101
|
Pikula K, Johari SA, Golokhvast K. Colloidal Behavior and Biodegradation of Engineered Carbon-Based Nanomaterials in Aquatic Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4149. [PMID: 36500771 PMCID: PMC9737966 DOI: 10.3390/nano12234149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based nanomaterials (CNMs) have attracted a growing interest over the last decades. They have become a material commonly used in industry, consumer products, water purification, and medicine. Despite this, the safety and toxic properties of different types of CNMs are still debatable. Multiple studies in recent years highlight the toxicity of CNMs in relation to aquatic organisms, including bacteria, microalgae, bivalves, sea urchins, and other species. However, the aspects that have significant influence on the toxic properties of CNMs in the aquatic environment are often not considered in research works and require further study. In this work, we summarized the current knowledge of colloidal behavior, transformation, and biodegradation of different types of CNMs, including graphene and graphene-related materials, carbon nanotubes, fullerenes, and carbon quantum dots. The other part of this work represents an overview of the known mechanisms of CNMs' biodegradation and discusses current research works relating to the biodegradation of CNMs in aquatic species. The knowledge about the biodegradation of nanomaterials will facilitate the development of the principals of "biodegradable-by-design" nanoparticles which have promising application in medicine as nano-carriers and represent lower toxicity and risks for living species and the environment.
Collapse
Affiliation(s)
- Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Pasdaran St., Sanandaj 66177-15175, Iran
| | - Kirill Golokhvast
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, Krasnoobsk 633501, Russia
| |
Collapse
|
102
|
Atchudan R, Perumal S, Edison TNJI, Sundramoorthy AK, Sangaraju S, Babu RS, Lee YR. Sustainable Synthesis of Bright Fluorescent Nitrogen-Doped Carbon Dots from Terminalia chebula for In Vitro Imaging. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228085. [PMID: 36432186 PMCID: PMC9693165 DOI: 10.3390/molecules27228085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
In this study, sustainable, low-cost, and environmentally friendly biomass (Terminalia chebula) was employed as a precursor for the formation of nitrogen-doped carbon dots (N-CDs). The hydrothermally assisted Terminalia chebula fruit-derived N-CDs (TC-CDs) emitted different bright fluorescent colors under various excitation wavelengths. The prepared TC-CDs showed a spherical morphology with a narrow size distribution and excellent water dispensability due to their abundant functionalities, such as oxygen- and nitrogen-bearing molecules on the surfaces of the TC-CDs. Additionally, these TC-CDs exhibited high photostability, good biocompatibility, very low toxicity, and excellent cell permeability against HCT-116 human colon carcinoma cells. The cell viability of HCT-116 human colon carcinoma cells in the presence of TC-CDs aqueous solution was calculated by MTT assay, and cell viability was higher than 95%, even at a higher concentration of 200 μg mL-1 after 24 h incubation time. Finally, the uptake of TC-CDs by HCT-116 human colon carcinoma cells displayed distinguished blue, green, and red colors during in vitro imaging when excited by three filters with different wavelengths under a laser scanning confocal microscope. Thus, TC-CDs could be used as a potential candidate for various biomedical applications. Moreover, the conversion of low-cost/waste natural biomass into products of value promotes the sustainable development of the economy and human society.
Collapse
Affiliation(s)
- Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (R.A.); (Y.R.L.)
| | - Suguna Perumal
- Department of Chemistry, Sejong University, Seoul 143747, Republic of Korea
| | | | - Ashok K. Sundramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India
| | - Sambasivam Sangaraju
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Rajendran Suresh Babu
- Laboratory of Experimental and Applied Physics, Centro Federal de Educação Tecnológica, Celso Suckow da Fonseca (CEFET/RJ), Av. Maracanã 229, Rio de Janeiro 20271-110, Brazil
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (R.A.); (Y.R.L.)
| |
Collapse
|
103
|
Lawal SK, Olojede SO, Faborode OS, Aladeyelu OS, Matshipi MN, Sulaiman SO, Naidu ECS, Rennie CO, Azu OO. Nanodelivery of antiretroviral drugs to nervous tissues. Front Pharmacol 2022; 13:1025160. [DOI: 10.3389/fphar.2022.1025160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022] Open
Abstract
Despite the development of effective combined antiretroviral therapy (cART), the neurocognitive impairments associated with human immunodeficiency virus (HIV) remain challenging. The presence of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCFB) impedes the adequate penetration of certain antiretroviral drugs into the brain. In addition, reports have shown that some antiretroviral drugs cause neurotoxicity resulting from their interaction with nervous tissues due to long-term systemic exposure. Therefore, the research into the effective therapeutic modality that would cater for the HIV-associated neurocognitive disorders (HAND) and ART toxicity is now receiving broad research attention. Thus, this review explores the latest information in managing HAND using a nanoparticle drug delivery system (NDDS). We discussed the neurotoxicity profile of various approved ART. Also, we explained the applications of silver nanoparticles (AgNPs) in medicine, their different synthesis methods and their interaction with nervous tissues. Lastly, while proposing AgNPs as useful nanoparticles in properly delivering ART to enhance effectiveness and minimize neurocognitive disorders, we hypothesize that the perceived toxicity of AgNPs could be minimized by taking appropriate precautions. One such precaution is using appropriate reducing and stabilizing agents such as trisodium citrate to reduce silver ion Ag + to ground state Ag0 during the synthesis. Also, the usage of medium-sized, spherical-shaped AgNPs is encouraged in AgNPs-based drug delivery to the brain due to their ability to deliver therapeutic agents across BBB. In addition, characterization and functionalization of the synthesized AgNPs are required during the drug delivery approach. Putting all these factors in place would minimize toxicity and enhance the usage of AgNPs in delivering therapeutic agents across the BBB to the targeted brain tissue and could cater for the HIV-associated neurocognitive disorders and neurotoxic effects of antiretroviral drugs (ARDs).
Collapse
|
104
|
Bastos MK, Pijeira MSO, de Souza Sobrinho JH, Dos Santos Matos AP, Ricci-Junior E, de Almeida Fechine PB, Alencar LMR, Gemini-Piperni S, Alexis F, Attia MF, Santos-Oliveira R. Radiopharmacokinetics of Graphene Quantum Dots Nanoparticles In vivo: Comparing the Pharmacokinetics Parameters in Long and Short Periods. Curr Top Med Chem 2022; 22:2527-2533. [PMID: 35549877 DOI: 10.2174/1568026622666220512150625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/12/2022] [Accepted: 03/24/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Nanoparticles (NPs) have gained great importance during the last decades for developing new therapeutics with improved outcomes for biomedical applications due to their nanoscale size, surface properties, loading capacity, controlled drug release, and distribution. Among the carbon-based nanomaterials, one of the most biocompatible forms of graphene is graphene quantum dots (GQDs). GQDs are obtained by converting 2D graphene into zero-dimensional graphene nanosheets. Moreover, very few reports in the literature reported the pharmacokinetic studies proving the safety and effectiveness of GQDs for in vivo applications. OBJECTIVES This study evaluated the pharmacokinetics of GQDs radiolabeled with 99mTc, administered intravenously, in rodents (Wistar rats) in two conditions: short and long periods, to compare and understand the biological behavior. METHODS The graphene quantum dots were produced and characterized by RX diffractometry, Raman spectroscopy, and atomic force microscopy. The pharmacokinetic analysis was performed following the radiopharmacokinetics concepts, using radiolabeled graphene quantum dots with technetium 99 metastable (99mTc). The radiolabeling process of the graphene quantum dots with 99mTc was performed by the direct via. RESULTS The results indicate that the pharmacokinetic analyses with GQDs over a longer period were more accurate. Following a bicompartmental model, the long-time analysis considers each pharmacokinetic phase of drugs into the body. Furthermore, the data demonstrated that short-time analysis could lead to distortions in pharmacokinetic parameters, leading to misinterpretations. CONCLUSION The evaluation of the pharmacokinetics of GQDs over long periods is more meaningful than the evaluation over short periods.
Collapse
Affiliation(s)
- Matheus Keuper Bastos
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
| | - Martha Sahylí Ortega Pijeira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
| | | | - Ana Paula Dos Santos Matos
- School of Pharmacy, Galenic Development Laboratory (LADEG), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-170, Brazil
| | - Eduardo Ricci-Junior
- School of Pharmacy, Galenic Development Laboratory (LADEG), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-170, Brazil
| | - Pierre Basilio de Almeida Fechine
- Group of Chemistry of Advanced Materials (GQMat)- Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará, Fortaleza-CE, 451-970, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Department of Physics, Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Campus Bacanga, São Luís, Maranhão, 65080-805, Brazil
| | - Sara Gemini-Piperni
- Institute of Biological Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, 21940000 Brazil
| | - Frank Alexis
- Politécnico, Quito 170910, Ecuador, Universidad San Francisco de Quito USFQ
| | - Mohamed Fathy Attia
- Center for Nanotechnology in Drug Delivery and Division of Pharmaco-engineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil.,State University of Rio de Janeiro, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro, 23070200 Brazil
| |
Collapse
|
105
|
Rani M, Sillanpää M, Shanker U. An updated review on environmental occurrence, scientific assessment and removal of brominated flame retardants by engineered nanomaterials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115998. [PMID: 36001915 DOI: 10.1016/j.jenvman.2022.115998] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Due to the extensive manufacturing and use of brominated flame retardants (BFRs), they are known to be hazardous, bioaccumulative, and recalcitrant pollutants in various environmental matrices. BFRs make flame-resistant items for industrial purposes (textiles, electronics, and plastics equipment) that are disposed of in massive amounts and leak off in various environmental matrices. The consumption of plastic items has expanded tremendously during the COVID-19 pandemic which has resulted into the increasing load of solid waste on land and water. Some BFRs, such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDs), are no longer utilized or manufactured owing to their negative impacts, which promotes the utilization of new BFRs as alternatives. BFRs have been discovered worldwide in soil, sludge, water, and other contamination sources. Various approaches such as photocatalysis-based oxidation/reduction, adsorption, and heat treatment have been found to eradicate BFRs from the environment. Nanomaterials with unique properties are one of the most successful methodologies for removing BFRs via photocatalysis. These methods have been praised for being low-cost, quick, and highly efficient. Engineered nanoparticles degraded BFRs when exposed to light and either convert them into safer metabolites or completely mineralize. Scientific assessment of research taking place in this area during the past five years has been discussed. This review offers comprehensive details on environmental occurrence, toxicity, and removal of BFRs from various sources. Degradation pathways and different removal strategies related to data have also been presented. An attempt has also been made to highlight the research gaps prevailing in the current research area.
