicated that using PB as a source of seed cells enhances cartilage repair in vivo without serious adverse events. Conclusion Autologous nonculture-expanded PBSCs are currently the most commonly used cells among all stem cell types derived from PB. Allogeneic, autologous, and xenogeneic PB-MSCs are more widely used in animal studies and are potential seed cell types for future applications. Improving the mobilization and purification technology, and shortening the culture cycle of culture-expanded PB-MSCs will obviously promote the researchers' interest. The use of PBSCs for cartilage repair and regeneration in vivo are safe. PBSCs considerably warrant further investigations due to their superiority and safety in clinical settings and positive effects despite limited evidence in humans.
Collapse
Affiliation(s)
- You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Xin Yan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Fu-Zhen Yuan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Ye
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Bing-Bing Xu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Zhu-Xing Zhou
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Zi-Mu Mao
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jian Guan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yi-Fan Song
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Ze-Wen Sun
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xin-Jie Wang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Ze-Yi Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Ding-Yu Wang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Bao-Shi Fan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Meng Yang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Shi-Tang Song
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Dong Jiang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
116
|
Balistreri CR, De Falco E, Bordin A, Maslova O, Koliada A, Vaiserman A. Stem cell therapy: old challenges and new solutions. Mol Biol Rep 2020; 47:3117-3131. [PMID: 32128709 DOI: 10.1007/s11033-020-05353-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Stem cell therapy (SCT), born as therapeutic revolution to replace pharmacological treatments, remains a hope and not yet an effective solution. Accordingly, stem cells cannot be conceivable as a "canonical" drug, because of their unique biological properties. A new reorientation in this field is emerging, based on a better understanding of stem cell biology and use of cutting-edge technologies and innovative disciplines. This will permit to solve the gaps, failures, and long-term needs, such as the retention, survival and integration of stem cells, by employing pharmacology, genetic manipulation, biological or material incorporation. Consequently, the clinical applicability of SCT for chronic human diseases will be extended, as well as its effectiveness and success, leading to long-awaited medical revolution. Here, some of these aspects are summarized, reviewing and discussing recent advances in this rapidly developing research field.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Antonella Bordin
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Olga Maslova
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
117
|
Casado-Díaz A, Quesada-Gómez JM, Dorado G. Extracellular Vesicles Derived From Mesenchymal Stem Cells (MSC) in Regenerative Medicine: Applications in Skin Wound Healing. Front Bioeng Biotechnol 2020; 8:146. [PMID: 32195233 PMCID: PMC7062641 DOI: 10.3389/fbioe.2020.00146] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
The cells secrete extracellular vesicles (EV) that may have an endosomal origin, or from evaginations of the plasma membrane. The former are usually called exosomes, with sizes ranging from 50 to 100 nm. These EV contain a lipid bilayer associated to membrane proteins. Molecules such as nucleic acids (DNA, mRNA, miRNA, lncRNA, etc.) and proteins may be stored inside. The EV composition depends on the producer cell type and its physiological conditions. Through them, the cells modify their microenvironment and the behavior of neighboring cells. That is accomplished by transferring factors that modulate different metabolic and signaling pathways. Due to their properties, EV can be applied as a diagnostic and therapeutic tool in medicine. The mesenchymal stromal cells (MSC) have immunomodulatory properties and a high regenerative capacity. These features are linked to their paracrine activity and EV secretion. Therefore, research on exosomes produced by MSC has been intensified for use in cell-free regenerative medicine. In this area, the use of EV for the treatment of chronic skin ulcers (CSU) has been proposed. Such sores occur when normal healing does not resolve properly. That is usually due to excessive prolongation of the inflammatory phase. These ulcers are associated with aging and diseases, such as diabetes, so their prevalence is increasing with the one of such latter disease, mainly in developed countries. This has very important socio-economic repercussions. In this review, we show that the application of MSC-derived EV for the treatment of CSU has positive effects, including accelerating healing and decreasing scar formation. This is because the EV have immunosuppressive and immunomodulatory properties. Likewise, they have the ability to activate the angiogenesis, proliferation, migration, and differentiation of the main cell types involved in skin regeneration. They include endothelial cells, fibroblasts, and keratinocytes. Most of the studies carried out so far are preclinical. Therefore, there is a need to advance more in the knowledge about the conditions of production, isolation, and action mechanisms of EV. Interestingly, their potential application in the treatment of CSU opens the door for the design of new highly effective therapeutic strategies.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Gabriel Dorado
- Dep. de Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, Córdoba, Spain
| |
Collapse
|
118
|
Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN. J Transl Med 2020; 100:342-352. [PMID: 31537899 DOI: 10.1038/s41374-019-0321-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Chemotherapy-induced premature ovarian failure (POF) in women is currently clinically irreversible. Bone marrow mesenchymal stem cells (BMSCs) are a promising cellular therapeutic strategy for POF. However, the underlying mechanism governing the efficacy of BMSCs in treating POF has not been determined. In this study, we show that BMSC and BMSC-derived exosome transplantation can significantly recover the estrus cycle, increase the number of basal and sinus follicles in POF rats, increase estradiol (E2) and anti-Mullerian hormone (AMH) levels, and reduce follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels in the serum. Furthermore, we demonstrate that BMSC-derived exosomes prevent ovarian follicular atresia in cyclophosphamide (CTX)-treated rats via the delivery of miR-144-5p, which can be transferred to cocultured CTX-damaged granulosa cells (GCs) to decrease GC apoptosis. A functional assay revealed that overexpression of miR-144-5p in BMSCs showed efficacy against CTX-induced POF, and the improvement in the repair was related to the inhibition of GC apoptosis by targeting PTEN. The opposite effect was exhibited when miR-144-5p was inhibited. Taken together, our experimental results provide new information regarding the potential of using exosomal miR-144-5p to treat ovarian failure.
Collapse
|
119
|
Shen T, Zheng Q, Luo H, Li X, Chen Z, Song Z, Zhou G, Hong C. Exosomal miR-19a from adipose-derived stem cells suppresses differentiation of corneal keratocytes into myofibroblasts. Aging (Albany NY) 2020; 12:4093-4110. [PMID: 32112551 PMCID: PMC7093196 DOI: 10.18632/aging.102802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/19/2020] [Indexed: 04/11/2023]
Abstract
In this study, we investigated the effects of exosomal microRNAs (miRNAs) from adipose-derived stem cells (ADSCs) on the differentiation of rabbit corneal keratocytes. Keratocytes grown in 10% FBS differentiated into myofibroblasts by increasing HIPK2 kinase levels and activity. HIPK2 enhanced p53 and Smad3 pathways in FBS-induced keratocytes. Keratocytes grown in 10% FBS also showed increased levels of pro-fibrotic proteins, including collagen III, MMP9, fibronectin, and α-SMA. These effects were reversed by knocking down HIPK2. Moreover, ADSCs and exosomes derived from ADSCs (ADSCs-Exo) suppressed FBS-induced differentiation of keratocytes into myofibroblasts by inhibiting HIPK2. Quantitative RT-PCR analysis showed that ADSCs-Exos were significantly enriched in miRNA-19a as compared to ADSCs. Targetscan and dual luciferase reporter assays confirmed that the HIPK2 3'UTR is a direct binding target of miR-19a. Keratocytes treated with 10% FBS and ADSCs-Exo-miR-19a-agomir or ADSCs-Exo-NC-antagomir showed significantly lower levels of HIPK2, phospho-Smad3, phospho-p53, collagen III, MMP9, fibronectin and α-SMA than those treated with 10% FBS plus ADSCs-Exo-NC-agomir or ADSCs-Exo-miR-19a-antagomir. Thus, exosomal miR-19a derived from the ADSCs suppresses FBS-induced differentiation of rabbit corneal keratocytes into myofibroblasts by inhibiting HIPK2 expression. This suggests their potential use in the treatment of corneal fibrosis.
