101
|
Ray P, Lakshmanan V, Labbé JL, Craven KD. Microbe to Microbiome: A Paradigm Shift in the Application of Microorganisms for Sustainable Agriculture. Front Microbiol 2020; 11:622926. [PMID: 33408712 PMCID: PMC7779556 DOI: 10.3389/fmicb.2020.622926] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Light, water and healthy soil are three essential natural resources required for agricultural productivity. Industrialization of agriculture has resulted in intensification of cropping practices using enormous amounts of chemical pesticides and fertilizers that damage these natural resources. Therefore, there is a need to embrace agriculture practices that do not depend on greater use of fertilizers and water to meet the growing demand of global food requirements. Plants and soil harbor millions of microorganisms, which collectively form a microbial community known as the microbiome. An effective microbiome can offer benefits to its host, including plant growth promotion, nutrient use efficiency, and control of pests and phytopathogens. Therefore, there is an immediate need to bring functional potential of plant-associated microbiome and its innovation into crop production. In addition to that, new scientific methodologies that can track the nutrient flux through the plant, its resident microbiome and surrounding soil, will offer new opportunities for the design of more efficient microbial consortia design. It is now increasingly acknowledged that the diversity of a microbial inoculum is as important as its plant growth promoting ability. Not surprisingly, outcomes from such plant and soil microbiome studies have resulted in a paradigm shift away from single, specific soil microbes to a more holistic microbiome approach for enhancing crop productivity and the restoration of soil health. Herein, we have reviewed this paradigm shift and discussed various aspects of benign microbiome-based approaches for sustainable agriculture.
Collapse
Affiliation(s)
- Prasun Ray
- Noble Research Institute, LLC, Ardmore, OK, United States
| | | | - Jessy L. Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | | |
Collapse
|
102
|
Selection of plant growth promoting rhizobacteria sharing suitable features to be commercially developed as biostimulant products. Microbiol Res 2020; 245:126672. [PMID: 33418398 DOI: 10.1016/j.micres.2020.126672] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
Plant biostimulants (PBs) are an eco-friendly alternative to chemical fertilisers because of their minimal or null impact on human health and environment, while ensuring optimal nutrient uptake and increase of crop yield, quality and tolerance to abiotic stress. Although there is an increasing interest on microbial biostimulants, the optimal procedure to select and develop them as commercial products is still not well defined. This work proposes and validates a procedure to select the best plant growth promoting rhizobacteria (PGPR) as potential active ingredients of commercial PBs. The stepwise screening strategy was designed based on literature analysis and consists of six steps: (i) determination of the target crop and commercial strategy, (ii) selection of growth media for the isolation of microbial candidates, (iii) screening for traits giving major agronomical advantages, (iv) screening for traits related to product development, (v) characterisation of the mode of action of PGPR and (vi) assessment of plant growth efficacy. The strategy was validated using a case study: PGPR combined with humic acids to be applied on tomato plants. Among 200 bacterial strains isolated from tomato rhizosphere, 39 % were able to grow in presence of humic acids and shared the ability to solubilise phosphate. After the screening for traits related to product development, only 6 % of initial bacterial strains were sharing traits suitable for the further development as potential PBs. In fact, the selected bacterial strains were able to produce high cell mass and tolerated drought, aspects important for the mass production and formulation. These bacterial strains were not able to produce antibiotics, establish pathogenic interaction with plants and did not belong to bacterial species associated to human, animal and plant diseases. Most importantly, five of the selected bacterial strains were able to promote tomato seedling vigour in experiments carried out in vitro. These bacterial strains were furtherly characterised for their ability to colonize effectively tomato plant roots, produce phytohormones and solubilise soil minerals. This characterisation led to the selection of two candidates that showed the ability to promote tomato plant growth in experiments carried out in greenhouse conditions. Overall, this work provides a flow diagram for the selection of PGPR candidates to be successfully developed and commercialized as PBs. The validation of the flow diagram led to the selection of two bacterial strains belonging to Pantoea and Pseudomonas genera, potential active ingredients of new commercial PBs.
Collapse
|
103
|
Rubin RL, Jones AN, Hayer M, Shuman-Goodier ME, Andrews LV, Hungate BA. Opposing effects of bacterial endophytes on biomass allocation of a wild donor and agricultural recipient. FEMS Microbiol Ecol 2020; 96:5710930. [PMID: 31960901 DOI: 10.1093/femsec/fiaa012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/17/2020] [Indexed: 11/12/2022] Open
Abstract
Root endophytes are a promising tool for increasing plant growth, but it is unclear whether they perform consistently across plant hosts. We characterized the blue grama (Bouteloua gracilis) root microbiome using two sequencing methods, quantified the effects of root endophytes in the original host (blue grama) and an agricultural recipient, corn (Zea mays), under drought and well-watered conditions and examined in vitro mechanisms for plant growth promotion. 16S rRNA amplicon sequencing revealed that the blue grama root microbiome was similar across an elevation gradient, with the exception of four genera. Culturing and Sanger sequencing revealed eight unique endophytes belonging to the genera Bacillus, Lysinibacillus and Pseudomonas. All eight endophytes colonized corn roots, but had opposing effects on aboveground and belowground biomass in each plant species: they increased blue grama shoot mass by 45% (19) (mean +/- SE) while decreasing corn shoot mass by 10% (19), and increased corn root:shoot by 44% (7), while decreasing blue grama root:shoot by 17% (7). Furthermore, contrary to our expectations, endophytes had stronger effects on plant growth under well-watered conditions rather than drought conditions. Collectively, these results suggest that ecological features, including host identity, bacterial traits, climate conditions and morphological outcomes, should be carefully considered in the design and implementation of agricultural inocula.
Collapse
Affiliation(s)
- Rachel L Rubin
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA.,Department of Environmental Studies, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Ashley N Jones
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Molly E Shuman-Goodier
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Lela V Andrews
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA.,Environmental Genetics and Genomics Laboratory, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
104
|
Shrestha A, Schikora A. AHL-priming for enhanced resistance as a tool in sustainable agriculture. FEMS Microbiol Ecol 2020; 96:5957528. [DOI: 10.1093/femsec/fiaa226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 01/28/2023] Open
Abstract
ABSTRACTBacteria communicate with each other through quorum sensing (QS) molecules. N-acyl homoserine lactones (AHL) are one of the most extensively studied groups of QS molecules. The role of AHL molecules is not limited to interactions between bacteria; they also mediate inter-kingdom interaction with eukaryotes. The perception mechanism of AHL is well-known in bacteria and several proteins have been proposed as putative receptors in mammalian cells. However, not much is known about the perception of AHL in plants. Plants generally respond to short-chained AHL with modification in growth, while long-chained AHL induce AHL-priming for enhanced resistance. Since plants may host several AHL-producing bacteria and encounter multiple AHL at once, a coordinated response is required. The effect of the AHL combination showed relatively low impact on growth but enhanced resistance. Microbial consortium of bacterial strains that produce different AHL could therefore be an interesting approach in sustainable agriculture. Here, we review the molecular and genetical basis required for AHL perception. We highlight recent advances in the field of AHL-priming. We also discuss the recent discoveries on the impact of combination(s) of multiple AHL on crop plants and the possible use of this knowledge in sustainable agriculture.
Collapse
Affiliation(s)
- Abhishek Shrestha
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Adam Schikora
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
105
|
Methe BA, Hiltbrand D, Roach J, Xu W, Gordon SG, Goodner BW, Stapleton AE. Functional gene categories differentiate maize leaf drought-related microbial epiphytic communities. PLoS One 2020; 15:e0237493. [PMID: 32946440 PMCID: PMC7500591 DOI: 10.1371/journal.pone.0237493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/11/2020] [Indexed: 11/18/2022] Open
Abstract
The phyllosphere epiphytic microbiome is composed of microorganisms that colonize the external aerial portions of plants. Relationships of plant responses to specific microorganisms–both pathogenic and beneficial–have been examined, but the phyllosphere microbiome functional and metabolic profile responses are not well described. Changing crop growth conditions, such as increased drought, can have profound impacts on crop productivity. Also, epiphytic microbial communities provide a new target for crop yield optimization. We compared Zea mays leaf microbiomes collected under drought and well-watered conditions by examining functional gene annotation patterns across three physically disparate locations each with and without drought treatment, through the application of short read metagenomic sequencing. Drought samples exhibited different functional sequence compositions at each of the three field sites. Maize phyllosphere functional profiles revealed a wide variety of metabolic and regulatory processes that differed in drought and normal water conditions and provide key baseline information for future selective breeding.
Collapse
Affiliation(s)
- Barbara A. Methe
- J Craig Venter Institute, Medical Center Drive, Rockville, MD, United States of America
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - David Hiltbrand
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States of America
| | - Jeffrey Roach
- Research Computing, University of North Carolina Chapel Hill, Chapel Hill, NC, United States of America
| | - Wenwei Xu
- Agricultural and Extension Center, Texas A and M AgriLife Research, Lubbock, TX, United States of America
| | - Stuart G. Gordon
- Biology Department, Presbyterian College, Clinton, SC, United States of America
| | - Brad W. Goodner
- Department, Hiram College, Hiram, OH, United States of America
| | - Ann E. Stapleton
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States of America
- * E-mail:
| |
Collapse
|
106
|
An SQ, Potnis N, Dow M, Vorhölter FJ, He YQ, Becker A, Teper D, Li Y, Wang N, Bleris L, Tang JL. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev 2020; 44:1-32. [PMID: 31578554 PMCID: PMC8042644 DOI: 10.1093/femsre/fuz024] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/29/2019] [Indexed: 01/15/2023] Open
Abstract
Xanthomonas is a well-studied genus of bacterial plant pathogens whose members cause a variety of diseases in economically important crops worldwide. Genomic and functional studies of these phytopathogens have provided significant understanding of microbial-host interactions, bacterial virulence and host adaptation mechanisms including microbial ecology and epidemiology. In addition, several strains of Xanthomonas are important as producers of the extracellular polysaccharide, xanthan, used in the food and pharmaceutical industries. This polymer has also been implicated in several phases of the bacterial disease cycle. In this review, we summarise the current knowledge on the infection strategies and regulatory networks controlling virulence and adaptation mechanisms from Xanthomonas species and discuss the novel opportunities that this body of work has provided for disease control and plant health.