Collapse
Affiliation(s)
- Manviri Rani
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, 2028, South Africa
| | - Uma Shanker
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India.
| |
Collapse
|
106
|
Atchudan R, Perumal S, Edison TNJI, Albasher G, Sundramoorthy AK, Vinodh R, Lee YR. Lotus-biowaste derived sulfur/nitrogen-codoped porous carbon as an eco-friendly electrocatalyst for clean energy harvesting. ENVIRONMENTAL RESEARCH 2022; 214:113910. [PMID: 35870499 DOI: 10.1016/j.envres.2022.113910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Recent research is focused on biomass-derived porous carbon materials for energy harvesting (hydrogen evolution reaction) because of their cost-effective synthesis, enriched with heteroatoms, lightweight, and stable properties. Here, the synthesis of porous carbon (PC) materials from lotus seedpod (LP) and lotus stem (LS) is reported by the pyrolysis method. The porous and graphitic structure of the prepared LP-PC and LS-PC materials were confirmed by field emission scanning electron microscopy, transmission electron microscopy with selected area electron diffraction, X-ray diffraction, and nitrogen adsorption-desorption measurements. Heteroatoms in LP-PC and LS-PC materials were investigated by attenuated total reflection-Fourier transform infrared and X-ray photoelectron spectroscopy. The specific surface area of LP-PC and LS-PC were calculated as 457 and 313 m2 g-1, respectively. Nitrogen and sulfur enriched LP-PC and LS-PC materials were found to be effective electrocatalysts for hydrogen evolution reactions. LP-PC catalyst showed a very low overpotential of 111 mV with the Tafel slope of 69 mV dec-1, and LS-PC catalyst achieved a Tafel slope of 85 mV dec-1 with a low overpotential of 135 mV. This work is expected to be extended for the development of biomass as a sustainable porous carbon electrocatalyst with a tunable structure, elements, and electronic properties. Furthermore, preparing carbon materials from the biowaste and applying clean energy harvesting might reduce environmental pollution.
Collapse
Affiliation(s)
- Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Suguna Perumal
- Department of Chemistry, Sejong University, Seoul, 143747, Republic of Korea.
| | | | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashok K Sundramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Rajangam Vinodh
- School of Electrical and Computer Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
107
|
Zhang Y, Zhang J. Fluorescence Resonance Energy Transfer-Based Aptasensor Made of Carbon-Based Nanomaterials for Detecting Lactoferrin at Low Concentrations. ACS OMEGA 2022; 7:37964-37970. [PMID: 36312380 PMCID: PMC9609055 DOI: 10.1021/acsomega.2c05129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Lactoferrin in the saliva is recently considered a biomarker for the diagnosis of Alzheimer's disease. In this paper, a solution-based, user-friendly biosensing system has been developed to quickly measure lactoferrin at low concentrations. This aptasensor is applied to the fluorescence resonance energy transfer (FRET) quenching mechanism, in which carbon quantum dots (CDs) act as the FRET donor; the FRET quenching element is made of graphene oxide (GO) nanosheets which show good quenching capability. CDs bioconjugated with a chosen aptamer (CDs-aptamer) have the strongest emission (λem) at 447 nm when excitation (λex) is 365 nm. Due to the interaction of the aptamer and GO through the π-π* interaction, GO can approach CDs, resulting in FRET quenching. In the presence of lactoferrin, the fluorescence intensity of CDs-aptamer is restored as the binding affinity between lactoferrin and the aptamer is stronger than the π-π* interaction between the aptamer and GO. A linear relationship between the restored fluorescence intensity and the concentration of lactoferrin in artificial saliva with a range from 4 to 16 μg/mL is observed. The limit of detection of the solution-based aptasensor is estimated at 2.48 μg/mL. In addition, the sensing performance of the aptasensor made of carbon nanomaterials has been evaluated to test different proteins including major salivary proteins. The results show that this aptasensor has a high selectivity to detect LF with a low concentration, <16 μg/mL.
Collapse
|
108
|
Wu M, Chen Y, Cheng Z, Hao Y, Hu BX, Mo C, Li Q, Zhao H, Xiang L, Wu J, Wu J, Lu G. Effects of polyamide microplastic on the transport of graphene oxide in porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157042. [PMID: 35777558 DOI: 10.1016/j.scitotenv.2022.157042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/05/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of the nano-material and chemical industry, more and more microplastic (MP) and nano-material were discharged into the environment. In this study, a two-dimensional (2D) surface of Extended Darjaguin-Landau-Verwe-Overbeek (XDLVO) is proposed to quantitatively investigate the effect of polyamide (PA) on the transport of graphene oxide (GO) in porous media. The influences of mass fraction of PA, flow rate, GO concentration, ionic type and strength on the migration of GO in saturated porous media are investigated by column experiments and numerical models. The two-dimensional (2D) surfaces of XDLVO interaction energy between GO and GO, GO and QS, GO and PA, are firstly calculated to analyze the transport of GO in saturated porous media. Experimental results suggest the mobility of GO is enhanced when flow velocity and initial concentration of GO are increased. However, the mobility of GO is inhibited when the mass fraction of PA and ionic strength are increased. More important, the inhibitory effect of divalent cations on GO migration is stronger than that of monovalent cations. Simultaneously, XDLVO results suggest that ionic types and strengths are important factors affecting the mobility of GO in porous media, and the critical ionic strength is observed from the continuous variation of the secondary minimum trap of XDLVO interaction energy. Model results show that there is a linear relationship between the logarithm of the secondary minimum trap of XDLVO interaction energy and the parameters related to GO mobility, which suggests XDLVO energy surface has an important application significance in the accurate quantification of GO mobility in porous media. These findings contribute to GO transport affected by microplastic in porous media, thus laying a significant foundation for the environmental risk and contamination remediation.
Collapse
Affiliation(s)
- Ming Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Yanna Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Zhou Cheng
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China.
| | - Yanru Hao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bill X Hu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Cehui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qusheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Haiming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Guoping Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
109
|
Li M, Singh R, Wang Y, Marques C, Zhang B, Kumar S. Advances in Novel Nanomaterial-Based Optical Fiber Biosensors-A Review. BIOSENSORS 2022; 12:bios12100843. [PMID: 36290980 PMCID: PMC9599727 DOI: 10.3390/bios12100843] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 05/24/2023]
Abstract
This article presents a concise summary of current advancements in novel nanomaterial-based optical fiber biosensors. The beneficial optical and biological properties of nanomaterials, such as nanoparticle size-dependent signal amplification, plasmon resonance, and charge-transfer capabilities, are widely used in biosensing applications. Due to the biocompatibility and bioreceptor combination, the nanomaterials enhance the sensitivity, limit of detection, specificity, and response time of sensing probes, as well as the signal-to-noise ratio of fiber optic biosensing platforms. This has established a practical method for improving the performance of fiber optic biosensors. With the aforementioned outstanding nanomaterial properties, the development of fiber optic biosensors has been efficiently promoted. This paper reviews the application of numerous novel nanomaterials in the field of optical fiber biosensing and provides a brief explanation of the fiber sensing mechanism.
