101
|
Šimončičová E, Gonçalves de Andrade E, Vecchiarelli HA, Awogbindin IO, Delage CI, Tremblay MÈ. Present and future of microglial pharmacology. Trends Pharmacol Sci 2022; 43:669-685. [PMID: 35031144 DOI: 10.1016/j.tips.2021.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
Microglia, brain resident immune cells, modulate development, activity, and plasticity of the central nervous system. Mechanistically implicated in numerous neurological pathologies, microglia emerge as strong contenders for novel neurotherapies. Shifting away from merely an attenuation of excessive microglial inflammatory and phagocytic activities, current therapies aim toward targeting the complex context-dependent microglial heterogeneity, unveiled by large-scale genetic studies and emerging single-cell analyses. Although lacking the necessary selectivity, initial therapies attempting to target specific state-associated microglial properties and functions (e.g., inflammatory activity, phagocytosis, proliferation, metabolism, or surveillance) are currently under pre- or even clinical (Phase I-IV) investigation. Here, we provide an update on current microglial therapeutic research and discuss what the future in the field might look like.
Collapse
Affiliation(s)
- Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Elisa Gonçalves de Andrade
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Ifeoluwa O Awogbindin
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Charlotte I Delage
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Molecular Medicine, Université Laval, Québec City, QC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
102
|
Bhusal A, Rahman MH, Suk K. Hypothalamic inflammation in metabolic disorders and aging. Cell Mol Life Sci 2021; 79:32. [PMID: 34910246 PMCID: PMC11071926 DOI: 10.1007/s00018-021-04019-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical brain region for the regulation of energy homeostasis. Over the years, studies on energy metabolism primarily focused on the neuronal component of the hypothalamus. Studies have recently uncovered the vital role of glial cells as an additional player in energy balance regulation. However, their inflammatory activation under metabolic stress condition contributes to various metabolic diseases. The recruitment of monocytes and macrophages in the hypothalamus helps sustain such inflammation and worsens the disease state. Neurons were found to actively participate in hypothalamic inflammatory response by transmitting signals to the surrounding non-neuronal cells. This activation of different cell types in the hypothalamus leads to chronic, low-grade inflammation, impairing energy balance and contributing to defective feeding habits, thermogenesis, and insulin and leptin signaling, eventually leading to metabolic disorders (i.e., diabetes, obesity, and hypertension). The hypothalamus is also responsible for the causation of systemic aging under metabolic stress. A better understanding of the multiple factors contributing to hypothalamic inflammation, the role of the different hypothalamic cells, and their crosstalks may help identify new therapeutic targets. In this review, we focus on the role of glial cells in establishing a cause-effect relationship between hypothalamic inflammation and the development of metabolic diseases. We also cover the role of other cell types and discuss the possibilities and challenges of targeting hypothalamic inflammation as a valid therapeutic approach.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Division of Endocrinology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
103
|
Ganguli S, Chavali PL. Intrauterine Viral Infections: Impact of Inflammation on Fetal Neurodevelopment. Front Neurosci 2021; 15:771557. [PMID: 34858132 PMCID: PMC8631423 DOI: 10.3389/fnins.2021.771557] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Intrauterine viral infections during pregnancy by pathogens such as Zika virus, Cytomegalovirus, Rubella and Herpes Simplex virus can lead to prenatal as well as postnatal neurodevelopmental disorders. Although maternal viral infections are common during pregnancy, viruses rarely penetrate the trophoblast. When they do cross, viruses can cause adverse congenital health conditions for the fetus. In this context, maternal inflammatory responses to these neurotropic pathogens play a significant role in negatively affecting neurodevelopment. For instance, intrauterine inflammation poses an increased risk of neurodevelopmental disorders such as microcephaly, schizophrenia, autism spectrum disorder, cerebral palsy and epilepsy. Severe inflammatory responses have been linked to stillbirths, preterm births, abortions and microcephaly. In this review, we discuss the mechanistic basis of how immune system shapes the landscape of the brain and how different neurotropic viral pathogens evoke inflammatory responses. Finally, we list the consequences of neuroinflammation on fetal brain development and discuss directions for future research and intervention strategies.
