101
|
Porro S, Genchi VA, Cignarelli A, Natalicchio A, Laviola L, Giorgino F, Perrini S. Dysmetabolic adipose tissue in obesity: morphological and functional characteristics of adipose stem cells and mature adipocytes in healthy and unhealthy obese subjects. J Endocrinol Invest 2021; 44:921-941. [PMID: 33145726 DOI: 10.1007/s40618-020-01446-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
The way by which subcutaneous adipose tissue (SAT) expands and undergoes remodeling by storing excess lipids through expansion of adipocytes (hypertrophy) or recruitment of new precursor cells (hyperplasia) impacts the risk of developing cardiometabolic and respiratory diseases. In unhealthy obese subjects, insulin resistance, type 2 diabetes, hypertension, and obstructive sleep apnoea are typically associated with pathologic SAT remodeling characterized by adipocyte hypertrophy, as well as chronic inflammation, hypoxia, increased visceral adipose tissue (VAT), and fatty liver. In contrast, metabolically healthy obese individuals are generally associated with SAT development characterized by the presence of smaller and numerous mature adipocytes, and a lower degree of VAT inflammation and ectopic fat accumulation. The remodeling of SAT and VAT is under genetic regulation and influenced by inherent depot-specific differences of adipose tissue-derived stem cells (ASCs). ASCs have multiple functions such as cell renewal, adipogenic capacity, and angiogenic properties, and secrete a variety of bioactive molecules involved in vascular and extracellular matrix remodeling. Understanding the mechanisms regulating the proliferative and adipogenic capacity of ASCs from SAT and VAT in response to excess calorie intake has become a focus of interest over recent decades. Here, we summarize current knowledge about the biological mechanisms able to foster or impair the recruitment and adipogenic differentiation of ASCs during SAT and VAT development, which regulate body fat distribution and favorable or unfavorable metabolic responses.
Collapse
Affiliation(s)
- S Porro
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - V A Genchi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Cignarelli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Natalicchio
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Laviola
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - S Perrini
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|
102
|
Vehicle emissions-exposure alters expression of systemic and tissue-specific components of the renin-angiotensin system and promotes outcomes associated with cardiovascular disease and obesity in wild-type C57BL/6 male mice. Toxicol Rep 2021; 8:846-862. [PMID: 33948438 PMCID: PMC8080412 DOI: 10.1016/j.toxrep.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Vehicle emission-exposure increases systemic and adipose renin-angiotensin signaling. Emission-exposure promotes renal, vascular, and adipocyte AT1 receptor expression. Diet and emission-exposure are associated with adipocyte hypertrophy and weight gain. Emission-exposure promotes expression of adipokines and adipose inflammatory factors. High-fat diet promotes an obese adipose phenotype, exacerbated by emission-exposure.
Exposure to air pollution from traffic-generated sources is known to contribute to the etiology of inflammatory diseases, including cardiovascular disease (CVD) and obesity; however, the signaling pathways involved are still under investigation. Dysregulation of the renin-angiotensin system (RAS) can contribute to CVD and alter lipid storage and inflammation in adipose tissue. Our previous exposure studies revealed that traffic-generated emissions increase RAS signaling, further exacerbated by a high-fat diet. Thus, we investigated the hypothesis that exposure to engine emissions increases systemic and local adipocyte RAS signaling, promoting the expression of factors involved in CVD and obesity. Male C57BL/6 mice (6–8 wk old) were fed either a high-fat (HF, n = 16) or low-fat (LF, n = 16) diet, beginning 30d prior to exposures, and then exposed via inhalation to either filtered air (FA, controls) or a mixture of diesel engine + gasoline engine vehicle emissions (MVE: 100 μg PM/m3) via whole-body inhalation for 6 h/d, 7 d/wk, 30d. Endpoints were assessed via immunofluorescence and RT-qPCR. MVE-exposure promoted vascular adhesion factors (VCAM-1, ICAM-1) expression, monocyte/macrophage sequestration, and oxidative stress in the vasculature, associated with increased angiotensin II receptor type 1 (AT1) expression. In the kidney, MVE-exposure promoted the expression of renin, AT1, and AT2 receptors. In adipose tissue, both HF-diet and MVE-exposure mediated increased epididymal fat pad weight and adipocyte hypertrophy, associated with increased angiotensinogen and AT1 receptor expression; however, these outcomes were further exacerbated in the MVE + HF group. MVE-exposure also induced inflammation, monocyte chemoattractant protein (MCP)-1, and leptin, while reducing insulin receptor and glucose transporter, GLUT4, expression in adipose tissue. Our results indicate that MVE-exposure promotes systemic and local adipose RAS signaling, associated with increased expression of factors contributing to CVD and obesity, further exacerbated by HF diet consumption.