Collapse
Affiliation(s)
- Muyang Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Yiran Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Carlos Marques
- Department of Physics & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
110
|
Hajebi S, Yousefiasl S, Rahimmanesh I, Dahim A, Ahmadi S, Kadumudi FB, Rahgozar N, Amani S, Kumar A, Kamrani E, Rabiee M, Borzacchiello A, Wang X, Rabiee N, Dolatshahi‐Pirouz A, Makvandi P. Genetically Engineered Viral Vectors and Organic-Based Non-Viral Nanocarriers for Drug Delivery Applications. Adv Healthc Mater 2022; 11:e2201583. [PMID: 35916145 PMCID: PMC11481035 DOI: 10.1002/adhm.202201583] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 01/28/2023]
Abstract
Conventional drug delivery systems are challenged by concerns related to systemic toxicity, repetitive doses, drug concentrations fluctuation, and adverse effects. Various drug delivery systems are developed to overcome these limitations. Nanomaterials are employed in a variety of biomedical applications such as therapeutics delivery, cancer therapy, and tissue engineering. Physiochemical nanoparticle assembly techniques involve the application of solvents and potentially harmful chemicals, commonly at high temperatures. Genetically engineered organisms have the potential to be used as promising candidates for greener, efficient, and more adaptable platforms for the synthesis and assembly of nanomaterials. Genetically engineered carriers are precisely designed and constructed in shape and size, enabling precise control over drug attachment sites. The high accuracy of these novel advanced materials, biocompatibility, and stimuli-responsiveness, elucidate their emerging application in controlled drug delivery. The current article represents the research progress in developing various genetically engineered carriers. Organic-based nanoparticles including cellulose, collagen, silk-like polymers, elastin-like protein, silk-elastin-like protein, and inorganic-based nanoparticles are discussed in detail. Afterward, viral-based carriers are classified, and their potential for targeted therapeutics delivery is highlighted. Finally, the challenges and prospects of these delivery systems are concluded.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Department of Polymer EngineeringSahand University of TechnologyTabriz51335‐1996Iran
- Institute of Polymeric MaterialsSahand University of TechnologyTabriz51335‐1996Iran
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadan6517838736Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research CenterIsfahan Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahan8174673461Iran
| | - Alireza Dahim
- Department of AnesthesiaJundishapur University of Medical SciencesAhvaz61357‐15794Iran
| | - Sepideh Ahmadi
- Department of BiologyFaculty of SciencesUniversity of ZabolSistan and BaluchestanZabol98613‐35856Iran
| | - Firoz Babu Kadumudi
- Department of Health TechnologyTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Nikta Rahgozar
- Department of ChemistryAmirkabir University of TechnologyTehran15875‐4413Iran
| | - Sanaz Amani
- Department of Chemical EngineeringSahand University of TechnologyTabriz51335‐1996Iran
| | - Arun Kumar
- Chitkara College of PharmacyChitkara UniversityHimachal Pradesh174 103India
| | - Ehsan Kamrani
- Harvard‐MIT Health Science and TechnologyCambridgeMA02139USA
- Wellman Center for PhotomedicineHarvard Medical SchoolBostonMA02139USA
| | - Mohammad Rabiee
- Biomaterials GroupDepartment of Biomedical EngineeringAmirkabir University of TechnologyTehran15875‐4413Iran
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and BiomaterialsNational Research CouncilIPCB‐CNRNaples80125Italy
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghai200032China
| | - Navid Rabiee
- School of EngineeringMacquarie UniversitySydneyNSW2109Australia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | | | - Pooyan Makvandi
- Centre for Materials InterfacesIstituto Italiano di TecnologiaPontederaPisa56025Italy
- The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People’s HospitalQuzhouZhejiang324000China
- School of ChemistryDamghan UniversityDamghan36716‐41167Iran
| |
Collapse
|
111
|
Nair RV, Puthiyaparambath MF, Chatanathodi R, Nair LV, Jayasree RS. A nanoarchitecture of a gold cluster conjugated gold nanorod hybrid system and its application in fluorescence imaging and plasmonic photothermal therapy. NANOSCALE 2022; 14:13561-13569. [PMID: 36073600 DOI: 10.1039/d2nr03163a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Engineering different nanomaterials into a single functional material can impart unique properties of the parental nanoparticles, especially in the field of bio imaging and therapy. Gold nanomaterials having different sizes, shapes and dimensionalities exhibit exceptional properties apart from their non-toxicity and hence are strong candidates in the biomedical field. Designing a hybrid nanomaterial of two gold nanostructures retaining the individual properties of the parental nanomaterials is challenging. Here, we demonstrate the synthesis of a hybrid nanomaterial (GQC@GNR), comprising an extremely small gold nanocluster and a representative of the asymmetric gold nanostructure, i.e., a gold nanorod, both having their own different exclusive optical properties like tuneable emission and NIR absorption characteristics, respectively. The hybrid system is designed to retain its emission and absorption in the NIR region to use it as an agent for simultaneous imaging and therapy. The formation of GQC@GNR and its architectonics heavily depend on the synthesis route and the parameters adopted which in turn have a direct influence on its properties. The architecture and its connection to the optical properties are explained using UV-Vis absorption and photoluminescence spectroscopy, zeta potential, transmission electron microscopy, etc. DFT-based computational modelling supports architectonics as explained by the experimental findings. The formation of the gold-gold hybrid system witnessed interesting science with a strong indication that materials with desired properties can be designed by appropriately modulating the architectonics of hybrid formation. Finally, folate conjugated GQC@GNR demonstrated its efficacy for targeted imaging and photothermal therapy in HeLa cells and tumor-bearing animal models. The detailed therapeutic efficacy of GQC@GNR is also explained based on Raman spectroscopy.
Collapse
Affiliation(s)
- Resmi V Nair
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Trivandrum, 695012, India.
- School of Materials Science and Engineering, National Institute of Technology Calicut, 673601, Kerala, India.
| | | | - Raghu Chatanathodi
- Department of Physics, National Institute of Technology Calicut, Kerala, India
| | - Lakshmi V Nair
- School of Materials Science and Engineering, National Institute of Technology Calicut, 673601, Kerala, India.
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Trivandrum, 695012, India.
| |
Collapse
|
112
|
Thomas DT, Baby A, Raman V, Balakrishnan SP. Carbon‐Based Nanomaterials for Cancer Treatment and Diagnosis: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202202455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Anjana Baby
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India– 560029
| | - Vidya Raman
- Department of Chemistry T. M. Jacob Memorial Government College, Manimalakkunu Koothattukulam Kerala India 686662
| | | |
Collapse
|
113
|
de Carvalho Lima EN, Barros Martins GL, Diaz RS, Schechter M, Piqueira JRC, Justo JF. Effects of Carbon Nanomaterials and Aloe vera on Melanomas-Where Are We? Recent Updates. Pharmaceutics 2022; 14:2004. [PMID: 36297440 PMCID: PMC9607275 DOI: 10.3390/pharmaceutics14102004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is an aggressive skin cancer that affects approximately 140,000 people worldwide each year, with a high fatality rate. Available treatment modalities show limited efficacy in more severe cases. Hence, the search for new treatment modalities, including immunotherapies, for curing, mitigating, and/or preventing cancer is important and urgently needed. Carbon nanoparticles associated with some plant materials, such as Aloe vera, have shown appealing antineoplastic activity, derived mainly from the compounds aloin, aloe-emodin, barbaloin acemannan, and octapeptide, thus representing new possibilities as antitumor agents. This systematic review aims to arouse interest and present the possibilities of using Aloe vera combined with carbon-based nanomaterials as an antineoplastic agent in the treatment and prevention of melanoma. Limitations and advances in melanoma treatment using functionalized carbon nanomaterials are discussed here. Moreover, this review provides the basis for further studies designed to fully explore the potential of carbon nanomaterials associated with Aloe vera in the treatment of various cancers, with a focus on melanoma.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| | - Guilherme Leão Barros Martins
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Mauro Schechter
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| |
Collapse
|
114
|
Sahylí Ortega Pijeira M, Menezes da Silva A, Basílio de Almeida Fechine P, Qaiser Shah S, Ilem-Ozdemir D, López EO, Terzi Maricato J, Santoro Rosa D, Ricci-Junior E, Alves Junior S, Magalhães Rebelo Alencar L, Santos-Oliveira R. Folic Acid-Functionalized Graphene Quantum Dots: Synthesis, Characterization, Radiolabeling with Radium-223 and Antiviral Effect against Zika Virus Infection. Eur J Pharm Biopharm 2022; 180:91-100. [PMID: 36154904 DOI: 10.1016/j.ejpb.2022.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022]
Abstract
The use of graphene quantum dots as biomedical devices and drug delivery systems has been increasing. The nano-platform of pure carbon has shown unique properties and is approved to be safe for human use. In this study, we successfully produced and characterized folic acid-functionalized graphene quantum dots (GQD-FA) to evaluate their antiviral activity against Zika virus (ZIKV) infection in vitro, and for radiolabeling with the alpha-particle emitting radionuclide radium-223. The in vitro results exhibited the low cytotoxicity of the nanoprobe GQD-FA in Vero E6 cells and the antiviral effect against replication of the ZIKV infection. In addition, our findings demonstrated that functionalization with folic acid doesn't improve the antiviral effect of graphene quantum dots against ZIVK replication in vitro. On the other hand, the radiolabeled nanoprobe 223Ra@GQD-FA was also produced as confirmed by the Energy Dispersive X-Ray Spectroscopy analysis. 223Ra@GQD-FA might expand the application of alpha targeted therapy using radium-223 in folate receptor-overexpressing tumors.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
| | | | - Pierre Basílio de Almeida Fechine
- Group of Chemistry of Advanced Materials (GQMat) - Department of Analytical Chemistry and Physical Chemistry, Science Center, Federal University of Ceará (UFC), Fortaleza 60455-760, Brazil
| | - Syed Qaiser Shah
- Biochemistry and Nuclear Medicine Research Laboratory, Institute ofChemical Sciences, University of Peshawar, Peshawar, 25120 K.P, Pakistan
| | - Derya Ilem-Ozdemir
- Ege University, Faculty of Pharmacy, Department of Radiopharmacy, Bornova, Izmir 35040, Turkey
| | - Elvis O López
- Department of Experimetal Low Energy Physics, Brazilian Center for Research in Physics (CBPF), Rio de Janeiro 22290180, Brazil
| | - Juliana Terzi Maricato
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04021001, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04021001, Brazil
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Severino Alves Junior
- Laboratório de Terras Raras, Departamento de Química, Centro de Ciências Exatas e da Natureza (CCEN), Universidade Federal de Pernambuco, Recife, 50740-560, Brazil
| | | | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil; Rio de Janeiro State University, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro 23070200, Brazil.
| |
Collapse
|
115
|
3D-Printing Graphene Scaffolds for Bone Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14091834. [PMID: 36145582 PMCID: PMC9503344 DOI: 10.3390/pharmaceutics14091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Graphene-based materials have recently gained attention for regenerating various tissue defects including bone, nerve, cartilage, and muscle. Even though the potential of graphene-based biomaterials has been realized in tissue engineering, there are significantly many more studies reporting in vitro and in vivo data in bone tissue engineering. Graphene constructs have mainly been studied as two-dimensional (2D) substrates when biological organs are within a three-dimensional (3D) environment. Therefore, developing 3D graphene scaffolds is the next clinical standard, yet most have been fabricated as foams which limit control of consistent morphology and porosity. To overcome this issue, 3D-printing technology is revolutionizing tissue engineering, due to its speed, accuracy, reproducibility, and overall ability to personalize treatment whereby scaffolds are printed to the exact dimensions of a tissue defect. Even though various 3D-printing techniques are available, practical applications of 3D-printed graphene scaffolds are still limited. This can be attributed to variations associated with fabrication of graphene derivatives, leading to variations in cell response. This review summarizes selected works describing the different fabrication techniques for 3D scaffolds, the novelty of graphene materials, and the use of 3D-printed scaffolds of graphene-based nanoparticles for bone tissue engineering.