Collapse
Affiliation(s)
- Sourav Ganguli
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| | - Pavithra L Chavali
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| |
Collapse
|
104
|
Zawadzka A, Cieślik M, Adamczyk A. The Role of Maternal Immune Activation in the Pathogenesis of Autism: A Review of the Evidence, Proposed Mechanisms and Implications for Treatment. Int J Mol Sci 2021; 22:ijms222111516. [PMID: 34768946 PMCID: PMC8584025 DOI: 10.3390/ijms222111516] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease that is characterized by a deficit in social interactions and communication, as well as repetitive and restrictive behaviors. Increasing lines of evidence suggest an important role for immune dysregulation and/or inflammation in the development of ASD. Recently, a relationship between inflammation, oxidative stress, and mitochondrial dysfunction has been reported in the brain tissue of individuals with ASD. Some recent studies have also reported oxidative stress and mitochondrial abnormalities in animal models of maternal immune activation (MIA). This review is focused on the hypothesis that MIA induces microglial activation, oxidative stress, and mitochondrial dysfunction, a deleterious trio in the brain that can lead to neuroinflammation and neurodevelopmental pathologies in offspring. Infection during pregnancy activates the mother’s immune system to release proinflammatory cytokines, such as IL-6, TNF-α, and others. Furthermore, these cytokines can directly cross the placenta and enter the fetal circulation, or activate resident immune cells, resulting in an increased production of proinflammatory cytokines, including IL-6. Proinflammatory cytokines that cross the blood–brain barrier (BBB) may initiate a neuroinflammation cascade, starting with the activation of the microglia. Inflammatory processes induce oxidative stress and mitochondrial dysfunction that, in turn, may exacerbate oxidative stress in a self-perpetuating vicious cycle that can lead to downstream abnormalities in brain development and behavior.
Collapse
Affiliation(s)
| | - Magdalena Cieślik
- Correspondence: (M.C.); (A.A.); Tel.: +48-22-6086420 (M.C.); +48-22-6086572 (A.A.)
| | - Agata Adamczyk
- Correspondence: (M.C.); (A.A.); Tel.: +48-22-6086420 (M.C.); +48-22-6086572 (A.A.)
| |
Collapse
|
105
|
Anderson LJ, Jadhao SJ, Paden CR, Tong S. Functional Features of the Respiratory Syncytial Virus G Protein. Viruses 2021; 13:1214. [PMID: 34372490 PMCID: PMC8310105 DOI: 10.3390/v13071214] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of serious lower respiratory tract infections in children <5 years of age worldwide and repeated infections throughout life leading to serious disease in the elderly and persons with compromised immune, cardiac, and pulmonary systems. The disease burden has made it a high priority for vaccine and antiviral drug development but without success except for immune prophylaxis for certain young infants. Two RSV proteins are associated with protection, F and G, and F is most often pursued for vaccine and antiviral drug development. Several features of the G protein suggest it could also be an important to vaccine or antiviral drug target design. We review features of G that effect biology of infection, the host immune response, and disease associated with infection. Though it is not clear how to fit these together into an integrated picture, it is clear that G mediates cell surface binding and facilitates cellular infection, modulates host responses that affect both immunity and disease, and its CX3C aa motif contributes to many of these effects. These features of G and the ability to block the effects with antibody, suggest G has substantial potential in vaccine and antiviral drug design.