Collapse
Key Words
- ACE, angiotensin converting enzyme
- AGT, angiotensinogen
- AT1, angiotensin II receptor subtype 1
- AT2, angiotensin II receptor subtype 2
- Adipose
- Air pollution
- Ang II, angiotensin II
- CVD
- CVD, cardiovascular disease
- DHE, dihydroethidium
- FA, filtered air (controls)
- GLUT-4, glucose transporter type 4
- HF, high-fat diet
- ICAM-1, intracellular adhesion molecule-1
- IL-6, interleukin-6
- IL-β, interleukin beta
- IR, insulin receptor
- LDL, low density lipoprotein
- LF, low-fat diet
- LOX-1, lectin-like oxidized low-density lipoprotein receptor
- MCP-1, monocyte chemoattractant protein-1
- MOMA-2, anti-monocyte + macrophage antibody
- MVE, mixed gasoline and diesel vehicle emissions
- Obesity
- PM, particulate matter
- RAS, renin-angiotensin system
- ROS, reactive oxygen species
- Renin-angiotensin system
- T2D, type 2 diabetes
- TNF-α, tumor necrosis factor alpha
- VCAM-1, vascular cell adhesion molecule-1
- vWF, Von Willebrand factor
Collapse
|
103
|
Cancer-Associated Adipocytes in Breast Cancer: Causes and Consequences. Int J Mol Sci 2021; 22:ijms22073775. [PMID: 33917351 PMCID: PMC8038661 DOI: 10.3390/ijms22073775] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer progression is highly dependent on the heterotypic interaction between tumor cells and stromal cells of the tumor microenvironment. Cancer-associated adipocytes (CAAs) are emerging as breast cancer cell partners favoring proliferation, invasion, and metastasis. This article discussed the intersection between extracellular signals and the transcriptional cascade that regulates adipocyte differentiation in order to appreciate the molecular pathways that have been described to drive adipocyte dedifferentiation. Moreover, recent studies on the mechanisms through which CAAs affect the progression of breast cancer were reviewed, including adipokine regulation, metabolic reprogramming, extracellular matrix remodeling, and immune cell modulation. An in-depth understanding of the complex vicious cycle between CAAs and breast cancer cells is crucial for designing novel strategies for new therapeutic interventions.
Collapse
|
104
|
Neonatal nicotine exposure changes insulin status in fat depots: sex-related differences. J Dev Orig Health Dis 2021; 13:252-262. [PMID: 33818369 DOI: 10.1017/s2040174421000131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nicotine is the main psychoactive substance present in cigarette smoke that is transferred to the baby by breast milk. In rats, maternal nicotine exposure during breastfeeding induces obesogenesis and hormone dysfunctions in adult male offspring. As glucocorticoid (GC), insulin, and vitamin D change both adipogenesis and lipogenesis processes, we assessed parameters related to metabolism and action of these hormones in visceral and subcutaneous adipose tissues (VAT and SAT) of adult male and female rats in a model of neonatal nicotine exposure. At postnatal (PN) day 2, dams were kept with six pups (three per sex) and divided into nicotine and control groups for implantation of osmotic minipumps that released 6 mg/kg nicotine or saline, respectively. At PN180, fat mass, hormone levels, and protein contents of biomarkers of the GC activation and receptor (11beta-hydroxysteroid dehydrogenase type 1 and glucocorticoid receptor alpha), insulin signaling pathway [insulin receptor beta (IRβ), phosphorylated insulin receptor substrate 1, insulin receptor substrate 1 (IRS1), phosphorylated serine/threonine kinase (pAKT), serine/threonine kinase, glucose transporter type 4 (GLUT4)], and vitamin D activation and receptor (1α-hydroxylase and vitamin D receptor) were evaluated. While nicotine-exposed males showed increased fat mass, hypercorticosteronemia, hyperinsulinemia, and higher 25-hydroxyvitamin D, these alterations were not observed in nicotine-exposed females. Nicotine-exposed males only showed lower IRS1 in VAT, while the females had hyperglycemia, higher pAKT in VAT, while lower IRβ, IRS1, and GLUT4 in SAT. Parameters related to metabolism and action of GC and vitamin D were unaltered in both sexes. We evidence that exposure exclusively to nicotine during breastfeeding affects the hormone status and fat depots of the adult progeny in a sex-dependent manner.