Collapse
Affiliation(s)
- Shi-Qi An
- National Biofilms Innovation Centre (NBIC), Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Rouse Life Science Building, Auburn University, Auburn AL36849, USA
| | - Max Dow
- School of Microbiology, Food Science & Technology Building, University College Cork, Cork T12 K8AF, Ireland
| | | | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Anke Becker
- Loewe Center for Synthetic Microbiology and Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, Marburg 35032, Germany
| | - Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Yi Li
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Leonidas Bleris
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA.,Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX75080, USA
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| |
Collapse
|
107
|
Effects of Lentil Genotype on the Colonization of Beneficial Trichoderma Species and Biocontrol of Aphanomyces Root Rot. Microorganisms 2020; 8:microorganisms8091290. [PMID: 32846963 PMCID: PMC7564536 DOI: 10.3390/microorganisms8091290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Trichoderma species are opportunistic plant symbionts that are common in the root and rhizosphere ecosystems. Many Trichoderma species may enhance plant growth, nutrient acquisition, and disease resistance, and for these reasons, they are widely used in agriculture as biofertilizers or biocontrol agents. Host plant genotype and other microorganisms, such as root pathogens, may influence the efficacy of Trichoderma inoculants. Aphanomyces euteiches is an important soil-borne oomycete in western Canada that causes root rot in legume crops such as lentil and pea, and there is not yet any significantly resistant varieties or effective treatments available to control the disease. In this study, the composition of root-associated fungal communities and the abundance of Trichoderma species, T. harzianum strain T-22 and T. virens strain G41, was determined in the roots of eight Lens genotypes based on internal transcribed spacer (ITS) Illumina MiSeq paired-end sequencing, both in the presence and the absence of the root rot pathogen Aphanomyces euteiches. Biocontrol effects of T. harzianum on A. euteiches was also examined. Significant genotypic variations were observed in the composition of root-associated fungal communities and the abundance of the different Trichoderma species in the lentil roots. The presence of A. euteiches altered the composition of Trichoderma found associated to the lentil genotypes. Biocontrol of A. euteiches by T. harzianum T22 species was observed in vitro and positive correlations between the abundance of Trichoderma and plant root and shoot biomass were observed in vivo. These findings revealed that lentil genotype and infection by the phytopathogen A. euteiches greatly influenced the colonization of root-associated fungi and the abundance of the Trichoderma species, as well as the effect on plant growth promotion. The multipartite interactions observed among lentil genotypes, Trichoderma species and A. euteiches suggest possibilities to select compatible host-beneficial microbe combinations in lentil breeding programs and to develop application strategies to harness the beneficial effects of Trichoderma inoculants in sustainable crop production systems.
Collapse
|
108
|
Chen JH, Xiang W, Cao KX, Lu X, Yao SC, Hung D, Huang RS, Li LB. Characterization of Volatile Organic Compounds Emitted from Endophytic Burkholderia cenocepacia ETR-B22 by SPME-GC-MS and Their Inhibitory Activity against Various Plant Fungal Pathogens. Molecules 2020; 25:E3765. [PMID: 32824884 PMCID: PMC7504634 DOI: 10.3390/molecules25173765] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
The use of antagonistic microorganisms and their volatile organic compounds (VOCs) to control plant fungal pathogens is an eco-friendly and promising substitute for chemical fungicides. In this work, endophytic bacterium ETR-B22, isolated from the root of Sophora tonkinensis Gagnep., was found to exhibit strong antagonistic activity against 12 fungal pathogens found in agriculture. Strain ETR-B22 was identified as Burkholderia cenocepacia based on 16S rRNA and recA sequences. We evaluated the antifungal activity of VOCs emitted by ETR-B22. The VOCs from strain ETR-B22 also showed broad-spectrum antifungal activity against 12 fungal pathogens. The composition of the volatile profiles was analyzed based on headspace solid phase microextraction (HS-SPME) gas chromatography coupled to mass spectrometry (GC-MS). Different extraction strategies for the SPME process significantly affected the extraction efficiency of the VOCs. Thirty-two different VOCs were identified. Among the VOC of ETR-B22, dimethyl trisulfide, indole, methyl anthranilate, methyl salicylate, methyl benzoate, benzyl propionate, benzyl acetate, 3,5-di-tert-butylphenol, allyl benzyl ether and nonanoic acid showed broad-spectrum antifungal activity, and are key inhibitory compounds produced by strain ETR-B22 against various fungal pathogens. Our results suggest that the endophytic strain ETR-B22 and its VOCs have high potential for use as biological controls of plant fungal pathogens.
Collapse
Affiliation(s)
- Jian-Hua Chen
- College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; (J.-H.C.); (W.X.); (K.-X.C.)
| | - Wei Xiang
- College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; (J.-H.C.); (W.X.); (K.-X.C.)
| | - Ke-Xin Cao
- College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; (J.-H.C.); (W.X.); (K.-X.C.)
| | - Xuan Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China; (X.L.); (S.-C.Y.); (D.H.)
| | - Shao-Chang Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China; (X.L.); (S.-C.Y.); (D.H.)
| | - Ding Hung
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China; (X.L.); (S.-C.Y.); (D.H.)
| | - Rong-Shao Huang
- College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; (J.-H.C.); (W.X.); (K.-X.C.)
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China; (X.L.); (S.-C.Y.); (D.H.)
| | - Liang-Bo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China; (X.L.); (S.-C.Y.); (D.H.)
| |
Collapse
|
109
|
Soumare A, Diedhiou AG, Thuita M, Hafidi M, Ouhdouch Y, Gopalakrishnan S, Kouisni L. Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. PLANTS 2020; 9:plants9081011. [PMID: 32796519 PMCID: PMC7464700 DOI: 10.3390/plants9081011] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
For all living organisms, nitrogen is an essential element, while being the most limiting in ecosystems and for crop production. Despite the significant contribution of synthetic fertilizers, nitrogen requirements for food production increase from year to year, while the overuse of agrochemicals compromise soil health and agricultural sustainability. One alternative to overcome this problem is biological nitrogen fixation (BNF). Indeed, more than 60% of the fixed N on Earth results from BNF. Therefore, optimizing BNF in agriculture is more and more urgent to help meet the demand of the food production needs for the growing world population. This optimization will require a good knowledge of the diversity of nitrogen-fixing microorganisms, the mechanisms of fixation, and the selection and formulation of efficient N-fixing microorganisms as biofertilizers. Good understanding of BNF process may allow the transfer of this ability to other non-fixing microorganisms or to non-leguminous plants with high added value. This minireview covers a brief history on BNF, cycle and mechanisms of nitrogen fixation, biofertilizers market value, and use of biofertilizers in agriculture. The minireview focuses particularly on some of the most effective microbial products marketed to date, their efficiency, and success-limiting in agriculture. It also highlights opportunities and difficulties of transferring nitrogen fixation capacity in cereals.
Collapse
Affiliation(s)
- Abdoulaye Soumare
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco; (M.H.); (Y.O.); (L.K.)
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar 1386, Senegal
- Correspondence: (A.S.); (A.G.D.)
| | - Abdala G. Diedhiou
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar 1386, Senegal
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD) de Dakar, Dakar 1386, Senegal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA-AGRISAN), UCAD, Dakar 18524, Senegal
- Correspondence: (A.S.); (A.G.D.)
| | - Moses Thuita
- International Institute of Tropical Agriculture, Nairobi PO BOX 30772-00100, Kenya;
| | - Mohamed Hafidi
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco; (M.H.); (Y.O.); (L.K.)
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Yedir Ouhdouch
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco; (M.H.); (Y.O.); (L.K.)
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | | | - Lamfeddal Kouisni
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco; (M.H.); (Y.O.); (L.K.)
| |
Collapse
|
110
|
Haarith D, Kim DG, Strom NB, Chen S, Bushley KE. In Vitro Screening of a Culturable Soybean Cyst Nematode Cyst Mycobiome for Potential Biological Control Agents and Biopesticides. PHYTOPATHOLOGY 2020; 110:1388-1397. [PMID: 32286919 DOI: 10.1094/phyto-01-20-0015-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fungal biological control of soybean cyst nematodes (SCN) is an important component of integrated pest management for soybean. However, very few fungal biological control agents are available in the market. In this study, we have screened fungi previously isolated from SCN cysts over 3 years from a long-term crop rotation field experiment for their ability to antagonize SCN using (i) parasitism, (ii) egg hatch inhibition, and (iii) J2 mortality. We evaluated egg parasitism using an in-vitro egg parasitism bioassays and scored parasitism using the egg parasitic index (EPI) and fluorescent microscopy. The ability of these fungi to produce metabolites causing egg hatch inhibition and J2 mortality was assessed in bioassays using filter-sterilized culture filtrates. We identified 10 high-performing isolates each for egg parasitism and toxicity toward SCN eggs and J2s and repeated the tests after storage for 1 year of cryopreservation at -80°C to validate the durability of biocontrol potential of the chosen 20 isolates. Although the parasitic ability changed slightly for the majority of strains after cryopreservation, they still scored 5/10 on EPI scales. There were no differences in the ability of fungi to produce antinemic metabolites after cryopreservation.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Deepak Haarith
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Dong-Gyu Kim
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Noah B Strom
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
| | - Senyu Chen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Kathryn E Bushley
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
111
|
Nuzzo A, Satpute A, Albrecht U, Strauss SL. Impact of Soil Microbial Amendments on Tomato Rhizosphere Microbiome and Plant Growth in Field Soil. MICROBIAL ECOLOGY 2020; 80:398-409. [PMID: 32144464 DOI: 10.1007/s00248-020-01497-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
There is increased interest by the agricultural industry in microbial amendments that leverage natural beneficial interactions between plants and soil microbes to improve crop production. However, translating fundamental knowledge from laboratory experiments into efficient field application often has mixed results, and there is less clarity about the interaction between added microbes and the native microbial community, where microorganisms belonging to the same phylogenic clades often reside. In this study, four commercially available microbial amendments were examined in two greenhouse experiments using field soil to assess their impact on tomato plant growth and the native soil microbial communities. The amendments contained different formulations of plant growth-promoting bacteria (Lactobacilli, Rhizobia, etc.), yeasts, and mycorrhizal fungi. The application of the tested amendments in greenhouse conditions resulted in no significant impact on plant growth. A deeper statistical analysis detected variations in the microbial communities that accounted only for 0.25% of the total species, particularly in native taxa not related to the inoculated species and represented less than 1% of the total variance. This suggests that under commercial field conditions, additional confounding variables may play a role in the efficacy of soil microbial amendments. This study confirms the necessity of more in-depth validation requirements for the formulations of soil microbial amendments before delivery to the agricultural market in order to leverage their benefits for the producers, the consumers, and the environment.
Collapse
Affiliation(s)
- Andrea Nuzzo
- University of Florida/Institute of Food and Agricultural Sciences Southwest Florida Research and Education Center, Immokalee, FL, 34142, USA
- GlaxoSmithKline US, Human Genetics, Collegeville, PA, 19426, USA
| | - Aditi Satpute
- University of Florida/Institute of Food and Agricultural Sciences Southwest Florida Research and Education Center, Immokalee, FL, 34142, USA
| | - Ute Albrecht
- University of Florida/Institute of Food and Agricultural Sciences Southwest Florida Research and Education Center, Immokalee, FL, 34142, USA
| | - Sarah L Strauss
- University of Florida/Institute of Food and Agricultural Sciences Southwest Florida Research and Education Center, Immokalee, FL, 34142, USA.
| |
Collapse
|
112
|
Baltrus DA. Bacterial dispersal and biogeography as underappreciated influences on phytobiomes. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:37-46. [PMID: 32278259 DOI: 10.1016/j.pbi.2020.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
Bacterial strains are not distributed evenly throughout the environment. Here I explore how differential distribution and dispersal patterns of bacteria could affect interactions and coevolutionary dynamics with plants, and highlight ways that variation could be taken advantage of to develop robust and effective microbial consortia to inoculate crops. Questions about biogeographical patterns in viruses, fungi, and other eukaryotes are equally as prevalent and important for agriculture, and are in some cases more thoroughly explored. For simplicity as well as to bring attention to bacterial biogeography and dispersal in the context of plant interactions, I focus solely on bacterial patterns and questions for this article. The next few years will no doubt bring great advances in our understanding of dispersal capabilities and population dynamics for many plant-associated bacteria, and one of the next looming challenges will be learning to harvest this diversity in ways that can benefit agriculture.