Collapse
Affiliation(s)
- Larry J. Anderson
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA;
| | - Samadhan J. Jadhao
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA;
| | - Clinton R. Paden
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30322, USA; (C.R.P.); (S.T.)
| | - Suxiang Tong
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30322, USA; (C.R.P.); (S.T.)
| |
Collapse
|
106
|
Microglia in Neurodegenerative Events-An Initiator or a Significant Other? Int J Mol Sci 2021; 22:ijms22115818. [PMID: 34072307 PMCID: PMC8199265 DOI: 10.3390/ijms22115818] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
A change in microglia structure, signaling, or function is commonly associated with neurodegeneration. This is evident in the patient population, animal models, and targeted in vitro assays. While there is a clear association, it is not evident that microglia serve as an initiator of neurodegeneration. Rather, the dynamics imply a close interaction between the various cell types and structures in the brain that orchestrate the injury and repair responses. Communication between microglia and neurons contributes to the physiological phenotype of microglia maintaining cells in a surveillance state and allows the cells to respond to events occurring in their environment. Interactions between microglia and astrocytes is not as well characterized, nor are interactions with other members of the neurovascular unit; however, given the influence of systemic factors on neuroinflammation and disease progression, such interactions likely represent significant contributes to any neurodegenerative process. In addition, they offer multiple target sites/processes by which environmental exposures could contribute to neurodegenerative disease. Thus, microglia at least play a role as a significant other with an equal partnership; however, claiming a role as an initiator of neurodegeneration remains somewhat controversial.
Collapse
|
107
|
Mechanisms of Drug Resistance in the Pathogenesis of Epilepsy: Role of Neuroinflammation. A Literature Review. Brain Sci 2021; 11:brainsci11050663. [PMID: 34069567 PMCID: PMC8161227 DOI: 10.3390/brainsci11050663] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by recurring spontaneous seizures. Drug resistance appears in 30% of patients and it can lead to premature death, brain damage or a reduced quality of life. The purpose of the study was to analyze the drug resistance mechanisms, especially neuroinflammation, in the epileptogenesis. The information bases of biomedical literature Scopus, PubMed, Google Scholar and SciVerse were used. To obtain full-text documents, electronic resources of PubMed Central and Research Gate were used. The article examines the recent research of the mechanisms of drug resistance in epilepsy and discusses the hypotheses of drug resistance development (genetic, epigenetic, target hypothesis, etc.). Drug-resistant epilepsy is associated with neuroinflammatory, autoimmune and neurodegenerative processes. Neuroinflammation causes immune, pathophysiological, biochemical and psychological consequences. Focal or systemic unregulated inflammatory processes lead to the formation of aberrant neural connections and hyperexcitable neural networks. Inflammatory mediators affect the endothelium of cerebral vessels, destroy contacts between endothelial cells and induce abnormal angiogenesis (the formation of “leaky” vessels), thereby affecting the blood–brain barrier permeability. Thus, the analysis of pro-inflammatory and other components of epileptogenesis can contribute to the further development of the therapeutic treatment of drug-resistant epilepsy.
Collapse
|
108
|
Boczek T, Mackiewicz J, Sobolczyk M, Wawrzyniak J, Lisek M, Ferenc B, Guo F, Zylinska L. The Role of G Protein-Coupled Receptors (GPCRs) and Calcium Signaling in Schizophrenia. Focus on GPCRs Activated by Neurotransmitters and Chemokines. Cells 2021; 10:cells10051228. [PMID: 34067760 PMCID: PMC8155952 DOI: 10.3390/cells10051228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/13/2023] Open
Abstract
