101
|
Singh A, Mishra R, Mazumder A. Breast cancer and its therapeutic targets: A comprehensive review. Chem Biol Drug Des 2024; 103:e14384. [PMID: 37919259 DOI: 10.1111/cbdd.14384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/14/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Breast cancer is a common and deadly disease, so there is a constant need for research to find efficient targets and therapeutic approaches. Breast cancer can be classified on a molecular and histological base. Breast cancer can be divided into ER (estrogen receptor)-positive and ER-negative, HER2 (human epidermal growth factor receptor2)-positive and HER2-negative subtypes based on the presence of specific biomarkers. Targeting hormone receptors, such as the HER2, progesterone receptor (PR), and ER, is very significant and plays a vital role in the onset and progression of breast cancer. Endocrine treatments and HER2-targeted drugs are examples of targeted therapies now being used against these receptors. Emerging immune-based medicines with promising outcomes in the treatment of breast cancer include immune checkpoint inhibitors, cancer vaccines, and adoptive T-cell therapy. It is also explored how immune cells and the tumor microenvironment affect breast cancer development and treatment response. The major biochemical pathways, signaling cascades, and DNA repair mechanisms that are involved in the development and progression of breast cancer, include the PI3K/AKT/mTOR system, the MAPK pathway, and others. These pathways are intended to be inhibited by a variety of targeted drugs, which are then delivered with the goal of restoring normal cellular function. This review aims to shed light on types of breast cancer with the summarization of different therapeutic approaches which can target different pathways for tailored medicines and better patient outcomes.
Collapse
Affiliation(s)
- Ayushi Singh
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Rakhi Mishra
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| |
Collapse
|
102
|
Lin H, Ma C, Zhong A, Zang H, Chen W, Li L, Le Y, Xie Q. Anti-Angiogenic Agents Combined with Immunotherapy for Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Comb Chem High Throughput Screen 2024; 27:1081-1091. [PMID: 37559541 DOI: 10.2174/1386207326666230808112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/17/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Anti-angiogenic agents could enhance tumor immunity response, and anti- angiogenesis plus immunotherapy has become a novel treatment option for advanced non-small cell lung cancer (NSCLC). The efficacy of this combination therapy remains controversial and obscure. AIM We conducted a meta-analysis to evaluate the clinical efficacy and safety of this therapeutic strategy in patients with advanced NSCLC and provide more guidance for treating NSCLC clinically. METHODS A systematic literature search was performed in PubMed, Embase, Web of Science, CNKI, and Wanfang databases to identify relevant studies published up to December 2021. The primary endpoint was the objective response rate (ORR). Second endpoints were progression-free survival (PFS), overall survival (OS), and grade ≥3 AEs adverse events (AEs). The sensitivity analysis was conducted to confirm the stability of the results. STATA 15.0 was utilized for all pooled analyses. RESULTS Eleven studies were eventually included in the meta-analysis, involving 533 patients with advanced NSCLC. The pooled ORR rate was 27% (95% CI 18% to 35%; I2 =84.2%; p<0.001), while the pooled median PFS and OS was 5.84 months (95% CI 4.66 to 7.03 months; I2=78.4%; p<0.001) and 14.20 months (95% CI 11.08 to 17.32 months; I2=82.2%; p=0.001), respectively. Most common grade ≥3 AEs included hypertension, hand-foot syndrome, diarrhea, adrenal insufficiency, hyponatremia, proteinuria, rash, thrombocytopenia, and fatigue. CONCLUSION Anti-angiogenesis combined with immunotherapy demonstrated satisfactory antitumor activity and an acceptable toxicity profile in patients with advanced NSCLC. The pooled results of our meta-analysis provided further evidence supporting the favorable efficacy and safety of this therapeutic strategy.
Collapse
Affiliation(s)
- Heng Lin
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Chenhui Ma
- Department of Thoracis Surgery, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Aihong Zhong
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Huanping Zang
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Wenxin Chen
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Lixiu Li
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Yuyin Le
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Qiang Xie
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| |
Collapse
|
103
|
Han L, Meng Y, Jianguo Z. Research Progress of PD 1/PD L1 Inhibitors in the Treatment of Urological Tumors. Curr Cancer Drug Targets 2024; 24:1104-1115. [PMID: 38318829 DOI: 10.2174/0115680096278251240108152600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
Immune checkpoint inhibitors (ICIs) offer significant advantages for the treatment of urologic tumors, enhancing the immune function of anti-tumor T cells by inhibiting PD-1 and PDL1 binding. They have been shown to be well tolerated and remarkably effective in clinical practice, offering hope to many patients who are not well treated with conventional drugs. Clinical trials in recent years have shown that anti-PD-1 and PD-L1 antibodies have good efficacy and safety in the treatment of urologic tumors. These antibodies can be applied to a variety of urologic tumors, such as bladder cancer, renal cell carcinoma, and prostate cancer. They have been approved for the first-line treatment or as an option for follow-up therapy. By blocking the PD-1/PD-L1 signaling pathway, ICIs can release immune functions that are suppressed by tumor cells and enhance T-cell killing, thereby inhibiting tumor growth and metastasis. This therapeutic approach has achieved encouraging efficacy and improved survival for many patients. Although ICIs have shown remarkable results in the treatment of urologic tumors, some problems remain, such as drug resistance and adverse effects in some patients. Therefore, further studies remain important to optimize treatment strategies and improve clinical response in patients. In conclusion, PD-1/PD-L1 signaling pathway blockers have important research advances for the treatment of urologic tumors. Their emergence brings new hope for patients who have poor outcomes with traditional drug therapy and provides new options for immunotherapy of urologic tumors. The purpose of this article is to review the research progress of PD-1 and PD-L1 signaling pathway blockers in urologic tumors in recent years.
Collapse
Affiliation(s)
- Lv Han
- Guizhou Medical University, Guiyang, 550000, China
| | - Yang Meng
- Guizhou Provincial People's Hospital, Guiyang, 550000, China
| | - Zhu Jianguo
- Guizhou Provincial People's Hospital, Guiyang, 550000, China
| |
Collapse
|
104
|
Jiao Z, Zhang J. Interplay between inflammasomes and PD-1/PD-L1 and their implications in cancer immunotherapy. Carcinogenesis 2023; 44:795-808. [PMID: 37796835 DOI: 10.1093/carcin/bgad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
The inflammasomes play crucial roles in inflammation and cancer development, while the PD-1/PD-L1 pathway is critical for immune suppression in the tumor microenvironment (TME). Recent research indicates a reciprocal regulatory relationship between inflammasomes and PD-1/PD-L1 signaling in cancer development and PD-1 blockade treatment. By activating in diverse cells in tumor tissues, inflammasome upregulates PD-L1 level in the TME. Moreover, the regulation of PD-1/PD-L1 activity by inflammasome activation involves natural killer cells, tumor-associated macrophages and myeloid-derived suppressor cells. Conversely, PD-1 blockade can activate the inflammasome, potentially influencing treatment outcomes. The interplay between inflammasomes and PD-1/PD-L1 has profound and intricate effects on cancer development and treatment. In this review, we discuss the crosstalk between inflammasomes and PD-1/PD-L1 in cancers, exploring their implications for tumorigenesis, metastasis and immune checkpoint inhibitor (ICI) resistance. The combined therapeutic strategies targeting both inflammasomes and checkpoint molecules hold promising potential as treatments for cancer.
Collapse
Affiliation(s)
- Zhongyu Jiao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Peking University Health Science Center, Beijing 100191, P.R. China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Peking University Health Science Center, Beijing 100191, P.R. China
| |
Collapse
|
105
|
Zhang J. Special Issue: "Molecular Imaging in Oncology: Radiopharmaceuticals for PET and SPECT 2022". Pharmaceuticals (Basel) 2023; 17:49. [PMID: 38256883 PMCID: PMC10818332 DOI: 10.3390/ph17010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Molecular imaging is partly defined as in vivo imaging of biological or biochemical processes using various markers [...].
Collapse
Affiliation(s)
- Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
106
|
Sausen DG, Poirier MC, Spiers LM, Smith EN. Mechanisms of T cell evasion by Epstein-Barr virus and implications for tumor survival. Front Immunol 2023; 14:1289313. [PMID: 38179040 PMCID: PMC10764432 DOI: 10.3389/fimmu.2023.1289313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent oncogenic virus estimated to infect greater than 90% of the world's population. Following initial infection, it establishes latency in host B cells. EBV has developed a multitude of techniques to avoid detection by the host immune system and establish lifelong infection. T cells, as important contributors to cell-mediated immunity, make an attractive target for these immunoevasive strategies. Indeed, EBV has evolved numerous mechanisms to modulate T cell responses. For example, it can augment expression of programmed cell death ligand-1 (PD-L1), which inhibits T cell function, and downregulates the interferon response, which has a strong impact on T cell regulation. It also modulates interleukin secretion and can influence major histocompatibility complex (MHC) expression and presentation. In addition to facilitating persistent EBV infection, these immunoregulatory mechanisms have significant implications for evasion of the immune response by tumor cells. This review dissects the mechanisms through which EBV avoids detection by host T cells and discusses how these mechanisms play into tumor survival. It concludes with an overview of cancer treatments targeting T cells in the setting of EBV-associated malignancy.
Collapse
Affiliation(s)
- D. G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | | | | |
Collapse
|
107
|
Constantin M, Chifiriuc MC, Mihaescu G, Vrancianu CO, Dobre EG, Cristian RE, Bleotu C, Bertesteanu SV, Grigore R, Serban B, Cirstoiu C. Implications of oral dysbiosis and HPV infection in head and neck cancer: from molecular and cellular mechanisms to early diagnosis and therapy. Front Oncol 2023; 13:1273516. [PMID: 38179168 PMCID: PMC10765588 DOI: 10.3389/fonc.2023.1273516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Head and neck cancer (HNC) is the sixth most common type of cancer, with more than half a million new cases annually. This review focuses on the role of oral dysbiosis and HPV infection in HNCs, presenting the involved taxons, molecular effectors and pathways, as well as the HPV-associated particularities of genetic and epigenetic changes and of the tumor microenvironment occurred in different stages of tumor development. Oral dysbiosis is associated with the evolution of HNCs, through multiple mechanisms such as inflammation, genotoxins release, modulation of the innate and acquired immune response, carcinogens and anticarcinogens production, generation of oxidative stress, induction of mutations. Thus, novel microbiome-derived biomarkers and interventions could significantly contribute to achieving the desideratum of personalized management of oncologic patients, regarding both early diagnosis and treatment. The results reported by different studies are not always congruent regarding the variations in the abundance of different taxons in HNCs. However, there is a consistent reporting of a higher abundance of Gram-negative species such as Fusobacterium, Leptotrichia, Treponema, Porphyromonas gingivalis, Prevotella, Bacteroidetes, Haemophilus, Veillonella, Pseudomonas, Enterobacterales, which are probably responsible of chronic inflammation and modulation of tumor microenvironment. Candida albicans is the dominant fungi found in oral carcinoma being also associated with shorter survival rate. Specific microbial signatures (e.g., F. nucleatum, Bacteroidetes and Peptostreptococcus) have been associated with later stages and larger tumor, suggesting their potential to be used as biomarkers for tumor stratification and prognosis. On the other hand, increased abundance of Corynebacterium, Kingella, Abiotrophia is associated with a reduced risk of HNC. Microbiome could also provide biomarkers for differentiating between oropharyngeal and hypopharyngeal cancers as well as between HPV-positive and HPV-negative tumors. Ongoing clinical trials aim to validate non-invasive tests for microbiome-derived biomarkers detection in oral and throat cancers, especially within high-risk populations. Oro-pharyngeal dysbiosis could also impact the HNCs therapy and associated side-effects of radiotherapy, chemotherapy, and immunotherapy. HPV-positive tumors harbor fewer mutations, as well as different DNA methylation pattern and tumor microenvironment. Therefore, elucidation of the molecular mechanisms by which oral microbiota and HPV infection influence the HNC initiation and progression, screening for HPV infection and vaccination against HPV, adopting a good oral hygiene, and preventing oral dysbiosis are important tools for advancing in the battle with this public health global challenge.