Collapse
|
116
|
Zhang Y, Tang H, Chen W, Zhang J. Nanomaterials Used in Fluorescence Polarization Based Biosensors. Int J Mol Sci 2022; 23:8625. [PMID: 35955779 PMCID: PMC9369394 DOI: 10.3390/ijms23158625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Fluorescence polarization (FP) has been applied in detecting chemicals and biomolecules for early-stage diagnosis, food safety analyses, and environmental monitoring. Compared to organic dyes, inorganic nanomaterials such as quantum dots have special fluorescence properties that can enhance the photostability of FP-based biosensing. In addition, nanomaterials, such as metallic nanoparticles, can be used as signal amplifiers to increase fluorescence polarization. In this review paper, different types of nanomaterials used in in FP-based biosensors have been reviewed. The role of each type of nanomaterial, acting as a fluorescent element and/or the signal amplifier, has been discussed. In addition, the advantages of FP-based biosensing systems have been discussed and compared with other fluorescence-based techniques. The integration of nanomaterials and FP techniques allows biosensors to quickly detect analytes in a sensitive and cost-effective manner and positively impact a variety of different fields including early-stage diagnoses.
Collapse
Affiliation(s)
- Yingqi Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada; (Y.Z.); (W.C.)
| | - Howyn Tang
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada;
| | - Wei Chen
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada; (Y.Z.); (W.C.)
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada; (Y.Z.); (W.C.)
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada;
| |
Collapse
|
117
|
Dinger N, Panzetta V, Russo C, Netti PA, Sirignano M. In vitro effects of combustion generated carbon dots on cellular parameters in healthy and cancerous breast cells. Nanotoxicology 2022; 16:733-756. [PMID: 36403151 DOI: 10.1080/17435390.2022.2144775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon nanomaterials are an inventive class of materials with wide applications in state-of-the-art bioimaging and therapeutics. They allow a broad range of tunable and integrated advantages of structural flexibility, chemical and thermal stability, upright electrical conductivity, and the option of scale-up and mass production. In the context of nanomedicine, carbon nanomaterials have been used extensively to mitigate the serious side effects of conventional chemotherapy and also to enable early cancer diagnostics, given their wide range of tunable properties. A class of carbon nanomaterials, called carbon dots (CDs) are small carbon-based nanoparticles and have been a valued discovery due to their photoluminescence, low photobleaching, and high surface area to mass ratio. The process of producing these CDs had so far been a high energy demanding process involving wet chemistry for purification. A one-step tunable production of luminescent CDs from fuel rich combustion reactors was recently presented by our group. In this paper, we explore the effects of these yellow luminescent combustion-generated CDs in MCF7 adenocarcinoma and MCF10a normal breast epithelial cells. We observed that these CDs, also at nontoxic doses, can affect basic cellular functions, such as cell cycle and proliferation; induce substantial changes on the physical parameters of the plasma membrane; and change the overall appearance of a cell in terms of morphology.
Collapse
Affiliation(s)
- Nikita Dinger
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy
| | - Valeria Panzetta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy.,Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Health Care IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Carmela Russo
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili- CNR - P.le V. Tecchio, Napoli, Italy
| | - Paolo Antonio Netti
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy.,Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Health Care IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Mariano Sirignano
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy
| |
Collapse
|
118
|
Farmand M, Jahanpeyma F, Gholaminejad A, Azimzadeh M, Malaei F, Shoaie N. Carbon nanostructures: a comprehensive review of potential applications and toxic effects. 3 Biotech 2022; 12:159. [PMID: 35814038 PMCID: PMC9259781 DOI: 10.1007/s13205-022-03175-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/25/2022] [Indexed: 12/17/2022] Open
Abstract
There is no doubt that nanotechnology has revolutionized our life since the 1970s when it was first introduced. Nanomaterials have helped us to improve the current products and services we use. Among the different types of nanomaterials, the application of carbon-based nanomaterials in every aspect of our lives has rapidly grown over recent decades. This review discusses recent advances of those applications in distinct categories, including medical, industrial, and environmental applications. The first main section introduces nanomaterials, especially carbon-based nanomaterials. In the first section, we discussed medical applications, including medical biosensors, drug and gene delivery, cell and tissue labeling and imaging, tissue engineering, and the fight against bacterial and fungal infections. The next section discusses industrial applications, including agriculture, plastic, electronic, energy, and food industries. In addition, the environmental applications, including detection of air and water pollutions and removal of environmental pollutants, were vastly reviewed in the last section. In the conclusion section, we discussed challenges and future perspectives.
Collapse
Affiliation(s)
- Maryam Farmand
- Department of Biology, Tehran University, PO Box: 14155-6619, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, PO Box: 73461-81746, Isfahan, Iran
| | - Mostafa Azimzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, PO Box: 8916188635, Yazd, Iran
| | - Fatemeh Malaei
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Nahid Shoaie
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| |
Collapse
|
119
|
Kumari S, Choudhary PK, Shukla R, Sahebkar A, Kesharwani P. Recent advances in nanotechnology based combination drug therapy for skin cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1435-1468. [PMID: 35294334 DOI: 10.1080/09205063.2022.2054399] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Skin-cancer (SC) is more common than all other cancers affecting large percentage of the population in the world and is increasing in terms of morbidity and mortality. In the United States, 3million people are affected by SC annually whereas millions of people are affected globally. Melanoma is fifth most common cancer in the United States. SC is commonly occurred in white people as per WHO. SC is divided into two groups, i.e. melanoma and non-melanoma. In the previous two decades, management of cancer remains to be a tough and a challenging task for many scholars. Presently, the treatment protocols are mostly based on surgery and chemo-radiation therapy, which sooner or later harm the unaffected cells too. To reduce these limitations, nano scaled materials and its extensive range may be recognized as the probable carriers for the selective drug delivery in response to cancerous cells. Recently, the nanocarriers based drugs and their combinations were found to be a new and interesting approach of study for the management of skin carcinoma to enhance the effectiveness, to lessen the dose-dependent side effects and to avoid the drug resistance. This review may emphasize on the wide-range of information on nanotechnology-based drugs and their combination with physical techniques.
Collapse
Affiliation(s)
- Shweta Kumari
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | | | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P., India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
120
|
Sánchez-Cid P, Jiménez-Rosado M, Romero A, Pérez-Puyana V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers (Basel) 2022; 14:polym14153023. [PMID: 35893984 PMCID: PMC9370620 DOI: 10.3390/polym14153023] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, there are still numerous challenges for well-known biomedical applications, such as tissue engineering (TE), wound healing and controlled drug delivery, which must be faced and solved. Hydrogels have been proposed as excellent candidates for these applications, as they have promising properties for the mentioned applications, including biocompatibility, biodegradability, great absorption capacity and tunable mechanical properties. However, depending on the material or the manufacturing method, the resulting hydrogel may not be up to the specific task for which it is designed, thus there are different approaches proposed to enhance hydrogel performance for the requirements of the application in question. The main purpose of this review article was to summarize the most recent trends of hydrogel technology, going through the most used polymeric materials and the most popular hydrogel synthesis methods in recent years, including different strategies of enhancing hydrogels’ properties, such as cross-linking and the manufacture of composite hydrogels. In addition, the secondary objective of this review was to briefly discuss other novel applications of hydrogels that have been proposed in the past few years which have drawn a lot of attention.
Collapse
Affiliation(s)
| | | | - Alberto Romero
- Correspondence: (P.S.-C.); (A.R.); Tel.: +34-954557179 (A.R.)
| | | |
Collapse
|
121
|
The Application of Carbon Nanomaterials in Sensing, Imaging, Drug Delivery and Therapy for Gynecologic Cancers: An Overview. Molecules 2022; 27:molecules27144465. [PMID: 35889338 PMCID: PMC9324069 DOI: 10.3390/molecules27144465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
Gynecologic cancers are one of the main health concerns of women throughout the world, and the early diagnosis and effective therapy of gynecologic cancers will be particularly important for the survival of female patients. As a current hotspot, carbon nanomaterials have attracted tremendous interest in tumor theranostics, and their application in gynecologic cancers has also been developed rapidly with great achievements in recent years. This Overview Article summarizes the latest progress in the application of diverse carbon nanomaterials (e.g., graphenes, carbon nanotubes, mesoporous carbon, carbon dots, etc.) and their derivatives in the sensing, imaging, drug delivery, and therapy of different gynecologic cancers. Important research contributions are highlighted in terms of the relationships among the fabrication strategies, architectural features, and action mechanisms for the diagnosis and therapy of gynecologic cancers. The current challenges and future strategies are discussed from the viewpoint of the real clinical application of carbon-based nanomedicines in gynecologic cancers. It is anticipated that this review will attract more attention toward the development and application of carbon nanomaterials for the theranostics of gynecologic cancers.
Collapse
|
122
|
Côa F, Delite FDS, Strauss M, Martinez DST. Toxicity mitigation and biodistribution of albumin corona coated graphene oxide and carbon nanotubes in Caenorhabditis elegans. NANOIMPACT 2022; 27:100413. [PMID: 35940564 DOI: 10.1016/j.impact.2022.100413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
In this work, the toxicity and biodistribution of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (MWCNT) were investigated in Caenorhabditis elegans. Bovine serum albumin (BSA) was selected as a model protein to evaluate the influence of protein corona formation on materials physicochemical properties, colloidal stability, and toxicity. Biological assays were performed to assess the effects of bare and albumin corona coated materials on survival, oxidative stress, intestinal barrier permeability, growth, reproduction, and fertility. Critical alterations in topography, surface roughness and chemistry of GO and MWCNT were observed due to albumin corona formation. These modifications were associated with changes in colloidal stability of materials and prevention of their aggregation and sedimentation in nematode testing medium. Both GO and MWCNT caused damage to nematode survival, growth, reproduction, and fertility, as well as enhanced oxidative stress and permeability of the intestinal barrier. But GO was more toxic than MWCNT to C. elegans, especially at long-term assays. Albumin corona mitigated 100% of acute and chronic effects of MWCNT. In contrast, the negative effects of GO were not completely mitigated; GO inhibited 16.2% of nematode growth, 86.5% of reproduction, and 32.0% of fertility at the highest concentration evaluated (10 mg L-1), while corona coated GO mitigated 50% and 100% of fertility and growth, respectively. Confocal Raman spectroscopy imaging was crucial to point out that bare and albumin corona coated GO and MWCNT crossed the C. elegans intestinal barrier reaching its reproductive organs. However, BSA corona protected the nematodes targeted organs from negative effects from MWCNT and blocked its translocation to other tissues, while coated GO was translocated inside the nematode affecting the functionality of crucial organs. In addition, coated MWCNT was excreted after 2 h of food resumption, whereas coated GO still accumulated in the nematode intestine. Our results demonstrate that the materials different translocation and excretion patterns in C. elegans had a relation to the impaired physiological functions of primary and secondary organs. This work is a contribution towards a better understanding of the impacts of protein corona on the toxicity of graphene oxide and carbon nanotubes; essential information for biological applications and nanosafety.