Schizophrenia is a common debilitating disease characterized by continuous or relapsing episodes of psychosis. Although the molecular mechanisms underlying this psychiatric illness remain incompletely understood, a growing body of clinical, pharmacological, and genetic evidence suggests that G protein-coupled receptors (GPCRs) play a critical role in disease development, progression, and treatment. This pivotal role is further highlighted by the fact that GPCRs are the most common targets for antipsychotic drugs. The GPCRs activation evokes slow synaptic transmission through several downstream pathways, many of them engaging intracellular Ca2+ mobilization. Dysfunctions of the neurotransmitter systems involving the action of GPCRs in the frontal and limbic-related regions are likely to underly the complex picture that includes the whole spectrum of positive and negative schizophrenia symptoms. Therefore, the progress in our understanding of GPCRs function in the control of brain cognitive functions is expected to open new avenues for selective drug development. In this paper, we review and synthesize the recent data regarding the contribution of neurotransmitter-GPCRs signaling to schizophrenia symptomology.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Joanna Mackiewicz
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Marta Sobolczyk
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Julia Wawrzyniak
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
- Correspondence:
| |
Collapse
|
109
|
Bok E, Leem E, Lee BR, Lee JM, Yoo CJ, Lee EM, Kim J. Role of the Lipid Membrane and Membrane Proteins in Tau Pathology. Front Cell Dev Biol 2021; 9:653815. [PMID: 33996814 PMCID: PMC8119898 DOI: 10.3389/fcell.2021.653815] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal accumulation of misfolded tau aggregates is a pathological hallmark of various tauopathies including Alzheimer’s disease (AD). Although tau is a cytosolic microtubule-associated protein enriched in neurons, it is also found in extracellular milieu, such as interstitial fluid, cerebrospinal fluid, and blood. Accumulating evidence showed that pathological tau spreads along anatomically connected areas in the brain through intercellular transmission and templated misfolding, thereby inducing neurodegeneration and cognitive dysfunction. In line with this, the spatiotemporal spreading of tau pathology is closely correlated with cognitive decline in AD patients. Although the secretion and uptake of tau involve multiple different pathways depending on tau species and cell types, a growing body of evidence suggested that tau is largely secreted in a vesicle-free forms. In this regard, the interaction of vesicle-free tau with membrane is gaining growing attention due to its importance for both of tau secretion and uptake as well as aggregation. Here, we review the recent literature on the mechanisms of the tau-membrane interaction and highlights the roles of lipids and proteins at the membrane in the tau-membrane interaction as well as tau aggregation.
Collapse
Affiliation(s)
- Eugene Bok
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Eunju Leem
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Bo-Ram Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Ji Min Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Chang Jae Yoo
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Eun Mi Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
110
|
Caruso G, Benatti C, Musso N, Fresta CG, Fidilio A, Spampinato G, Brunello N, Bucolo C, Drago F, Lunte SM, Peterson BR, Tascedda F, Caraci F. Carnosine Protects Macrophages against the Toxicity of Aβ1-42 Oligomers by Decreasing Oxidative Stress. Biomedicines 2021; 9:biomedicines9050477. [PMID: 33926064 PMCID: PMC8146816 DOI: 10.3390/biomedicines9050477] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous peptide widely distributed in excitable tissues such as the brain. This dipeptide has well-known antioxidant, anti-inflammatory, and anti-aggregation activities, and it may be useful for treatment of neurodegenerative disorders such as Alzheimer’s disease (AD). In this disease, peripheral infiltrating macrophages play a substantial role in the clearance of amyloid beta (Aβ) peptides from the brain. Correspondingly, in patients suffering from AD, defects in the capacity of peripheral macrophages to engulf Aβ have been reported. The effects of carnosine on macrophages and oxidative stress associated with AD are consequently of substantial interest for drug discovery in this field. In the present work, a model of stress induced by Aβ1-42 oligomers was investigated using a combination of methods including trypan blue exclusion, microchip electrophoresis with laser-induced