Collapse
Affiliation(s)
- Marian Constantin
- Department of Microbiology, Institute of Biology of Romanian Academy, Bucharest, Romania
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Life, Medical and Agricultural Sciences, Biological Sciences Section, Romanian Academy, Bucharest, Romania
| | - Grigore Mihaescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Elena-Georgiana Dobre
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Immunology Department, “Victor Babes” National Institute of Pathology, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Cellular and Molecular Pathology Department, Ştefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- Coltea Clinical Hospital, ENT, Head & Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Raluca Grigore
- Coltea Clinical Hospital, ENT, Head & Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Serban
- University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Catalin Cirstoiu
- University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
108
|
Mahasongkram K, Glab-ampai K, Kaewchim K, Saenlom T, Chulanetra M, Sookrung N, Nathalang O, Chaicumpa W. Agonistic Bivalent Human scFvs-Fcγ Fusion Antibodies to OX40 Ectodomain Enhance T Cell Activities against Cancer. Vaccines (Basel) 2023; 11:1826. [PMID: 38140230 PMCID: PMC10747724 DOI: 10.3390/vaccines11121826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Understanding how advanced cancers evade host innate and adaptive immune opponents has led to cancer immunotherapy. Among several immunotherapeutic strategies, the reversal of immunosuppression mediated by regulatory T cells in the tumor microenvironment (TME) using blockers of immune-checkpoint signaling in effector T cells is the most successful treatment measure. Furthermore, agonists of T cell costimulatory molecules (CD40, 4-1BB, OX40) play an additional anti-cancer role to that of checkpoint blocking in combined therapy and serve also as adjuvant/neoadjuvant/induction therapy to conventional cancer treatments, such as tumor resection and radio- and chemo- therapies. (2) Methods and Results: In this study, novel agonistic antibodies to the OX40/CD134 ectodomain (EcOX40), i.e., fully human bivalent single-chain variable fragments (HuscFvs) linked to IgG Fc (bivalent HuscFv-Fcγ fusion antibodies) were generated by using phage-display technology and genetic engineering. The HuscFvs in the fusion antibodies bound to the cysteine-rich domain-2 of the EcOX40, which is known to be involved in OX40-OX40L signaling for NF-κB activation in T cells. The fusion antibodies caused proliferation, and increased the survival and cytokine production of CD3-CD28-activated human T cells. They showed enhancement trends for other effector T cell activities like granzyme B production and lysis of ovarian cancer cells when added to the activated T cells. (3) Conclusions: The novel OX40 agonistic fusion antibodies should be further tested step-by-step toward their safe use as an adjunctive non-immunogenic cancer immunotherapeutic agent.
Collapse
Affiliation(s)
- Kodchakorn Mahasongkram
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| | - Kantaphon Glab-ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| | - Kanasap Kaewchim
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanatsaran Saenlom
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| | - Monrat Chulanetra
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| | - Nitat Sookrung
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Oytip Nathalang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum Thani 12120, Thailand;
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| |
Collapse
|
109
|
Jiang B, Zhang T, Deng M, Jin W, Hong Y, Chen X, Chen X, Wang J, Hou H, Gao Y, Gong W, Wang X, Li H, Zhou X, Feng Y, Zhang B, Jiang B, Lu X, Zhang L, Li Y, Song W, Sun H, Wang Z, Song X, Shen Z, Liu X, Li K, Wang L, Liu Y. BGB-A445, a novel non-ligand-blocking agonistic anti-OX40 antibody, exhibits superior immune activation and antitumor effects in preclinical models. Front Med 2023; 17:1170-1185. [PMID: 37747585 DOI: 10.1007/s11684-023-0996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/06/2023] [Indexed: 09/26/2023]
Abstract
OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40-OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.
Collapse
Affiliation(s)
- Beibei Jiang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Tong Zhang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Minjuan Deng
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Wei Jin
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Yuan Hong
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xiaotong Chen
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xin Chen
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Jing Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Hongjia Hou
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Yajuan Gao
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Wenfeng Gong
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xing Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Haiying Li
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xiaosui Zhou
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Yingcai Feng
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Bo Zhang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Bin Jiang
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xueping Lu
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Lijie Zhang
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Yang Li
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Weiwei Song
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Hanzi Sun
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Zuobai Wang
- Department of Clinic Development, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xiaomin Song
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Zhirong Shen
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xuesong Liu
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Kang Li
- Department of Biologics, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Lai Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Ye Liu
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China.
| |
Collapse
|
110
|
Bandyopadhyay A, Das T, Nandy S, Sahib S, Preetam S, Gopalakrishnan AV, Dey A. Ligand-based active targeting strategies for cancer theranostics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3417-3441. [PMID: 37466702 DOI: 10.1007/s00210-023-02612-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
In the past decades, for the intermediate or advanced cancerous stages, preclinical and clinical applications of nanomedicines in cancer theranostics have been extensively studied. Nevertheless, decreased specificity and poor targeting efficiency with low target concentration of theranostic are the major drawbacks of nanomedicine in employing clinical substitution over conventional systemic therapy. Consequently, ligand decorated nanocarrier-mediated targeted drug delivery system can transcend the obstructions through their enhanced retention activity and increased permeability with effective targeting. The highly efficient and specific nanocarrier-mediated ligand-based active therapy is one of the novel and promising approaches for delivery of the therapeutics for different cancers in recent years to restrict various cancer growth in vivo without harming healthy cells. The article encapsulates the features of nanocarrier-mediated ligands in augmentation of active targeting approaches of various cancers and summarizes ligand-based targeted delivery systems in treatment of cancer as plausible theranostics.
Collapse
Affiliation(s)
- Anupriya Bandyopadhyay
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Tuyelee Das
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Synudeen Sahib
- S.S. Cottage, Njarackal,, P.O.: Perinad, Kollam, 691601, Kerala, India
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, 59053, Ulrika, Sweden
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
111
|
Parvez A, Choudhary F, Mudgal P, Khan R, Qureshi KA, Farooqi H, Aspatwar A. PD-1 and PD-L1: architects of immune symphony and immunotherapy breakthroughs in cancer treatment. Front Immunol 2023; 14:1296341. [PMID: 38106415 PMCID: PMC10722272 DOI: 10.3389/fimmu.2023.1296341] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
PD-1 (Programmed Cell Death Protein-1) and PD-L1 (Programmed Cell Death Ligand-1) play a crucial role in regulating the immune system and preventing autoimmunity. Cancer cells can manipulate this system, allowing them to escape immune detection and promote tumor growth. Therapies targeting the PD-1/PD-L1 pathway have transformed cancer treatment and have demonstrated significant effectiveness against various cancer types. This study delves into the structure and signaling dynamics of PD-1 and its ligands PD-L1/PD-L2, the diverse PD-1/PD-L1 inhibitors and their efficacy, and the resistance observed in some patients. Furthermore, this study explored the challenges associated with the PD-1/PD-L1 inhibitor treatment approach. Recent advancements in the combination of immunotherapy with chemotherapy, radiation, and surgical procedures to enhance patient outcomes have also been highlighted. Overall, this study offers an in-depth overview of the significance of PD-1/PD-L1 in cancer immunotherapy and its future implications in oncology.
Collapse
Affiliation(s)
- Adil Parvez
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Furqan Choudhary
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Priyal Mudgal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Rahila Khan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, Saudi Arabia
| | - Humaira Farooqi
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
112
|
Rajgopal S, Nakano K, Cook LM. Beyond the horizon: Neutrophils leading the way in the evolution of immunotherapy. Cancer Med 2023; 12:21885-21904. [PMID: 38062888 PMCID: PMC10757139 DOI: 10.1002/cam4.6761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/31/2023] Open
Abstract
Cancer is a complex and dynamic disease, initiated by a multitude of intrinsic mutations and progressed with the assistance of the tissue microenvironment, encompassed by stromal cells including immune cell infiltration. The novel finding that tumors can evade anti-cancer immune functions shaped the field of immunotherapy, which has been a revolutionary approach for the treatment of cancers. However, the development of predominantly T cell-targeted immunotherapy approaches, such as immune checkpoint inhibition, also brought about an accumulation of evidence demonstrating other immune cell drivers of tumor progression, such as innate immune cells and notably, neutrophils. In the past decade, neutrophils have emerged to be primary mediators of multiple cancer types and even in recent years, are gaining attention for their potential use in the next generation of immunotherapies. Here, we review current immunotherapy strategies and thoroughly discuss the roles of neutrophils in cancer and novel neutrophil-targeted methods for treating cancer.
Collapse
Affiliation(s)
- Sanjana Rajgopal
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Genetics, Cell Biology, and AnatomyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kosuke Nakano
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Leah M. Cook
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterOmahaNebraskaUSA
| |
Collapse
|
113
|
Dovrolis N, Katifelis H, Grammatikaki S, Zakopoulou R, Bamias A, Karamouzis MV, Souliotis K, Gazouli M. Inflammation and Immunity Gene Expression Patterns and Machine Learning Approaches in Association with Response to Immune-Checkpoint Inhibitors-Based Treatments in Clear-Cell Renal Carcinoma. Cancers (Basel) 2023; 15:5637. [PMID: 38067341 PMCID: PMC10705515 DOI: 10.3390/cancers15235637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2025] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer. Despite the rapid evolution of targeted therapies, immunotherapy with checkpoint inhibition (ICI) as well as combination therapies, the cure of metastatic ccRCC (mccRCC) is infrequent, while the optimal use of the various novel agents has not been fully clarified. With the different treatment options, there is an essential need to identify biomarkers to predict therapeutic efficacy and thus optimize therapeutic approaches. This study seeks to explore the diversity in mRNA expression profiles of inflammation and immunity-related circulating genes for the development of biomarkers that could predict the effectiveness of immunotherapy-based treatments using ICIs for individuals with mccRCC. Gene mRNA expression was tested by the RT2 profiler PCR Array on a human cancer inflammation and immunity crosstalk kit and analyzed for differential gene expression along with a machine learning approach for sample classification. A number of mRNAs were found to be differentially expressed in mccRCC with a clinical benefit from treatment compared to those who progressed. Our results indicate that gene expression can classify these samples with high accuracy and specificity.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| | - Hector Katifelis
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| | - Stamatiki Grammatikaki
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| | - Roubini Zakopoulou
- 2nd Propaedeutic Department of Internal Medicine, ATTIKON University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (R.Z.); (A.B.)
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, ATTIKON University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (R.Z.); (A.B.)
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Kyriakos Souliotis
- School of Social and Education Policy, University of Peloponnese, 22100 Corinth, Greece;
- Health Policy Institute, 15123 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| |
Collapse
|
114
|
Li ZH, Li JY, Zhu YJ, Dai L, Wu ZT, Nong JS, Zhuo T, Li FL, He LY, Liang HH, Zang FL, Wang YY, Chen MW, Huang WJ, Cao JB. Analysis of Nucleoporin 107 Overexpression and Its Association with Prognosis and Immune Infiltration in Lung Adenocarcinoma by Bioinformatics Methods. Int J Gen Med 2023; 16:5449-5465. [PMID: 38021066 PMCID: PMC10676695 DOI: 10.2147/ijgm.s441185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) has high morbidity and mortality. Current studies indicate nucleoporin 107 (NUP107) is involved in the construction of nuclear pore complex, and NUP107 overexpression contributes to the growth and development in most types of cancers, but its effect in LUAD has not been elucidated. Methods Differences in NUP107 expression were investigated using the Cancer Genome Atlas (TCGA) and multiple Gene Expression Omnibus (GEO) data sets. Enrichment analysis were implemented to probe the NUP107 function. The association of NUP107 with the degree of immune cell infiltration was investigated by the TIMER database, single-sample gene set enrichment analysis (ssGSEA), and ESTIMATE. The association of NUP107 expression with tumor mutation burden (TMB), TP53, and immune checkpoint was analyzed. Single-cell RNA sequencing data were used to detect NUP107 expression in different cell clusters. Finally, we performed real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) to prove the difference of NUP107 expression. Results NUP107 was overexpressed in LUAD and mainly expressed in cancer stem cell (CSC). Overexpression of NUP107 in LUAD suggested a poorer prognosis. Functional enrichment analysis pointed out that NUP107 was mainly linked to the regulation of cell cycle. Both immune cell infiltration and TMB were found to be in connection with NUP107. Cases in the group with high NUP107 expression had poorer immune infiltration, but had higher expression of immune checkpoints, TMB, and proportion of TP53 mutations. Conclusion NUP107 is a sensitive diagnostic and prognostic factor for LUAD and may be involved in tumor progression through its effects on cell cycle and immune infiltration.