Collapse
Affiliation(s)
- Ting Shen
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital and People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P. R. China
| | - Qingqing Zheng
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital and People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P. R. China
| | - Hongbo Luo
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital and People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P. R. China
| | - Xin Li
- Wenzhou School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Zhuo Chen
- Bengbu Medical College, Bengbu 233030, Anhui, P. R. China
| | - Zeyu Song
- Wenzhou School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Guanfang Zhou
- Bengbu Medical College, Bengbu 233030, Anhui, P. R. China
| | - Chaoyang Hong
- Wenzhou School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Department of Ophthalmology, Zhejiang Hospital, Hangzhou 310007, Zhejiang, P. R. China
| |
Collapse
|
120
|
Arenaccio C, Chiozzini C, Ferrantelli F, Leone P, Olivetta E, Federico M. Exosomes in Therapy: Engineering, Pharmacokinetics and Future Applications. Curr Drug Targets 2020; 20:87-95. [PMID: 29779478 DOI: 10.2174/1389450119666180521100409] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Eukaryotic cells release vesicles of different sizes under both physiological and pathological conditions. On the basis of the respective biogenesis, extracellular vesicles are classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are considered tools for innovative therapeutic interventions, especially when engineered with effector molecules. The delivery functions of exosomes are favored by a number of typical features. These include their small size (i.e., 50-200 nm), the membrane composition tightly similar to that of producer cells, lack of toxicity, stability in serum as well as other biological fluids, and accession to virtually any organ and tissue including central nervous system. However, a number of unresolved questions still affects the possible use of exosomes in therapy. Among these are the exact identification of both in vitro and ex vivo produced vesicles, their large-scale production and purification, the uploading efficiency of therapeutic macromolecules, and the characterization of their pharmacokinetics. OBJECTIVE Here, we discuss two key aspects to be analyzed before considering exosomes as a tool of delivery for the desired therapeutic molecule, i.e., techniques of engineering, and their in vivo biodistribution/ pharmacokinetics. In addition, an innovative approach aimed at overcoming at least part of the obstacles towards a safe and efficient use of exosomes in therapy will be discussed. CONCLUSION Several biologic features render exosomes an attractive tool for the delivery of therapeutic molecules. They will surely be a part of innovative therapeutic interventions as soon as few still unmet technical hindrances will be overcome.
Collapse
Affiliation(s)
- Claudia Arenaccio
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy
| | - Chiara Chiozzini
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy
| | - Flavia Ferrantelli
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy
| | - Patrizia Leone
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy
| | - Eleonora Olivetta
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy
| | - Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
121
|
Pinho AG, Cibrão JR, Silva NA, Monteiro S, Salgado AJ. Cell Secretome: Basic Insights and Therapeutic Opportunities for CNS Disorders. Pharmaceuticals (Basel) 2020; 13:E31. [PMID: 32093352 PMCID: PMC7169381 DOI: 10.3390/ph13020031] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Transplantation of stem cells, in particular mesenchymal stem cells (MSCs), stands as a promising therapy for trauma, stroke or neurodegenerative conditions such as spinal cord or traumatic brain injuries (SCI or TBI), ischemic stroke (IS), or Parkinson's disease (PD). Over the last few years, cell transplantation-based approaches have started to focus on the use of cell byproducts, with a strong emphasis on cell secretome. Having this in mind, the present review discusses the current state of the art of secretome-based therapy applications in different central nervous system (CNS) pathologies. For this purpose, the following topics are discussed: (1) What are the main cell secretome sources, composition, and associated collection techniques; (2) Possible differences of the therapeutic potential of the protein and vesicular fraction of the secretome; and (3) Impact of the cell secretome on CNS-related problems such as SCI, TBI, IS, and PD. With this, we aim to clarify some of the main questions that currently exist in the field of secretome-based therapies and consequently gain new knowledge that may help in the clinical application of secretome in CNS disorders.
Collapse
Affiliation(s)
- Andreia G. Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Jorge R. Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.G.P.); (J.R.C.); (N.A.S.); (S.M.)
- ICVS/3B’s PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
122
|
El-Mahalaway AM, El-Azab NEE. The potential neuroprotective role of mesenchymal stem cell-derived exosomes in cerebellar cortex lipopolysaccharide-induced neuroinflammation in rats: a histological and immunohistochemical study. Ultrastruct Pathol 2020; 44:159-173. [PMID: 32041457 DOI: 10.1080/01913123.2020.1726547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lipopolysaccharide (LPS) is an endotoxin that prompts neuroinflammation and initiates neurodegenerative disorders. Exosome is a recent therapeutic agent for many diseases such as neurological diseases. This study aimed to evaluate the potential protective role of bone marrow mesenchymal stem cell-derived exosomes (BMSC-EXs) in cerebellar cortex LPS-induced neuroinflammation in rats. Twenty-seven adult male rats were divided into three groups: Group I: control rats; Group II: LPS-treated rats; Group III: LPS/BMSC-EXs-treated rats. Cerebellar specimens were taken and processed for histological and immunohistochemical analysis. Morphometrical studies and statistical analysis were done. Groups II showed neuronal degeneration and apoptosis. The mean number of Purkinje cells was significantly (P<0.01) decreased, while glial fibrillary acidic protein (GFAP) immunoexpression was significantly increased in the neuroglial cells. Ultrastructural examination showed shrunken Purkinje cells with irregular nuclei and disrupted mitochondria. Group III showed improvement of most of the changes mentioned previously. EXs therapy is a promising neuroprotective tool for treatment of LPS-induced neuroinflammation.
Collapse
Affiliation(s)
| | - Nahla El-Eraky El-Azab
- Department of Histology and Cell Biology, Benha Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
123
|
Longoni B, Fasciani I, Kolachalam S, Pietrantoni I, Marampon F, Petragnano F, Aloisi G, Coppolino MF, Rossi M, Scarselli M, Maggio R. Neurotoxic and Neuroprotective Role of Exosomes in Parkinson’s Disease. Curr Pharm Des 2020; 25:4510-4522. [DOI: 10.2174/1381612825666191113103537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023]
Abstract
:Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.
Collapse
Affiliation(s)
- Biancamaria Longoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Ilaria Pietrantoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | | | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Gabriella Aloisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Maria F. Coppolino
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, United Kingdom
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| |
Collapse
|
124
|
Marolt Presen D, Traweger A, Gimona M, Redl H. Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Front Bioeng Biotechnol 2019; 7:352. [PMID: 31828066 PMCID: PMC6890555 DOI: 10.3389/fbioe.2019.00352] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Effective regeneration of bone defects often presents significant challenges, particularly in patients with decreased tissue regeneration capacity due to extensive trauma, disease, and/or advanced age. A number of studies have focused on enhancing bone regeneration by applying mesenchymal stromal cells (MSCs) or MSC-based bone tissue engineering strategies. However, translation of these approaches from basic research findings to clinical use has been hampered by the limited understanding of MSC therapeutic actions and complexities, as well as costs related to the manufacturing, regulatory approval, and clinical use of living cells and engineered tissues. More recently, a shift from the view of MSCs directly contributing to tissue regeneration toward appreciating MSCs as "cell factories" that secrete a variety of bioactive molecules and extracellular vesicles with trophic and immunomodulatory activities has steered research into new MSC-based, "cell-free" therapeutic modalities. The current review recapitulates recent developments, challenges, and future perspectives of these various MSC-based bone tissue engineering and regeneration strategies.
Collapse
Affiliation(s)
- Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Traweger
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Spinal Cord Injury & Tissue Regeneration Center Salzburg, Institute of Tendon and Bone Regeneration, Paracelsus Medical University, Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
125
|
Zhou Y, Chen Y, Wang S, Qin F, Wang L. MSCs helped reduce scarring in the cornea after fungal infection when combined with anti-fungal treatment. BMC Ophthalmol 2019; 19:226. [PMID: 31727008 PMCID: PMC6857224 DOI: 10.1186/s12886-019-1235-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background Fungal Keratitis (FK) is an infective keratopathy with extremely high blindness rate. The damaging effect of this disease is not only the destruction of corneal tissue during fungal infection, but also the cornea scar formed during the healing period after infection control, which can also seriously affect a patient’s vision. The purpose of the study was to observe the effect of umbilical cord mesenchymal stem cells (uMSCs) on corneal scar formation in FK. Methods The FK mouse model was made according to a previously reported method. Natamycin eye drops were used for antifungal treatment 24 h after modeling. There are four groups involved in the study, including control group, FK group, vehicleinj FK group and uMSCsinj FK group. Mice in uMSCsinj FK group received repeated subconjunctival injections of uMSCs for 3 times at the 1d, 4d and 7d after FK modeling. At 14d, 21d and 28d after trauma, clinical observation, histological examination, second harmonic generation and molecular assays were performed. Results The uMSCs topical administration reduced corneal scar formation area and corneal opacity, accompanying with decreased corneal thickness and inflammatory cell infiltration, following down-regulated fibrotic-related factors α-SMA, TGFβ1, CTGF, and COLI and finally inhibited phosphorylation of TGFβ1/Smad2 signaling pathway during FK corneal fibrosis. Conclusion The results confirmed that uMSCs can improve corneal opacity during the scar formation stage of FK, and exert anti-inflammatory and anti-fibrotic effects.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Yuqing Chen
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Suiyue Wang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Fangyuan Qin
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Liya Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China.