Collapse
|
105
|
Carpentier AC. 100 th anniversary of the discovery of insulin perspective: insulin and adipose tissue fatty acid metabolism. Am J Physiol Endocrinol Metab 2021; 320:E653-E670. [PMID: 33522398 DOI: 10.1152/ajpendo.00620.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin inhibits systemic nonesterified fatty acid (NEFA) flux to a greater degree than glucose or any other metabolite. This remarkable effect is mainly due to insulin-mediated inhibition of intracellular triglyceride (TG) lipolysis in adipose tissues and is essential to prevent diabetic ketoacidosis, but also to limit the potential lipotoxic effects of NEFA in lean tissues that contribute to the development of diabetes complications. Insulin also regulates adipose tissue fatty acid esterification, glycerol and TG synthesis, lipogenesis, and possibly oxidation, contributing to the trapping of dietary fatty acids in the postprandial state. Excess NEFA flux at a given insulin level has been used to define in vivo adipose tissue insulin resistance. Adipose tissue insulin resistance defined in this fashion has been associated with several dysmetabolic features and complications of diabetes, but the mechanistic significance of this concept is not fully understood. This review focusses on the in vivo regulation of adipose tissue fatty acid metabolism by insulin and the mechanistic significance of the current definition of adipose tissue insulin resistance. One hundred years after the discovery of insulin and despite decades of investigations, much is still to be understood about the multifaceted in vivo actions of this hormone on adipose tissue fatty acid metabolism.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
106
|
Han HS, Lee HH, Gil HS, Chung KS, Kim JK, Kim DH, Yoon J, Chung EK, Lee JK, Yang WM, Shin YK, Ahn HS, Lee SH, Lee KT. Standardized hot water extract from the leaves of Hydrangea serrata (Thunb.) Ser. alleviates obesity via the AMPK pathway and modulation of the gut microbiota composition in high fat diet-induced obese mice. Food Funct 2021; 12:2672-2685. [PMID: 33656018 DOI: 10.1039/d0fo02185g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Obesity is an increasing health problem worldwide as it is the major risk factor for metabolic diseases. In the present study, we investigated the anti-obesity effects of WHS by examining its effects on high fat diet (HFD)-induced obese mice. Male C57BL/6 mice were fed either a normal diet (ND) or a high fat diet (HFD) with or without WHS. At the end of the experiment, we observed the changes in their body weight and white adipose tissue (WAT) weight and lipid profiles in plasma. We performed western blot and histological analyses of WAT and liver to elucidate the molecular mechanisms of action. We also conducted fecal 16S rRNA analysis for investigating the gut microbiota. Our results indicated that pre- and post-oral administration of WHS significantly prevented body weight gain and reduced body fat weight in HFD-induced obese mice. In addition, WHS was found to improve adipocyte hypertrophy and liver fat accumulation by regulating the AMPK and AKT/mTOR pathways. WHS ameliorated hyperlipidemia by reducing total cholesterol and low-density lipoprotein (LDL) and decreased the energy metabolism-related hormones, leptin and insulin, in mouse plasma. Furthermore, we found that WHS modulated gut dysbiosis by normalizing HFD-induced changes. Taken together, our in vivo data implicate that WHS can be considered as a potential dietary supplement for alleviating obesity.