Collapse
Affiliation(s)
- Zi-Hao Li
- Department of Thoracic Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| | - Jia-Yi Li
- Department of Nephrology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| | - Yong-Jie Zhu
- Department of Thoracic Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Lei Dai
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zuo-Tao Wu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Ju-Sen Nong
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Ting Zhuo
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Fu-Li Li
- Department of Thoracic Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| | - Ling-Yun He
- Department of Thoracic Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| | - Hong-Hua Liang
- Department of Thoracic Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| | - Feng-Ling Zang
- Department of Thoracic Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| | - Yong-Yong Wang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Ming-Wu Chen
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Wei-Jia Huang
- Department of Thoracic Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| | - Jian-Bin Cao
- Department of Thoracic Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China
| |
Collapse
|
115
|
Rouvinov K, Mazor G, Kozlener E, Meirovitz A, Shrem NS, Abu Saleh O, Shalata S, Yakobson A, Shalata W. Cemiplimab as First Line Therapy in Advanced Penile Squamous Cell Carcinoma: A Real-World Experience. J Pers Med 2023; 13:1623. [PMID: 38003938 PMCID: PMC10672594 DOI: 10.3390/jpm13111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In the treatment of cancer, immune checkpoint inhibitors (ICIs) have demonstrated significantly greater effectiveness compared to conventional cytotoxic or platinum-based chemotherapies. To assess the efficacy of ICI's in penile squamous cell carcinoma (pSCC) we performed a retrospective observational study. We reviewed electronic medical records of patients with penile squamous cell carcinoma (SCC), diagnosed between January 2020 and February 2023. Nine patients were screened, of whom three were ineligible for chemotherapy and received immunotherapy, cemiplimab, in a first-line setting. Each of the three immunotherapy-treated patients achieved almost a complete response (CR) after only a few cycles of therapy. The first patient had cerebral arteritis during treatment and received a high-dose steroid treatment with resolution of the symptoms of arteritis. After tapering down the steroids dose, the patient continued cemiplimab without further toxicity. The other two patients did not have any toxic side effects of the treatment. To the best of our knowledge, this is the first real world report of near CR with cemiplimab as a first-line treatment in penile SCC.
Collapse
Affiliation(s)
- Keren Rouvinov
- The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| | - Gal Mazor
- Medical School for International Health, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ella Kozlener
- Department of Oncology, Bnei Zion Medical Center, Haifa 31048, Israel
| | - Amichay Meirovitz
- The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| | - Noa Shani Shrem
- The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| | - Omar Abu Saleh
- Department of Dermatology and Venereology, Emek Medical Centre, Afula 18341, Israel
| | - Sondos Shalata
- Nutrition Unit, Galilee Medical Center, Nahariya 22000, Israel
| | - Alexander Yakobson
- The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| | - Walid Shalata
- The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| |
Collapse
|
116
|
Skórzewska M, Gęca K, Polkowski WP. A Clinical Viewpoint on the Use of Targeted Therapy in Advanced Gastric Cancer. Cancers (Basel) 2023; 15:5490. [PMID: 38001751 PMCID: PMC10670421 DOI: 10.3390/cancers15225490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The development of therapies for advanced gastric cancer (GC) has made significant progress over the past few years. The identification of new molecules and molecular targets is expanding our understanding of the disease's intricate nature. The end of the classical oncology era, which relied on well-studied chemotherapeutic agents, is giving rise to novel and unexplored challenges, which will cause a significant transformation of the current oncological knowledge in the next few years. The integration of established clinically effective regimens in additional studies will be crucial in managing these innovative aspects of GC. This study aims to present an in-depth and comprehensive review of the clinical advancements in targeted therapy and immunotherapy for advanced GC.
Collapse
|
117
|
Yang Y, Li Y, Chen Z. Impact of low serum iron on treatment outcome of PD-1 inhibitors in advanced gastric cancer. BMC Cancer 2023; 23:1095. [PMID: 37950201 PMCID: PMC10638799 DOI: 10.1186/s12885-023-11620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the influence of serum iron levels in advanced gastric cancer (GC) patients treated with programmed cell death protein-1 (PD-1) inhibitors. METHODS We retrospectively reviewed 149 GC patients who were treated with PD-1 inhibitors at our center. Clinicopathological characteristics, laboratory data, and clinical outcomes were analyzed. RESULTS Multivariate analysis showed that Eastern Cooperative Oncology Group performance status (ECOG PS), histological subtype, and baseline serum iron levels were independent prognostic factors for overall survival (OS), while ECOG PS, multiple metastatic sites, and baseline serum iron levels were independent prognostic factors for progression-free survival (PFS). Patients with baseline low serum iron levels (LSI) had a significantly shorter median OS and PFS compared to patients with normal serum iron levels (NSI) (Median OS: 7 vs. 14 months, p = 0.001; median PFS: 3 vs. 5 months, p = 0.005). Patients with baseline LSI had a disease control rate (DCR) of 58.3% at 2 months after PD-1 inhibitor initiation (M2), compared to 81.1% in patients with NSI (p = 0.005). Patients with baseline LSI had a DCR of 43.8% at 4 months, compared to 64.2% in patients with NSI (p = 0.017). CONCLUSIONS LSI was associated with worse OS, PFS, and DCR in GC patients treated with PD-1 inhibitors and might be a quick and efficient biomarker to predict the efficacy of PD-1 inhibitors.
Collapse
Affiliation(s)
- Yu Yang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Fu Rong Road, Hefei, 230601, China.
- Department of Oncology, Anhui Medical University, Hefei, 230000, China.
| | - Ya Li
- Department of Oncology, Anhui Medical University, Hefei, 230000, China
| | - Zhendong Chen
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Fu Rong Road, Hefei, 230601, China
- Department of Oncology, Anhui Medical University, Hefei, 230000, China
| |
Collapse
|
118
|
Zhang X, Li R, Wang G. PDL1-Based Nomogram May Be of Potential Clinical Utility for Predicting Survival Outcome in Stage III Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:731-746. [PMID: 37905205 PMCID: PMC10613449 DOI: 10.2147/bctt.s435980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
Purpose Programmed cell death ligand 1 (PDL1) has the predictive and prognostic value in a great deal of cancers. This study aims to explore the expression of PDL1 in stage III breast cancer (BC) and its correlation with clinical outcome. Methods The protein expression of PDL1 in tumor tissues was determined by immunohistochemistry (IHC). The correlations between PDL1 and clinicopathological variables were performed by χ²-tests or Fisher's exact tests. The Cox proportional hazards model was used for univariate and multivariate analysis of the potential prognostic factors. Survival curves were estimated based on Kaplan-Meier analyses, and Log Rank test was used to contrast factors influencing the survival outcome. Results On the basis of the semiquantitative scoring method for PDL1 expression, the patients were divided into low PDL1 expression group (109 cases) and high PDL1 expression group (107 cases). PDL1 expression was correlated with positive lymph nodes, positive axillary lymph nodes, postoperative radiotherapy, and CK5/6 expression (P < 0.05). The PDL1 expression in tumor tissues was discovered to be a potential prognostic risk factor with the disease-free survival (DFS) and overall survival (OS) for stage III BC. Moreover, patients with high PDL1 expression showed longer lifetime (DFS and OS) compared to those with low PDL1 expression in total patient population (P < 0.05). Moreover, the nomogram showed that the prediction line is in good agreement with the reference line for postoperative 1-, 3-, and 5-year lifetime. The DCA curve showed that the 3- and 5-year lifetime by nomogram had so much better divination of the clinical application than only by PDL1. Conclusion PDL1 is a latent prognostic factor in stage III BC and is closely related to some clinicopathological features. PDL1 expression in tumor tissues is significantly associated with better lifetime rate in stage III BC.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Ruzhe Li
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Guonian Wang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
119
|
Huang Z, Xu Y, Hong W, Gong L, Chen K, Qin J, Xie F, Wang F, Tian X, Meng X, Feng W, Li L, Zhang B, Kang X, Fan Y. A first-in-human, open-label, dose-escalation and dose-expansion phase I study to evaluate the safety, tolerability, pharmacokinetics/pharmacodynamics, and antitumor activity of QL1604, a humanized anti-PD-1 mAb, in patients with advanced or metastatic solid tumors. Front Immunol 2023; 14:1258573. [PMID: 37936687 PMCID: PMC10627225 DOI: 10.3389/fimmu.2023.1258573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
Background QL1604 is a humanized immunoglobulin G4 monoclonal antibody against programmed cell death protein 1. This first-in-human, open-label phase I study aimed to investigate the safety and tolerability and to identify the recommended doses of QL1604 for future studies. Pharmacokinetics/pharmacodynamics (PK/PD) and preliminary antitumor activity were also assessed. Methods Patients with advanced or metastatic solid tumors who failed or had no standard therapies available were recruited. In the dose-escalation phase, patients were treated with QL1604 at 0.3 mg/kg, 1 mg/kg, 3 mg/kg, and 10 mg/kg intravenously once every 2 weeks (Q2W) in an accelerated titration with a traditional 3 + 3 design, followed by a dose-expansion phase at 3 mg/kg Q2W, 3 mg/kg once every 3 weeks (Q3W), 10 mg/kg Q2W and a fixed dose of 200 mg Q3W. Dose-limiting toxicities (DLTs) were assessed during the first 28 days after the first dose of study drug. Adverse events (AEs) were graded per National Cancer Institute Common Terminology Criteria for Adverse Events version 5.0, and antitumor activity of QL1604 was evaluated by investigators on the basis of Response Evaluation Criteria in Solid Tumors version 1.1. Results A total of 35 patients with advanced or metastatic solid tumors were enrolled. DLTs were reported in one patient at the dose level of 3 mg/kg Q2W (grade 3 immune-mediated myositis and myasthenia gravis), and maximum tolerated dose was not reached. The most frequent treatment-related AEs (≥10%) were fatigue (37.1%), anemia (22.9%), increased blood thyroid-stimulating hormone (17.1%), increased aspartate aminotransferase (AST) (17.1%), increased alanine aminotransferase (ALT) (14.3%), decreased white blood cell (WBC) count (11.4%), rash (14.3%), and pruritus (14.3%). AEs leading to discontinuation of QL1604 occurred in three of the 35 patients (8.6%). Partial responses (PRs) occurred in seven patients, resulting in an objective response rate of 20.0% (7/35). Single dose of QL1604 exhibited a dose-dependent increase in the exposure ranging from 0.3 mg/kg to 10 mg/kg. Mean receptor occupancy (RO) for QL1604 at the dose of 3 mg/kg (Q2W and Q3W) and 200 mg (Q3W) was greater than 80% during cycle 1 after one infusion. Conclusion QL1604 monotherapy exhibited favorable safety, PK, and signal of antitumor activity in patients with advanced or metastatic solid tumors, and the results supported further clinical studies of QL1604. On the basis of the safety, PK, and RO data, the recommended dosage for further clinical trials is 3 mg/kg or a fixed dose of 200 mg given every 3 weeks. Clinical Trial Registration https://classic.clinicaltrials.gov/ct2/show/NCT05649761?term=QL1604&draw=2&rank=1, identifier NCT05649761.