Collapse
Affiliation(s)
- David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson AZ, USA; School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA.
| |
Collapse
|
113
|
Morvan S, Meglouli H, Lounès-Hadj Sahraoui A, Hijri M. Into the wild blueberry (Vaccinium angustifolium) rhizosphere microbiota. Environ Microbiol 2020; 22:3803-3822. [PMID: 32623832 DOI: 10.1111/1462-2920.15151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
The ability of wild blueberries to adapt to their harsh environment is believed to be closely related to their symbiosis with ericoid mycorrhizal fungi, which produce enzymes capable of organic matter mineralization. Although some of these fungi have been identified and characterized, we still know little about the microbial ecology of wild blueberry. Our study aims to characterize the fungal and bacterial rhizosphere communities of Vaccinium angustifolium (the main species encountered in wild blueberry fields). Our results clearly show that the fungal order Helotiales was the most abundant taxon associated with V. angustifolium. Helotiales contains most of the known ericoid mycorrhizal fungi which are expected to dominate in such a biotope. Furthermore, we found the dominant bacterial order was the nitrogen-fixing Rhizobiales. The Bradyrhizobium genus, whose members are known to form nodules with legumes, was among the 10 most abundant genera in the bacterial communities. In addition, Bradyrhizobium and Roseiarcus sequences significantly correlated with higher leaf-nitrogen content. Overall, our data documented fungal and bacterial community structure differences in three wild blueberry production fields.
Collapse
Affiliation(s)
- Simon Morvan
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, QC, Canada
| | - Hacène Meglouli
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, QC, Canada
| | - Anissa Lounès-Hadj Sahraoui
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), SFR Condorcet FR CNRS 3417, Calais Cedex, France
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, QC, Canada.,AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Morocco
| |
Collapse
|
114
|
Plant growth promoting Pseudomonas aeruginosa from Valeriana wallichii displays antagonistic potential against three phytopathogenic fungi. Mol Biol Rep 2020; 47:6015-6026. [PMID: 32734439 DOI: 10.1007/s11033-020-05676-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/19/2020] [Indexed: 12/15/2022]
Abstract
The soil nature and characterstics are directly related to the micro-organisms present, bio-mineralization process, plant type and thus having harmonius and interdependent relationships. Soil bacteria having antagonistic activity against phytopathogens, play an important role in root growth, overall plant growth and also their composition depends upon the plant species. Population explosion across globe has resulted in indiscriminate use of chemical fertilizers, fungicides and pesticides, thus posing serious risk to plant productivity and soil flora. Plant growth promoting rhizobacteria (PGPRs) are considered safer than chemical fertilizers as they are eco-friendly and sustain longer after colonization in rhizospheric soil. PGPRs are preferred as a green choice and acts as a superior biocontrol agents against phytopathogens. In the present study, a potential rhizobacteria, Pseudomonas aeruginosa (isolate-2) was isolated from the rhizosphere of a medicinal plant, Valeriana wallichi. The bacterial isolate exhibited qualitative tests for plant growth promoting determinatives. It was also subjected to in-vitro biocontrol activity against potential phytopathogens viz. Alternaria alternata, Aspergillus flavus and F. oxysporum. The antagonistic efficacy against F. oxysporum was 56.2% followed by Alternaria alternata to be 51.02%. The maximum inhibition of radial growth of F. oxysporum was 69.2%, Alternaria alternata (46.4%) and Aspergillus flavus (15%). The Pseudomonas aeruginosa exhibited plant growth promotion rhizobacterial activity which can be expoited as biofertilizers. This study deals with microbial revitalization strategy and offers promising solution as a biocontrol agent to enhance crop yield. Further, PGPRs research using the interdisciplinary approaches like biotechnology, nanotechnology etc. will unravel the molecular mechanisms which may be helpful for maximizing its potential in sustainable agriculture.
Collapse
|
115
|
Dierking K, Pita L. Receptors Mediating Host-Microbiota Communication in the Metaorganism: The Invertebrate Perspective. Front Immunol 2020; 11:1251. [PMID: 32612612 PMCID: PMC7308585 DOI: 10.3389/fimmu.2020.01251] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 11/23/2022] Open
Abstract
Multicellular organisms live in close association with a plethora of microorganism, which have a profound effect on multiple host functions. As such, the microbiota and its host form an intimate functional entity, termed the metaorganism or holobiont. But how does the metaorganism communicate? Which receptors recognize microbial signals, mediate the effect of the microbiota on host physiology or regulate microbiota composition and homeostasis? In this review we provide an overview on the function of different receptor classes in animal host-microbiota communication. We put a special focus on invertebrate hosts, including both traditional invertebrate models such as Drosophila melanogaster and Caenorhabditis elegans and “non-model” invertebrates in microbiota research. Finally, we highlight the potential of invertebrate systems in studying mechanism of host-microbiota interactions.
Collapse
Affiliation(s)
- Katja Dierking
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Lucía Pita
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| |
Collapse
|
116
|
Mendoza-Suárez MA, Geddes BA, Sánchez-Cañizares C, Ramírez-González RH, Kirchhelle C, Jorrin B, Poole PS. Optimizing Rhizobium-legume symbioses by simultaneous measurement of rhizobial competitiveness and N 2 fixation in nodules. Proc Natl Acad Sci U S A 2020; 117:9822-9831. [PMID: 32317381 PMCID: PMC7211974 DOI: 10.1073/pnas.1921225117] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Legumes tend to be nodulated by competitive rhizobia that do not maximize nitrogen (N2) fixation, resulting in suboptimal yields. Rhizobial nodulation competitiveness and effectiveness at N2 fixation are independent traits, making their measurement extremely time-consuming with low experimental throughput. To transform the experimental assessment of rhizobial competitiveness and effectiveness, we have used synthetic biology to develop reporter plasmids that allow simultaneous high-throughput measurement of N2 fixation in individual nodules using green fluorescent protein (GFP) and barcode strain identification (Plasmid ID) through next generation sequencing (NGS). In a proof-of-concept experiment using this technology in an agricultural soil, we simultaneously monitored 84 different Rhizobium leguminosarum strains, identifying a supercompetitive and highly effective rhizobial symbiont for peas. We also observed a remarkable frequency of nodule coinfection by rhizobia, with mixed occupancy identified in ∼20% of nodules, containing up to six different strains. Critically, this process can be adapted to multiple Rhizobium-legume symbioses, soil types, and environmental conditions to permit easy identification of optimal rhizobial inoculants for field testing to maximize agricultural yield.
Collapse
Affiliation(s)
| | - Barney A Geddes
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | | | | | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Beatriz Jorrin
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom;
| |
Collapse
|
117
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
118
|
Ye X, Li Z, Luo X, Wang W, Li Y, Li R, Zhang B, Qiao Y, Zhou J, Fan J, Wang H, Huang Y, Cao H, Cui Z, Zhang R. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community. MICROBIOME 2020; 8:49. [PMID: 32252828 PMCID: PMC7137222 DOI: 10.1186/s40168-020-00824-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/05/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Myxobacteria are micropredators in the soil ecosystem with the capacity to move and feed cooperatively. Some myxobacterial strains have been used to control soil-borne fungal phytopathogens. However, interactions among myxobacteria, plant pathogens, and the soil microbiome are largely unexplored. In this study, we aimed to investigate the behaviors of the myxobacterium Corallococcus sp. strain EGB in the soil and its effect on the soil microbiome after inoculation for controlling cucumber Fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (FOC). RESULTS A greenhouse and a 2-year field experiment demonstrated that the solid-state fermented strain EGB significantly reduced the cucumber Fusarium wilt by 79.6% (greenhouse), 66.0% (2015, field), and 53.9% (2016, field). Strain EGB adapted to the soil environment well and decreased the abundance of soil-borne FOC efficiently. Spatiotemporal analysis of the soil microbial community showed that strain EGB migrated towards the roots and root exudates of the cucumber plants via chemotaxis. Cooccurrence network analysis of the soil microbiome indicated a decreased modularity and community number but an increased connection number per node after the application of strain EGB. Several predatory bacteria, such as Lysobacter, Microvirga, and Cupriavidus, appearing as hubs or indicators, showed intensive connections with other bacteria. CONCLUSION The predatory myxobacterium Corallococcus sp. strain EGB controlled cucumber Fusarium wilt by migrating to the plant root and regulating the soil microbial community. This strain has the potential to be developed as a novel biological control agent of soil-borne Fusarium wilt. Video abstract.
Collapse
Affiliation(s)
- Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xue Luo
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wenhui Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Yongkai Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Rui Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Bo Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yan Qiao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jie Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jiaqin Fan
- Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hui Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Key Laboratory of plant immunity, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Ruifu Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
119
|
Agrahari RK, Singh P, Koyama H, Panda SK. Plant-microbe Interactions for Sustainable Agriculture in the Post-genomic Era. Curr Genomics 2020; 21:168-178. [PMID: 33071611 PMCID: PMC7521031 DOI: 10.2174/1389202921999200505082116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022] Open
Abstract
Plant-microbe interactions are both symbiotic and antagonistic, and the knowledge of both these interactions is equally important for the progress of agricultural practice and produce. This review gives an insight into the recent advances that have been made in the plant-microbe interaction study in the post-genomic era and the application of those for enhancing agricultural production. Adoption of next-generation sequencing (NGS) and marker assisted selection of resistant genes in plants, equipped with cloning and recombination techniques, has progressed the techniques for the development of resistant plant varieties by leaps and bounds. Genome-wide association studies (GWAS) of both plants and microbes have made the selection of desirable traits in plants and manipulation of the genomes of both plants and microbes effortless and less time-consuming. Stress tolerance in plants has been shown to be accentuated by association of certain microorganisms with the plant, the study and application of the same have helped develop stress-resistant varieties of crops. Beneficial microbes associated with plants are being extensively used for the development of microbial consortia that can be applied directly to the plants or the soil. Next-generation sequencing approaches have made it possible to identify the function of microbes associated in the plant microbiome that are both culturable and non-culturable, thus opening up new doors and possibilities for the use of these huge resources of microbes that can have a potential impact on agriculture.