Collapse
Affiliation(s)
- Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Fabrício de Souza Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
123
|
Martínez-Periñán E, Martínez-Sobrino Á, Bravo I, García-Mendiola T, Mateo-Martí E, Pariente F, Lorenzo E. Neutral Red-carbon nanodots for selective fluorescent DNA sensing. Anal Bioanal Chem 2022; 414:5537-5548. [PMID: 35288763 PMCID: PMC9242914 DOI: 10.1007/s00216-022-03980-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/25/2023]
Abstract
Carbon nanodots modified with Neutral Red covalently inserted in the nanostructure (NR-CDs) have been prepared by a simple synthesis method based on microwave irradiation under controlled temperature and pressure. The synthetized NR-CDs have been characterized by different techniques, demonstrating the covalent bonding of Neutral Red molecules to the carbon dots nanostructure. Fluorescence activity of the prepare NR-CDs has been explored showing different interaction pathways with singled and doubled stranded DNA. These studies have been successfully applied to develop a new fluorescence DNA hybridization assay to the detection of a specific DNA sequence of Escherichia coli bacteria.
Collapse
Affiliation(s)
- Emiliano Martínez-Periñán
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Álvaro Martínez-Sobrino
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Iria Bravo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Eva Mateo-Martí
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Félix Pariente
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
124
|
Agrawal S, Kumar V, Kumar S, Shahi SK. Plant development and crop protection using phytonanotechnology: A new window for sustainable agriculture. CHEMOSPHERE 2022; 299:134465. [PMID: 35367229 DOI: 10.1016/j.chemosphere.2022.134465] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 05/12/2023]
Abstract
Most developing nations' economies are built on agriculture and most of their citizens rely on it for survival. Global agricultural systems are experiencing tough and unprecedented challenges in the age of changing climate. Every year, the world's population grows, necessitating increased agrarian productivity. As a result, there has been a movement toward utilizing emerging technologies, such as nanotechnology. Nanotechnology with plant systems has inspired great interest in the current scenario in developing areas that come under the umbrella of agriculture and develop environmental remediation strategies. Plant-mediated synthesized nanoparticle (NPs) are eco-friendly, less time consuming, less expensive, and provide long-term product safety. Simultaneously, it provides tools that have the potentiality as "magic bullets" containing nutrients, fungicides, fertilizers, herbicides, or nucleic acids that target specific plant tissues and deliver their payload to the targeting location of the plant to achieve the intended results for environmental monitoring and pollution resistance. In this perspective, the classification and biological activities of different NPs on agroecosystem are focused. Furthermore, absorption, transport, and modification of NPs in plants were thoroughly examined. Some of the most promising new technologies e.g., nanotechnology to increase crop agricultural input efficiency and reduce biotic and abiotic stresses are also discussed. Potential development and implementation challenges were explored, highlighting the importance of using a systems approach when creating suggested nanotechnologies.
Collapse
Affiliation(s)
- Sakshi Agrawal
- Bio-Resource Tech Laboratory, Department of Botany, School of Life Science, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Vineet Kumar
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Sunil Kumar
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Sushil Kumar Shahi
- Bio-Resource Tech Laboratory, Department of Botany, School of Life Science, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India.
| |
Collapse
|
125
|
Ibrahim Y, Kamoun E, Abdel Moaty M, Mohy El Din M. Evaluation of carbon nanotubes-hydroxyapatite nanocomposites as bioactive implant coats radiated by near infrared laser. Eur J Oral Sci 2022; 130:e12873. [PMID: 35673772 DOI: 10.1111/eos.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
This study aimed to evaluate carbon nanotubes-hydroxyapatite nanocomposites as bioactive titanium implant coats and to assess the effect of near-infrared radiation on these nanocomposites. Carbon nanotubes were acid-functionalized, and hydroxyapatite was prepared by the wet-chemical precipitation method. Both precursors were used to prepare the carbon nanotubes-hydroxyapatite nanocomposites in two concentrations of hydroxyapatite (0.5 and 1 wt.%). The formed nanocomposites were characterized and used to coat silanized titanium discs and cylinders. Half the specimens of each group were radiated by near-infrared laser, then wettability and shear bond strength were tested for all specimens. Bioactivity was tested by monitoring the formation of calcium phosphate compounds after soaking in simulated body fluid. A significant increase in wettability and bond strength was found in the radiated coats compared to the non-radiated ones with the 1% hydroxyapatite group showing the highest values followed by 0.5% hydroxyapatite then the carbon nanotubes group. The two-way ANOVA test showed that both the difference in material and the laser treatment have had a statistically significant contribution to the increase in wettability and bond strength. The radiated groups also contributed to the formation of more calcium phosphate crystals of larger sizes and higher degrees of crystallinity.
Collapse
Affiliation(s)
- Yomna Ibrahim
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Elbadawy Kamoun
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, New Borg Al-Arab City, Alexandria, Egypt.,Nanotechnology Research Center, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Maha Abdel Moaty
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Mona Mohy El Din
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
126
|
Habib S, Singh M. Carbon-based Nanomaterials for delivery of small RNA molecules: a focus on potential cancer treatment applications. Pharm Nanotechnol 2022; 10:PNT-EPUB-124198. [PMID: 35670355 DOI: 10.2174/2211738510666220606102906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nucleic acid-mediated therapy holds immense potential in the treatment of recalcitrant human diseases such as cancer. This is underscored by advances in understanding the mechanisms of gene regulation. In particular, the endogenous protective mechanism of gene silencing known as RNA interference (RNAi) has been extensively exploited. METHODS We review here the developments from 2011 to 2021, in the use of nanographene oxide, carbon nanotubes, fullerenes, carbon nanohorns, carbon nanodots and nanodiamonds for the delivery of therapeutic small RNA molecules. RESULTS Appropriately designed effector molecules such as small interfering RNA (siRNA), can, in theory, silence the expression of any disease-causing gene. Alternatively, siRNA can be generated in vivo through the introduction of plasmid-based short hairpin RNA (shRNA) expression vectors. Other small RNAs such as micro RNA (miRNA) also function in post-transcriptional gene regulation and are aberrantly expressed under disease conditions. The miRNA-based therapy involves either restoration of miRNA function through the introduction of miRNA mimics; or the inhibition of miRNA function by delivering anti-miRNA oligomers. However, the large size, hydrophilicity, negative charge and nuclease-sensitivity of nucleic acids necessitate an appropriate carrier for their introduction as medicine into cells. CONCLUSION While numerous organic and inorganic materials have been investigated for this purpose, the perfect carrier agent remains elusive. In recent years, carbon-based nanomaterials have received widespread attention in biotechnology due to their tunable surface characteristics, mechanical, electrical, optical and chemical properties.
Collapse
Affiliation(s)
- Saffiya Habib
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| |
Collapse
|
127
|
Mehta S, Suresh A, Nayak Y, Narayan R, Nayak UY. Hybrid nanostructures: Versatile systems for biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
128
|
Carbon Nanomaterials for Therapy, Diagnosis and Biosensing. NANOMATERIALS 2022; 12:nano12091597. [PMID: 35564306 PMCID: PMC9105479 DOI: 10.3390/nano12091597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023]
Abstract
In carbon nanomaterial design, the fine-tuning of their functionalities and physicochemical properties has increased their potential for therapeutic, diagnostic and biosensing applications [...].