Collapse
Affiliation(s)
- Zhiyu Huang
- Department of Medical Oncology, Zhejiang Cancer Hospital; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yanjun Xu
- Department of Medical Oncology, Zhejiang Cancer Hospital; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wei Hong
- Department of Medical Oncology, Zhejiang Cancer Hospital; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lei Gong
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiyan Chen
- Department of Medical Oncology, Zhejiang Cancer Hospital; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jing Qin
- Department of Medical Oncology, Zhejiang Cancer Hospital; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Fajun Xie
- Department of Medical Oncology, Zhejiang Cancer Hospital; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Feng Wang
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Tian
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangrui Meng
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenlei Feng
- Medcine Department, Qilu Pharmaceutical Co., Ltd., Jinan, China
| | - Lingyan Li
- Medcine Department, Qilu Pharmaceutical Co., Ltd., Jinan, China
| | - Baihui Zhang
- Medcine Department, Qilu Pharmaceutical Co., Ltd., Jinan, China
| | - Xiaoyan Kang
- Medcine Department, Qilu Pharmaceutical Co., Ltd., Jinan, China
| | - Yun Fan
- Department of Medical Oncology, Zhejiang Cancer Hospital; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
120
|
Hao Y, Liu T, Zhou H, Peng J, Li K, Chen Y. The GSH responsive indocyanine green loaded PD-1 inhibitory polypeptide AUNP12 modified MOF nanoparticles for photothermal and immunotherapy of melanoma. Front Bioeng Biotechnol 2023; 11:1294074. [PMID: 37929188 PMCID: PMC10622763 DOI: 10.3389/fbioe.2023.1294074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: Photothermal therapy (PTT) holds significant potential for the treatment of malignant tumors. However, conventional single PTT often struggles to effectively inhibit tumor metastasis and recurrence. In this study, we constructed a MOF nanoparticle with a synergistic therapeutic effect combining photothermal and immunotherapy, enabling selective blocking of the PD-1/PD-L1 pathway within the tumor microenvironment. Methods: Firstly, MOF nanoparticles were synthesized using NH2-TPDC as ligands and Zr+4 as metal ions. Subsequently, NH2 was modified to N3 via azide transfer reagents. Through a copper free catalytic click chemical reaction, the PD-1/PD-L1 blocking agent AUNP-12 functionalized with disulfide bonds of DBCO was covalently introduced into MOF nanoparticles which were then loaded with the photothermal agent indocyanine green (ICG) to successfully obtain uniformly sized and stable ICG-MOF-SS-AUNP12 nanoparticles. Results and discussion: ICG-MOF-SS-AUNP12 exhibited GSH-triggered release of PD-1/PD-L1 blockers while demonstrating potent photothermal effects capable of efficiently killing tumor cells. Under 808 nm near-infrared (NIR) irradiation, ICG-MOF-SS-AUNP12 effectively promoted the maturation of DC cells and activated immune responses. This study presents a novel method for constructing MOF-based nanodrugs and offers new possibilities for the synergistic treatment of tumors involving photothermal combined with immunotherapy.
Collapse
Affiliation(s)
- Ying Hao
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Tailuo Liu
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zhou
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jinrong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Ka Li
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuwen Chen
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
121
|
Kang J, Han KM, Jung H, Kim H. Prognostic Significance of Programmed Cell Death Ligand 1 Expression in High-Grade Serous Ovarian Carcinoma: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2023; 13:3258. [PMID: 37892079 PMCID: PMC10606661 DOI: 10.3390/diagnostics13203258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: High-grade serous ovarian carcinoma (HGSOC) is an aggressive subtype of ovarian cancer. Recent advances have introduced prognostic markers and targeted therapies. Programmed cell death ligand 1 (PD-L1) has emerged as a potential biomarker for HGSOC, with implications for prognosis and targeted therapy eligibility; (2) Methods: A literature search was conducted on major databases, and extracted data were categorized and pooled. Subgroup analysis was performed for studies with high heterogeneity. (3) Results: Data from 18 eligible studies were categorized and pooled based on PD-L1 scoring methods, survival analysis types, and endpoints. The result showed an association between high PD-L1 expression and a favorable prognosis in progression-free survival (HR = 0.53, 95% CI = 0.35-0.78, p = 0.0015). Subgroup analyses showed similar associations in subgroups of neoadjuvant chemotherapy patients (HR = 0.6, 95% CI = 0.4-0.88, p = 0.009) and European studies (HR = 0.59, 95% CI = 0.42-0.82, p = 0.0017). In addition, subgroup analyses using data from studies using FDA-approved PD-L1 antibodies suggested a significant association between favorable prognosis and high PD-L1 expression in a subgroup including high and low stage data in overall survival data (HR = 0.46, 95% CI = 0.3-0.73, p = 0.0009). (4) Conclusions: This meta-analysis revealed a potential association between high PD-L1 expression and favorable prognosis. However, caution is warranted due to several limitations. Validation via large-scale studies, with mRNA analysis, whole tissue sections, and assessments using FDA-approved antibodies is needed.
Collapse
Affiliation(s)
| | | | | | - Hyunchul Kim
- Department of Pathology, CHA Ilsan Medical Center, 1205 Jungang-ro, Ilsandong-gu, Goyang-si 10414, Republic of Korea; (J.K.); (K.M.H.)
| |
Collapse
|
122
|
Bjorgen JC, Dick JK, Cromarty R, Hart GT, Rhein J. NK cell subsets and dysfunction during viral infection: a new avenue for therapeutics? Front Immunol 2023; 14:1267774. [PMID: 37928543 PMCID: PMC10620977 DOI: 10.3389/fimmu.2023.1267774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-β inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.
Collapse
Affiliation(s)
- Jacob C. Bjorgen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
123
|
Rahman A, Janic B, Rahman T, Singh H, Ali H, Rattan R, Kazi M, Ali MM. Immunotherapy Enhancement by Targeting Extracellular Tumor pH in Triple-Negative Breast Cancer Mouse Model. Cancers (Basel) 2023; 15:4931. [PMID: 37894298 PMCID: PMC10605606 DOI: 10.3390/cancers15204931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC), as one of the most aggressive forms of breast cancer, is characterized by a poor prognosis and a very low rate of disease-free and overall survival. In recent years, immunotherapeutic approaches targeting T cell checkpoint molecules, such as cytotoxic lymphocyte antigen-4 (CTLA-4), programmed death1 (PD-1) or its ligand, programmed death ligand 1 (PD-L1), have shown great potential and have been used to treat various cancers as single therapies or in combination with other modalities. However, despite this remarkable progress, patients with TNBC have shown a low response rate to this approach, commonly developing resistance to immune checkpoint blockade, leading to treatment failure. Extracellular acidosis within the tumor microenvironment (also known as the Warburg effect) is one of the factors preventing immune cells from mounting effective responses and contributing to immunotherapy treatment failure. Therefore, reducing tumor acidity is important for increasing cancer immunotherapy effectiveness and this has yet to be realized in the TNBC environment. In this study, the oral administration of sodium bicarbonate (NaHCO3) enhanced the antitumor effect of anti-PD-L1 antibody treatment, as demonstrated by generated antitumor immunity, tumor growth inhibition and enhanced survival in 4T1-Luc breast cancer model. Here, we show that NaHCO3 increased extracellular pH (pHe) in tumor tissues in vivo, an effect that was accompanied by an increase in T cell infiltration, T cell activation and IFN-γ, IL2 and IL12p40 mRNA expression in tumor tissues, as well as an increase in T cell activation in tumor-draining lymph nodes. Interestingly, these changes were further enhanced in response to combined NaHCO3 + anti-PD-L1 therapy. In addition, the acidic extracellular conditions caused a significant increase in PD-L1 expression in vitro. Taken together, these results indicate that alkalizing therapy holds potential as a new tumor microenvironment immunomodulator and we hypothesize that NaHCO3 can enhance the antitumor effects of anti-PD-L1 breast cancer therapy. The combination of these treatments may have an exceptional impact on future TNBC immunotherapeutic approaches by providing a powerful personalized medicine paradigm. Therefore, our findings have a great translational potential for improving outcomes in TNBC patients.
Collapse
Affiliation(s)
- Azizur Rahman
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Branislava Janic
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Tasnim Rahman
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Harshit Singh
- Women’s Health Services, Henry Ford Hospital, Detroit, MI 48202, USA (R.R.)
| | - Haythem Ali
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Ramandeep Rattan
- Women’s Health Services, Henry Ford Hospital, Detroit, MI 48202, USA (R.R.)
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Meser M. Ali
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| |
Collapse
|
124
|
Shi YY, Dong DR, Fan G, Dai MY, Liu M. A cyclic peptide-based PROTAC induces intracellular degradation of palmitoyltransferase and potently decreases PD-L1 expression in human cervical cancer cells. Front Immunol 2023; 14:1237964. [PMID: 37849747 PMCID: PMC10577221 DOI: 10.3389/fimmu.2023.1237964] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Our previous research has found that degradation of palmitoyltransferase in tumor cells using a linear peptide PROTAC leads to a significant decrease in PD-L1 expression in tumors. However, this degradation is not a sustained and efficient process. Therefore, we designed a cyclic peptide PROTAC to achieve this efficient anti-PD-L1 effect. Methods We designed and synthesized an improvement in linear peptide PROTAC targeting palmitoyltransferase DHHC3, and used disulfide bonds to stabilize the continuous N- and C-termini of the peptides to maintain their structure. Cellular and molecular biology techniques were used to test the effect of this cyclic peptide on PD-L1. Results In human cervical cancer cells, our cyclic peptide PROTAC can significantly downregulate palmitoyl transferase DHHC3 and PD-L1 expressions. This targeted degradation effect is enhanced with increasing doses and treatment duration, with a DC50 value much lower than that of linear peptides. Additionally, flow cytometry analysis of fluorescence intensity shows an increase in the amount of cyclic peptide entering the cell membrane with prolonged treatment time and higher concentrations. The Cellular Thermal Shift Assay (CETSA) method used in this study indicates effective binding between our novel cyclic peptide and DHHC3 protein, leading to a change in the thermal stability of the latter. The degradation of PD-L1 can be effectively blocked by the proteasome inhibitor MG132. Results from clone formation experiments illustrate that our cyclic peptide can enhance the proliferative inhibition effect of cisplatin on the C33A cell line. Furthermore, in the T cell-C33A co-culture system, cyclic peptides target the degradation of PD-L1, thereby blocking the interaction between PD-L1 and PD-1, and promoting the secretion of IFN-γ and TNF-α in the co-culture system supernatant. Conclusion Our results demonstrate that a disulfide-bridged cyclic peptide PROTAC targeting palmitoyltransferase can provide a stable and improved anti-PD-L1 activity in human tumor cells.
Collapse
Affiliation(s)
- Yu-Ying Shi
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Di-Rong Dong
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Meng-Yuan Dai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
125
|
Peng Y, Yan H, Mei W, Zhang P, Zeng C. Combining Radiotherapy with Immunotherapy in Cervical Cancer: Where Do We Stand and Where Are We Going? Curr Treat Options Oncol 2023; 24:1378-1391. [PMID: 37535254 DOI: 10.1007/s11864-023-01128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2023] [Indexed: 08/04/2023]
Abstract
OPINION STATEMENT Combining immunotherapy and radiotherapy as a treatment strategy for cervical cancer has attracted increasing attention. The primary objective of this review is to provide an up-to-date summary of the knowledge regarding the combined use of radiotherapy and immunotherapy for treating cervical cancer. This review discusses the biological rationale combining immunotherapy with radiotherapy in a clinical setting and presents supporting evidence for the combination strategy based on both safety and effectiveness data. Additionally, we discuss the potential and challenges of combining radiotherapy and immunotherapy in clinical practice.