Collapse
Affiliation(s)
| | | | | | - Sanjib Kumar Panda
- Address correspondence to this author at the Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH 8, Bandarsindri, Ajmer 305817, Rajasthan, India; Tel: 9435370608; E-mail:
| |
Collapse
|
120
|
Acosta K, Xu J, Gilbert S, Denison E, Brinkman T, Lebeis S, Lam E. Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. PLoS One 2020; 15:e0228560. [PMID: 32027711 PMCID: PMC7004381 DOI: 10.1371/journal.pone.0228560] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/19/2020] [Indexed: 12/20/2022] Open
Abstract
Culture-independent characterization of microbial communities associated with popular plant model systems have increased our understanding of the plant microbiome. However, the integration of other model systems, such as duckweed, could facilitate our understanding of plant microbiota assembly and evolution. Duckweeds are floating aquatic plants with many characteristics, including small size and reduced plant architecture, that suggest their use as a facile model system for plant microbiome studies. Here, we investigated the structure and assembly of the duckweed bacterial microbiome. First, a culture-independent survey of the duckweed bacterial microbiome from different locations in New Jersey revealed similar phylogenetic profiles. These studies showed that Proteobacteria is a dominant phylum in the duckweed bacterial microbiome. To observe the assembly dynamics of the duckweed bacterial community, we inoculated quasi-gnotobiotic duckweed with wastewater effluent from a municipal wastewater treatment plant. Our results revealed that duckweed strongly shapes its bacterial microbiome and forms distinct associations with bacterial community members from the initial inoculum. Additionally, these inoculation studies showed the bacterial communities of different duckweed species were similar in taxa composition and abundance. Analysis across the different duckweed bacterial communities collected in this study identified a set of "core" bacterial taxa consistently present on duckweed irrespective of the locale and context. Furthermore, comparison of the duckweed bacterial community to that of rice and Arabidopsis revealed a conserved taxonomic structure between the duckweed microbiome and the terrestrial leaf microbiome. Our results suggest that duckweeds utilize similar bacterial community assembly principles as those found in terrestrial plants and indicate a highly conserved structuring effect of leaf tissue on the plant microbiome.
Collapse
Affiliation(s)
- Kenneth Acosta
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Jenny Xu
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Sarah Gilbert
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Elizabeth Denison
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Thomas Brinkman
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Sarah Lebeis
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, New Jersey, United States of America
| |
Collapse
|
121
|
Carlson R, Tugizimana F, Steenkamp PA, Dubery IA, Hassen AI, Labuschagne N. Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench. Microbiol Res 2020. [PMID: 31865223 DOI: 10.1016/j.biocontrol.2020.104395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Induction of systemic tolerance in sorghum [Sorghum bicolor (L.) Moench] against drought stress was studied by screening a large collection of rhizobacterial isolates for their potential to exhibit this essential plant growth-promoting trait. This was done by means of a greenhouse assay that measured the relative change in both plant height and -biomass (roots and shoots) between rhizobacteria-primed versus non-primed (naïve) plants under drought stress conditions. In order to elucidate the metabolomic changes in S. bicolor that conferred the drought stress tolerance after treatment (priming) with selected isolates, untargeted ultra-high performance liquid chromatography-high definition mass spectrometry (UHPLC-HDMS)-based metabolomics was carried out. Intracellular metabolites were methanol-extracted from rhizobacteria-primed and naïve S. bicolor roots and shoots. Extracts were analysed on a UHPLC-HDMS system and the generated data were chemometrically mined to determine signatory metabolic profiles and bio-markers related to induced systemic tolerance. The metabolomic results showed significant treatment-related differential metabolic reprogramming between rhizobacteria-primed and naïve plants, correlating to the ability of the selected isolates to protect S. bicolor against drought stress. The selected isolates, identified by means of 16S rRNA gene sequencing as members of the genera Bacillus and Pseudomonas, were screened for 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity by means of an in vitro assay and the presence of the acdS gene was subsequently confirmed by PCR for strain N66 (Pseudomonas sp.). The underlying key metabolic changes in the enhanced drought stress tolerance observed in rhizobacteria-primed S. bicolor plants included (1) augmented antioxidant capacity; (2) growth promotion and root architecture modification as a result of the upregulation of the hormones gibberellic acid, indole acetic acid and cytokinin; (3) the early activation of induce systemic tolerance through the signalling hormones brassinolides, salicylic acid and jasmonic acid and signalling molecules sphingosine and psychosine; (4) the production of the osmolytes proline, glutamic acid and choline; (5) the production of the epicuticular wax docosanoic acid and (6) ACC deaminase activity resulting in lowered ethylene levels. These results unravelled key molecular details underlying the PGPR-induced systemic tolerance in sorghum plants, providing insights for the plant priming for abiotic stress.
Collapse
Affiliation(s)
- René Carlson
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa.
| | - Fidele Tugizimana
- Centre for Plant Metabolomics Research, Department of Biochemistry, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, South Africa.
| | - Paul A Steenkamp
- Centre for Plant Metabolomics Research, Department of Biochemistry, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, South Africa.
| | - Ian A Dubery
- Centre for Plant Metabolomics Research, Department of Biochemistry, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, South Africa.
| | - Ahmed Idris Hassen
- Agricultural Research Council, Plant Health and Protection, Private Bag X134, Queenswood, 0121, Pretoria, South Africa.
| | - Nico Labuschagne
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
122
|
Genomic Characterization, Formulation and Efficacy in Planta of a Siphoviridae and Podoviridae Protection Cocktail against the Bacterial Plant Pathogens Pectobacterium spp. Viruses 2020; 12:v12020150. [PMID: 32012814 PMCID: PMC7077305 DOI: 10.3390/v12020150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/13/2022] Open
Abstract
In the face of global human population increases, there is a need for efficacious integrated pest management strategies to improve agricultural production and increase sustainable food production. To counteract significant food loses in crop production, novel, safe and efficacious measures should be tested against bacterial pathogens. Pectobacteriaceae species are one of the causative agents of the bacterial rot of onions ultimately leading to crop losses due to ineffective control measures against these pathogens. Therefore, the aim of this study was to isolate and characterize bacteriophages which could be formulated in a cocktail and implemented in planta under natural environmental conditions. Transmission electron microscopy (TEM) and genome analysis revealed Siphoviridae and Podoviridae family bacteriophages. To test the protective effect of a formulated phage cocktail against soft rot disease, three years of field trials were performed, using three different methods of treatment application. This is the first study to show the application of a phage cocktail containing Podoviridae and Siphoviridae bacteriophages capable of protecting onions against soft rot in field conditions.
Collapse
|
123
|
Vassileva M, Flor-Peregrin E, Malusá E, Vassilev N. Towards Better Understanding of the Interactions and Efficient Application of Plant Beneficial Prebiotics, Probiotics, Postbiotics and Synbiotics. FRONTIERS IN PLANT SCIENCE 2020; 11:1068. [PMID: 32765556 PMCID: PMC7378762 DOI: 10.3389/fpls.2020.01068] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/29/2020] [Indexed: 05/07/2023]
Affiliation(s)
- Maria Vassileva
- Department of Chemical Engineering, Institute of Biotechnology, University of Granada, Granada, Spain
| | - Elena Flor-Peregrin
- Department of Chemical Engineering, Institute of Biotechnology, University of Granada, Granada, Spain
| | - Eligio Malusá
- Research Institute of Horticulture, Skierniewice, Poland
| | - Nikolay Vassilev
- Department of Chemical Engineering, Institute of Biotechnology, University of Granada, Granada, Spain
- *Correspondence: Nikolay Vassilev,
| |
Collapse
|
124
|
Wei F, Zhang Y, Shi Y, Feng H, Zhao L, Feng Z, Zhu H. Evaluation of the Biocontrol Potential of Endophytic Fungus Fusarium solani CEF559 against Verticillium dahliae in Cotton Plant. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3187943. [PMID: 31930116 PMCID: PMC6942718 DOI: 10.1155/2019/3187943] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/15/2019] [Accepted: 12/04/2019] [Indexed: 11/17/2022]
Abstract
Verticillium wilt of cotton, caused by the soilborne pathogen Verticillium dahliae, is one of the most serious diseases of cotton worldwide. Increased concerns about the side effects of synthetic pesticides have resulted in greater interest in developing biocontrol strategies against Verticillium wilt. We evaluated a Fusarium solani CEF559 isolate, obtained from the endosphere of healthy cotton plants, for its biocontrol potential against V. dahliae in vitro and in vivo. In addition to disease assessment, three key genes in the lignin metabolism pathway and four pathogenesis-related (PR) genes were monitored using qRT-PCR. In the laboratory tests, F. solani CEF559 inhibited V. dahliae colony growth by 75% and sporulation by nearly 80% and completely suppressed conidial production. However, volatile metabolites from CEF559 did not affect V. dahliae colony growth. In the greenhouse study, CEF559 significantly reduced wilt development, with a control efficacy greater than 60% when assessed 25 days postinoculation. In a field experiment, CEF559 reduced wilt development, with the efficacy ranting from 30.1% to 56.3%. PR genes and those key genes in the lignin metabolism pathway were transiently upregulated in the cotton roots pretreated with CEF559 when subsequently inoculated with V. dahliae, compared with those plants inoculated with V. dahliae only. Moreover, CEF559 inhibited V. dahliae colonisation of both the roots and hypocotyls. The present results suggest that this cotton endophytic fungal strain, F. solani CEF559, confers protection against V. dahliae.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 455001, Henan, China
| | - Yun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yongqiang Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 455001, Henan, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 455001, Henan, China
| |
Collapse
|
125
|
Prabha R, Singh DP, Gupta S, Gupta VK, El-Enshasy HA, Verma MK. Rhizosphere Metagenomics of Paspalum scrobiculatum L. (Kodo Millet) Reveals Rhizobiome Multifunctionalities. Microorganisms 2019; 7:microorganisms7120608. [PMID: 31771141 PMCID: PMC6956225 DOI: 10.3390/microorganisms7120608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022] Open
Abstract
Multifunctionalities linked with the microbial communities associated with the millet crop rhizosphere has remained unexplored. In this study, we are analyzing microbial communities inhabiting rhizosphere of kodo millet and their associated functions and its impact over plant growth and survival. Metagenomics of Paspalum scrobiculatum L.(kodo millet) rhizopshere revealed taxonomic communities with functional capabilities linked to support growth and development of the plants under nutrient-deprived, semi-arid and dry biotic conditions. Among 65 taxonomically diverse phyla identified in the rhizobiome, Actinobacteria were the most abundant followed by the Proteobacteria. Functions identified for different genes/proteins led to revelations that multifunctional rhizobiome performs several metabolic functions including carbon fixation, nitrogen, phosphorus, sulfur, iron and aromatic compound metabolism, stress response, secondary metabolite synthesis and virulence, disease, and defense. Abundance of genes linked with N, P, S, Fe and aromatic compound metabolism and phytohormone synthesis—along with other prominent functions—clearly justifies growth, development, and survival of the plants under nutrient deprived dry environment conditions. The dominance of actinobacteria, the known antibiotic producing communities shows that the kodo rhizobiome possesses metabolic capabilities to defend themselves against biotic stresses. The study opens avenues to revisit multi-functionalities of the crop rhizosphere for establishing link between taxonomic abundance and targeted functions that help plant growth and development in stressed and nutrient deprived soil conditions. It further helps in understanding the role of rhizosphere microbiome in adaptation and survival of plants in harsh abiotic conditions.