Collapse
Affiliation(s)
- Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
The nuclear retinoid-related orphan receptor RORα controls adipose tissue inflammation in patients with morbid obesity and diabetes. Int J Obes (Lond) 2021; 45:1369-1381. [PMID: 33637954 DOI: 10.1038/s41366-021-00787-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIMS Inflammation governs adipose tissue (AT) dysfunction in obesity. Retinoic acid receptor-related orphan receptor alpha (RORα) is associated with inflammation and insulin resistance in animal studies, but its role in human obesity remains elusive. We investigated the expression and function of RORα on AT inflammation in patients with morbid obesity with/without diabetes. SUBJECTS/METHODS We assessed RORα expression in paired biopsies of subcutaneous and omental AT from 41 patients (body mass index (BMI) 43.3 ± 0.8 kg/m2) during Roux-en-Y-gastric surgery and explored the functional consequences of pharmacological RORα blockade in AT ex vivo. RESULTS RORα expression was significantly higher in omental AT than in subcutaneous AT (p = 0.03) and was positively associated with BMI (r = 0.344, p = 0.027) and homeostasis model assessment of insulin resistance (r = 0.319, p = 0.041). In ex vivo assays, IL-8/CXCL8 and MCP-1/CCL2 chemokine release was significantly higher in omental fat explants from diabetic patients than from non-diabetics and was significantly diminished by RORα blockade (p < 0.05). Inhibition of RORα improved protein kinase B signaling and decreased NF-κB activity in omental AT from patients with diabetes (p < 0.05). Under dynamic flow conditions, RORα blockade prevented mononuclear cell attachment to human dysfunctional endothelial cells. CONCLUSIONS RORα blockade represents a potential therapy to prevent AT dysfunction and inflammation associated with insulin resistance in human obesity.
Collapse
|
108
|
Chen X, Raza SHA, Ma X, Wang J, Wang X, Liang C, Yang X, Mei C, Suhail SM, Zan L. Bovine Pre-adipocyte Adipogenesis Is Regulated by bta-miR-150 Through mTOR Signaling. Front Genet 2021; 12:636550. [PMID: 33633792 PMCID: PMC7901978 DOI: 10.3389/fgene.2021.636550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Micro RNA (miR) are recognized for their important roles in biological processes, particularly in regulatory componentization. Among the miR, miR-150 has been the focus of intense scrutiny, mostly due to its role in malignant tumors. A comparison between steer and bull adipose tissues identified bta-miR-150 as one of the nine downregulated miRNAs, although its function remains unknown (GEO:GSE75063). The present study aimed to further characterize the role of bta-miR-150 in cattle. bta-miR-150 has a negative regulatory effect on the differentiation of bovine adipocytes and promotes proliferation. Overexpression of bta-miR-150 can promote mRNA and protein expression of the marker genes CDK1, CDK2, and PCNA, increase the number of EdU-stained cells, promote adipocyte proliferation, inhibit adipocyte differentiation, and reduce lipid droplet formation. Results of RNA-seq and WGCNA analyses showed that the mammalian target of the rapamycin signaling pathway, which plays a major regulatory role, is dysregulated by the overexpression and inhibition of miR-150. We found that the target gene of bta-miR-150 is AKT1 and that bta-miR-150 affects AKT1 phosphorylation levels. These results showed that bta-miR-150 plays a role in adipogenic differentiation and might therefore have applications in the beef industry.
Collapse
Affiliation(s)
- Xingyi Chen
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | | | - Xinhao Ma
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jiangfang Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xinran Yang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,National Beef Cattle Improvement Center, Northwest A&F University, Xianyang, China
| |
Collapse
|
109
|
Scully T, Ettela A, LeRoith D, Gallagher EJ. Obesity, Type 2 Diabetes, and Cancer Risk. Front Oncol 2021; 10:615375. [PMID: 33604295 PMCID: PMC7884814 DOI: 10.3389/fonc.2020.615375] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity and type 2 diabetes have both been associated with increased cancer risk and are becoming increasingly prevalent. Metabolic abnormalities such as insulin resistance and dyslipidemia are associated with both obesity and type 2 diabetes and have been implicated in the obesity-cancer relationship. Multiple mechanisms have been proposed to link obesity and diabetes with cancer progression, including an increase in insulin/IGF-1 signaling, lipid and glucose uptake and metabolism, alterations in the profile of cytokines, chemokines, and adipokines, as well as changes in the adipose tissue directly adjacent to the cancer sites. This review aims to summarize and provide an update on the epidemiological and mechanistic evidence linking obesity and type 2 diabetes with cancer, focusing on the roles of insulin, lipids, and adipose tissue.