Collapse
Affiliation(s)
- Yan Peng
- Department of Obstetrics, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Hongxiang Yan
- Department of General Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Wuxuan Mei
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Pengfei Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China
| | - Changchun Zeng
- Department of General Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China.
| |
Collapse
|
126
|
Cao H, Wu T, Zhou X, Xie S, Sun H, Sun Y, Li Y. Progress of research on PD-1/PD-L1 in leukemia. Front Immunol 2023; 14:1265299. [PMID: 37822924 PMCID: PMC10562551 DOI: 10.3389/fimmu.2023.1265299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Leukemia cells prevent immune system from clearing tumor cells by inducing the immunosuppression of the bone marrow (BM) microenvironment. In recent years, further understanding of the BM microenvironment and immune landscape of leukemia has resulted in the introduction of several immunotherapies, including checkpoint inhibitors, T-cell engager, antibody drug conjugates, and cellular therapies in clinical trials. Among them, the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is a significant checkpoint for controlling immune responses, the PD-1 receptor on tumor-infiltrating T cells is bound by PD-L1 on leukemia cells. Consequently, the activation of tumor reactive T cells is inhibited and their apoptosis is promoted, preventing the rejection of the tumor by immune system and thus resulting in the occurrence of immune tolerance. The PD-1/PD-L1 axis serves as a significant mechanism by which tumor cells evade immune surveillance, and PD-1/PD-L1 checkpoint inhibitors have been approved for the treatment of lymphomas and varieties of solid tumors. However, the development of drugs targeting PD-1/PD-L1 in leukemia remains in the clinical-trial stage. In this review, we tally up the basic research and clinical trials on PD-1/PD-L1 inhibitors in leukemia, as well as discuss the relevant toxicity and impacts of PD-1/PD-L1 on other immunotherapies such as hematopoietic stem cell transplantation, bi-specific T-cell engager, chimeric antigen receptor T-cell immunotherapy.
Collapse
Affiliation(s)
- Huizhen Cao
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Tianyu Wu
- Department of Gastrointestinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xue Zhou
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shuyang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Hongfang Sun
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Yunxiao Sun
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| |
Collapse
|
127
|
Hu X, Dong Y, Zhang J, Deng L. HGCLMDA: Predicting mRNA-Drug Sensitivity Associations via Hypergraph Contrastive Learning. J Chem Inf Model 2023; 63:5936-5946. [PMID: 37674276 DOI: 10.1021/acs.jcim.3c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The identification of drug sensitivity to mRNA interactions is crucial for drug development and disease treatment, but traditional experimental methods for verifying mRNA-drug sensitivity associations are labor-intensive and time-consuming. In this study, we present a hypergraph contrastive learning approach, HGCLMDA, to predict potential mRNA-drug sensitivity associations. HGCLMDA integrates a graph convolutional network-based method with a hypergraph convolutional network to mine high-order relationships between mRNA-drug association pairs. The proposed cross-view contrastive learning architecture improves the model's learning ability, and the inner product is used to obtain the mRNA-drug sensitivity association score. Our experiments on three mRNA-drug sensitivity association data sets show that HGCLMDA outperforms traditional graph convolutional network-based methods, graph augmentation-based contrastive learning methods, and state-of-the-art association prediction methods. The visualization experiment demonstrates the strong discrimination ability of the mRNA and drug embeddings learned by HGCLMDA, and experiments on sparse data sets showcase the performance and robustness of the method. In-depth analysis of hypergraph structures reveals a crucial role that hypergraphs play in enhancing the performance of models. The case study highlights the potential of HGCLMDA as a valuable tool for predicting mRNA-drug sensitivity associations. The interpretive analysis reveals that HGCLMDA effectively models the similarity between mRNA-mRNA and drug-drug interactions.
Collapse
Affiliation(s)
- Xiaowen Hu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yihan Dong
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jiaxuan Zhang
- Department of Electrical and Computer Engineering, University of California, San Diego, California 92092, United States
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
128
|
Schendel DJ. Evolution by innovation as a driving force to improve TCR-T therapies. Front Oncol 2023; 13:1216829. [PMID: 37810959 PMCID: PMC10552759 DOI: 10.3389/fonc.2023.1216829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Adoptive cell therapies continually evolve through science-based innovation. Specialized innovations for TCR-T therapies are described here that are embedded in an End-to-End Platform for TCR-T Therapy Development which aims to provide solutions for key unmet patient needs by addressing challenges of TCR-T therapy, including selection of target antigens and suitable T cell receptors, generation of TCR-T therapies that provide long term, durable efficacy and safety and development of efficient and scalable production of patient-specific (personalized) TCR-T therapy for solid tumors. Multiple, combinable, innovative technologies are used in a systematic and sequential manner in the development of TCR-T therapies. One group of technologies encompasses product enhancements that enable TCR-T therapies to be safer, more specific and more effective. The second group of technologies addresses development optimization that supports discovery and development processes for TCR-T therapies to be performed more quickly, with higher quality and greater efficiency. Each module incorporates innovations layered onto basic technologies common to the field of immunology. An active approach of "evolution by innovation" supports the overall goal to develop best-in-class TCR-T therapies for treatment of patients with solid cancer.
Collapse
Affiliation(s)
- Dolores J. Schendel
- Medigene Immunotherapies GmbH, Planegg, Germany
- Medigene AG, Planegg, Germany
| |
Collapse
|
129
|
Guo Y, Gao F, Ahmed A, Rafiq M, Yu B, Cong H, Shen Y. Immunotherapy: cancer immunotherapy and its combination with nanomaterials and other therapies. J Mater Chem B 2023; 11:8586-8604. [PMID: 37614168 DOI: 10.1039/d3tb01358h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Immunotherapy is a new type of tumor treatment after surgery, radiotherapy and chemotherapy, and can be used to manage and destroy tumor cells through activating or strengthening the immune response. Immunotherapy has the benefits of a low recurrence rate and high specificity compared to traditional treatment methods. Immunotherapy has developed rapidly in recent years and has become a research hotspot. Currently, chimeric antigen receptor T-cell immunotherapy and immune checkpoint inhibitors are the most effective tumor immunotherapies in clinical practice. While tumor immunotherapy brings hope to patients, it also faces some challenges and still requires continuous research and progress. Combination therapy is the future direction of anti-tumor treatment. In this review, the main focus is on an overview of the research progress of immune checkpoint inhibitors, cellular therapies, tumor vaccines, small molecule inhibitors and oncolytic virotherapy in tumor treatment, as well as the combination of immunotherapy with other treatments.
Collapse
Affiliation(s)
- Yuanyuan Guo
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Adeel Ahmed
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
130
|
Levis M, Gastino A, De Giorgi G, Mantovani C, Bironzo P, Mangherini L, Ricci AA, Ricardi U, Cassoni P, Bertero L. Modern Stereotactic Radiotherapy for Brain Metastases from Lung Cancer: Current Trends and Future Perspectives Based on Integrated Translational Approaches. Cancers (Basel) 2023; 15:4622. [PMID: 37760591 PMCID: PMC10526239 DOI: 10.3390/cancers15184622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brain metastases (BMs) represent the most frequent metastatic event in the course of lung cancer patients, occurring in approximately 50% of patients with non-small-cell lung cancer (NSCLC) and in up to 70% in patients with small-cell lung cancer (SCLC). Thus far, many advances have been made in the diagnostic and therapeutic procedures, allowing improvements in the prognosis of these patients. The modern approach relies on the integration of several factors, such as accurate histological and molecular profiling, comprehensive assessment of clinical parameters and precise definition of the extent of intracranial and extracranial disease involvement. The combination of these factors is pivotal to guide the multidisciplinary discussion and to offer the most appropriate treatment to these patients based on a personalized approach. Focal radiotherapy (RT), in all its modalities (radiosurgery (SRS), fractionated stereotactic radiotherapy (SRT), adjuvant stereotactic radiotherapy (aSRT)), is the cornerstone of BM management, either alone or in combination with surgery and systemic therapies. We review the modern therapeutic strategies available to treat lung cancer patients with brain involvement. This includes an accurate review of the different technical solutions which can be exploited to provide a "state-of-art" focal RT and also a detailed description of the systemic agents available as effective alternatives to SRS/SRT when a targetable molecular driver is present. In addition to the validated treatment options, we also discuss the future perspective for focal RT, based on emerging clinical reports (e.g., SRS for patients with many BMs from NSCLC or SRS for BMs from SCLC), together with a presentation of innovative and promising findings in translational research and the combination of novel targeted agents with SRS/SRT.
Collapse
Affiliation(s)
- Mario Levis
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Alessio Gastino
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Greta De Giorgi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Cristina Mantovani
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paolo Bironzo
- Oncology Unit, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy;
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Umberto Ricardi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| |
Collapse
|
131
|
Suay G, Garcia-Cañaveras JC, Aparisi F, Lahoz A, Juan-Vidal O. Sex Differences in the Efficacy of Immune Checkpoint Inhibitors in Neoadjuvant Therapy of Non-Small Cell Lung Cancer: A Meta-Analysis. Cancers (Basel) 2023; 15:4433. [PMID: 37760403 PMCID: PMC10526439 DOI: 10.3390/cancers15184433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the world's leading causes of morbidity and mortality. ICIs alone or combined with chemotherapy have become the standard first-line treatment of metastatic NSCLC. The impressive results obtained have stimulated our interest in applying these therapies in early disease stage treatments, as neoadjuvant immunotherapy has shown promising results. Among many of the factors that may influence responses, the role played by sex is attracting increased interest and needs to be addressed. Here, we aim to first review the state of the art regarding neoadjuvant ICIs, whether they are administered in monotherapy or in combination with chemotherapy at stages IB-IIIA, particularly at stage IIIA, before analyzing whether sex may influence responses. To this end, a meta-analysis of publicly available data comparing male and female major pathological responses (MPR) and pathological complete responses (pCR) was performed. In our meta-analysis, MPR was found to be significantly higher in females than in males, with an odds ratio (OR) of 1.82 (95% CI 1.13-2.93; p = 0.01), while pCR showed a trend to be more favorable in females than in males, but the OR of 1.62 was not statistically significant (95% CI 0.97-2.75; p = 0.08). Overall, our results showed that sex should be systematically considered in future clinical trials settings in order to establish the optimal treatment sequence.
Collapse
Affiliation(s)
- Guillermo Suay
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain; (G.S.); (J.-C.G.-C.); (F.A.)
| | - Juan-Carlos Garcia-Cañaveras
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain; (G.S.); (J.-C.G.-C.); (F.A.)
| | - Francisco Aparisi
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain; (G.S.); (J.-C.G.-C.); (F.A.)
| | - Agustin Lahoz
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain; (G.S.); (J.-C.G.-C.); (F.A.)
| | - Oscar Juan-Vidal
- Medical Oncology Department, La Fe University and Polytechnic Hospital, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| |
Collapse
|
132
|
Kosugi T, Ohue M. Design of Cyclic Peptides Targeting Protein-Protein Interactions Using AlphaFold. Int J Mol Sci 2023; 24:13257. [PMID: 37686057 PMCID: PMC10487914 DOI: 10.3390/ijms241713257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
More than 930,000 protein-protein interactions (PPIs) have been identified in recent years, but their physicochemical properties differ from conventional drug targets, complicating the use of conventional small molecules as modalities. Cyclic peptides are a promising modality for targeting PPIs, but it is difficult to predict the structure of a target protein-cyclic peptide complex or to design a cyclic peptide sequence that binds to the target protein using computational methods. Recently, AlphaFold with a cyclic offset has enabled predicting the structure of cyclic peptides, thereby enabling de novo cyclic peptide designs. We developed a cyclic peptide complex offset to enable the structural prediction of target proteins and cyclic peptide complexes and found AlphaFold2 with a cyclic peptide complex offset can predict structures with high accuracy. We also applied the cyclic peptide complex offset to the binder hallucination protocol of AfDesign, a de novo protein design method using AlphaFold, and we could design a high predicted local-distance difference test and lower separated binding energy per unit interface area than the native MDM2/p53 structure. Furthermore, the method was applied to 12 other protein-peptide complexes and one protein-protein complex. Our approach shows that it is possible to design putative cyclic peptide sequences targeting PPI.