| |
Collapse
|
126
|
Mendes-Pinheiro B, Anjo SI, Manadas B, Da Silva JD, Marote A, Behie LA, Teixeira FG, Salgado AJ. Bone Marrow Mesenchymal Stem Cells' Secretome Exerts Neuroprotective Effects in a Parkinson's Disease Rat Model. Front Bioeng Biotechnol 2019; 7:294. [PMID: 31737616 PMCID: PMC6838134 DOI: 10.3389/fbioe.2019.00294] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is characterized by a selective loss of dopamine (DA) neurons in the human midbrain causing motor dysfunctions. The exact mechanism behind dopaminergic cell death is still not completely understood and, so far, no cure or neuroprotective treatment for PD is available. Recent studies have brought attention to the variety of bioactive molecules produced by mesenchymal stem cells (MSCs), generally referred to as the secretome. Herein, we evaluated whether human MSCs-bone marrow derived (hBMSCs) secretome would be beneficial in a PD pre-clinical model, when compared directly with cell transplantation of hBMSCs alone. We used a 6-hydroxydpomanie (6-OHDA) rat PD model, and motor behavior was evaluated at different time points after treatments (1, 4, and 7 weeks). The impact of the treatments in the recovery of DA neurons was estimated by determining TH-positive neuronal densities in the substantia nigra and fibers in the striatum, respectively, at the end of the behavioral characterization. Furthermore, we determined the effect of the hBMSCs secretome on the neuronal survival of human neural progenitors in vitro, and characterized the secretome through proteomic-based approaches. This work demonstrates that the injection of hBMSCs secretome led to the rescue of DA neurons, when compared to transplantation of hBMSCs themselves, which can explain the recovery of secretome-injected animals' behavioral performance in the staircase test. Moreover, we observed that hBMSCs secretome induces higher levels of in vitro neuronal differentiation. Finally, the proteomic analysis revealed that hBMSCs secrete important exosome-related molecules, such as those related with the ubiquitin-proteasome and histone systems. Overall, this work provided important insights on the potential use of hBMSCs secretome as a therapeutic tool for PD, and further confirms the importance of the secreted molecules rather than the transplantation of hBMSCs for the observed positive effects. These could be likely through normalization of defective processes in PD, namely proteostasis or altered gene transcription, which lately can lead to neuroprotective effects.
Collapse
Affiliation(s)
- Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jorge D Da Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Leo A Behie
- Canada-Research Chair in Biomedical Engineering (Emeritus), Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
127
|
Rahmati S, Shojaei F, Shojaeian A, Rezakhani L, Dehkordi MB. An overview of current knowledge in biological functions and potential theragnostic applications of exosomes. Chem Phys Lipids 2019; 226:104836. [PMID: 31678051 DOI: 10.1016/j.chemphyslip.2019.104836] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
Exosomes are cup-shaped structures, made of two lipid layers. Their size is in the range of 30-150 nm. Exosomes are excreted to the extracellular space and function in local and systemic cellular communication. Based on their primary origins, they can contain substantial amounts of RNA, protein, and miRNA; the horizontal transfer of these contents significantly determines the exosome's biological effects. The endosomal origins of exosomes can be deduced based on their surface protein markers. The use of exosomes as a diagnostic biomarker and therapeutic tool, has numerous advantages because they do not pose risks such as aneuploidy and transplant rejection. This - overview highlights the recent findings in exosome development and current knowledge in exosome-based therapies.
Collapse
Affiliation(s)
- Shima Rahmati
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fereshteh Shojaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Shojaeian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Leila Rezakhani
- Department of Tissue Reengineering, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehdi Banitalebi Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
128
|
Wang M, Li J, Ye Y, He S, Song J. SHED-derived conditioned exosomes enhance the osteogenic differentiation of PDLSCs via Wnt and BMP signaling in vitro. Differentiation 2019; 111:1-11. [PMID: 31630077 DOI: 10.1016/j.diff.2019.10.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
The exosomes from human exfoliated deciduous teeth (SHED-Exos) have exhibited potential therapeutic role in dental and oral disorders. The biological effects of exosomes largely depend on cellular origin and physiological status of donor cell. In the present study, we explored the influence of conditioned exosomes from SHED with osteogenic induction on periodontal ligament stem cells (PDLSCs) in vitro. Conditioned SHED-Exos from a 3-day osteogenic supernatant were applied during PDLSCs osteogenic differentiation. We found that conditioned SHED-Exos had no cytotoxicity on PDLSCs viability assessed by CCK-8 assay. These SHED-Exos promoted PDLSCs osteogenic differentiation with deep Alizarin red staining, high alkaline phosphatase (ALP) activity and upregulated osteogenic gene expression (RUNX2, OPN and OCN). We further found BMP/Smad signaling and Wnt/β-catenin were activated by enhanced Smad1/5/8 phosphorylation and increased nuclear β-catenin protein expression. Inhibiting these two signaling pathways with specific inhibitors (cardamonin and LDN193189) remarkably weakened the enhanced osteogenic differentiation. Furthermore, Wnt3a and BMP2 were upregulated in SHED and SHED-Exos. Silencing Wnt3a and BMP2 in SHED-Exos partially counteracts the enhanced osteogenic differentiation. Our findings indicate that conditioned SHED-Exos-enhanced PDLSCs osteogenic differentiation was partly due to its carrying Wnt3a and BMP2. These data provide new insights into the use of SHED-Exos in periodontitis-induced bone defects therapy.
Collapse
Affiliation(s)
- Menghong Wang
- College of Stomatology, Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147, PR China; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, 426 Songshibei Road, Chongqing, 401147, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426 Songshibei Road, Chongqing, 401147, PR China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147, PR China; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, 426 Songshibei Road, Chongqing, 401147, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426 Songshibei Road, Chongqing, 401147, PR China
| | - Yanyan Ye
- Department of Stomatology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, PR China
| | - Songlin He
- College of Stomatology, Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147, PR China; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, 426 Songshibei Road, Chongqing, 401147, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426 Songshibei Road, Chongqing, 401147, PR China.
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147, PR China; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, 426 Songshibei Road, Chongqing, 401147, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426 Songshibei Road, Chongqing, 401147, PR China.
| |
Collapse
|
129
|
Liao W, Ning Y, Xu HJ, Zou WZ, Hu J, Liu XZ, Yang Y, Li ZH. BMSC-derived exosomes carrying microRNA-122-5p promote proliferation of osteoblasts in osteonecrosis of the femoral head. Clin Sci (Lond) 2019; 133:1955-1975. [PMID: 31387936 DOI: 10.1042/cs20181064] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 01/06/2023]
Abstract
Mesenchymal stem cells (MSCs) with multipotential differentiation capacity can differentiate into bone cells under specific conditions and can be used to treat osteonecrosis (ON) of the femoral head (ONFH) through cell transplantation. The current study aims to explore the role of bone marrow (BM) MSCs (BMSCs)-derived exosomes carrying microRNA-122-5p (miR-122-5p) in ONFH rabbit models.First, rabbit models with ONFH were established. ONFH-related miRNAs were screened using the Gene Expression Omnibus (GEO) database. A gain-of-function study was performed to investigate the effect of miR-122-5p on osteoblasts and BMSCs and effects of exosomes carrying miR-122-5p on ONFH. Co-culture experiments for osteoblasts and BMSCs were performed to examine the role of exosomal miR-122-5p in osteoblast proliferation and osteogenesis. The target relationship between miR-122-5p and Sprouty2 (SPRY2) was tested.MiR-122, significantly decreased in ONFH in the GSE89587 expression profile, was screened. MiR-122-5p negatively regulated SPRY2 and elevated the activity of receptor tyrosine kinase (RTK), thereby promoting the proliferation and differentiation of osteoblasts. In vivo experiments indicated that bone mineral density (BMD), trabecular bone volume (TBV), and mean trabecular plate thickness (MTPT) of femoral head were increased after over-expressing miR-122-5p in exosomes. Significant healing of necrotic femoral head was also observed.Exosomes carrying over-expressed miR-122-5p attenuated ONFH development by down-regulating SPRY2 via the RTK/Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Findings in the present study may provide miR-122-5p as a novel biomarker for ONFH treatment.