Collapse
Affiliation(s)
- Ratna Prabha
- Chhattisgarh Swami Vivekananda Technical University, Bhilai, Chhattisgarh 491107, India; (R.P.); (M.K.V.)
| | - Dhananjaya P. Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural Research, Kushmaur, Maunath Bhanjan 275101, UP, India
- Correspondence:
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock 18057, Germany;
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia;
| | - Hesham A. El-Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia;
| | - Mukesh K. Verma
- Chhattisgarh Swami Vivekananda Technical University, Bhilai, Chhattisgarh 491107, India; (R.P.); (M.K.V.)
| |
Collapse
|
126
|
Ma Q, Bücking H, Gonzalez Hernandez JL, Subramanian S. Single-Cell RNA Sequencing of Plant-Associated Bacterial Communities. Front Microbiol 2019; 10:2452. [PMID: 31736899 PMCID: PMC6828647 DOI: 10.3389/fmicb.2019.02452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/11/2019] [Indexed: 11/29/2022] Open
Abstract
Plants in soil are not solitary, hence continually interact with and obtain benefits from a community of microbes ("microbiome"). The meta-functional output from the microbiome results from complex interactions among the different community members with distinct taxonomic identities and metabolic capacities. Particularly, the bacterial communities of the root surface are spatially organized structures composed of root-attached biofilms and planktonic cells arranged in complex layers. With the distinct but coordinated roles among the different member cells, bacterial communities resemble properties of a multicellular organism. High throughput sequencing technologies have allowed rapid and large-scale analysis of taxonomic composition and metabolic capacities of bacterial communities. However, these methods are generally unable to reconstruct the assembly of these communities, or how the gene expression patterns in individual cells/species are coordinated within these communities. Single-cell transcriptomes of community members can identify how gene expression patterns vary among members of the community, including differences among different cells of the same species. This information can be used to classify cells based on functional gene expression patterns, and predict the spatial organization of the community. Here we discuss strategies for the isolation of single bacterial cells, mRNA enrichment, library construction, and analysis and interpretation of the resulting single-cell RNA-Seq datasets. Unraveling regulatory and metabolic processes at the single cell level is expected to yield an unprecedented discovery of mechanisms involved in bacterial recruitment, attachment, assembly, organization of the community, or in the specific interactions among the different members of these communities.
Collapse
Affiliation(s)
- Qin Ma
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Heike Bücking
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, United States
| | - Jose L. Gonzalez Hernandez
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, United States
| | - Senthil Subramanian
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
127
|
Huang P, Xu J, Kloepper JW. Plant-microbe-soil fertility interaction impacts performance of a Bacillus-containing bioproduct on bell pepper. J Basic Microbiol 2019; 60:27-36. [PMID: 31617947 DOI: 10.1002/jobm.201900435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/10/2019] [Accepted: 09/21/2019] [Indexed: 01/01/2023]
Abstract
Limited information is available on the performance of plant growth-promoting inoculants or bioproducts under different soil nutritional or fertility conditions. Consequently, the objective of this study was to evaluate the effects of a commercially available Bacillus-containing bioproduct, Microlife Abundance, at concentrations of 5.5 and 6.5 log cfu/ml on early growth, fertilizer use-efficiency, and fruit yield of bell pepper (Capsicum annuum L.) under two different soil fertility conditions (25% and 100% recommended N rates). Two pot experiments were conducted with bell pepper: (a) a 4-week-long early growth test with inoculant treatments applied once at transplanting; and (b) a 13-week-long yield test with inoculant treatments applied at transplanting and again at first blossom-set. Results from the early growth test indicated that at both N fertilization levels, applying Abundance once at transplanting at 6.5 log cfu/ml rather than 5.5 log cfu/ml significantly increased root dry weight, total root length, root volume, root surface area, and total length of very fine roots compared with the noninoculated control by 20%, 13%, 17%, 15%, and 12%, respectively. In contrast to the early growth, results from the yield test showed that only at the 100% recommended N rate, applying Abundance twice at both concentrations significantly enhanced N fertilizer use-efficiency and marketable yield of bell pepper over the noninoculated control by 34% (5.5 log cfu/ml) and 30% (6.5 log cfu/ml). Therefore, the efficacy of the Bacillus-containing bioproduct Abundance in enhancing fertilizer use-efficiency and marketable yield of bell pepper varied between soil nutritional conditions, but the early growth promotion effect of Abundance did not. Our results also demonstrate that selected microbial-based bioproducts, like Abundance, can be compatible with chemical fertilizers to enhance fertilizer use-efficiency and crop yields, but cannot be used as complete substitutes for chemical fertilizers.
Collapse
Affiliation(s)
- Ping Huang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama
| | - Jia Xu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama
| | - Joseph W Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama
| |
Collapse
|
128
|
Tackling Salinity in Sustainable Agriculture—What Developing Countries May Learn from Approaches of the Developed World. SUSTAINABILITY 2019. [DOI: 10.3390/su11174558] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil salinity is a common problem of the developing world as well as the developed world. However, the pace to reduce salinity is much slower in the developing world. The application of short-term approaches with an unsustainable supply of funds are the major reasons of low success. In contrast, the developed world has focused on long-term and sustainable techniques, and considerable funds per unit area have been allocated to reduce soil salinity. Here, we review the existing approaches in both worlds. Approaches like engineering and nutrient use were proven to be unsustainable, while limited breeding and biosaline approaches had little success in the developing countries. In contrast, advanced breeding and genetics tools were implemented in the developed countries to improve the salinity tolerance of different crops with more success. Resultantly, developed countries not only reduced the area for soil salinity at a higher rate, but more sustainable and cheaper ways to resolve the issue were implemented at the farmers’ field. Similarly, plant microbial approaches and the application of fertigation through drip irrigation have great potential for both worlds, and farmer participatory approaches are required to obtain fruitful outcomes. In this regard, a challenging issue is the transition of sustainable approaches from developed countries to developing ones, and possible methods for this are discussed.
Collapse
|
129
|
Rodríguez P, Cerda A, Font X, Sánchez A, Artola A. Valorisation of biowaste digestate through solid state fermentation to produce biopesticides from Bacillus thuringiensis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 93:63-71. [PMID: 31235058 DOI: 10.1016/j.wasman.2019.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
The main goal of this work is the production of a biopesticide through solid-state fermentation of biowaste digestate inoculated with Bacillus thuringiensis (Bt) at pilot scale using different configurations of reactors. Fermentations were carried out using insulated and non-insulated, stirred and non-stirred reactors at different scales (10, 22 and 100 L) in order to assess the influence of the reactor configuration on the biopesticide production process. A maximum temperature of 60 °C was reached in 10-L insulated non-stirred reactors where increments of Bt viable cells and spores with respect to initial values of 1.9 and 171.6 respectively, were attained. In contrast, when temperature was regulated by using 22-L non-insulated stirred reactors the increment of viable cells and spores were 0.8 and 1.9, respectively, at a stable temperature of 27 °C. When the non-insulated stirred reactor was scaled up to 100-L, the increase of viable cells and spore counts were 1.2 and 3.8 respectively, with an average temperature of 28 °C. These results demonstrated that the election of a proper reactor configuration is important when considering the development of a new SSF process, especially when dealing with non-conventional substrates as digestate.
Collapse
Affiliation(s)
- P Rodríguez
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - A Cerda
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - X Font
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - A Sánchez
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - A Artola
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
130
|
Giard-Laliberté C, Azarbad H, Tremblay J, Bainard L, Yergeau É. A water stress-adapted inoculum affects rhizosphere fungi, but not bacteria nor wheat. FEMS Microbiol Ecol 2019; 95:5499018. [DOI: 10.1093/femsec/fiz080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/24/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Charlotte Giard-Laliberté
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Hamed Azarbad
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Julien Tremblay
- Energy, Mining and Environment, National Research Council Canada, 6100 avenue Royalmount, Montreal, QC, H4P 2R2, Canada
| | - Luke Bainard
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport road, Swift Current, SK, S9H 3X2, Canada
| | - Étienne Yergeau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| |
Collapse
|
131
|
Bubici G, Kaushal M, Prigigallo MI, Gómez-Lama Cabanás C, Mercado-Blanco J. Biological Control Agents Against Fusarium Wilt of Banana. Front Microbiol 2019; 10:616. [PMID: 31024469 PMCID: PMC6459961 DOI: 10.3389/fmicb.2019.00616] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/11/2019] [Indexed: 11/13/2022] Open
Abstract
In the last century, the banana crop and industry experienced dramatic losses due to an epidemic of Fusarium wilt of banana (FWB), caused by Fusarium oxysporum f.sp. cubense (Foc) race 1. An even more dramatic menace is now feared due to the spread of Foc tropical race 4. Plant genetic resistance is generally considered as the most plausible strategy for controlling effectively such a devastating disease, as occurred for the first round of FWB epidemic. Nevertheless, with at least 182 articles published since 1970, biological control represents a large body of knowledge on FWB. Remarkably, many studies deal with biological control agents (BCAs) that reached the field-testing stage and even refer to high effectiveness. Some selected BCAs have been repeatedly assayed in independent trials, suggesting their promising value. Overall under field conditions, FWB has been controlled up to 79% by using Pseudomonas spp. strains, and up to 70% by several endophytes and Trichoderma spp. strains. Lower biocontrol efficacy (42-55%) has been obtained with arbuscular mycorrhizal fungi, Bacillus spp., and non-pathogenic Fusarium strains. Studies on Streptomyces spp. have been mostly limited to in vitro conditions so far, with very few pot-experiments, and none conducted in the field. The BCAs have been applied with diverse procedures (e.g., spore suspension, organic amendments, bioformulations, etc.) and at different stages of plant development (i.e., in vitro, nursery, at transplanting, post-transplanting), but there has been no evidence for a protocol better than another. Nonetheless, new bioformulation technologies (e.g., nanotechnology, formulation of microbial consortia and/or their metabolites, etc.) and tailor-made consortia of microbial strains should be encouraged. In conclusion, the literature offers many examples of promising BCAs, suggesting that biocontrol can greatly contribute to limit the damage caused by FWB. More efforts should be done to further validate the currently available outcomes, to deepen the knowledge on the most valuable BCAs, and to improve their efficacy by setting up effective formulations, application protocols, and integrated strategies.
Collapse
Affiliation(s)
- Giovanni Bubici
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Protezione Sostenibile delle Piante (IPSP), Bari, Italy
| | - Manoj Kaushal
- International Institute of Tropical Agriculture (IITA), Dar es Salaam, Tanzania
| | - Maria Isabella Prigigallo
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Protezione Sostenibile delle Piante (IPSP), Bari, Italy
| | | | - Jesús Mercado-Blanco
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Córdoba, Spain
| |
Collapse
|
132
|
Compant S, Samad A, Faist H, Sessitsch A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J Adv Res 2019; 19:29-37. [PMID: 31341667 PMCID: PMC6630030 DOI: 10.1016/j.jare.2019.03.004] [Citation(s) in RCA: 511] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 01/06/2023] Open
Abstract
Microbiota are important for plant growth, health and stress resilience. Inoculation with key microbiota members can improve plant traits. Tailored selection and delivery of microbial strains or consortia is required. Microbiome improvement may be achieved by appropriate agro-management practices. Plant breeding for improved interaction with microbiota will be of benefit.