Collapse
|
129
|
Lin HY, Yen SC, Kang CH, Chung CY, Hsu MC, Wang CY, Lin JHY, Huang CC, Lin HJ. How to evaluate the potential toxicity of therapeutic carbon nanomaterials? A comprehensive study of carbonized nanogels with multiple animal toxicity test models. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128337. [PMID: 35121295 DOI: 10.1016/j.jhazmat.2022.128337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Carbon-based nanomaterials have great potential in medical applications, especially in the treatment of infectious diseases and even tumors. However, to safely execute the application of carbon nanomaterials in human treatments, conducting safety assessments and establishing suitable evaluation criteria are necessary. In this study, lysine-carbonized nanogels (Lys-CNGs) that display antibacterial and antiviral abilities were employed in a comprehensive evaluation of their toxicity profiles through assessments in different animal models and growth stages. It was observed that zebrafish at the embryo and eleutheroembryo stages experienced significant toxic effects at a concentration of 15-fold the recommended dosage (0.5 ppm), whereas adult zebrafish following long-term consumption of fodder containing Lys-CNGs presented no adverse effects. Further microbiota analysis indicated that Lys-CNGs did not cause significant changes in the composition of the intestinal bacteria. In contrast, in the toxicity assessments with mammalian animal models, the Lys-CNGs showed no adverse effects, such as weight loss, dermal irritation, and skin sensitization responses in rabbits and guinea pigs, even at a high dose of 2000 mg/kg body weight. Our study revealed that Lys-CNGs have different toxic effects on different growth stages of zebrafish. Researchers in this field should carefully consider the implications of these toxicity profiles during the development of therapeutic carbon-based nanomaterials and for comparison of studies.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Shao-Chieh Yen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chia-Hui Kang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chih-Yu Chung
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Man-Chun Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chen-Yow Wang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - John Han-You Lin
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
130
|
Sargazi S, Er S, Mobashar A, Gelen SS, Rahdar A, Ebrahimi N, Hosseinikhah SM, Bilal M, Kyzas GZ. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: A review. Chem Biol Interact 2022; 361:109964. [PMID: 35513013 DOI: 10.1016/j.cbi.2022.109964] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded oligonucleotides that link to various substrates with great affinity and selectivity, including small molecules, peptides, proteins, cells, and tissues. For this reason, they can be used as imaging agents for cancer imaging techniques. Multifunctional nanomaterials combined with imaging probes and drugs are promising cancer diagnosis and treatment candidates. On the other hand, carbon-based nanomaterials (CNMs), including such as fullerene, carbon nanotubes, carbon-based quantum dots, carbon nanohorns, graphene oxide and its derivatives carbon nanodots, and nanodiamonds, are sort of smart materials that can be used in a variety of theranostic applications, including photo-triggered therapies. The remarkable physical characteristics, functionalizable chemistry, biocompatibility, and optical properties of these nanoparticles have enabled their utilization in less-invasive therapies. The theranostic agents that emerged by combining aptamers with CNMs have opened a novel alternative for personified medicine of cancer, target-specific imaging, and label-free diagnosis of a broad range of cancers, as well as pathogens. Aptamer-functionalized CNMs have been used as nanovesicles for targeted delivery of anti-cancer agents (i.e., doxorubicin and 5-fluorouracil) to tumor sites. Furthermore, these CNMs conjugated with aptamers have shown great advantages over standard CNMs to sensitively detect Mycobacterium tuberculosis, Escherichia coli, staphylococcus aureus, Vibrio parahaemolyticus, Salmonella typhimurium, Pseudomonas aeruginosa, and Citrobacter freundii. Regrettably, CNMs can form compounds defined as NOAA (nano-objects, and their aggregates and agglomerates larger than 100 nm), that accumulate in the body and cause toxic effects. Surface modification and pretreatment with albumin avoid agglomeration and increase the dispersibility of CNMs, so it is needed to guarantee the desirable interactions between functionalized CNMs and blood plasma proteins. This preliminary review aimed to comprehensively discuss the features and uses of aptamer-conjugated CNMs to manage cancer and bacterial infections.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 98167-43463, Iran
| | - Simge Er
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Sultan Sacide Gelen
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, 538-98615, Zabol, Iran.
| | - Narges Ebrahimi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala, 65404, Greece.
| |
Collapse
|
131
|
Hashem A, Hossain MAM, Marlinda AR, Mamun MA, Sagadevan S, Shahnavaz Z, Simarani K, Johan MR. Nucleic acid-based electrochemical biosensors for rapid clinical diagnosis: advances, challenges, and opportunities. Crit Rev Clin Lab Sci 2022. [PMID: 34851806 DOI: 10.1016/j.apsadv.2021.100064] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Clinical diagnostic tests should be quick, reliable, simple to perform, and affordable for diagnosis and treatment of diseases. In this regard, owing to their novel properties, biosensors have attracted the attention of scientists as well as end-users. They are efficient, stable, and relatively cheap. Biosensors have broad applications in medical diagnosis, including point-of-care (POC) monitoring, forensics, and biomedical research. The electrochemical nucleic acid (NA) biosensor, the latest invention in this field, combines the sensitivity of electroanalytical methods with the inherent bioselectivity of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The NA biosensor exploits the affinity of single-stranded DNA/RNA for its complementary strand and is used to detect complementary sequences of NA based on hybridization. After the NA component in the sensor detects the analyte, a catalytic reaction or binding event that generates an electrical signal in the transducer ensues. Since 2000, much progress has been made in this field, but there are still numerous challenges. This critical review describes the advances, challenges, and prospects of NA-based electrochemical biosensors for clinical diagnosis. It includes the basic principles, classification, sensing enhancement strategies, and applications of biosensors as well as their advantages, limitations, and future prospects, and thus it should be useful to academics as well as industry in the improvement and application of EC NA biosensors.
Collapse
Affiliation(s)
- Abu Hashem
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
- Microbial Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - M A Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Ab Rahman Marlinda
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammad Al Mamun
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Chemistry, Jagannath University, Dhaka, Bangladesh
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Zohreh Shahnavaz
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Khanom Simarani
- Department of Microbiology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
132
|
Chen J, Jin J, Li K, Shi L, Wen X, Fang F. Progresses and Prospects of Neuroprotective Agents-Loaded Nanoparticles and Biomimetic Material in Ischemic Stroke. Front Cell Neurosci 2022; 16:868323. [PMID: 35480961 PMCID: PMC9035592 DOI: 10.3389/fncel.2022.868323] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Ischemic stroke remains the leading cause of death and disability, while the main mechanisms of dominant neurological damage in stroke contain excitotoxicity, oxidative stress, and inflammation. The clinical application of many neuroprotective agents is limited mainly due to their inability to cross the blood-brain barrier (BBB), short half-life and low bioavailability. These disadvantages can be better eliminated/reduced by nanoparticle as the carrier of these drugs. This review expounded the currently hot researched nanomedicines from the perspective of the mechanism of ischemic stroke. In addition, this review describes the bionic nanomedicine delivery strategies containing cells, cell membrane vesicles and exosomes that can effectively avoid the risk of clearance by the reticuloendothelial system. The potential challenges and application prospect for clinical translation of these delivery platforms were also discussed.
Collapse
Affiliation(s)
- Junfa Chen
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jing Jin
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Kaiqiang Li
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lin Shi
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xuehua Wen
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Xuehua Wen,
| | - Fuquan Fang
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Fuquan Fang,
| |
Collapse
|
133
|
Multiwalled carbon nanotubes functionalized bacterial cellulose as an efficient healing material for diabetic wounds. Int J Biol Macromol 2022; 203:256-267. [PMID: 35093443 DOI: 10.1016/j.ijbiomac.2022.01.146] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/03/2022] [Accepted: 01/23/2022] [Indexed: 12/22/2022]
Abstract
The unique pool of features makes bacterial cellulose (BC) a robust platform to tailor its functionalities. Herein, the BC matrix was reinforced with multiwalled carbon nanotubes (MWCNT) to control infection and accelerate the healing process of diabetic wounds. The prepared BC-MWCNT composite film was characterized and antibacterial activity was assessed. Further, the in-vivo wound healing activity was performed and temporal expression of interleukin (IL-1α), tumor necrosis factor (TNF-α), vascular endothelial growth factor (VEGF) and platelets derived growth factor (PDGF) was quantitatively measured by real-time PCR. The characterization results confirmed the reinforcement of the BC matrix with MWCNT. The composite film showed antibacterial activity against all the tested strains. Moreover, the macroscopic analysis of the wound demonstrated faster closure of the diabetic wound in BC-MWCNT group (99% healing) as compared to negative control (77%) in 21 days. Histological studies further supported the results where complete reepithelization of the epidermis and healthy granulation tissue were observed in BC-MWCNT treated group. Molecular studies revealed that BC-MWCNT group showed relatively lesser expression of pro-inflammatory cytokines IL-1α and TNF-α and higher expression of VEGF than control that may have favored the faster healing. This study suggested that the tailorable properties of BC can be exploited to develop composites with potential applications in diabetic wound healing.
Collapse
|
134
|
Chavda VP, Patel AB, Mistry KJ, Suthar SF, Wu ZX, Chen ZS, Hou K. Nano-Drug Delivery Systems Entrapping Natural Bioactive Compounds for Cancer: Recent Progress and Future Challenges. Front Oncol 2022; 12:867655. [PMID: 35425710 PMCID: PMC9004605 DOI: 10.3389/fonc.2022.867655] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is a prominent cause of mortality globally, and it becomes fatal and incurable if it is delayed in diagnosis. Chemotherapy is a type of treatment that is used to eliminate, diminish, or restrict tumor progression. Chemotherapeutic medicines are available in various formulations. Some tumors require just one type of chemotherapy medication, while others may require a combination of surgery and/or radiotherapy. Treatments might last from a few minutes to many hours to several days. Each medication has potential adverse effects associated with it. Researchers have recently become interested in the use of natural bioactive compounds in anticancer therapy. Some phytochemicals have effects on cellular processes and signaling pathways with potential antitumor properties. Beneficial anticancer effects of phytochemicals were observed in both in vivo and in vitro investigations. Encapsulating natural bioactive compounds in different drug delivery methods may improve their anticancer efficacy. Greater in vivo stability and bioavailability, as well as a reduction in undesirable effects and an enhancement in target-specific activity, will increase the effectiveness of bioactive compounds. This review work focuses on a novel drug delivery system that entraps natural bioactive substances. It also provides an idea of the bioavailability of phytochemicals, challenges and limitations of standard cancer therapy. It also encompasses recent patents on nanoparticle formulations containing a natural anti-cancer molecule.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | | | - Kavya J. Mistry
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | | | - Zhuo-Xun Wu
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Kaijian Hou
- Department of Preventive Medicine,Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Afliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
135
|
Cuadrado CF, Díaz-Barrios A, Campaña KO, Romani EC, Quiroz F, Nardecchia S, Debut A, Vizuete K, Niebieskikwiat D, Ávila CE, Salazar MA, Garzón-Romero C, Blasco-Zúñiga A, Rivera MR, Romero MP. Broad-Spectrum Antimicrobial ZnMintPc Encapsulated in Magnetic-Nanocomposites with Graphene Oxide/MWCNTs Based on Bimodal Action of Photodynamic and Photothermal Effects. Pharmaceutics 2022; 14:705. [PMID: 35456539 PMCID: PMC9028436 DOI: 10.3390/pharmaceutics14040705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/10/2023] Open
Abstract
Microbial diseases have been declared one of the main threats to humanity, which is why, in recent years, great interest has been generated in the development of nanocomposites with antimicrobial capacity. The present work studied two magnetic nanocomposites based on graphene oxide (GO) and multiwall carbon nanotubes (MWCNTs). The synthesis of these magnetic nanocomposites consisted of three phases: first, the synthesis of iron magnetic nanoparticles (MNPs), second, the adsorption of the photosensitizer menthol-Zinc phthalocyanine (ZnMintPc) into MWCNTs and GO, and the third phase, encapsulation in poly (N-vinylcaprolactam-co-poly(ethylene glycol diacrylate)) poly (VCL-co-PEGDA) polymer VCL/PEGDA a biocompatible hydrogel, to obtain the magnetic nanocomposites VCL/PEGDA-MNPs-MWCNTs-ZnMintPc and VCL/PEGDA-MNPs-GO-ZnMintPc. In vitro studies were carried out using Escherichia coli and Staphylococcus aureus bacteria and the Candida albicans yeast based on the Photodynamic/Photothermal (PTT/PDT) effect. This research describes the nanocomposites' optical, morphological, magnetic, and photophysical characteristics and their application as antimicrobial agents. The antimicrobial effect of magnetics nanocomposites was evaluated based on the PDT/PTT effect. For this purpose, doses of 65 mW·cm-2 with 630 nm light were used. The VCL/PEGDA-MNPs-GO-ZnMintPc nanocomposite eliminated E. coli and S. aureus colonies, while the VCL/PEGDA-MNPs-MWCNTs-ZnMintPc nanocomposite was able to kill the three types of microorganisms. Consequently, the latter is considered a broad-spectrum antimicrobial agent in PDT and PTT.