fluorescence, flow cytometry, fluorescence microscopy, and high-throughput quantitative real-time PCR. These assays were used to assess the ability of carnosine to protect macrophage cells, modulate oxidative stress, and profile the expression of genes related to inflammation and pro- and antioxidant systems. We found that pre-treatment of RAW 264.7 macrophages with carnosine counteracted cell death and apoptosis induced by Aβ1-42 oligomers by decreasing oxidative stress as measured by levels of intracellular nitric oxide (NO)/reactive oxygen species (ROS) and production of peroxynitrite. This protective activity of carnosine was not mediated by modulation of the canonical inflammatory pathway but instead can be explained by the well-known antioxidant and free-radical scavenging activities of carnosine, enhanced macrophage phagocytic activity, and the rescue of fractalkine receptor CX3CR1. These new findings obtained with macrophages challenged with Aβ1-42 oligomers, along with the well-known multimodal mechanism of action of carnosine in vitro and in vivo, substantiate the therapeutic potential of this dipeptide in the context of AD pathology.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
- Correspondence: ; Tel.: +39-095-7384265
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (N.B.); (F.T.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Claudia G. Fresta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Annamaria Fidilio
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (N.B.); (F.T.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Blake R. Peterson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (N.B.); (F.T.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
- Department of Laboratories, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
111
|
Wang W, Wang J, Tang Q, Zhu X, Zhu R, Cui D, Wei C, Liu X, Liu X, Ran S, Pan Y, Yu J. CX3CR1 deficiency aggravates brain white matter injury and affects expression of the CD36/15LO/NR4A1 signal. Biochem Biophys Res Commun 2021; 549:47-53. [PMID: 33662668 DOI: 10.1016/j.bbrc.2021.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/12/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To study the effects of CX3CR1 on white matter injury, neurofunction, recognition, and expression of the CD36/15LO/NR4A1 signal in mice with traumatic brain injury (TBI). METHODS CX3CR1GFP/GFP, CX3CR1GFP/+ and C57BL/6 male mice were randomly divided into 3 groups. We used a controlled cortical impact (CCI) to establish a TBI model and T2wt MRI to detect the TBI lesion. FA and DTI allowed for quantitative evaluation of the structural integrity of white matter tracts. Several behavior tests were used to investigate nerve function; a computer-based tracing system was used to trace and analyze dendrites and cell bodies of microglia and astrocytes in the peri-lesional brain areas. We also used RT-PCR and western blot to detect the effect of CX3CL1/CX3CR1 axis on CD36/15LO/NR4A1 signal. RESULTS The fractional anisotropy (FA) at the corpus callosum area of brain was decreased at 3 days post TBI, the average lesion volume CX3CR1GFP/GFP group was increased, and the neurologic deficit scores of mice of Cx3Cr1GFP/+ and wild-type groups were significantly increased compared to Cx3Cr1GFP/GFP group mice. In the Corner turn test, TBI induced impairments in forelimb function that were more severe than Cx3Cr11GFP/+ and wild-type TBI mice. We operated the Y-maze at 3 days post-TBI and the NOR test at 28 days after TBI. There was a significant TBI effect induced in decreased percentage entries into the novel arm in Cx3Cr1GFP/+ and wild-type TBI mice, compared with Cx3Cr1GFP/GFP; Cx3Cr1GFP/+. Wild-type mice showed decreased exploration time in new objects compared with Cx3Cr1GFP/GFP. Those two behavior tests demonstrated that Cx3Cr1 knock-out increased the damage caused by TBI to memory. In the tail suspension and force swimming tests, there was no significant difference between those three groups. CD36 increased in Cx3Cr1GFP/GFP compared with the other three groups at 3 days after TBI. TBI inhibited the expression of NR4A1 at 3 d after damage. Cx3Cr1 deficiency can induce high expression of 15LO, this was unaffected by TBI. CONCLUSION CX3CR1 deletion can enhance white matter injury. It increased the expression of CD36 and 15LO and increased expression of NR4A1. The lack of CX3CR1 can affect the recovery of nerve function.