Collapse
Affiliation(s)
| | - Masahito Ohue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, G3-56-4259 Nagatsutacho, Midori-ku, Yokohama City 226-8501, Kanagawa, Japan;
| |
Collapse
|
133
|
Wang F, Lu Q, Yu H, Zhang XM. The Circular RNA circFGFR4 Facilitates Resistance to Anti-PD-1 of Triple-Negative Breast Cancer by Targeting the miR-185-5p/CXCR4 Axis. Cancer Manag Res 2023; 15:825-835. [PMID: 37601820 PMCID: PMC10439764 DOI: 10.2147/cmar.s411901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose One of the most catastrophic malignant tumors is triple negative breast cancer (TNBC). It is characterized by rapid progression in the clinic. CircRNAs are abnormally expressed in almost all cancers and play important roles in tumor immune evasion. Nevertheless, the biological roles of the circular fibroblast growth factor receptor 4 RNA (circFGFR4) in TNBC remain unclear. Methods The expression of circFGFR4 in TNBC tissues and paired nontumor tissues was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The role of circFGFR4 in TNBC immune evasion was estimated by analyzing clinical tissues. In vivo circRNA precipitation, RNA immunoprecipitation, and luciferase reporter assays were performed to explore interaction between circFGFR4 and miR-185-5p. Results Our results indicated that circFGFR4 was significantly overexpressed in TNBC tissues. Upregulated circFGFR4 expression was correlated with decreased CD8+ T cell infiltration in tumor tissues and resistance to anti-programmed cell death 1 (PD-1) immunotherapy in TNBC patients and mice bearing TNBC tumors. Forced circFGFR4 expression inhibited CD8+ T cell infiltration in tissue sections from TNCB tumor bearing mice. Mechanistically, circFGFR4 competitively sponged miR-185-5p and prevented miR-185-5p from decreasing the levels of C-X-C motif chemokine receptor 4 (CXCR4). Conclusion Ultimately, our results indicated that circFGFR4 plays an important role in immune evasion and anti-PD-1 immunotherapy resistance via regulates miR-185-5p/CXCR4 axis in TNBC, thus suggesting that circFGFR4 has significant potential as a biomarker for predicting sensitivity to anti-PD-1 immunotherapy and as an immunotherapeutic target for TNBC.
Collapse
Affiliation(s)
- Fei Wang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Qiong Lu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Concord Medical Cancer Center, Shanghai, People’s Republic of China
| | - Hong Yu
- Department of Pathology, Taizhou People’s Hospital, Taizhou, Jiangsu, People’s Republic of China
| | - Xue-Mei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
134
|
Puopolo T, Li H, Gutkowski J, Cai A, Seeram NP, Ma H, Liu C. Establishment of Human PD-1/PD-L1 Blockade Assay Based on Surface Plasmon Resonance (SPR) Biosensor. Bio Protoc 2023; 13:e4765. [PMID: 37575393 PMCID: PMC10415205 DOI: 10.21769/bioprotoc.4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/31/2023] [Indexed: 08/15/2023] Open
Abstract
Blockade of the programmed cell death protein 1 (PD-1)/PD-ligand 1 (PD-L1) axis is a promising strategy for cancer immunotherapy. Although antibody-based PD-1/PD-L1 inhibitors have shown remarkable results in clinical cancer studies, their inherent limitations underscore the significance of developing novel PD-1/PD-L1 inhibitors. Small molecule inhibitors have several advantages over antibody-based inhibitors, including favorable tumor penetration and oral bioavailability, fewer side effects, easier administration, preferred biological half-life, and lower cost. However, small molecule inhibitors that directly target the PD-1/PD-L1 interaction are still in the early development stage, partially due to the lack of reliable biophysical assays. Herein, we present a novel PD-1/PD-L1 blockade assay using a surface plasmon resonance (SPR)-based technique. This blockade assay immobilizes human PD-1 on a sensor chip, which interacts with PD-L1 inhibitors or negative PD-L1 binders with human PD-L1 protein at a range of molecular ratios. The binding kinetics of PD-L1 to PD-1 and the blockade rates of small molecules were determined. Compared to other techniques such as PD-1/PD-L1 pair enzyme-linked immunosorbent assay (ELISA) and AlphaLISA immunoassays, our SPR-based method offers real-time and label-free detection with advantages including shorter experimental runs and smaller sample quantity requirements. Key features A SPR protocol screens compounds for their capacity to block the PD-1/PD-L1 interaction. Validation of PD-1/PD-L1 interaction, followed by assessing blockade effects with known inhibitors BMS-1166 and BMS-202, and a negative control NO-Losartan A. Analysis of percentage blockade of PD-1/PD-L1 of the samples to obtain the IC50. Broad applications in the discovery of small molecule-based PD-1/PD-L1 inhibitors for cancer immunotherapy. Graphical overview.
Collapse
Affiliation(s)
- Tess Puopolo
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Huifang Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Justin Gutkowski
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ang Cai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Chang Liu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
135
|
Ju H, Wei D, Wu Y, Liu Y, Ding Q, Rui M, Fan Z, Yao Y, Hu J, Ren G. A pilot study of camrelizumab with docetaxel and cisplatin for the first line treatment in recurrent/metastatic oral squamous cell carcinoma. MedComm (Beijing) 2023; 4:e312. [PMID: 37492783 PMCID: PMC10363852 DOI: 10.1002/mco2.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/27/2023] Open
Abstract
Pembrolizumab with cisplatin and 5-fluorouracil showed survival benefit but relatively high occurrence of treatment-related adverse events (TRAEs) for recurrent/metastatic oral squamous cell carcinoma (R/M OSCC). A more tolerable regime is needed. This trial enrolled 20 R/M OSCC patients with previously untreated and PD-L1 positive. Patients were administered camrelizumab with docetaxel and cisplatin every 3 weeks for six cycles, followed by camrelizumab monotherapy every 3 weeks until disease progression or intolerable toxicity. The primary endpoint was occurrence of grade ≥ 3 TRAEs, secondary endpoints included overall survival (OS), progression-free survival (PFS), and overall response rate (ORR). 45% patients experienced grade ≥ 3 TRAEs, which the most common were anemia (15%), stomatitis (15%), and neutropenia (10%). The most common potential immune-related adverse events were reactive cutaneous capillary endothelial proliferation (RCCEP; 60%), hypothyroidism (35%), and pneumonitis (15%). No treatment-related deaths occurred. The median OS, PFS, and ORR was 14.4 months, 5.35 months, and 40.0% respectively. The study also found RCCEP occurrence, lower FOXP3+ cells, and higher density of intratumor tertiary lymphoid structure were associated with improved efficacy. Our data suggest that camrelizumab with docetaxel/cisplatin as first-line therapy was well tolerable and had potentially favorite efficacy in PD-L1-positive patients with R/M OSCC.
Collapse
Affiliation(s)
- Houyu Ju
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Center of StomatologyShanghaiChina
- National Clinical Research Center of StomatologyShanghaiChina
| | - Dongliang Wei
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Center of StomatologyShanghaiChina
- National Clinical Research Center of StomatologyShanghaiChina
| | - Yunteng Wu
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Center of StomatologyShanghaiChina
- National Clinical Research Center of StomatologyShanghaiChina
| | - Yang Liu
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Center of StomatologyShanghaiChina
- National Clinical Research Center of StomatologyShanghaiChina
| | - Qi Ding
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Mengyu Rui
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Center of StomatologyShanghaiChina
- National Clinical Research Center of StomatologyShanghaiChina
| | - Zongyu Fan
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Center of StomatologyShanghaiChina
- National Clinical Research Center of StomatologyShanghaiChina
| | - Yanli Yao
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Center of StomatologyShanghaiChina
- National Clinical Research Center of StomatologyShanghaiChina
| | - Jingzhou Hu
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Center of StomatologyShanghaiChina
- National Clinical Research Center of StomatologyShanghaiChina
| | - Guoxin Ren
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Center of StomatologyShanghaiChina
- National Clinical Research Center of StomatologyShanghaiChina
| |
Collapse
|
136
|
Natan Y, Blum YD, Arav A, Poliansky Y, Neuman S, Ecker Cohen O, Ben Y. Amorphous Calcium Carbonate Shows Anti-Cancer Properties That are Attributed to Its Buffering Capacity. Cancers (Basel) 2023; 15:3785. [PMID: 37568601 PMCID: PMC10417113 DOI: 10.3390/cancers15153785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 08/13/2023] Open
Abstract
AIM Amorphous calcium carbonate (ACC) is a non-crystalline form of calcium carbonate, and it is composed of aggregated nano-size primary particles. Here, we evaluated its anti-cancer effect postulated relative to its buffering capabilities in lung cancer. METHODS Tumors were evaluated in vivo using the Lewis lung carcinoma (LLC) mouse cell line and A549 human lung cancer carcinoma cell line. LLC and A549 cells were injected subcutaneously into the right hind leg of mice. Treatments (ACC, cisplatin, vehicle, and ACC with cisplatin, all given via daily IP injections) started once tumors reached a measurable size. Treatments were carried out for 14 days in the LLC model and for 22 and 24 days in the xenograft model (two experiments). LLC tumors were resected from ACC at the end of the study, and vehicle groups were evaluated for cathepsin B activity. Differential gene expression was carried out on A549 cells following 8 weeks of in vitro culture in the presence or absence of ACC in a culture medium. RESULTS The ACC treatment decelerated tumor growth rates in both models. When tumor volumes were compared on the last day of each study, the ACC-treated animal tumor volume was reduced by 44.83% compared to vehicle-treated animals in the LLC model. In the xenograft model, the tumor volume was reduced by 51.6% in ACC-treated animals compared to vehicle-treated animals. A more substantial reduction of 74.75% occurred in the combined treatment of ACC and cisplatin compared to the vehicle (carried out only in the LLC model). Cathepsin B activity was significantly reduced in ACC-treated LLC tumors compared to control tumors. Differential gene expression results showed a shift towards anti-tumorigenic pathways in the ACC-treated A549 cells. CONCLUSION This study supports the ACC anti-malignant buffering hypothesis by demonstrating decelerated tumor growth, reduced cathepsin B activity, and altered gene expressions to produce anti-cancerous effects.