Collapse
Affiliation(s)
- Wen Liao
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430074, P.R. China
| | - Yu Ning
- Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Hai-Jia Xu
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430074, P.R. China
| | | | - Jing Hu
- Wuhan Sports University, Wuhan 430079, P.R. China
| | - Xiang-Zhong Liu
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430074, P.R. China
| | - Yi Yang
- Wuhan Sports University, Wuhan 430079, P.R. China
| | - Zhang-Hua Li
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430074, P.R. China
| |
Collapse
|
130
|
Guo S, Perets N, Betzer O, Ben-Shaul S, Sheinin A, Michaelevski I, Popovtzer R, Offen D, Levenberg S. Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog siRNA Repairs Complete Spinal Cord Injury. ACS NANO 2019; 13:10015-10028. [PMID: 31454225 DOI: 10.1021/acsnano.9b01892] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Individuals with spinal cord injury (SCI) usually suffer from permanent neurological deficits, while spontaneous recovery and therapeutic efficacy are limited. Here, we demonstrate that when given intranasally, exosomes derived from mesenchymal stem cells (MSC-Exo) could pass the blood brain barrier and migrate to the injured spinal cord area. Furthermore, MSC-Exo loaded with phosphatase and tensin homolog small interfering RNA (ExoPTEN) could attenuate the expression of PTEN in the injured spinal cord region following intranasal administrations. In addition, the loaded MSC-Exo considerably enhanced axonal growth and neovascularization, while reducing microgliosis and astrogliosis. The intranasal ExoPTEN therapy could also partly improve structural and electrophysiological function and, most importantly, significantly elicited functional recovery in rats with complete SCI. The results imply that intranasal ExoPTEN may be used clinically to promote recovery for SCI individuals.
Collapse
Affiliation(s)
- Shaowei Guo
- Department of Biomedical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
- The First Affiliated Hospital , Shantou University Medical College , Shantou 515041 , China
| | | | - Oshra Betzer
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Shahar Ben-Shaul
- Department of Biomedical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| | | | - Izhak Michaelevski
- Department of Molecular Biology , Ariel University , Ariel 40700 , Israel
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | | | - Shulamit Levenberg
- Department of Biomedical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| |
Collapse
|
131
|
Dong R, Liu Y, Yang Y, Wang H, Xu Y, Zhang Z. MSC-Derived Exosomes-Based Therapy for Peripheral Nerve Injury: A Novel Therapeutic Strategy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6458237. [PMID: 31531362 PMCID: PMC6719277 DOI: 10.1155/2019/6458237] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/06/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Although significant advances have been made in synthetic nerve conduits and surgical techniques, complete regeneration following peripheral nerve injury (PNI) remains far from optimized. The repair of PNI is a highly heterogeneous process involving changes in Schwann cell phenotypes, the activation of macrophages, and the reconstruction of the vascular network. At present, the efficacy of MSC-based therapeutic strategies for PNI can be attributed to paracrine secretion. Exosomes, as a product of paracrine secretion, are considered to be an important regulatory mediator. Furthermore, accumulating evidence has demonstrated that exosomes from mesenchymal stem cells (MSCs) can shuttle bioactive components (proteins, lipids, mRNA, miRNA, lncRNA, circRNA, and DNA) that participate in almost all of the abovementioned processes. Thus, MSC exosomes may represent a novel therapeutic tool for PNI. In this review, we discuss the current understanding of MSC exosomes related to peripheral nerve repair and provide insights for developing a cell-free MSC therapeutic strategy for PNI.
Collapse
Affiliation(s)
- Ruiqi Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yuxiang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Haojie Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yaolu Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| |
Collapse
|
132
|
Che Y, Shi X, Shi Y, Jiang X, Ai Q, Shi Y, Gong F, Jiang W. Exosomes Derived from miR-143-Overexpressing MSCs Inhibit Cell Migration and Invasion in Human Prostate Cancer by Downregulating TFF3. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:232-244. [PMID: 31563120 PMCID: PMC6796755 DOI: 10.1016/j.omtn.2019.08.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 01/03/2023]
Abstract
Exosomes are membrane-enclosed nanovesicles that shuttle active cargoes, such as mRNAs and microRNAs (miRNAs), between different cells. Mesenchymal stem cells (MSCs) are able to migrate to the tumor sites and exert complex functions over tumor progress. We investigated the effect of human bone marrow-derived MSC (BMSC)-derived exosomal miR-143 on prostate cancer. During the co-culture experiments, we disrupted exosome secretion by the inhibitor GW4869 and overexpressed exosomal miR-143 using miR-143 plasmid. miR-143 was involved in the progression of prostate cancer via trefoil factor 3 (TFF3). Moreover, miR-143 was downregulated while TFF3 was upregulated in prostate cancer cells and tissues, and miR-143 was found to specifically inhibit TFF3 expression. Human MSC-derived exosomes enriched miR-143 and transferred miR-143 to prostate cancer cells. Furthermore, elevated miR-143 or exosome-miR-143 or silencing TFF3 inhibited the expression of TFF3, proliferating cell nuclear antigen (PCNA), matrix metalloproteinase (MMP)-2, and MMP-9 and PC3 cell proliferation, migration, invasion, and tumor growth, whereas it promoted apoptosis. In conclusion, hMSC-derived exosomal miR-143 directly and negatively targets TFF3 to suppress prostate cancer.
Collapse
Affiliation(s)
- Yuanyuan Che
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130000, P.R. China
| | - Xu Shi
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130000, P.R. China
| | - Yunpeng Shi
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130000, P.R. China
| | - Xiaoming Jiang
- Emergency Department, The First Hospital of Jilin University, Changchun 130000, P.R. China
| | - Qing Ai
- Clinical Laboratory, The First Hospital of Jilin University, Changchun 130000, P.R. China
| | - Ying Shi
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130000, P.R. China
| | - Fengyan Gong
- Department of Gynaecology and Obstetrics, The First Hospital of Jilin University, Changchun 130000, P.R. China,Corresponding author: Fengyan Gong, Department of Gynaecology and Obstetrics, The First Hospital of Jilin University, No. 3302, Jilin Road, Changchun 130000, Jilin Province, P.R. China.
| | - Wenyan Jiang
- Department of Radiology, The First Hospital of Jilin University, Changchun 130000, P.R. China,Corresponding author: Wenyan Jiang, Department of Radiology, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun 130000, Jilin Province, P.R. China.
| |
Collapse
|
133
|
Yan W, Abu-El-Rub E, Saravanan S, Kirshenbaum LA, Arora RC, Dhingra S. Inflammation in myocardial injury: mesenchymal stem cells as potential immunomodulators. Am J Physiol Heart Circ Physiol 2019; 317:H213-H225. [PMID: 31125258 PMCID: PMC6732476 DOI: 10.1152/ajpheart.00065.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023]
Abstract
Ischemic heart disease is a growing worldwide epidemic. Improvements in medical and surgical therapies have reduced early mortality after acute myocardial infarction and increased the number of patients living with chronic heart failure. The irreversible loss of functional cardiomyocytes puts these patients at significant risk of ongoing morbidity and mortality after their index event. Recent evidence suggests that inflammation is a key mediator of postinfarction adverse remodeling in the heart. In this review, we discuss the cardioprotective and deleterious effects of inflammation and its mediators during acute myocardial infarction. We also explore the role of mesenchymal stem cell therapy to limit secondary injury and promote myocardial healing after myocardial infarction.