Plants have evolved with a plethora of microorganisms having important roles for plant growth and health. A considerable amount of information is now available on the structure and dynamics of plant microbiota as well as on the functional capacities of isolated community members. Due to the interesting functional potential of plant microbiota as well as due to current challenges in crop production there is an urgent need to bring microbial innovations into practice. Different approaches for microbiome improvement exist. On the one hand microbial strains or strain combinations can be applied, however, field success is often variable and improvement is urgently required. Smart, knowledge-driven selection of microorganisms is needed as well as the use of suitable delivery approaches and formulations. On the other hand, farming practices or the plant genotype can influence plant microbiota and thus functioning. Therefore, selection of appropriate farming practices and plant breeding leading to improved plant-microbiome interactions are avenues to increase the benefit of plant microbiota. In conclusion, different avenues making use of a new generation of inoculants as well as the application of microbiome-based agro-management practices and improved plant lines could lead to a better use of the plant microbiome. This paper reviews the importance and functionalities of the bacterial plant microbiome and discusses challenges and concepts in regard to the application of plant-associated bacteria.
Collapse
Affiliation(s)
- Stéphane Compant
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Abdul Samad
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Hanna Faist
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| |
Collapse
|
133
|
Eida AA, Alzubaidy HS, de Zélicourt A, Synek L, Alsharif W, Lafi FF, Hirt H, Saad MM. Phylogenetically diverse endophytic bacteria from desert plants induce transcriptional changes of tissue-specific ion transporters and salinity stress in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:228-240. [PMID: 30824001 DOI: 10.1016/j.plantsci.2018.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 05/02/2023]
Abstract
Salinity severely hampers crop productivity worldwide and plant growth promoting bacteria could serve as a sustainable solution to improve plant growth under salt stress. However, the molecular mechanisms underlying salt stress tolerance promotion by beneficial bacteria remain unclear. In this work, six bacterial isolates from four different desert plant species were screened for their biochemical plant growth promoting traits and salinity stress tolerance promotion of the unknown host plant Arabidopsis thaliana. Five of the isolates induced variable root phenotypes but could all increase plant shoot and root weight under salinity stress. Inoculation of Arabidopsis with five isolates under salinity stress resulted in tissue-specific transcriptional changes of ion transporters and reduced Na+/K+ shoot ratios. The work provides first insights into the possible mechanisms and the commonality by which phylogenetically diverse bacteria from different desert plants induce salinity stress tolerance in Arabidopsis. The bacterial isolates provide new tools for studying abiotic stress tolerance mechanisms in plants and a promising agricultural solution for increasing crop yields in semi-arid regions.
Collapse
Affiliation(s)
- Abdul Aziz Eida
- King Abdullah University of Science and Technology (KAUST), Desert Agriculture Initiative, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-23955, Kingdom of Saudi Arabia, Saudi Arabia
| | - Hanin S Alzubaidy
- King Abdullah University of Science and Technology (KAUST), Desert Agriculture Initiative, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-23955, Kingdom of Saudi Arabia, Saudi Arabia
| | - Axel de Zélicourt
- King Abdullah University of Science and Technology (KAUST), Desert Agriculture Initiative, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-23955, Kingdom of Saudi Arabia, Saudi Arabia
| | - Lukáš Synek
- King Abdullah University of Science and Technology (KAUST), Desert Agriculture Initiative, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-23955, Kingdom of Saudi Arabia, Saudi Arabia
| | - Wiam Alsharif
- King Abdullah University of Science and Technology (KAUST), Desert Agriculture Initiative, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-23955, Kingdom of Saudi Arabia, Saudi Arabia
| | - Feras F Lafi
- King Abdullah University of Science and Technology (KAUST), Desert Agriculture Initiative, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-23955, Kingdom of Saudi Arabia, Saudi Arabia
| | - Heribert Hirt
- King Abdullah University of Science and Technology (KAUST), Desert Agriculture Initiative, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-23955, Kingdom of Saudi Arabia, Saudi Arabia.
| | - Maged M Saad
- King Abdullah University of Science and Technology (KAUST), Desert Agriculture Initiative, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-23955, Kingdom of Saudi Arabia, Saudi Arabia
| |
Collapse
|
134
|
Martínez-Hidalgo P, Maymon M, Pule-Meulenberg F, Hirsch AM. Engineering root microbiomes for healthier crops and soils using beneficial, environmentally safe bacteria. Can J Microbiol 2019; 65:91-104. [DOI: 10.1139/cjm-2018-0315] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Green Revolution developed new crop varieties, which greatly improved food security worldwide. However, the growth of these plants relied heavily on chemical fertilizers and pesticides, which have led to an overuse of synthetic fertilizers, insecticides, and herbicides with serious environmental consequences and negative effects on human health. Environmentally friendly plant-growth-promoting methods to replace our current reliance on synthetic chemicals and to develop more sustainable agricultural practices to offset the damage caused by many agrochemicals are proposed herein. The increased use of bioinoculants, which consist of microorganisms that establish synergies with target crops and influence production and yield by enhancing plant growth, controlling disease, and providing critical mineral nutrients, is a potential solution. The microorganisms found in bioinoculants are often bacteria or fungi that reside within either external or internal plant microbiomes. However, before they can be used routinely in agriculture, these microbes must be confirmed as nonpathogenic strains that promote plant growth and survival. In this article, besides describing approaches for discovering plant-growth-promoting bacteria in various environments, including phytomicrobiomes and soils, we also discuss methods to evaluate their safety for the environment and for human health.
Collapse
Affiliation(s)
- Pilar Martínez-Hidalgo
- Departamento de Microbiología y Genética, Universidad de Salamanca, Spain
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Maskit Maymon
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Flora Pule-Meulenberg
- Department of Crop Science and Production, Botswana University of Agriculture and Natural Resources, Private Bag 0027, A1 Sebele Content Farm, Gaborone, Botswana
| | - Ann M. Hirsch
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| |
Collapse
|
135
|
Rocha I, Ma Y, Souza-Alonso P, Vosátka M, Freitas H, Oliveira RS. Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:1357. [PMID: 31781135 PMCID: PMC6852281 DOI: 10.3389/fpls.2019.01357] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/02/2019] [Indexed: 05/21/2023]
Abstract
Plant beneficial microbes (PBMs), such as plant growth-promoting bacteria, rhizobia, arbuscular mycorrhizal fungi, and Trichoderma, can reduce the use of agrochemicals and increase plant yield, nutrition, and tolerance to biotic-abiotic stresses. Yet, large-scale applications of PBM have been hampered by the high amounts of inoculum per plant or per cultivation area needed for successful colonization and consequently the economic feasibility. Seed coating, a process that consists in covering seeds with low amounts of exogenous materials, is gaining attention as an efficient delivery system for PBM. Microbial seed coating comprises the use of a binder, in some cases a filler, mixed with inocula, and can be done using simple mixing equipment (e.g., cement mixer) or more specialized/sophisticated apparatus (e.g., fluidized bed). Binders/fillers can be used to extend microbial survival. The most reported types of seed coating are seed dressing, film coating, and pelleting. Tested in more than 50 plant species with seeds of different dimensions, forms, textures, and germination types (e.g., cereals, vegetables, fruits, pulses, and other legumes), seed coating has been studied using various species of plant growth-promoting bacteria, rhizobia, Trichoderma, and to a lesser extent mycorrhizal fungi. Most of the studies regarding PBM applied via seed coating are aimed at promoting crop growth, yield, and crop protection against pathogens. Studies have shown that coating seeds with PBM can assist crops in improving seedling establishment and germination or achieving high yields and food quality, under reduced chemical fertilization. The right combination of biological control agents applied via seed coating can be a powerful tool against a wide number of diseases and pathogens. Less frequently, studies report seed coating being used for adaptation and protection of crops under abiotic stresses. Notwithstanding the promising results, there are still challenges mainly related with the scaling up from the laboratory to the field and proper formulation, including efficient microbial combinations and coating materials that can result in extended shelf-life of both seeds and coated PBM. These limitations need to be addressed and overcome in order to allow a wider use of seed coating as a cost-effective delivery method for PBM in sustainable agricultural systems.
Collapse
Affiliation(s)
- Inês Rocha
- Centre for Functional Ecology – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- *Correspondence: Inês Rocha,
| | - Ying Ma
- Centre for Functional Ecology – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Pablo Souza-Alonso
- Centre for Functional Ecology – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Miroslav Vosátka
- Department of Mycorrhizal Symbioses, Institute of Botany, Academy of Sciences of the Czech Republic, Pru˚honice, Czechia
| | - Helena Freitas
- Centre for Functional Ecology – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Rui S. Oliveira
- Centre for Functional Ecology – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
136
|
Methods for Detecting Biocontrol and Plant Growth-Promoting Traits in Rhizobacteria. METHODS IN RHIZOSPHERE BIOLOGY RESEARCH 2019. [DOI: 10.1007/978-981-13-5767-1_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
137
|
Karlsen E, Schulz C, Almaas E. Automated generation of genome-scale metabolic draft reconstructions based on KEGG. BMC Bioinformatics 2018; 19:467. [PMID: 30514205 PMCID: PMC6280343 DOI: 10.1186/s12859-018-2472-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 11/06/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Constraint-based modeling is a widely used and powerful methodology to assess the metabolic phenotypes and capabilities of an organism. The starting point and cornerstone of all such modeling is a genome-scale metabolic network reconstruction. The creation, further development, and application of such networks is a growing field of research thanks to a plethora of readily accessible computational tools. While the majority of studies are focused on single-species analyses, typically of a microbe, the computational study of communities of organisms is gaining attention. Similarly, reconstructions that are unified for a multi-cellular organism have gained in popularity. Consequently, the rapid generation of genome-scale metabolic reconstructed networks is crucial. While multiple web-based or stand-alone tools are available for automated network reconstruction, there is, however, currently no publicly available tool that allows the swift assembly of draft reconstructions of community metabolic networks and consolidated metabolic networks for a specified list of organisms. RESULTS Here, we present AutoKEGGRec, an automated tool that creates first draft metabolic network reconstructions of single organisms, community reconstructions based on a list of organisms, and finally a consolidated reconstruction for a list of organisms or strains. AutoKEGGRec is developed in Matlab and works seamlessly with the COBRA Toolbox v3, and it is based on only using the KEGG database as external input. The generated first draft reconstructions are stored in SBML files and consist of all reactions for a KEGG organism ID and corresponding linked genes. This provides a comprehensive starting point for further refinement and curation using the host of COBRA toolbox functions or other preferred tools. Through the data structures created, the tool also facilitates a comparative analysis of metabolic content in any given number of organisms present in the KEGG database. CONCLUSION AutoKEGGRec provides a first step in a metabolic network reconstruction process, filling a gap for tools creating community and consolidated metabolic networks. Based only on KEGG data as external input, the generated reconstructions consist of data with a directly traceable foundation and pedigree. With AutoKEGGRec, this kind of modeling is made accessible to a wider part of the genome-scale metabolic analysis community.