Collapse
Affiliation(s)
- Coralia Fabiola Cuadrado
- Laboratorio de Nuevos Materiales, Departamento de Materiales, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito 170525, Ecuador; (K.O.C.); (M.P.R.)
| | - Antonio Díaz-Barrios
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador;
| | - Kleber Orlando Campaña
- Laboratorio de Nuevos Materiales, Departamento de Materiales, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito 170525, Ecuador; (K.O.C.); (M.P.R.)
| | - Eric Cardona Romani
- Instituto SENAI de Inovação, Serviço Nacional de Aprendizagem Industrial (Firjan SENAI), Rio de Janeiro 999074, Brazil;
| | - Francisco Quiroz
- Departamento de Ciencia de Alimentos y Biotecnología DECAB, Escuela Politécnica Nacional, Quito 170525, Ecuador;
| | - Stefania Nardecchia
- Magnetic Soft Matter Group, Department of Applied Physics, Faculty of Sciences, University of Granada, 18071 Granada, Spain;
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (A.D.); (K.V.)
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (A.D.); (K.V.)
| | - Dario Niebieskikwiat
- Departamento de Física, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito 170901, Ecuador;
| | - Camilo Ernesto Ávila
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina—CISeAL, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador; (C.E.Á.); (M.A.S.); (C.G.-R.); (A.B.-Z.)
| | - Mateo Alejandro Salazar
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina—CISeAL, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador; (C.E.Á.); (M.A.S.); (C.G.-R.); (A.B.-Z.)
| | - Cristina Garzón-Romero
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina—CISeAL, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador; (C.E.Á.); (M.A.S.); (C.G.-R.); (A.B.-Z.)
| | - Ailín Blasco-Zúñiga
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina—CISeAL, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador; (C.E.Á.); (M.A.S.); (C.G.-R.); (A.B.-Z.)
| | - Miryan Rosita Rivera
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina—CISeAL, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador; (C.E.Á.); (M.A.S.); (C.G.-R.); (A.B.-Z.)
| | - María Paulina Romero
- Laboratorio de Nuevos Materiales, Departamento de Materiales, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito 170525, Ecuador; (K.O.C.); (M.P.R.)
| |
Collapse
|
136
|
Saqezi AS, Kermanian M, Ramazani A, Sadighian S. Synthesis of Graphene Oxide/Iron Oxide/Au Nanocomposite for Quercetin Delivery. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02259-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
137
|
Overview of antimicrobial polyurethane-based nanocomposite materials and associated signalling pathways. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
138
|
He Y, Hu C, Li Z, Wu C, Zeng Y, Peng C. Multifunctional carbon nanomaterials for diagnostic applications in infectious diseases and tumors. Mater Today Bio 2022; 14:100231. [PMID: 35280329 PMCID: PMC8896867 DOI: 10.1016/j.mtbio.2022.100231] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious diseases (such as Corona Virus Disease 2019) and tumors pose a tremendous challenge to global public health. Early diagnosis of infectious diseases and tumors can lead to effective control and early intervention of the patient's condition. Over the past few decades, carbon nanomaterials (CNs) have attracted widespread attention in different scientific disciplines. In the field of biomedicine, carbon nanotubes, graphene, carbon quantum dots and fullerenes have the ability of improving the accuracy of the diagnosis by the improvement of the diagnostic approaches. Therefore, this review highlights their applications in the diagnosis of infectious diseases and tumors over the past five years. Recent advances in the field of biosensing, bioimaging, and nucleic acid amplification by such CNs are introduced and discussed, emphasizing the importance of their unique properties in infectious disease and tumor diagnosis and the challenges and opportunities that exist for future clinical applications. Although the application of CNs in the diagnosis of several diseases is still at a beginning stage, biosensors, bioimaging technologies and nucleic acid amplification technologies built on CNs represent a new generation of promising diagnostic tools that further support their potential application in infectious disease and tumor diagnosis.
Collapse
Affiliation(s)
| | | | - Zhijia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yuanyuan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
139
|
Banthia P, Gambhir L, Sharma A, Daga D, Kapoor N, Chaudhary R, Sharma G. Nano to rescue: repository of nanocarriers for targeted drug delivery to curb breast cancer. 3 Biotech 2022; 12:70. [PMID: 35223356 PMCID: PMC8841383 DOI: 10.1007/s13205-022-03121-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/16/2022] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a heterogeneous disease with different intrinsic subtypes. The conventional treatment of surgical resection, chemotherapy, immunotherapy and radiotherapy has not shown significant improvement in the survival rate of breast cancer patients. The therapeutics used cause bystander toxicities deteriorating healthy tissues. The breakthroughs of nanotechnology have been a promising feat in selective targeting of tumor site thus increasing the therapeutic gain. By the application of nanoenabled carriers, nanomedicines ensure targeted delivery, stability, enhanced cellular uptake, biocompatibility and higher apoptotic efficacy. The present review focuses on breakthrough of nanoscale intervention in targeted drug delivery as novel class of therapeutics. Nanoenabled carriers like polymeric and metallic nanoparticles, dendrimers, quantum dots, liposomes, solid lipid nanoparticles, carbon nanotubes, drug-antibody conjugates and exosomes revolutionized the targeted therapeutic delivery approach. These nanoassemblies have shown additional effect of improving the solubility of drugs such as paclitaxel, reducing the dose and toxicity. The present review provides an insight on the different drug conjugates employed/investigated to curb breast cancer using nanocarrier mediated targeted drug delivery. However, identification of appropriate biomarkers to target, clearer insight of the biological processes, batch uniformity, reproducibility, nanomaterial toxicity and stabilities are the hurdles faced by nanodrugs. The potential of nano-therapeutics delivery necessitates the agglomerated efforts of research community to bridge the route of nanodrugs for scale-up, commercialization and clinical applications.
Collapse
Affiliation(s)
- Poonam Banthia
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| | - Lokesh Gambhir
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| | - Asha Sharma
- Department of Zoology, Swargiya P. N. K. S. Govt. PG College, Dausa, Rajasthan India
| | - Dhiraj Daga
- Department of Radiation Oncology, JLN Medical College, Ajmer, Rajasthan India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| | - Rishabh Chaudhary
- Department of Emergency Medicine, Institute of Bioelectronic Medicine, Feinstein Institute of Medical Research, Northwell Health, New Hyde Park, NY USA
| | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| |
Collapse
|
140
|
Wang L, Liu G, Hu Y, Gou S, He T, Feng Q, Cai K. Doxorubicin-loaded polypyrrole nanovesicles for suppressing tumor metastasis through combining photothermotherapy and lymphatic system-targeted chemotherapy. NANOSCALE 2022; 14:3097-3111. [PMID: 35141740 DOI: 10.1039/d2nr00186a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The lymphatic system provides a main route for the dissemination of most malignancies, which was related to high mortality in cancer patients. Traditional intravenous chemotherapy is of limited effectiveness on lymphatic metastasis due to the difficulty in accessing the lymphatic system. Herein, a novel lymphatic-targeting nanoplatform is prepared by loading doxorubicin (DOX) into sub-50 nm polypyrrole nanovesicles (PPy NVs). The PPy NVs possessed hollow spherical morphologies and a negative surface charge, leading to high drug loading capacity. These vesicles can also convert near-infrared (NIR) light into heat and thus can be used for tumor thermal ablation. DOX loaded PPy NVs (PPy@DOX NVs) along with NIR illumination are highly effective against 4T1 breast cancer cells in vitro. More importantly, following subcutaneous (SC) injection, a direct lymphatic migration of PPy@DOX NVs is confirmed through fluorescence observation of the isolated draining nodes. The acidic conditions in metastatic nodes might subsequently trigger the release of the encapsulated DOX NVs based on their pH-sensitive release profile. In a mouse model bearing 4T1 breast cancer, lymphatic metastases, as well as lung metastases, are significantly inhibited by nanocarrier-mediated trans-lymphatic drug delivery in combination with photothermal ablation. In conclusion, this platform holds great potential in impeding tumor growth and metastasis.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Yunping Hu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou, Fujian 350007, China
| | - Shuangquan Gou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Tingting He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
141
|
Rahiman N, Mohammadi M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Recent advancements in nanoparticle-mediated approaches for restoration of multiple sclerosis. J Control Release 2022; 343:620-644. [PMID: 35176392 DOI: 10.1016/j.jconrel.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease with complicated immunopathology which necessitates considering multifactorial aspects for its management. Nano-sized pharmaceutical carriers named nanoparticles (NPs) can support impressive management of disease not only in early detection and prognosis level but also in a therapeutic manner. The most prominent initiator of MS is the domination of cellular immunity to humoral immunity and increment of inflammatory cytokines. The administration of several platforms of NPs for MS management holds great promise so far. The efforts for MS management through in vitro and in vivo (experimental animal models) evaluations, pave a new way to a highly efficient therapeutic means and aiding its translation to the clinic in the near future.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
142
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
143
|
Shatursky OY, Demchenko AP, Panas I, Krisanova N, Pozdnyakova N, Borisova T. The ability of carbon nanoparticles to increase transmembrane current of cations coincides with impaired synaptic neurotransmission. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183817. [PMID: 34767780 DOI: 10.1016/j.bbamem.2021.183817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Here, carbon nanodots synthesized from β-alanine (Ala-CDs) and detonation nanodiamonds (NDs) were assessed using (1) radiolabeled excitatory neurotransmitters L-[14C]glutamate, D-[2,33H]aspartate, and inhibitory ones [3H]GABA, [3H]glycine for registration of their extracellular concentrations in rat cortex nerve terminals; (2) the fluorescent ratiometric probe NR12S and pH-sensitive probe acridine orange for registration of the membrane lipid order and synaptic vesicle acidification, respectively; (3) suspended bilayer lipid membrane (BLM) to monitor changes in transmembrane current. In nerve terminals, Ala-CDs and NDs increased the extracellular concentrations of neurotransmitters and decreased acidification of synaptic vesicles, whereas have not changed sufficiently the lipid order of membrane. Both nanoparticles, Ala-CDs and NDs, were capable of increasing the conductance of the BLM by inducing stable potential-dependent cation-selective pores. Introduction of divalent cations, Zn2+ or Cd2+ on the particles` application side (cis-side) increased the rate of Ala-CDs pore-formation in the BLM. The application of positive potential (+100 mV) to the cis-chamber with Ala-CDs or NDs also activated the insertion as compared with the negative potential (-100 mV). The Ala-CD pores exhibited a wide-range distribution of conductances between 10 and 60 pS and consecutive increase in conductance of each major peak by ~10 pS, which suggest the clustering of the same basic ion-conductive structure. NDs also formed ion-conductive pores ranging from 6 pS to 60 pS with the major peak of conductance at ~12 pS in cholesterol-containing membrane. Observed Ala-CDs and NDs-induced increase in transmembrane current coincides with disturbance of excitatory and inhibitory neurotransmitter transport in nerve terminals.