Collapse
Affiliation(s)
- Wenzhu Wang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jingbo Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Qing Tang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiwen Zhu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Cui
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunzhu Wei
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinjie Liu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingxing Liu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Ran
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzheng Pan
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
| | - Jintao Yu
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
112
|
Pandur E, Pap R, Montskó G, Jánosa G, Sipos K, Kovács GL. Fractalkine enhances endometrial receptivity and activates iron transport towards trophoblast cells in an in vitro co-culture system of HEC-1A and JEG-3 cells. Exp Cell Res 2021; 403:112583. [PMID: 33811904 DOI: 10.1016/j.yexcr.2021.112583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Endometrium receptivity and successful implantation require a complex network of regulatory factors whom production is strictly controlled especially at the implantation window. Many regulators like steroid hormones, prostaglandins, cytokines, extracellular matrix proteins and downstream cell signalling pathways are involved in the process of embryo-endometrium interaction. Our work reveals the effect of fractalkine (FKN), a unique chemokine on progesterone receptor, SOX-17 and NRF2 expressions in HEC-1A endometrial cell line. FKN activates fractalkine receptor signalling and the expression of SOX-17 through progesterone receptor in HEC-1A endometrial cells, and as a consequence it increases endometrial receptivity. Fractalkine also activates the NRF2-Keap-1 signal transduction pathway regulating the IL-6 and IL-1β cytokine productions, which increase endometrial receptivity, as well. The NRF2 transcription factor increases the expression of the iron exporter ferroportin in HEC-1A cells activating iron release towards JEG-3 trophoblast cells. The iron measurements show that iron content of endometrial cells decreases while heme concentration increases at FKN treatment. At the same time, the trophoblast cells show increased iron uptake and total iron content. Based on our results it seems that FKN enhances the establishment of endometrial receptivity and meanwhile it regulates the iron homeostasis of endometrium contributing to the iron availability of the trophoblast cells and the embryo.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus U. 2., Pécs, Hungary.
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus U. 2., Pécs, Hungary.
| | - Gergely Montskó
- Szentágothai Research Centre, University of Pécs, H-7624, Ifjúság út 20., Pécs, Hungary; MTA-PTE Human Reproduction Research Group, University of Pécs, H-7624, Ifjúság út 20., Pécs, Hungary.
| | - Gergely Jánosa
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus U. 2., Pécs, Hungary.
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus U. 2., Pécs, Hungary.
| | - Gábor L Kovács
- Szentágothai Research Centre, University of Pécs, H-7624, Ifjúság út 20., Pécs, Hungary; MTA-PTE Human Reproduction Research Group, University of Pécs, H-7624, Ifjúság út 20., Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, H-7624, Ifjúság út 13., Pécs, Hungary.
| |
Collapse
|
113
|
Morini R, Bizzotto M, Perrucci F, Filipello F, Matteoli M. Strategies and Tools for Studying Microglial-Mediated Synapse Elimination and Refinement. Front Immunol 2021; 12:640937. [PMID: 33708226 PMCID: PMC7940197 DOI: 10.3389/fimmu.2021.640937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 01/14/2023] Open
Abstract
The role of microglia in controlling synapse homeostasis is becoming increasingly recognized by the scientific community. In particular, the microglia-mediated elimination of supernumerary synapses during development lays the basis for the correct formation of neuronal circuits in adulthood, while the possible reactivation of this process in pathological conditions, such as schizophrenia or Alzheimer's Disease, provides a promising target for future therapeutic strategies. The methodological approaches to investigate microglial synaptic engulfment include different in vitro and in vivo settings. Basic in vitro assays, employing isolated microglia and microbeads, apoptotic membranes, liposomes or synaptosomes allow the quantification of the microglia phagocytic abilities, while co-cultures of microglia and neurons, deriving from either WT or genetically modified mice models, provide a relatively manageable setting to investigate the involvement of specific molecular pathways. Further detailed analysis in mice brain is then mandatory to validate the in vitro assays as representative for the in vivo situation. The present review aims to dissect the main technical approaches to investigate microglia-mediated phagocytosis of neuronal and synaptic substrates in critical developmental time windows.
Collapse
Affiliation(s)
- Raffaella Morini
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Matteo Bizzotto
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Fabio Perrucci
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Fabia Filipello
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Consiglio Nazionale Delle Ricerche (CNR), Institute of Neuroscience - URT Humanitas, Rozzano, Italy
| |
Collapse
|
114
|
Inflammatory-Mediated Neuron-Glia Communication Modulates ALS Pathophysiology. J Neurosci 2021; 41:1142-1144. [PMID: 33568447 DOI: 10.1523/jneurosci.1970-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/01/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022] Open
|