Collapse
Affiliation(s)
- Emil Karlsen
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Høgskoleringen 1, Trondheim, 7491 Norway
| | - Christian Schulz
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Høgskoleringen 1, Trondheim, 7491 Norway
| | - Eivind Almaas
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Høgskoleringen 1, Trondheim, 7491 Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and General Practice, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
138
|
Grobelak A, Kokot P, Hutchison D, Grosser A, Kacprzak M. Plant growth-promoting rhizobacteria as an alternative to mineral fertilizers in assisted bioremediation - Sustainable land and waste management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 227:1-9. [PMID: 30170232 DOI: 10.1016/j.jenvman.2018.08.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/06/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
The challenge of environment management is a sustainable development of both environmental systems and the green economy. The main objective of this study was the optimization and testing of plant growth-promoting rhizobacteria soil biopreparation and soil amendments as the alternative to or to help offset use of mineral soil fertilizers. A field study was conducted on a degraded area to improve plant biomass yield using inoculated bacteria. Moreover, organic additives (sewage sludge) and inorganic fertilizers were also used to compare their effectiveness. The conducted study investigated the combined effect of immobilized microbial consortium and soil substrates for plant growth (red fescue) on degraded areas and confirmed synergistic interactions between plants, microorganisms and soil substrates in the process of phytoremediation. The formulation consisted of immobilized bacterial consortia having mechanisms for the synthesis of compounds preferably affecting growth and development of (crop) plants. The conducted studies confirmed that the PGPR bacteria used in the experiment have the potential to promote plant growth, increase organic nitrogen the bioavailable P pool in soil. The results of the field study (synergy effect of alternative fertilization and bacteria) can be used to create effective methods in assisted soil bioremediation. This approach has a high social acceptance and reduces resource consumption of fertilizers having an impact on sustainable development. Implementing methods of supporting plant growth using microorganisms can undoubtedly contribute to the development of 'green' resource management.
Collapse
Affiliation(s)
- Anna Grobelak
- Czestochowa University of Technology, Faculty of Infrastructure and Environment, Czestochowa, Poland.
| | - Paulina Kokot
- Czestochowa University of Technology, Faculty of Infrastructure and Environment, Czestochowa, Poland
| | | | - Anna Grosser
- Czestochowa University of Technology, Faculty of Infrastructure and Environment, Czestochowa, Poland
| | - Małgorzata Kacprzak
- Czestochowa University of Technology, Faculty of Infrastructure and Environment, Czestochowa, Poland
| |
Collapse
|
139
|
A Mutation in the Mesorhizobium loti oatB Gene Alters the Physicochemical Properties of the Bacterial Cell Wall and Reduces Survival inside Acanthamoeba castellanii. Int J Mol Sci 2018; 19:ijms19113510. [PMID: 30413017 PMCID: PMC6274867 DOI: 10.3390/ijms19113510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
In our previous report, we had shown that the free-living amoeba Acanthamoeba castellanii influenced the abundance, competiveness, and virulence of Mesorhizobium loti NZP2213, the microsymbiont of agriculturally important plants of the genus Lotus. The molecular basis of this phenomenon; however, had not been explored. In the present study, we demonstrated that oatB, the O-acetyltransferase encoding gene located in the lipopolysaccharide (LPS) synthesis cluster of M. loti, was responsible for maintaining the protective capacity of the bacterial cell envelope, necessary for the bacteria to fight environmental stress and survive inside amoeba cells. Using co-culture assays combined with fluorescence and electron microscopy, we showed that an oatB mutant, unlike the parental strain, was efficiently destroyed after rapid internalization by amoebae. Sensitivity and permeability studies of the oatB mutant, together with topography and nanomechanical investigations with the use of atomic force microscopy (AFM), indicated that the incomplete substitution of lipid A-core moieties with O-polysaccharide (O-PS) residues rendered the mutant more sensitive to hydrophobic compounds. Likewise, the truncated LPS moieties, rather than the lack of O-acetyl groups, made the oatB mutant susceptible to the bactericidal mechanisms (nitrosative stress and the action of lytic enzymes) of A. castellanii.
Collapse
|
140
|
De Vrieze M, Germanier F, Vuille N, Weisskopf L. Combining Different Potato-Associated Pseudomonas Strains for Improved Biocontrol of Phytophthora infestans. Front Microbiol 2018; 9:2573. [PMID: 30420845 PMCID: PMC6215842 DOI: 10.3389/fmicb.2018.02573] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/09/2018] [Indexed: 11/13/2022] Open
Abstract
Late blight caused by Phytophthora infestans is considered as the most devastating disease of potato and is a re-emerging problem worldwide. Current late blight control practices rely mostly on synthetic fungicides or copper-based products, but growing awareness of the negative impact of these compounds on the environment has led to the search for alternative control measures. A collection of Pseudomonas strains isolated from both the rhizosphere and the phyllosphere of potato was recently characterized for in vitro protective effects against P. infestans. In the present study, we used a leaf disk assay with three different potato cultivars to compare the disease inhibition capacity of nine selected Pseudomonas strains when applied alone or in all possible dual and triple combinations. Results showed a strong cultivar effect and identified strains previously thought to be inactive based on in vitro assays as the best biocontrol candidates. One strain was much more active alone than in combination with other strains, while two other strains provided significantly better protection in dual combination than when applied alone. A subset of five strains was then further selected to determine their mutual influence on each other's survival and growth, as well as to characterize their activity against P. infestans in more details. This revealed that the two strains whose dual combination was particularly efficient were only weakly interfering with each other's growth and had complementary modes of action. Our results highlight the potential to harness the crop's native rhizosphere and phyllosphere microbiome through re-assembling strains with differing modes of action into small communities, thereby providing more consistent protection than with the application of single strains. We consider this as a first step toward more elaborate microbiome management efforts, which shall be integrated into global strategies for sustainable control of potato late blight.
Collapse
Affiliation(s)
- Mout De Vrieze
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Institute for Plant Production Sciences, Agroscope, Nyon, Switzerland
| | - Fanny Germanier
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Nicolas Vuille
- Institute for Plant Production Sciences, Agroscope, Nyon, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
141
|
Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2018; 9:1473. [PMID: 30405652 PMCID: PMC6206271 DOI: 10.3389/fpls.2018.01473] [Citation(s) in RCA: 623] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/20/2018] [Indexed: 05/02/2023]
Abstract
Microbes of the phytomicrobiome are associated with every plant tissue and, in combination with the plant form the holobiont. Plants regulate the composition and activity of their associated bacterial community carefully. These microbes provide a wide range of services and benefits to the plant; in return, the plant provides the microbial community with reduced carbon and other metabolites. Soils are generally a moist environment, rich in reduced carbon which supports extensive soil microbial communities. The rhizomicrobiome is of great importance to agriculture owing to the rich diversity of root exudates and plant cell debris that attract diverse and unique patterns of microbial colonization. Microbes of the rhizomicrobiome play key roles in nutrient acquisition and assimilation, improved soil texture, secreting, and modulating extracellular molecules such as hormones, secondary metabolites, antibiotics, and various signal compounds, all leading to enhancement of plant growth. The microbes and compounds they secrete constitute valuable biostimulants and play pivotal roles in modulating plant stress responses. Research has demonstrated that inoculating plants with plant-growth promoting rhizobacteria (PGPR) or treating plants with microbe-to-plant signal compounds can be an effective strategy to stimulate crop growth. Furthermore, these strategies can improve crop tolerance for the abiotic stresses (e.g., drought, heat, and salinity) likely to become more frequent as climate change conditions continue to develop. This discovery has resulted in multifunctional PGPR-based formulations for commercial agriculture, to minimize the use of synthetic fertilizers and agrochemicals. This review is an update about the role of PGPR in agriculture, from their collection to commercialization as low-cost commercial agricultural inputs. First, we introduce the concept and role of the phytomicrobiome and the agricultural context underlying food security in the 21st century. Next, mechanisms of plant growth promotion by PGPR are discussed, including signal exchange between plant roots and PGPR and how these relationships modulate plant abiotic stress responses via induced systemic resistance. On the application side, strategies are discussed to improve rhizosphere colonization by PGPR inoculants. The final sections of the paper describe the applications of PGPR in 21st century agriculture and the roadmap to commercialization of a PGPR-based technology.
Collapse
Affiliation(s)
- Rachel Backer
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - J. Stefan Rokem
- School of Medicine, Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - John Lamont
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Dana Praslickova
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Emily Ricci
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | | | - Donald L. Smith
- Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
142
|
Checcucci A, diCenzo GC, Ghini V, Bazzicalupo M, Becker A, Decorosi F, Döhlemann J, Fagorzi C, Finan TM, Fondi M, Luchinat C, Turano P, Vignolini T, Viti C, Mengoni A. Creation and Characterization of a Genomically Hybrid Strain in the Nitrogen-Fixing Symbiotic Bacterium Sinorhizobium meliloti. ACS Synth Biol 2018; 7:2365-2378. [PMID: 30223644 DOI: 10.1021/acssynbio.8b00158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many bacteria, often associated with eukaryotic hosts and of relevance for biotechnological applications, harbor a multipartite genome composed of more than one replicon. Biotechnologically relevant phenotypes are often encoded by genes residing on the secondary replicons. A synthetic biology approach to developing enhanced strains for biotechnological purposes could therefore involve merging pieces or entire replicons from multiple strains into a single genome. Here we report the creation of a genomic hybrid strain in a model multipartite genome species, the plant-symbiotic bacterium Sinorhizobium meliloti. We term this strain as cis-hybrid, since it is produced by genomic material coming from the same species' pangenome. In particular, we moved the secondary replicon pSymA (accounting for nearly 20% of total genome content) from a donor S. meliloti strain to an acceptor strain. The cis-hybrid strain was screened for a panel of complex phenotypes (carbon/nitrogen utilization phenotypes, intra- and extracellular metabolomes, symbiosis, and various microbiological tests). Additionally, metabolic network reconstruction and constraint-based modeling were employed for in silico prediction of metabolic flux reorganization. Phenotypes of the cis-hybrid strain were in good agreement with those of both parental strains. Interestingly, the symbiotic phenotype showed a marked cultivar-specific improvement with the cis-hybrid strains compared to both parental strains. These results provide a proof-of-principle for the feasibility of genome-wide replicon-based remodelling of bacterial strains for improved biotechnological applications in precision agriculture.