Collapse
Affiliation(s)
- Oleg Ya Shatursky
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Alexander P Demchenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine
| | - Ihor Panas
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine
| | - Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| |
Collapse
|
144
|
Dutta S, Corni S, Brancolini G. Atomistic Simulations of Functionalized Nano-Materials for Biosensors Applications. Int J Mol Sci 2022; 23:1484. [PMID: 35163407 PMCID: PMC8835741 DOI: 10.3390/ijms23031484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
Abstract
Nanoscale biosensors, a highly promising technique in clinical analysis, can provide sensitive yet label-free detection of biomolecules. The spatial and chemical specificity of the surface coverage, the proper immobilization of the bioreceptor as well as the underlying interfacial phenomena are crucial elements for optimizing the performance of a biosensor. Due to experimental limitations at the microscopic level, integrated cross-disciplinary approaches that combine in silico design with experimental measurements have the potential to present a powerful new paradigm that tackles the issue of developing novel biosensors. In some cases, computational studies can be seen as alternative approaches to assess the microscopic working mechanisms of biosensors. Nonetheless, the complex architecture of a biosensor, associated with the collective contribution from "substrate-receptor-analyte" conjugate in a solvent, often requires extensive atomistic simulations and systems of prohibitive size which need to be addressed. In silico studies of functionalized surfaces also require ad hoc force field parameterization, as existing force fields for biomolecules are usually unable to correctly describe the biomolecule/surface interface. Thus, the computational studies in this field are limited to date. In this review, we aim to introduce fundamental principles that govern the absorption of biomolecules onto functionalized nanomaterials and to report state-of-the-art computational strategies to rationally design nanoscale biosensors. A detailed account of available in silico strategies used to drive and/or optimize the synthesis of functionalized nanomaterials for biosensing will be presented. The insights will not only stimulate the field to rationally design functionalized nanomaterials with improved biosensing performance but also foster research on the required functionalization to improve biomolecule-surface complex formation as a whole.
Collapse
Affiliation(s)
- Sutapa Dutta
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.D.); (S.C.)
- Institute of Nanoscience, CNR-NANO S3, Via G. Campi 213/A, 41125 Modena, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.D.); (S.C.)
- Institute of Nanoscience, CNR-NANO S3, Via G. Campi 213/A, 41125 Modena, Italy
| | - Giorgia Brancolini
- Institute of Nanoscience, CNR-NANO S3, Via G. Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
145
|
Abstract
Chitosan (CS) and graphene oxide (GO) nanocomposites have received wide attention in biomedical fields due to the synergistic effect between CS which has excellent biological characteristics and GO which owns great physicochemical, mechanical, and optical properties. Nanocomposites based on CS and GO can be fabricated into a variety of forms, such as nanoparticles, hydrogels, scaffolds, films, and nanofibers. Thanks to the ease of functionalization, the performance of these nanocomposites in different forms can be further improved by introducing other functional polymers, nanoparticles, or growth factors. With this background, the current review summarizes the latest developments of CS-GO nanocomposites in different forms and compositions in biomedical applications including drug and biomacromolecules delivery, wound healing, bone tissue engineering, and biosensors. Future improving directions and challenges for clinical practice are proposed as well.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
146
|
Affiliation(s)
- Xianxian Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Binru Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Jian Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging National‐Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| |
Collapse
|
147
|
Medical Nanomaterials. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_5-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
148
|
Liang W, Dong Y, Shao R, Zhang S, Wu X, Huang X, Sun B, Zeng B, Zhao J. Application of Nanoparticles in Drug Delivery for the Treatment of Osteosarcoma: Focusing on the Liposomes. J Drug Target 2021; 30:463-475. [PMID: 34962448 DOI: 10.1080/1061186x.2021.2023160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteosarcoma (OS) is one of the most common primary bone malignancies in children and adolescents. The toxicity to healthy tissues from conventional therapeutic strategies, including chemotherapy and radiotherapy, and drug resistance, severely affect OS patients' quality of life and cancer-specific outcomes. Many efforts have been made to develop various nanomaterial-based drug delivery systems with specific properties to overcome these limitations. Among the developed nanocarriers, liposomes are the most successful and promising candidates for providing targeted tumor therapy and enhancing the safety and therapeutic effect of encapsulated agents. Liposomes have low immunogenicity, high biocompatibility, prolonged half-life, active group protection, cell-like membrane structure, safety, and effectiveness. This review will discuss various nanomaterial-based carriers in cancer therapy and then the characteristics and design of liposomes with a particular focus on the targeting feature. We will also summarize the recent advances in the liposomal drug delivery system for OS treatment in preclinical and clinical studies.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Yongqiang Dong
- Department of Orthopedics, Xinchang People's Hospital, Shaoxing 312500, China
| | - Ruyi Shao
- Department of Orthopedics, Zhuji People's Hospital, Shaoxing 312500, China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing 312000, China
| | - Xudong Wu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Bin Sun
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| |
Collapse
|
149
|
Kearns O, Camisasca A, Giordani S. Hyaluronic Acid-Conjugated Carbon Nanomaterials for Enhanced Tumour Targeting Ability. Molecules 2021; 27:48. [PMID: 35011272 PMCID: PMC8746509 DOI: 10.3390/molecules27010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Hyaluronic acid (HA) has been implemented for chemo and photothermal therapy to target tumour cells overexpressing the CD44+ receptor. HA-targeting hybrid systems allows carbon nanomaterial (CNM) carriers to efficiently deliver anticancer drugs, such as doxorubicin and gemcitabine, to the tumour sites. Carbon nanotubes (CNTs), graphene, graphene oxide (GO), and graphene quantum dots (GQDs) are grouped for a detailed review of the novel nanocomposites for cancer therapy. Some CNMs proved to be more successful than others in terms of stability and effectiveness at removing relative tumour volume. While the literature has been focused primarily on the CNTs and GO, other CNMs such as carbon nano-onions (CNOs) proved quite promising for targeted drug delivery using HA. Near-infrared laser photoablation is also reviewed as a primary method of cancer therapy-it can be used alone or in conjunction with chemotherapy to achieve promising chemo-photothermal therapy protocols. This review aims to give a background into HA and why it is a successful cancer-targeting component of current CNM-based drug delivery systems.
Collapse
Affiliation(s)
| | | | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 E432 Dublin, Ireland; (O.K.); (A.C.)
| |
Collapse
|
150
|
Rafiee Z, Omidi S. Modification of carbon-based nanomaterials by polyglycerol: recent advances and applications. RSC Adv 2021; 12:181-192. [PMID: 35424494 PMCID: PMC8978678 DOI: 10.1039/d1ra07554c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperbranched polymers, a subclass of dendritic polymers, mimic nature's components such as trees and nerves. Hyperbranched polyglycerol (HPG) is a hyperbranched polyether with outstanding physicochemical properties, including high water-solubility and functionality, biocompatibility, and an antifouling feature. HPG has attracted great interest in the modification of different objects, in particular carbon-based nanomaterials. In this review, recent advances in the synthesis and application of HPG to modify carbon-based nanomaterials, including graphene, carbon nanotubes, fullerene, nanodiamonds, carbon dots, and carbon fibers, are reviewed.
Collapse
Affiliation(s)
- Zeinab Rafiee
- Department of Chemistry, Malayer University Malayer Iran
| | - Sakineh Omidi
- Shahid Beheshti University of Medical Sciences Tehran Iran +98-9181438542
| |
Collapse
|