Collapse
Affiliation(s)
- Weiang Yan
- Institute of Cardiovascular Sciences, Saint Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg , Canada
- Section of Cardiac Surgery, Department of Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg , Canada
| | - Ejlal Abu-El-Rub
- Institute of Cardiovascular Sciences, Saint Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg , Canada
| | - Sekaran Saravanan
- Centre for Nanotechnology and Advanced Biomaterials, Department of Bioengineering, SASTRA University , Thanjavur, Tamil Nadu , India
| | - Lorrie A Kirshenbaum
- Institute of Cardiovascular Sciences, Saint Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg , Canada
| | - Rakesh C Arora
- Institute of Cardiovascular Sciences, Saint Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg , Canada
- Section of Cardiac Surgery, Department of Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg , Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, Saint Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg , Canada
| |
Collapse
|
134
|
Park KS, Svennerholm K, Shelke GV, Bandeira E, Lässer C, Jang SC, Chandode R, Gribonika I, Lötvall J. Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10. Stem Cell Res Ther 2019; 10:231. [PMID: 31370884 PMCID: PMC6676541 DOI: 10.1186/s13287-019-1352-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Background Sepsis remains a source of high mortality in hospitalized patients despite proper antibiotic approaches. Encouragingly, mesenchymal stromal cells (MSCs) and their produced extracellular vesicles (EVs) have been shown to elicit anti-inflammatory effects in multiple inflammatory conditions including sepsis. However, EVs are generally released from mammalian cells in relatively low amounts, and high-yield isolation of EVs is still challenging due to a complicated procedure. To get over these limitations, vesicles very similar to EVs can be produced by serial extrusions of cells, after which they are called nanovesicles (NVs). We hypothesized that MSC-derived NVs can attenuate the cytokine storm induced by bacterial outer membrane vesicles (OMVs) in mice, and we aimed to elucidate the mechanism involved. Methods NVs were produced from MSCs by the breakdown of cells through serial extrusions and were subsequently floated in a density gradient. Morphology and the number of NVs were analyzed by transmission electron microscopy and nanoparticle tracking analysis. Mice were intraperitoneally injected with Escherichia coli-derived OMVs to establish sepsis, and then injected with 2 × 109 NVs. Innate inflammation was assessed in peritoneal fluid and blood through investigation of infiltration of cells and cytokine production. The biodistribution of NVs labeled with Cy7 dye was analyzed using near-infrared imaging. Results Electron microscopy showed that NVs have a nanometer-size spherical shape and harbor classical EV marker proteins. In mice, NVs inhibited eye exudates and hypothermia, signs of a systemic cytokine storm, induced by intraperitoneal injection of OMVs. Moreover, NVs significantly suppressed cytokine release into the systemic circulation, as well as neutrophil and monocyte infiltration in the peritoneum. The protective effect of NVs was significantly reduced by prior treatment with anti-interleukin (IL)-10 monoclonal antibody. In biodistribution study, NVs spread to the whole mouse body and localized in the lung, liver, and kidney at 6 h. Conclusions Taken together, these data indicate that MSC-derived NVs have beneficial effects in a mouse model of sepsis by upregulating the IL-10 production, suggesting that artificial NVs may be novel EV-mimetics clinically applicable to septic patients. Electronic supplementary material The online version of this article (10.1186/s13287-019-1352-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden.
| | - Kristina Svennerholm
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Ganesh V Shelke
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Elga Bandeira
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Su Chul Jang
- Codiak BioSciences Inc, 500 Technology Square, 9th floor, Cambridge, MA, 02139, USA
| | - Rakesh Chandode
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Inta Gribonika
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden
| |
Collapse
|
135
|
Yang R, Liu F, Wang J, Chen X, Xie J, Xiong K. Epidermal stem cells in wound healing and their clinical applications. Stem Cell Res Ther 2019; 10:229. [PMID: 31358069 PMCID: PMC6664527 DOI: 10.1186/s13287-019-1312-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The skin has important barrier, sensory, and immune functions, contributing to the health and integrity of the organism. Extensive skin injuries that threaten the entire organism require immediate and effective treatment. Wound healing is a natural response, but in severe conditions, such as burns and diabetes, this process is insufficient to achieve effective treatment. Epidermal stem cells (EPSCs) are a multipotent cell type and are committed to the formation and differentiation of the functional epidermis. As the contributions of EPSCs in wound healing and tissue regeneration have been increasingly attracting the attention of researchers, a rising number of therapies based on EPSCs are currently under development. In this paper, we review the characteristics of EPSCs and the mechanisms underlying their functions during wound healing. Applications of EPSCs are also discussed to determine the potential and feasibility of using EPSCs clinically in wound healing.
Collapse
Affiliation(s)
- Ronghua Yang
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Jingru Wang
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Julin Xie
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 512100, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Morphological Sciences Building, Central South University, 172 Tongzi Po Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
136
|
Yao Y, Chen R, Wang G, Zhang Y, Liu F. Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium. Stem Cell Res Ther 2019; 10:225. [PMID: 31358049 PMCID: PMC6664513 DOI: 10.1186/s13287-019-1332-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
Background Intrauterine adhesion (IUA) is one of the most serious complications in patients with endometrial repair disorder after injury. Currently, there is no effective treatment for IUA. Stem cell is the main candidate of new therapy, which functions mainly through paracrine mechanism. Stem-derived exosomes (Exo) play an important role in tissue injury. Here, we mainly aim to study the effect of bone marrow mesenchymal stem cell (BMSC)-derived Exo on repairing endometrium of IUA animal models and its effect on TGF-β1 induced EMT in endometrial epithelial cells (EECs). Methods Totally, 64 female rabbits were randomly divided into Sham operation group, model group, BMSC treatment group, and Exo treatment group. EMT in EECs was induced by TGF-β1. Then, EECs were treated with Exo (25 μg/ml, 50 μg/ml, 100 μg/ml) for 24 h. HE staining and Masson staining were used to evaluate the changes in glandular number and fibrosis area. The expression levels of CK19 and VIM were detected by immunohistochemistry. Western blotting was used to detect the expression of CK19, VIM, FSP-1, E-cadherin, TGF-β1, TGF-β1R, Smad 2, and P-Smad 2. RT-PCR was used to detect mRNA expression levels of CK19, VIM, FSP-1, E-cadherin, TGF-β1, TGF-β1R, and Smad 2. Results Compared with the model group, the number of endometrial glands was significantly increased and endometrial fibrosis area was significantly decreased in BMSC and Exo groups (P < 0.05). CK19 level significantly increased whereas VIM level significantly decreased after treatment of BMSCs and Exo (P < 0.05). Additionally, the expressions of TGF-β1, TGF-β1R, and Smad2 mRNA were all significantly decreased after BMSC and Exo treatment (P < 0.05). Besides, phosphorylation levels of TGF-β1, TGF-β1R, and Smad2 were also significantly decreased in BMSC and Exo treatment groups (P < 0.05). Furthermore, there was no significant difference between BMSC and Exo treatment groups (P > 0.05). EMT was induced in EECs by 60 ng/ml TGF-β1 for 24 h. After Exo treatment for 24 h, mRNA expressions of CK-19 and E-cadherin increased, while those of VIM, FSP-1, TGF-β1, and Smad2 decreased. Additionally, protein expressions of CK-19 and E-cadherin increased, while those of VIM, FSP-1, TGF-β1, Smad2, and P-Smad2 decreased. Conclusions BMSC-derived Exo is involved in the repair of injured endometrium, with similar effect to that of BMSC, and can reverse EMT in rabbit EECs induced by TGF-β1. BMSC-derived Exo may promote endometrial repair by the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of the Medical College, Shihezi University, No. 107, North Second Road, Shihezi, Xinjiang, 832000, Uygur Autonomous Region, China
| | - Ran Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of the Medical College, Shihezi University, No. 107, North Second Road, Shihezi, Xinjiang, 832000, Uygur Autonomous Region, China
| | - Guowu Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of the Medical College, Shihezi University, No. 107, North Second Road, Shihezi, Xinjiang, 832000, Uygur Autonomous Region, China
| | - Yu Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of the Medical College, Shihezi University, No. 107, North Second Road, Shihezi, Xinjiang, 832000, Uygur Autonomous Region, China
| | - Fang Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of the Medical College, Shihezi University, No. 107, North Second Road, Shihezi, Xinjiang, 832000, Uygur Autonomous Region, China. .,Department of Gynecology, Suining Central Hospital, No. 127 Desheng West Road, Chuanshan District, Suining, 629000, Sichuan Province, China.
| |
Collapse
|
137
|
Branscome H, Paul S, Khatkar P, Kim Y, Barclay RA, Pinto DO, Yin D, Zhou W, Liotta LA, El-Hage N, Kashanchi F. Stem Cell Extracellular Vesicles and their Potential to Contribute to the Repair of Damaged CNS Cells. J Neuroimmune Pharmacol 2019; 15:520-537. [PMID: 31338754 DOI: 10.1007/s11481-019-09865-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
Abstract
Neurological diseases and disorders are leading causes of death and disability worldwide. Many of these pathologies are associated with high levels of neuroinflammation and irreparable tissue damage. As the global burden of these pathologies continues to rise there is a significant need for the development of novel therapeutics. Due to their multipotent properties, stem cells have broad applications for tissue repair; additionally, stem cells have been shown to possess both immunomodulatory and neuroprotective properties. It is now believed that paracrine factors, such as extracellular vesicles (EVs), play a critical role in the functionality associated with stem cells. The diverse biological cargo contained within EVs are proposed to mediate these effects and, to date, the reparative and regenerative effects of stem cell EVs have been demonstrated in a wide range of cell types. While a high potential for their therapeutic use exists, there is a gap of knowledge surrounding their characterization, mechanisms of action, and how they may regulate cells of the CNS. Here, we report the isolation, characterization, and functional assessment of EVs from two sources of human stem cells, mesenchymal stem cells and induced pluripotent stem cells. We demonstrate the ability of these EVs to enhance the processes of cellular migration and angiogenesis, which are critical for both normal cellular development as well as cellular repair. Furthermore, we investigate their reparative effects on damaged cells, specifically those with relevance to the central nervous system. Collectively, our data highlight the similarities and differences among these EV populations and support the view that stem cells EV can be used to repair or partially reverse cellular damage. Graphical Abstract Stem cell-derived Extracellular Vesicles (EVs) for repair of damaged cells. EVs isolated from human induced pluripotent stem cells and mesenchymal stem cells contribute to the partial reversal of phenotypes induced by different sources of cellular damage.