Collapse
Affiliation(s)
- Alice Checcucci
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - George C. diCenzo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Veronica Ghini
- CERM & CIRMMP, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Bazzicalupo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Anke Becker
- LOEWE − Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Francesca Decorosi
- Department of Agri-food Production and Environmental Science, University of Florence, 50019 Florence, Italy
| | | | - Camilla Fagorzi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Marco Fondi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- CERM & CIRMMP, University of Florence, 50019 Sesto Fiorentino, Italy
- CERM and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Paola Turano
- CERM & CIRMMP, University of Florence, 50019 Sesto Fiorentino, Italy
- CERM and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Tiziano Vignolini
- European Laboratory for Non-Linear Spectroscopy, LENS, 50019 Sesto Fiorentino, Italy
| | - Carlo Viti
- Department of Agri-food Production and Environmental Science, University of Florence, 50019 Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
143
|
Linares-Morales JR, Gutiérrez-Méndez N, Rivera-Chavira BE, Pérez-Vega SB, Nevárez-Moorillón GV. Biocontrol Processes in Fruits and Fresh Produce, the Use of Lactic Acid Bacteria as a Sustainable Option. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
144
|
Preininger C, Sauer U, Bejarano A, Berninger T. Concepts and applications of foliar spray for microbial inoculants. Appl Microbiol Biotechnol 2018; 102:7265-7282. [PMID: 29961100 DOI: 10.1007/s00253-018-9173-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 11/27/2022]
Abstract
Damages of the (agro)ecosystem by extensive use of chemical fertilizers and pesticides, the global dying of bee populations possibly linked to pesticide spraying, and stricter regulations for pesticide use together with successful use of microbials in IPM programs are pushing on the development and commercialization of new microbial products and a large and growing biostimulants and biocontrol market. This review focuses on microbial inoculants including bacteria, fungi, and viruses used as biostimulant or biocontrol agent for foliar application and covers all important steps from inoculant development to successful field application. Topics presented comprise typical spraying equipment including the importance of the spraying process and relating effects, furthermore formulation development including classification and adjuvants, and thirdly regulatory aspects as currently applied or under discussion. Microbial inoculants for foliar spray reported in scientific literature are summarized and contrasted with selected commercial products. Special attention is given to factors most important in microbial spray: (a) type of active ingredient (bacteria, fungi, viruses), (b) mode of action (ingestion, contact, competition), (c) interaction with the plant leaf surface, (d) droplet size in terms of microbe concentration and leaf coverage, and (e) environmental conditions during spraying. Finally, we want to emphasize that timely administration is of utmost importance for successful spraying and maximum efficacy. This might be supported by weather stations and disease/pest models as an important step towards precision farming.
Collapse
Affiliation(s)
- Claudia Preininger
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria.
| | - Ursula Sauer
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Ana Bejarano
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Teresa Berninger
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| |
Collapse
|
145
|
Zúñiga A, Fuente FDL, Federici F, Lionne C, Bônnet J, de Lorenzo V, González B. An Engineered Device for Indoleacetic Acid Production under Quorum Sensing Signals Enables Cupriavidus pinatubonensis JMP134 To Stimulate Plant Growth. ACS Synth Biol 2018; 7:1519-1527. [PMID: 29746094 DOI: 10.1021/acssynbio.8b00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The environmental effects of chemical fertilizers and pesticides have encouraged the quest for new strategies to increase crop productivity with minimal impacts on the natural medium. Plant growth promoting rhizobacteria (PGPR) can contribute to this endeavor by improving fitness through better nutrition acquisition and stress tolerance. Using the neutral (non PGPR) rhizobacterium Cupriavidus pinatubonensis JMP134 as the host, we engineered a regulatory forward loop that triggered the synthesis of the phytohormone indole-3-acetic acid (IAA) in a manner dependent on quorum sensing (QS) signals. Implementation of the device in JMP134 yielded synthesis of IAA in an autoregulated manner, improving the growth of the roots of inoculated Arabidopsis thaliana. These results not only demonstrated the value of the designed genetic module, but also validated C. pinatubonensis JMP134 as a suitable vehicle for agricultural applications, as it is amenable to genetic manipulations.
Collapse
Affiliation(s)
- Ana Zúñiga
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez—Center of Applied Ecology and Sustainability, Santiago de Chile, 2640, Chile
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Francisco de la Fuente
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez—Center of Applied Ecology and Sustainability, Santiago de Chile, 2640, Chile
- R2B Catalyst, Research Center, Andrés Bello 2299, Santiago, Chile
| | - Fernán Federici
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Fondo de Desarrollo de Áreas Prioritarias, Center for Genome Regulation, Millennium Institute for Integrative Systems and Synthetic Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Corinne Lionne
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Jérome Bônnet
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | | | - Bernardo González
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez—Center of Applied Ecology and Sustainability, Santiago de Chile, 2640, Chile
| |
Collapse
|
146
|
Raymond NS, Müller Stöver D, Jensen LS, Håkansson S. Survival and phosphate solubilisation activity of desiccated formulations of Penicillium bilaiae and Aspergillus niger influenced by water activity. J Microbiol Methods 2018; 150:39-46. [PMID: 29778653 DOI: 10.1016/j.mimet.2018.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
The impact of formulation and desiccation on the shelf life of phosphate (P)-solubilising microorganisms is often under-studied, particularly relating to their ability to recover P-solubilisation activity. Here, Penicilllium bilaiae and Aspergillus niger were formulated on vermiculite (V) alone, or with the addition of protectants (skimmed milk (V + SM) and trehalose (V + T)), and on sewage sludge ash with (A + N) and without nutrients (A), and dried in a convective air dryer. After drying, the spore viability of P. bilaiae was greater than that of A. niger. V formulations achieved the highest survival rates without being improved by the addition of protectants. P. bilaiae formulated on V was selected for desiccation in a fluidised bed dryer, in which several temperatures and final water activities (aw) were tested. The highest spore viability was achieved when the formulation was dried at 25 °C to a final aw >0.3. During three months' storage, convective air dried formulations were stable for both strains, except in the presence of skimmed milk for P. bilaiae which saw a decrease in spore viability. In the fluidised bed-dried formulations, when aw >0.3, the loss in viability was higher, especially when stored at 20 °C, than at aw <0.1. P-solubilisation activity performed on ash was preserved in most of the formulations after desiccation and storage. Overall, a low drying temperature and high final aw positively affected P. bilaiae viability, however a trade-off between higher viability after desiccation and shelf life should be considered. Further research is needed to optimise viability over time and on more sustainable carriers.
Collapse
Affiliation(s)
- Nelly Sophie Raymond
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Dorette Müller Stöver
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Lars Stoumann Jensen
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Sebastian Håkansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| |
Collapse
|
147
|
Kamil FH, Saeed EE, El-Tarabily KA, AbuQamar SF. Biological Control of Mango Dieback Disease Caused by Lasiodiplodia theobromae Using Streptomycete and Non-streptomycete Actinobacteria in the United Arab Emirates. Front Microbiol 2018; 9:829. [PMID: 29780366 PMCID: PMC5945903 DOI: 10.3389/fmicb.2018.00829] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/11/2018] [Indexed: 11/13/2022] Open
Abstract
Dieback caused by the fungus Lasiodiplodia theobromae is an important disease on mango plantations in the United Arab Emirates (UAE). In this study, 53 actinobacterial isolates were obtained from mango rhizosphere soil in the UAE, of which 35 (66%) were classified as streptomycetes (SA) and 18 (34%) as non-streptomycetes (NSA). Among these isolates, 19 (12 SA and 7 NSA) showed antagonistic activities against L. theobromae associated with either the production of diffusible antifungal metabolites, extracellular cell-wall-degrading enzymes (CWDEs), or both. Using a "novel" mango fruit bioassay, all isolates were screened in vivo for their abilities to reduce lesion severity on fruits inoculated with L. theobromae. Three isolates, two belonging to Streptomyces and one to Micromonospora spp., showed the strongest inhibitory effect against this pathogen in vitro and were therefore selected for tests on mango seedlings. Our results revealed that the antifungal action of S. samsunensis UAE1 was related to antibiosis, and the production of CWDEs (i.e., chitinase) and siderophores; whilst S. cavourensis UAE1 and M. tulbaghiae UAE1 were considered to be associated with antibiotic- and CWDE-production, respectively. Pre-inoculation in greenhouse experiments with the most promising actinobacterial isolates resulted in very high levels of disease protection in mango seedlings subsequently inoculated with the pathogen. This was evident by the dramatic reduction in the estimated disease severity indices of the mango dieback of individual biocontrol agent (BCA) applications compared with the pathogen alone, confirming their potential in the management of mango dieback disease. L. theobromae-infected mango seedlings treated with S. samsunensis showed significantly reduced number of defoliated leaves and conidia counts of L. theobromae by 2- and 4-fold, respectively, in comparison to the other two BCA applications. This indicates that the synergistic antifungal effects of S. samsunensis using multiple modes of action retarded the in planta invasion of L. theobromae. This is the first report of BCA effects against L. theobromae on mango seedlings by microbial antagonists. It is also the first report of actinobacteria naturally existing in the soils of the UAE or elsewhere that show the ability to suppress the mango dieback disease.
Collapse
Affiliation(s)
- Fatima H Kamil
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Esam E Saeed
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates.,School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
148
|
Microbial and viral chitinases: Attractive biopesticides for integrated pest management. Biotechnol Adv 2018; 36:818-838. [DOI: 10.1016/j.biotechadv.2018.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 02/01/2023]
|
149
|
Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol 2018; 16:e2003862. [PMID: 29474469 PMCID: PMC5841827 DOI: 10.1371/journal.pbio.2003862] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/07/2018] [Accepted: 02/02/2018] [Indexed: 02/01/2023] Open
Abstract
Bacterial communities associated with roots impact the health and nutrition of the host plant. The dynamics of these microbial assemblies over the plant life cycle are, however, not well understood. Here, we use dense temporal sampling of 1,510 samples from root spatial compartments to characterize the bacterial and archaeal components of the root-associated microbiota of field grown rice (Oryza sativa) over the course of 3 consecutive growing seasons, as well as 2 sites in diverse geographic regions. The root microbiota was found to be highly dynamic during the vegetative phase of plant growth and then stabilized compositionally for the remainder of the life cycle. Bacterial and archaeal taxa conserved between field sites were defined as predictive features of rice plant age by modeling using a random forest approach. The age-prediction models revealed that drought-stressed plants have developmentally immature microbiota compared to unstressed plants. Further, by using genotypes with varying developmental rates, we show that shifts in the microbiome are correlated with rates of developmental transitions rather than age alone, such that different microbiota compositions reflect juvenile and adult life stages. These results suggest a model for successional dynamics of the root-associated microbiota over the plant life cycle. Plant roots are colonized by complex communities of bacterial and archaeal microbiota from the soil, with the potential to affect plant nutrition and fitness. Although root-associated microbes are known to have the potential to be utilized to promote crop productivity, their exploitation has been hindered by a lack of understanding of the compositional dynamics of these communities. Here we investigate temporal changes in the root-associated bacterial and archaeal communities throughout the plant life cycle in field-grown rice over multiple seasons and locations. Our results indicate that root microbiota composition varies with both chronological age and the developmental stage of the plants. We find that a major compositional shift correlates with the transition to reproductive growth, suggestive of distinct root microbiota associations for the juvenile and adult plant phases. The results from this study highlight dynamic relationships between plant growth and associated microbiota that should be considered in strategies for the successful manipulation of microbial communities to enhance crop performance.
Collapse
|
150
|
de los Santos-Villalobos S, Kremer JM, Parra-Cota FI, Hayano-Kanashiro AC, García-Ortega LF, Gunturu SK, Tiedje JM, He SY, Peña-Cabriales JJ. Draft genome of the fungicidal biological control agent Burkholderia anthina strain XXVI. Arch Microbiol 2018; 200:803-810. [DOI: 10.1007/s00203-018-1490-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 01/12/2023]
|