Collapse
Affiliation(s)
- Yehudit Natan
- Amorphical Ltd., 11 HaHarash st., Nes-Ziona 7403118, Israel
| | - Yigal Dov Blum
- Amorphical Ltd., 11 HaHarash st., Nes-Ziona 7403118, Israel
| | - Amir Arav
- A.A. Cash Technology Ltd., 59 Shlomzion Hamalka st., Tel-Aviv 6226618, Israel
| | | | - Sara Neuman
- Amorphical Ltd., 11 HaHarash st., Nes-Ziona 7403118, Israel
| | | | - Yossi Ben
- Amorphical Ltd., 11 HaHarash st., Nes-Ziona 7403118, Israel
| |
Collapse
|
137
|
Álvarez Freile J, Qi Y, Jacob L, Lobo MF, Lourens HJ, Huls G, Bremer E. A luminescence-based method to assess antigen presentation and antigen-specific T cell responses for in vitro screening of immunomodulatory checkpoints and therapeutics. Front Immunol 2023; 14:1233113. [PMID: 37559730 PMCID: PMC10407562 DOI: 10.3389/fimmu.2023.1233113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Investigations into the strength of antigen-specific responses in vitro is becoming increasingly relevant for decision making in early-phase research of novel immunotherapeutic approaches, including adoptive cell but also immune checkpoint inhibitor (ICI)-based therapies. In the latter, antigen-specific rapid and high throughput tools to investigate MHC/antigen-specific T cell receptor (TCR) activation haven't been implemented yet. Here, we present a simple and rapid luminescence-based approach using the human papillomavirus 16 (HPV16) E711-20 peptide as model antigen and E7-TCR transgenic Jurkat.NFAT-luciferase reporter cells. Upon E7 peptide pulsing of HLA-A2+ cell lines and macrophages, an effector to target ratio dependent increase in luminescence compared to non-pulsed cells was observed after co-incubation with E7-TCR expressing Jurkat, but not with parental cells. Analogous experiments with cells expressing full-length HPV16 identified that E7-specific activation of Jurkat cells enabled detection of endogenous antigen processing and MHC-I presentation. As proof of concept, overexpression of established checkpoints/inhibitory molecules (e.g., PD-L1 or HLA-G) significantly reduced the E7-specific TCR-induced luminescence, an effect that could be restored after treatment with corresponding targeting antagonistic antibodies. Altogether, the luminescence-based method described here represents an alternative approach for the rapid evaluation of MHC-dependent antigen-specific T cell responses in vitro. It can be used as a rapid tool to evaluate the impact of the immunosuppressive tumor microenvironment or novel ICI in triggering effective T cell responses, as well as speeding up the development of novel therapeutics within the immune-oncology field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Edwin Bremer
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
138
|
Wu Z, Zhuo T, Li Z, Zhu Y, Wu J, Liang G, Dai L, Wang Y, Tan X, Chen M. High SGO2 predicted poor prognosis and high therapeutic value of lung adenocarcinoma and promoted cell proliferation, migration, invasion, and epithelial-to-mesenchymal transformation. J Cancer 2023; 14:2301-2314. [PMID: 37576392 PMCID: PMC10414046 DOI: 10.7150/jca.86285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Shugoshin 2 (SGO2), a component of the cell division cohesion complex, is involved in both mitotic and meiotic processes. Despite being overexpressed in various malignant tumors and is associated with poor prognosis, its exact role in lung adenocarcinoma (LUAD) and its biological effects on lung cancer cells are not well understood. Methods: The transcriptomics data and clinical information for LUAD were obtained from TCGA and GEO, and DEGs associated with prognostic risk factors were screened using Cox regression analysis and chi-square testing. Identify these gene functions using correlation heatmaps, protein interaction networks (PPIs), and KEGG enrichment assays. The expression of SGO2 in tissues was verified by PCR and IHC, and the prognostic value of SGO2 in LUAD was evaluated by survival analysis. In addition, the effects of SGO2 knockdown on lung cancer cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) were studied in vitro. After that, the TIMER database and single-sample GSEA (ssGSEA) analysis were used to investigate the correlation between SGO2 and immune infiltration. Finally, the tumor mutational burden (TMB) of different SGO2 clusters and the efficacy of the two clusters in multiple treatments were evaluated. Results: High-risk genes associated with poor prognosis in LUAD are involved in cell cycle regulation and proliferation. Among these genes, SGO2 exhibited high expression in LUAD and corresponded with the TNM stage. Furthermore, the knockdown of SGO2 led to a decrease in the proliferation, migration, invasion, and EMT processes of lung cancer cells. Notably, high SGO2 expression may have poorer anti-tumor immunity and may therefore be more suitable for immunotherapy to re-establish immune function, while its high expression with a higher TMB could enable LUAD to benefit from multiple therapies. Conclusion: Our findings suggest that SGO2 may be a promising prognostic biomarker for LUAD, particularly in regulating the cell cycle and benefiting from multiple therapies.
Collapse
Affiliation(s)
- Zuotao Wu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ting Zhuo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zihao Li
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yongjie Zhu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiejing Wu
- Department of Ophthalmology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Guanbiao Liang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lei Dai
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yongyong Wang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiang Tan
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Mingwu Chen
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
139
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
140
|
Noor J, Chaudhry A, Noor R, Batool S. Advancements and Applications of Liquid Biopsies in Oncology: A Narrative Review. Cureus 2023; 15:e42731. [PMID: 37654932 PMCID: PMC10466971 DOI: 10.7759/cureus.42731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 09/02/2023] Open
Abstract
According to the World Health Organization (WHO), nearly 10 million people died from cancer worldwide in 2020, making it the leading cause of mortality. Liquid biopsies, which provide non-invasive and real-time monitoring of tumor dynamics, have evolved into innovative diagnostic techniques in the field of oncology. Liquid biopsies offer important insights into tumor heterogeneity, treatment response, minimum residual disease identification, and personalized treatment of cancer through the analysis of circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), extracellular vesicles, and microRNAs. They offer several advantages over traditional tissue biopsies, such as being less invasive, more convenient, more representative of tumor heterogeneity and dynamics, and more informative for guiding personalized treatment decisions. Liquid biopsies are being utilized increasingly in clinical oncology, particularly for patients with metastatic disease who require ongoing monitoring and treatment modification. In this narrative review article, we review the latest developments of liquid biopsy technologies, their applications and limitations, and their potential to transform diagnosis, prognosis, and management of cancer patients.
Collapse
Affiliation(s)
- Jawad Noor
- Internal Medicine, St. Dominic Hospital, Jackson, USA
| | | | - Riwad Noor
- Medicine/Public Health, Nishtar Hospital, Multan, PAK
| | - Saima Batool
- Pathology, Nishtar Medical University, Multan, PAK
| |
Collapse
|
141
|
Holzgreve A, Taugner J, Käsmann L, Müller P, Tufman A, Reinmuth N, Li M, Winkelmann M, Unterrainer LM, Nieto AE, Bartenstein P, Kunz WG, Ricke J, Belka C, Eze C, Unterrainer M, Manapov F. Metabolic patterns on [ 18F]FDG PET/CT in patients with unresectable stage III NSCLC undergoing chemoradiotherapy ± durvalumab maintenance treatment. Eur J Nucl Med Mol Imaging 2023; 50:2466-2476. [PMID: 36951991 PMCID: PMC10250493 DOI: 10.1007/s00259-023-06192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/05/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE In patients with unresectable stage III non-small-cell lung cancer (NSCLC), durvalumab maintenance treatment after chemoradiotherapy (CRT) significantly improves survival. So far, however, metabolic changes of tumoral lesions and secondary lymphoid organs under durvalumab are unknown. Hence, we assessed changes on [18F]FDG PET/CT in comparison to patients undergoing CRT alone. METHODS Forty-three patients with [18F]FDG PET/CT both before and after standard CRT for unresectable stage III NSCLC were included, in 16/43 patients durvalumab maintenance treatment was initiated (CRT-IO) prior to the second PET/CT. Uptake of tumor sites and secondary lymphoid organs was compared between CRT and CRT-IO. Also, readers were blinded for durvalumab administration and reviewed scans for findings suspicious for immunotherapy-related adverse events (irAE). RESULTS Initial uptake characteristics were comparable. However, under durvalumab, diverging metabolic patterns were noted: There was a significantly higher reduction of tumoral uptake intensity in CRT-IO compared to CRT, e.g. median decrease of SUVmax -70.0% vs. -24.8%, p = 0.009. In contrast, the spleen uptake increased in CRT-IO while it dropped in CRT (median + 12.5% vs. -4.4%, p = 0.029). Overall survival was significantly longer in CRT-IO compared to CRT with few events (progression/death) noted in CRT-IO. Findings suggestive of irAE were present on PET/CT more often in CRT-IO (12/16) compared to CRT (8/27 patients), p = 0.005. CONCLUSION Durvalumab maintenance treatment after CRT leads to diverging tumoral metabolic changes, but also increases splenic metabolism and leads to a higher proportion of findings suggestive of irAE compared to patients without durvalumab. Due to significantly prolonged survival with durvalumab, survival analysis will be substantiated in correlation to metabolic changes as soon as more clinical events are present.
Collapse
Affiliation(s)
- Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Julian Taugner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Philipp Müller
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Amanda Tufman
- Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- Department of Internal Medicine V, University Hospital, LMU Munich, Munich, Germany
| | | | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Michael Winkelmann
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Lena M Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Alexander E Nieto
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
142
|
Sampaio-Ribeiro G, Ruivo A, Silva A, Santos AL, Oliveira RC, Gama J, Cipriano MA, Tralhão JG, Paiva A. Innate Immune Cells in the Tumor Microenvironment of Liver Metastasis from Colorectal Cancer: Contribution to a Comprehensive Therapy. Cancers (Basel) 2023; 15:3222. [PMID: 37370832 DOI: 10.3390/cancers15123222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent type of cancer, and liver metastasis is the most common site of metastatic development. In the tumor microenvironment (TME), various innate immune cells are known to influence cancer progression and metastasis occurrence. CD274 (PD-L1) and CD206 (MRC1) are proteins that have been associated with poor prognosis and disease progression. We conducted a study on tumoral and non-tumoral biopsies from 47 patients with CRC liver metastasis, using flow cytometry to phenotypically characterize innate immune cells. Our findings showed an increase in the expression of CD274 on classical, intermediate, and non-classical monocytes when comparing tumor with non-tumor samples. Furthermore, tumor samples with a desmoplastic growth pattern exhibited a significantly decreased percentage of CD274- and CD206-positive cells in all monocyte populations compared to non-desmoplastic samples. We found a correlation between a lower expression of CD206 or CD274 on classical, intermediate, and non-classical monocytes and increased disease-free survival, which points to a better prognosis for these patients. In conclusion, our study has identified potential new targets and biomarkers that could be incorporated into a personalized medicine approach to enhance the outcome for colorectal cancer patients.
Collapse
Affiliation(s)
- Gabriela Sampaio-Ribeiro
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Ruivo
- Surgery Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Silva
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
| | - Ana Lúcia Santos
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
| | - Rui Caetano Oliveira
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Germano de Sousa-Centro de Diagnóstico Histopatológico CEDAP, 3000-377 Coimbra, Portugal
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - João Gama
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Maria Augusta Cipriano
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - José Guilherme Tralhão
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Surgery Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Ciências Biomédicas Laboratoriais, ESTESC-Coimbra Health School, Instituto Politécnico de Coimbra, 3046-854 Coimbra, Portugal
| |
Collapse
|
143
|
Mender I, Siteni S, Barron S, Flusche AM, Kubota N, Yu C, Cornelius C, Tedone E, Maziveyi M, Grichuk A, Venkateswaran N, Conacci-Sorrell M, Hoshida Y, Kang R, Tang D, Gryaznov S, Shay JW. Activating an Adaptive Immune Response with a Telomerase-Mediated Telomere Targeting Therapeutic in Hepatocellular Carcinoma. Mol Cancer Ther 2023; 22:737-750. [PMID: 37070671 PMCID: PMC10233358 DOI: 10.1158/1535-7163.mct-23-0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
A select group of patients with hepatocellular carcinomas (HCC) benefit from surgical, radiologic, and systemic therapies that include a combination of anti-angiogenic and immune-checkpoint inhibitors. However, because HCC is generally asymptomatic in its early stages, this not only leads to late diagnosis, but also to therapy resistance. The nucleoside analogue 6-thio-dG (THIO) is a first-in-class telomerase-mediated telomere-targeting anticancer agent. In telomerase expressing cancer cells, THIO is converted into the corresponding 5'-triphosphate, which is efficiently incorporated into telomeres by telomerase, activating telomere damage responses and apoptotic pathways. Here, we show how THIO is effective in controlling tumor growth and, when combined with immune checkpoint inhibitors, is even more effective in a T-cell-dependent manner. We also show telomere stress induced by THIO increases both innate sensing and adaptive antitumor immunity in HCC. Importantly, the extracellular high-mobility group box 1 protein acts as a prototypical endogenous DAMP (Damage Associated Molecular Pattern) in eliciting adaptive immunity by THIO. These results provide a strong rationale for combining telomere-targeted therapy with immunotherapy.