Collapse
Affiliation(s)
- Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd, Manassas, VA, 20110, USA.,American Type Culture Collection (ATCC), Manassas, VA, USA
| | | | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd, Manassas, VA, 20110, USA
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd, Manassas, VA, 20110, USA
| | - Robert A Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd, Manassas, VA, 20110, USA
| | - Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd, Manassas, VA, 20110, USA
| | | | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd, Manassas, VA, 20110, USA.
| |
Collapse
|
138
|
microRNA-328 in exosomes derived from M2 macrophages exerts a promotive effect on the progression of pulmonary fibrosis via FAM13A in a rat model. Exp Mol Med 2019; 51:1-16. [PMID: 31164635 PMCID: PMC6547742 DOI: 10.1038/s12276-019-0255-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 01/30/2023] Open
Abstract
Currently, exosome-enclosed microRNAs (miRs) in exhaled breath have potential for biomarker discovery in patients with pulmonary diseases. This study was performed to investigate the roles of M2 macrophage-derived exosomes expressing miR-328 in pulmonary fibrosis (PF). Microarray-based analysis was used to screen differentially expressed genes (DEGs) and regulatory miRs in PF. The miR-target relationship between FAM13A and miR-328 was confirmed. The expression of FAM13A and miR-328 was measured in PF rats, and gain- and loss-of-function assays were conducted to determine the regulatory effects of FAM13A and miR-328 on PF. In addition, exosomes derived from M2 macrophages were isolated and then cocultured with pulmonary interstitial fibroblasts to identify the role of these exosomes in PF. Furthermore, the effects of M2 macrophage-derived exosomes overexpressing miR-328 on pulmonary fibroblast proliferation and the progression of PF were assessed in vivo. miR-328 might perform a vital function in PF by regulating FAM13A. FAM13A expression was downregulated while miR-328 expression was upregulated in rats with PF, and a miR-target relationship between miR-328 and FAM13A was observed. Additionally, miR-328 overexpression and FAM13A silencing each were suggested to promote pulmonary interstitial fibroblast proliferation and the expression of Collagen 1A, Collagen 3A and α-SMA. Then, in vitro experiments demonstrated that M2 macrophage-derived exosomes overexpressing miR-328 contributed to enhanced pulmonary interstitial fibroblast proliferation and promoted PF. Furthermore, in vivo experiments confirmed the promotive effects of M2 macrophage-derived exosomes overexpressing miR-328 on the progression of PF. Collectively, the results showed that M2 macrophage-derived exosomes overexpressing miR-328 aggravate PF through the regulation of FAM13A. Studies in rats suggest that microRNAs, small molecules of ribonucleic acid, released by macrophage cells of the immune system can promote pulmonary fibrosis (PF), the formation of scar tissue in lungs. Gao-Feng Zhao, Li-Hua Xing and colleagues at The First Affiliated Hospital of Zhengzhou University in China investigated the role of microRNAs in rats with a form of PF that serves as a model for the disease in humans. Their findings confirm that specific microRNAs released in tiny membrane-bound sacs called exosomes interact with and inhibit a gene whose activity is known to be disrupted in PF. The protein encoded by this gene mediates crucial molecular signaling events in lung cells. Developing drugs that interfere with the activity of the microRNAs is a potential new treatment approach for PF.
Collapse
|
139
|
Kim S, Kim TM. Generation of mesenchymal stem-like cells for producing extracellular vesicles. World J Stem Cells 2019; 11:270-280. [PMID: 31171955 PMCID: PMC6545523 DOI: 10.4252/wjsc.v11.i5.270] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells with therapeutic potential against autoimmune diseases, inflammation, ischemia, and metabolic disorders. Contrary to the previous conceptions, recent studies have revealed that the tissue repair and immunomodulatory functions of MSCs are largely attributed to their secretome, rather than their potential to differentiate into desired cell types. The composition of MSC secretome encompasses cytokines and growth factors, in addition to the cell-derived structures known as extracellular vesicles (EVs). EVs are membrane-enclosed nanoparticles that are capable of delivering biomolecules, and it is now believed that MSC-derived EVs are the major players that induce biological changes in the target tissues. Based on these EVs’ characteristics, the potential of EVs derived from MSC (MSC-EV) in terms of tissue regeneration and immune modulation has grown during the last decade. However, the use of MSCs for producing sufficient amount of EVs has not been satisfactory due to limitations in the cell growth and large variations among the donor cell types. In this regard, pluripotent stem cells (PSCs)-derived MSC-like cells, which can be robustly induced and expanded in vitro, have emerged as more accessible cell source that can overcome current limitations of using MSCs for EV production. In this review, we have highlighted the methods of generating MSC-like cells from PSCs and their therapeutic outcome in preclinical studies. Finally, we have also discussed future requirements for making this cell-free therapy clinically feasible.
Collapse
Affiliation(s)
- Soo Kim
- Brexogen Research Center, Brexogen Inc., Seoul, Songpa-gu 05718, South Korea
| | - Tae Min Kim
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Gangwon-do, Pyeongchang 25354, South Korea
| |
Collapse
|
140
|
Xu Y, Shen L, Li F, Yang J, Wan X, Ouyang M. microRNA-16-5p-containing exosomes derived from bone marrow-derived mesenchymal stem cells inhibit proliferation, migration, and invasion, while promoting apoptosis of colorectal cancer cells by downregulating ITGA2. J Cell Physiol 2019; 234:21380-21394. [PMID: 31102273 DOI: 10.1002/jcp.28747] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a form of cancer developing from either the colon or rectum. Nowadays, research supports the functionality of exosome expressing microRNAs (miRNAs) as potential biomarker for various cancers including CRC. This study was performed with the intent of investigating the roles of both bone marrow-derived mesenchymal stem cells (BMSCs) and exosomal miR-16-5p in CRC by regulating integrin α2 (ITGA2). A microarray-based analysis was conducted to screen the CRC-associated differentially expressed genes (DEGs) as well as potential regulatory miRNAs. Next, the role of miR-16-5p in terms of its progression in association with CRC was determined. Subsequently, CRC cells were exposed to exosomes secreted by BMSCs transfected with miR-16-5p, isolated and cocultured with CRC cells in an attempt to identify the role of exosomes. Effects of BMSCs-derived exosomes overexpressing miR-16-5p on biological functions of CRC cells and tumorigenicity were all subsequently detected. Effects of miR-16-5p treated with CRC cells in regard to CRC in vivo were also measured. ITGA2 was overexpressed, while miR-16-5p was poorly expressed in CRC cells and miR-16-5p targeted ITGA2. The in vitro experiments revealed that the BMSCs-derived exosomes overexpressing miR-16-5p inhibited proliferation, migration, and invasion, while simultaneously stimulating the apoptosis of the CRC cells via downregulation of ITGA2. Furthermore, the results of in vivo experiments confirmed that the BMSCs-derived exosomes overexpressing miR-16-5p repressed the tumor growth of CRC. Collectively, BMSCs-derived exosomes overexpressing miR-16-5p restricted the progression of CRC by downregulating ITGA2.
Collapse
Affiliation(s)
- Yan Xu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Fujun Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Junwen Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiaoping Wan
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Miao Ouyang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
141
|
Eiro N, Gonzalez LO, Fraile M, Cid S, Schneider J, Vizoso FJ. Breast Cancer Tumor Stroma: Cellular Components, Phenotypic Heterogeneity, Intercellular Communication, Prognostic Implications and Therapeutic Opportunities. Cancers (Basel) 2019; 11:cancers11050664. [PMID: 31086100 PMCID: PMC6562436 DOI: 10.3390/cancers11050664] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Although the mechanisms underlying the genesis and progression of breast cancer are better understood than ever, it is still the most frequent malignant tumor in women and one of the leading causes of cancer death. Therefore, we need to establish new approaches that lead us to better understand the prognosis of this heterogeneous systemic disease and to propose new therapeutic strategies. Cancer is not only a malignant transformation of the epithelial cells merely based on their autonomous or acquired proliferative capacity. Today, data support the concept of cancer as an ecosystem based on a cellular sociology, with diverse components and complex interactions between them. Among the different cell types that make up the stroma, which have a relevant role in the dynamics of tumor/stromal cell interactions, the main ones are cancer associated fibroblasts, endothelial cells, immune cells and mesenchymal stromal cells. Several factors expressed by the stroma of breast carcinomas are associated with the development of metastasis, such as matrix metalloproteases, their tissular inhibitors or some of their regulators like integrins, cytokines or toll-like receptors. Based on the expression of these factors, two types of breast cancer stroma can be proposed with significantly different influence on the prognosis of patients. In addition, there is evidence about the existence of bi-directional signals between cancer cells and tumor stroma cells with prognostic implications, suggesting new therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Luis O Gonzalez
- Department of Anatomical Pathology, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - María Fraile
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Sandra Cid
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Jose Schneider
- Department of Obstetrics and Gynecology, Universidad Rey Juan Carlos, Avda. de Atenas s/n, 28922, Alcorcón, Madrid, Spain.
| | - Francisco J Vizoso
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
- Department of Surgery, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| |
Collapse
|
142
|
Xie X, Wu H, Li M, Chen X, Xu X, Ni W, Lu C, Ni R, Bao B, Xiao M. Progress in the application of exosomes as therapeutic vectors in tumor-targeted therapy. Cytotherapy 2019; 21:509-524. [DOI: 10.1016/j.jcyt.2019.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
|
143
|
The State of Exosomes Research: A Global Visualized Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1495130. [PMID: 31073519 PMCID: PMC6470441 DOI: 10.1155/2019/1495130] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/28/2019] [Accepted: 03/17/2019] [Indexed: 12/20/2022]
Abstract
Objective With the development of exosomes studies increased around the whole world. Our present study was aimed to investigate the global status and trends in exosomes field. Methods Publications related to exosomes studies from 1994 to 2017 were retrieved from the Web of Science database. The data source was studied and indexed by using bibliometric methodology. For visualized study, VOS viewer software was used to conduct bibliographic coupling analysis, coauthorship analysis, cocitation analysis, and cooccurrence analysis and to analyze the publication trend in exosomes research. Results A total of 4960 publications were included. The relative research interests and number of publications were increasing per year globally. The USA made the highest contributions to the global research with the most citations, the highest H-index, and the most total link strength, while Sweden had the highest average citation per item. The journal PLOS ONE had the highest publication number. The Natl Canc Ctr was the most contributive institutions. Studies could be divided into three clusters: mechanism study, in vivo study, and in vitro study. Conclusions The efforts should be put into mechanism studies, predicted to be the next hot spots in exosomes studies.
Collapse
|
144
|
Hakim R, Covacu R, Zachariadis V, Frostell A, Sankavaram SR, Brundin L, Svensson M. Mesenchymal stem cells transplanted into spinal cord injury adopt immune cell-like characteristics. Stem Cell Res Ther 2019; 10:115. [PMID: 30944028 PMCID: PMC6448247 DOI: 10.1186/s13287-019-1218-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/27/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) and their cellular response to various stimuli have been characterized in great detail in culture conditions. In contrast, the cellular response of MSCs in an in vivo setting is still uncharted territory. In this study, we investigated the cellular response of MSCs following transplantation into spinal cord injury (SCI). Methods Mouse bone marrow-derived MSCs were transplanted 24 h following severe contusion SCI in mice. As controls, MSCs transplanted to the uninjured spinal cord and non-transplanted MSCs were used. At 7 days post transplantation, the MSCs were isolated from the SCI, and their global transcriptional changes, survival, differentiation, proliferation, apoptosis, and phenotypes were investigated using RNA sequencing, immunohistochemistry, and flow cytometry. Results MSCs transplanted into SCI downregulated genes related to cell-cycle regulation/progression, DNA metabolic/biosynthetic process, and DNA repair and upregulated genes related to immune system response, cytokine production/response, response to stress/stimuli, signal transduction and signaling pathways, apoptosis, and phagocytosis/endocytosis. MSCs maintained their surface expression of Sca1 and CD29 but upregulated expression of CD45 following transplantation. Transplanted MSCs maintained their surface expression of MHC-I but upregulated surface expression of MHC-II. Transplanted MSCs survived and proliferated to a low extent, did not express Caspase-3, and did not differentiate into neurons or astrocytes. Conclusion MSCs transplanted into SCI upregulate expression of CD45 and MHC-II and expression of genes related to cytokine production, phagocytosis/endocytosis, and immune cells/response and thereby adopt immune cell-like characteristics within the recipient. Electronic supplementary material The online version of this article (10.1186/s13287-019-1218-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ramil Hakim
- Department of Neurology, Karolinska University Hospital, 17176, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden.,BioClinicum, Karolinska University Hospital, Solnavägen 30, Solna, 171 64, Stockholm, Sweden
| | - Ruxandra Covacu
- Department of Neurology, Karolinska University Hospital, 17176, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Vasilios Zachariadis
- Department of Oncology and Pathology, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Arvid Frostell
- Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden.,BioClinicum, Karolinska University Hospital, Solnavägen 30, Solna, 171 64, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Sreenivasa Raghavan Sankavaram
- Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Lou Brundin
- Department of Neurology, Karolinska University Hospital, 17176, Stockholm, Sweden. .,Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden. .,BioClinicum, Karolinska University Hospital, Solnavägen 30, Solna, 171 64, Stockholm, Sweden.
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden.,BioClinicum, Karolinska University Hospital, Solnavägen 30, Solna, 171 64, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, 17176, Stockholm, Sweden
| |
Collapse
|
145
|
Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis 2019; 285:1-9. [PMID: 30939341 DOI: 10.1016/j.atherosclerosis.2019.03.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
The stem cell-based therapy has emerged as a promising therapeutic strategy for treating cardiovascular ischemic diseases (CVIDs), such as myocardial infarction (MI). However, some important functional shortcomings of stem cell transplantation, such as immune rejection, tumorigenicity and infusional toxicity, have overshadowed stem cell therapy in the setting of cardiovascular diseases (CVDs). Accumulating evidence suggests that the therapeutic effects of transplanted stem cells are predominately mediated by secreting paracrine factors, importantly, microRNAs (miRs) present in the secreted exosomes. Therefore, novel cell-free therapy based on the stem cell-secreted exosomal miRs can be considered as a safe and effective alternative tool to stem cell therapy for the treatment of CVDs. Stem cell-derived miRs have recently been found to transfer, via exosomes, from a transplanted stem cell into a recipient cardiac cell, where they regulate various cellular process, such as proliferation, apoptosis, stress responses, as well as differentiation and angiogenesis. The present review aimed to summarize cardioprotective exosomal miRs secreted by transplanted stem cells from various sources, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and cardiac stem/progenitor cells, which showed beneficial modulatory effects on the myocardial infracted heart. In summary, stem cell-exosomal miRs, including miR-19a, mirR-21, miR-21-5p, miR-21-a5p, miR-22 miR-24, miR-26a, miR-29, miR-125b-5p, miR-126, miR-201, miR-210, and miR-294, have been shown to have cardioprotective effects by enhancing cardiomyocyte survival and function and attenuating cardiac fibrosis. Additionally, MCS-exosomal miRs, including miR-126, miR-210, miR-21, miR-23a-3p and miR-130a-3p, are found to exert cardioprotective effects through induction of angiogenesis in ischemic heart after MI.