Collapse
Affiliation(s)
- Ilgen Mender
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas
| | - Silvia Siteni
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas
| | - Summer Barron
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas
| | - Ann Marie Flusche
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas
| | - Naoto Kubota
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Dallas, Texas
| | - Chunhua Yu
- University of Texas Southwestern Medical Center, Department of Surgery, Dallas, Texas
| | - Crystal Cornelius
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas
| | - Enzo Tedone
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas
| | - Mazvita Maziveyi
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas
| | - Anthony Grichuk
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas
| | - Niranjan Venkateswaran
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas
| | | | - Yujin Hoshida
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Dallas, Texas
| | - Rui Kang
- University of Texas Southwestern Medical Center, Department of Surgery, Dallas, Texas
| | - Daolin Tang
- University of Texas Southwestern Medical Center, Department of Surgery, Dallas, Texas
| | | | - Jerry W. Shay
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas
| |
Collapse
|
144
|
Rao R, Patel A, Hanchate K, Robinson E, Edwards A, Shah S, Higgins D, Haworth KJ, Lucke-Wold B, Pomeranz Krummel D, Sengupta S. Advances in Focused Ultrasound for the Treatment of Brain Tumors. Tomography 2023; 9:1094-1109. [PMID: 37368542 DOI: 10.3390/tomography9030090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Employing the full arsenal of therapeutics to treat brain tumors is limited by the relative impermeability of the blood-brain and blood-tumor barriers. In physiologic states, the blood-brain barrier serves a protective role by passively and actively excluding neurotoxic compounds; however, this functionality limits the penetrance of therapeutics into the tumor microenvironment. Focused ultrasound technology provides a method for overcoming the blood-brain and blood-tumor barriers through ultrasound frequency to transiently permeabilize or disrupt these barriers. Concomitant delivery of therapeutics has allowed for previously impermeable agents to reach the tumor microenvironment. This review details the advances in focused ultrasound in both preclinical models and clinical studies, with a focus on its safety profile. We then turn towards future directions in focused ultrasound-mediated therapies for brain tumors.
Collapse
Affiliation(s)
- Rohan Rao
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Anjali Patel
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Kunal Hanchate
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Eric Robinson
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Aniela Edwards
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Sanjit Shah
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dominique Higgins
- Department of Neurosurgery, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin J Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Daniel Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| |
Collapse
|
145
|
Krasnovskaya OO, Abramchuck D, Erofeev A, Gorelkin P, Kuznetsov A, Shemukhin A, Beloglazkina EK. Recent Advances in 64Cu/ 67Cu-Based Radiopharmaceuticals. Int J Mol Sci 2023; 24:9154. [PMID: 37298101 PMCID: PMC10288943 DOI: 10.3390/ijms24119154] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Copper-64 (T1/2 = 12.7 h) is a positron and beta-emitting isotope, with decay characteristics suitable for both positron emission tomography (PET) imaging and radiotherapy of cancer. Copper-67 (T1/2 = 61.8 h) is a beta and gamma emitter, appropriate for radiotherapy β-energy and with a half-life suitable for single-photon emission computed tomography (SPECT) imaging. The chemical identities of 64Cu and 67Cu isotopes allow for convenient use of the same chelating molecules for sequential PET imaging and radiotherapy. A recent breakthrough in 67Cu production opened previously unavailable opportunities for a reliable source of 67Cu with high specific activity and purity. These new opportunities have reignited interest in the use of copper-containing radiopharmaceuticals for the therapy, diagnosis, and theranostics of various diseases. Herein, we summarize recent (2018-2023) advances in the use of copper-based radiopharmaceuticals for PET, SPECT imaging, radiotherapy, and radioimmunotherapy.
Collapse
Affiliation(s)
- Olga O. Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
| | - Daniil Abramchuck
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
- Research Laboratory of Biophysics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
| | - Peter Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
| | - Alexander Kuznetsov
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 2, 119991 Moscow, Russia
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia
| | - Andrey Shemukhin
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 2, 119991 Moscow, Russia
| | - Elena K. Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
| |
Collapse
|
146
|
Wu Z, Fang ZX, Hou YY, Wu BX, Deng Y, Wu HT, Liu J. Exosomes in metastasis of colorectal cancers: Friends or foes? World J Gastrointest Oncol 2023; 15:731-756. [PMID: 37275444 PMCID: PMC10237026 DOI: 10.4251/wjgo.v15.i5.731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
Colorectal cancer (CRC), the third most common type of cancer worldwide, threaten human health and quality of life. With multidisciplinary, including surgery, chemotherapy and/or radiotherapy, patients with an early diagnosis of CRC can have a good prognosis. However, metastasis in CRC patients is the main risk factor causing cancer-related death. To elucidate the underlying molecular mechanisms of CRC metastasis is the difficult and research focus on the investigation of the CRC mechanism. On the other hand, the tumor microenvironment (TME) has been confirmed as having an essential role in the tumorigenesis and metastasis of malignancies, including CRCs. Among the different factors in the TME, exosomes as extracellular vesicles, function as bridges in the communication between cancer cells and different components of the TME to promote the progression and metastasis of CRC. MicroRNAs packaged in exosomes can be derived from different sources and transported into the TME to perform oncogenic or tumor-suppressor roles accordingly. This article focuses on CRC exosomes and illustrates their role in regulating the metastasis of CRC, especially through the packaging of miRNAs, to evoke exosomes as novel biomarkers for their impact on the metastasis of CRC progression.
Collapse
Affiliation(s)
- Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Bing-Xuan Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu Deng
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
147
|
Costa L, Alexandre T, Mansinho A, Sousa R, Vieira C, Hughes R, Roediger A, Pereira SM, Araújo A. Health outcomes and budget impact projection of anti-PD-(L)1s in cancer care in Portugal. Front Public Health 2023; 11:1133959. [PMID: 37250095 PMCID: PMC10215539 DOI: 10.3389/fpubh.2023.1133959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/07/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction PD-[L]1 inhibitors revolutionized cancer treatment but challenge the affordability of health systems. This policy-focused model aimed to estimate the health and budget impact of anti-PD-(L)1s in Portugal and inform current discussions. Materials and methods The Health Impact Projection (HIP) model estimates clinical (life years, progression-free survival [PFS] years, and quality-adjusted life years [QALY] gained and adverse events [AEs] incurred) and economic (direct and indirect costs) outcomes in a world where cancer patients are initiating treatment with standard-of-care (SOC) versus SOC plus anti-PD-(L)1s over a 3-year time horizon. Indications included adjuvant and metastatic melanoma, non-small cell lung cancer (first and second line), metastatic triple-negative breast cancer, head and neck cancer, urothelial carcinoma, and renal cell carcinoma. Model inputs were based on publicly available literature data and expert opinion. Results The model estimated that, over 3 years, 7,773 patients would be treated with anti-PD-(L)1s, realizing a gain of 4,787 life years, 6,901 PFS years, and 4,214 QALYs and avoiding 399 AEs. The introduction of anti-PD-(L)1s had a projected average annual impact of ≈ €108 million and a share of 20% of total cancer medicines expenditure and 0.6% of total healthcare expenditure in 2021. Although higher disease management costs are expected for patients living longer with anti-PD-(L)1s and drug acquisition costs are considerable, that is partially offset by a reduction in end-of-life costs (€611,092/year) and costs associated with patient productivity lost to cancer (€9,128,142/year). Discussion This model highlights the significant survival and QoL benefit of anti-PD-(L)1s for cancer patients in Portugal, with a relatively low increased cost in total healthcare expenditure.
Collapse
Affiliation(s)
- Luís Costa
- Department of Oncology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Teresa Alexandre
- Department of Medical Oncology, Instituto Português de Oncologia de Lisboa Francisco Gentil, E. P. E, Lisbon, Portugal
| | - André Mansinho
- Department of Oncology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Rita Sousa
- Department of Oncology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Cláudia Vieira
- Department of Medical Oncology, Instituto Português de Oncologia do Porto Francisco Gentil, Porto, Portugal
| | | | | | | | - António Araújo
- Department of Medical Oncology, Centro Hospitalar Universitário Santo António, Porto, Portugal
| |
Collapse
|
148
|
Kciuk M, Yahya EB, Mohamed Ibrahim Mohamed M, Rashid S, Iqbal MO, Kontek R, Abdulsamad MA, Allaq AA. Recent Advances in Molecular Mechanisms of Cancer Immunotherapy. Cancers (Basel) 2023; 15:2721. [PMID: 37345057 DOI: 10.3390/cancers15102721] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is among the current leading causes of death worldwide, despite the novel advances that have been made toward its treatment, it is still considered a major public health concern. Considering both the serious impact of cancer on public health and the significant side effects and complications of conventional therapeutic options, the current strategies towards targeted cancer therapy must be enhanced to avoid undesired toxicity. Cancer immunotherapy has become preferable among researchers in recent years compared to conventional therapeutic options, such as chemotherapy, surgery, and radiotherapy. The understanding of how to control immune checkpoints, develop therapeutic cancer vaccines, genetically modify immune cells as well as enhance the activation of antitumor immune response led to the development of novel cancer treatments. In this review, we address recent advances in cancer immunotherapy molecular mechanisms. Different immunotherapeutic approaches are critically discussed, focusing on the challenges, potential risks, and prospects involving their use.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| |
Collapse
|
149
|
Man Y, Dai C, Guo Q, Jiang L, Shi Y. A novel PD-1/PD-L1 pathway molecular typing-related signature for predicting prognosis and the tumor microenvironment in breast cancer. Discov Oncol 2023; 14:59. [PMID: 37154982 PMCID: PMC10167089 DOI: 10.1007/s12672-023-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Currently, the development of breast cancer immunotherapy based on the PD-1/PD-L1 pathway is relatively slow, and the specific mechanism affecting the immunotherapy efficacy in breast cancer is still unclear. METHODS Weighted correlation network analysis (WGCNA) and the negative matrix factorization (NMF) were used to distinguish subtypes related to the PD-1/PD-L1 pathway in breast cancer. Then univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression were used to construct the prognostic signature. A nomogram was established based on the signature. The relationship between the signature gene IFNG and breast cancer tumor microenvironment was analyzed. RESULTS Four PD-1/PD-L1 pathway-related subtypes were distinguished. A prognostic signature related to PD-1/PD-L1 pathway typing was constructed to evaluate breast cancer's clinical characteristics and tumor microenvironment. The nomogram based on the RiskScore could be used to accurately predict breast cancer patients' 1-year, 3-year, and 5-year survival probability. The expression of IFNG was positively correlated with CD8+ T cell infiltration in the breast cancer tumor microenvironment. CONCLUSION A prognostic signature is constructed based on the PD-1/PD-L1 pathway typing in breast cancer, which can guide the precise treatment of breast cancer. The signature gene IFNG is positively related to CD8+ T cell infiltration in breast cancer.
Collapse
Affiliation(s)
- Yuxin Man
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Chao Dai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qian Guo
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
150
|
Said SS, Ibrahim WN. Cancer Resistance to Immunotherapy: Comprehensive Insights with Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15041143. [PMID: 37111629 PMCID: PMC10141036 DOI: 10.3390/pharmaceutics15041143] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Cancer immunotherapy is a type of treatment that harnesses the power of the immune systems of patients to target cancer cells with better precision compared to traditional chemotherapy. Several lines of treatment have been approved by the US Food and Drug Administration (FDA) and have led to remarkable success in the treatment of solid tumors, such as melanoma and small-cell lung cancer. These immunotherapies include checkpoint inhibitors, cytokines, and vaccines, while the chimeric antigen receptor (CAR) T-cell treatment has shown better responses in hematological malignancies. Despite these breakthrough achievements, the response to treatment has been variable among patients, and only a small percentage of cancer patients gained from this treatment, depending on the histological type of tumor and other host factors. Cancer cells develop mechanisms to avoid interacting with immune cells in these circumstances, which has an adverse effect on how effectively they react to therapy. These mechanisms arise either due to intrinsic factors within cancer cells or due other cells within the tumor microenvironment (TME). When this scenario is used in a therapeutic setting, the term “resistance to immunotherapy” is applied; “primary resistance” denotes a failure to respond to treatment from the start, and “secondary resistance” denotes a relapse following the initial response to immunotherapy. Here, we provide a thorough summary of the internal and external mechanisms underlying tumor resistance to immunotherapy. Furthermore, a variety of immunotherapies are briefly discussed, along with recent developments that have been employed to prevent relapses following treatment, with a focus on upcoming initiatives to improve the efficacy of immunotherapy for cancer patients.
Collapse
Affiliation(s)
- Sawsan Sudqi Said
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|