Collapse
|
146
|
Chen S, Lin M, Tsai J, He P, Luo W, Herschman H, Li H. EP 4 Antagonist-Elicited Extracellular Vesicles from Mesenchymal Stem Cells Rescue Cognition/Learning Deficiencies by Restoring Brain Cellular Functions. Stem Cells Transl Med 2019; 8:707-723. [PMID: 30891948 PMCID: PMC6591556 DOI: 10.1002/sctm.18-0284] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/20/2019] [Indexed: 12/25/2022] Open
Abstract
Adult brains have limited regenerative capacity. Consequently, both brain damage and neurodegenerative diseases often cause functional impairment for patients. Mesenchymal stem cells (MSCs), one type of adult stem cells, can be isolated from various adult tissues. MSCs have been used in clinical trials to treat human diseases and the therapeutic potentials of the MSC‐derived secretome and extracellular vesicles (EVs) have been under investigation. We found that blocking the prostaglandin E2/prostaglandin E2 receptor 4 (PGE2/EP4) signaling pathway in MSCs with EP4 antagonists increased EV release and promoted the sorting of specific proteins, including anti‐inflammatory cytokines and factors that modify astrocyte function, blood–brain barrier integrity, and microglial migration into the damaged hippocampus, into the EVs. Systemic administration of EP4 antagonist‐elicited MSC EVs repaired deficiencies of cognition, learning and memory, inhibited reactive astrogliosis, attenuated extensive inflammation, reduced microglial infiltration into the damaged hippocampus, and increased blood–brain barrier integrity when administered to mice following hippocampal damage. stem cells translational medicine2019
Collapse
Affiliation(s)
- Shih‐Yin Chen
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Meng‐Chieh Lin
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Jia‐Shiuan Tsai
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Pei‐Lin He
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Wen‐Ting Luo
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Harvey Herschman
- Department of Molecular & Medical PharmacologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Hua‐Jung Li
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| |
Collapse
|
147
|
Lu Y, Zhou Y, Zhang R, Wen L, Wu K, Li Y, Yao Y, Duan R, Jia Y. Bone Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Recovery Following Spinal Cord Injury via Improvement of the Integrity of the Blood-Spinal Cord Barrier. Front Neurosci 2019; 13:209. [PMID: 30914918 PMCID: PMC6423165 DOI: 10.3389/fnins.2019.00209] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/22/2019] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has been shown to represent a potential treatment for traumatic spinal cord injury (SCI). However, there are several obstacles that need to be overcome before MSCs can be considered for clinical application, such as failure of MSCs to reach the spinal cord lesion core and possible tumor formation. Recent studies have suggested that MSC treatment is beneficial owing to paracrine-secreted factors. Extracellular vesicles are considered to be some of the most valuable paracrine molecules. However, the therapeutic mechanism of extracellular vesicles on spinal cord injury has not been studied clearly. Therefore, our study investigated the effect of systemic administration of extracellular vesicles on the loss of motor function after SCI and examined the potential mechanisms underlying their effects. Disruption of the blood-spinal cord barrier (BSCB) is a crucial factor that can be detrimental to motor function recovery. Pericytes are an important component of the neurovascular unit, and play a pivotal role in maintaining the structural integrity of the BSCB. Our study demonstrated that administration of bone mesenchymal stem cell-derived extracellular vesicles (BMSC-EV) reduced brain cell death, enhanced neuronal survival and regeneration, and improved motor function compared with the administration of BMSC-EV free culture media (EV-free CM). Besides, the BSCB was attenuated and pericyte coverage was significantly decreased in vivo. Furthermore, we found that exosomes reduced pericyte migration via downregulation of NF-κB p65 signaling, with a consequent decrease in the permeability of the BSCB. In summary, we identified that extracellular vesicles treatment suppressed the migration of pericytes and further improved the integrity of the BSCB via NF-κB p65 signaling in pericytes. Our data suggest that extracellular vesicles may serve as a promising treatment strategy for SCI.
Collapse
Affiliation(s)
- Yanhui Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Zhou
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiyi Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lulu Wen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaimin Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaobing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
148
|
Mesenchymal Stem Cells: A Potential Therapeutic Approach for Amyotrophic Lateral Sclerosis? Stem Cells Int 2019; 2019:3675627. [PMID: 30956667 PMCID: PMC6431432 DOI: 10.1155/2019/3675627] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/24/2018] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the degeneration of both upper and lower motor neurons. Patients show both motor and extra-motor symptoms. A cure is not available at this time, and the disease leads to death within 3-5 years, mainly due to respiratory failure. Stem cell therapy is arising as a new promising approach for the treatment of neurodegenerative disorders. In particular, mesenchymal stem cells (MSCs) seem the most suitable type of stem cells, thanks to their demonstrated beneficial effects in different experimental models, to the easy availability, and to the lack of ethical problems. In this review, we focused on the studies involving ALS rodent models and clinical trials in order to understand the potential beneficial effects of MSC transplantation. In different ALS rodent models, the administration of MSCs induced a delay in disease progression and at least a partial recovery of the motor function. In addition, clinical trials evidenced the feasibility and safety of MSC transplantation in ALS patients, given that no major adverse events were recorded. However, only partial improvements were shown. For this reason, more studies and trials are needed to clarify the real effectiveness of MSC-based therapy in ALS.
Collapse
|
149
|
Fang Y, Zhang Y, Zhou J, Cao K. Adipose-derived mesenchymal stem cell exosomes: a novel pathway for tissues repair. Cell Tissue Bank 2019; 20:153-161. [PMID: 30852701 DOI: 10.1007/s10561-019-09761-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
Abstract
The well-characterized curative effect of transplanted mesenchymal stem cells has been mainly attributed to their homing and subsequent differentiation for the repair and regeneration of damaged tissue. Adipose-derived mesenchymal stem cells (ADMSCs) are not only multipotent and plastic, but also abundant as they can be easily harvested with minimally invasive surgical techniques. This makes ADMSCs conducive for clinical applications. Recently, the secretory function of ADMSCs has been regarded as the primary mediator of MSC-based therapy. Exosomes are one kind of small cell extracellular membrane vesicles, which are primarily used to deliver cell-specific proteins, as well as nucleic acids secreted by various cell types. This review will introduce and characterize exosomes-derived ADMSCs (ADMSCs-Exo) and look at new therapies and prospective, including the limitations and outlook for therapeutic strategy. We will describe the latest research progress on myocardial repair, neuroprotection and neurotrophic effects, hepatic repair, renal repair, cutaneous repair, regeneration and other aspects using these cells.
Collapse
Affiliation(s)
- Yuan Fang
- The Third Xiangya Hospital of Central South University, No.138.Tongzipo Road, 410013, Changsha, Hunan, People's Republic of China
| | - Yufang Zhang
- Anyang Tumor Hospital, No. 1 Huanbin North Road, 455000, Anyang, Henan, People's Republic of China
| | - Jianda Zhou
- The Third Xiangya Hospital of Central South University, No.138.Tongzipo Road, 410013, Changsha, Hunan, People's Republic of China.
| | - Ke Cao
- The Third Xiangya Hospital of Central South University, No.138.Tongzipo Road, 410013, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
150
|
Shen Y, Xue C, Li X, Ba L, Gu J, Sun Z, Han Q, Zhao RC. Effects of Gastric Cancer Cell-Derived Exosomes on the Immune Regulation of Mesenchymal Stem Cells by the NF-kB Signaling Pathway. Stem Cells Dev 2019; 28:464-476. [PMID: 30717632 DOI: 10.1089/scd.2018.0125] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are important components of the tumor microenvironment, which play an important role in tumor development. Exosomes derived from tumor cells can affect the biological characteristics of MSCs. Our study examined the effects of exosomes derived from gastric cancer cells on MSC immunomodulatory functions. Exosomes were extracted from gastric cancer cell line AGS (AGS-Exos) and cultured with MSCs. MSCs were then cocultured with both human peripheral blood mononuclear cells and macrophages [phorbol-12-myristate-13-acetate (PMA)-stimulated THP1 cells]. The activation levels of T cells and macrophages were detected by flow cytometry and real-time quantitative polymerase chain reaction (RT-PCR). Changes in the MSC signaling pathway after AGS-Exos stimulation were studied using RNA Chip, and the molecular mechanisms of functional change in MSCs were studied by inhibiting the signaling pathway. MSCs treated with AGS-Exos could promote macrophage phagocytosis and upregulate the secretion of proinflammatory factor, and promote the activation of CD69 and CD25 on the surface of T cells. RNA Chip results indicated the abnormal activation of the NF-kB signaling pathway in MSCs after AGS-Exos stimulation, and this was verified by the identification of key proteins in the pathway using western blot analysis. After NF-kB signaling pathway inhibition, the effect of MSCs stimulated by AGS-Exos on T cells and macrophages was markedly weakened. Therefore, AGS-Exos affected the immunomodulation function of MSCs through the NF-kB signaling pathway, which enhanced the ability of MSCs to activate immune cells, maintain the inflammatory environment, and support tumor growth.
Collapse
Affiliation(s)
- Yamei Shen
- 1 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, People's Republic of China
| | - Chunling Xue
- 1 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, People's Republic of China
| | - Xuechun Li
- 1 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, People's Republic of China
| | - Li Ba
- 1 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, People's Republic of China
| | - Junjie Gu
- 2 Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhao Sun
- 2 Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Qin Han
- 1 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, People's Republic of China
| | - Robert Chunhua Zhao
- 1 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, People's Republic of China
| |
Collapse
|