Collapse
Affiliation(s)
- Tiffany Scully
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Abora Ettela
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Emily Jane Gallagher
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| |
Collapse
|
110
|
Strobel HA, Gerton T, Hoying JB. Vascularized adipocyte organoid model using isolated human microvessel fragments. Biofabrication 2021; 13. [PMID: 33513595 DOI: 10.1088/1758-5090/abe187] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Tissue organoids are proving valuable for modeling tissue health and disease in a variety of applications. This is due, in part, to the dynamic cell-cell interactions fostered within the 3D tissue-like space. To this end, the more that organoids recapitulate the different cell-cell interactions found in native tissue, such as that between parenchyma and the microvasculature, the better the fidelity of the model. The microvasculature, which is comprised of a spectrum of cell types, provides not only perfusion in its support of tissue health, but also important cellular interactions and biochemical dynamics important in tissue phenotype and function. Here, we incorporate whole, intact human microvessel fragments isolated from adipose tissue into organoids to form both MSC and adipocyte vascularized organoids. Isolated microvessels retain their native structure and cell composition, providing a more complete representation of the microvasculature within the organoids. Microvessels expanded via sprouting angiogenesis within organoids comprised of either MSCs or MSC-derived adipocytes and grew out of the organoids when placed in a 3D collagen matrix. In MSC organoids, a ratio of 50 MSCs to 1 microvessel fragment created the optimal vascularization response. We developed a new differentiation protocol that enabled the differentiation of MSCs into adipocytes while simultaneously promoting microvessel angiogenesis. The adipocyte organoids contained vascular networks, were responsive in a lipolysis assay, and expressed the functional adipocyte markers adiponectin and PPARγ. The presence of microvessels promoted insulin receptor expression by adipocytes and modified IL-6 secretion following a TNF-alpha challenge. Overall, we demonstrate a robust method for vascularizing high cell-density organoids with potential implications for other tissues as well.
Collapse
Affiliation(s)
- Hannah A Strobel
- Advanced Solutions Life Sciences, 500 N Commercial Street, Suite 200, Manchester, Manchester, New Hampshire, 03101, UNITED STATES
| | - Thomas Gerton
- Advanced Solutions Life Sciences, 500 N Commercial Street, Suite 200, Manchester, Manchester, New Hampshire, 03101, UNITED STATES
| | - James B Hoying
- Advanced Solutions Life Sciences, 500 N Commercial St, United States, Manchester, New Hampshire, 03101, UNITED STATES
| |
Collapse
|
111
|
Herrero-Aguayo V, Jiménez-Vacas JM, Sáez-Martínez P, Gómez-Gómez E, López-Cánovas JL, Garrido-Sánchez L, Herrera-Martínez AD, García-Bermejo L, Macías-González M, López-Miranda J, Castaño JP, Gahete MD, Luque RM. Influence of Obesity in the miRNome: miR-4454, a Key Regulator of Insulin Response Via Splicing Modulation in Prostate. J Clin Endocrinol Metab 2021; 106:e469-e484. [PMID: 32841353 DOI: 10.1210/clinem/dgaa580] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT Obesity is a major health problem associated with severe comorbidities, including type 2 diabetes and cancer, wherein microRNAs (miRNAs) might be useful as diagnostic/prognostic tools or therapeutic targets. OBJECTIVE To explore the differential expression pattern of miRNAs in obesity and their putative role in obesity-related comorbidities such as insulin resistance. METHODS An Affymetrix-miRNA array was performed in plasma samples from normoweight (n = 4/body mass index < 25) and obese subjects (n = 4/body mass index > 30). The main changes were validated in 2 independent cohorts (n = 221/n = 18). Additionally, in silico approaches were performed and in vitro assays applied in tissue samples and prostate (RWPE-1) and liver (HepG2) cell-lines. RESULTS A total of 26 microRNAs were altered (P < 0.01) in plasma of obese subjects compared to controls using the Affymetrix-miRNA array. Validation in ampler cohorts revealed that miR-4454 levels were consistently higher in obesity, associated with insulin-resistance (Homeostatic Model Assessment of Insulin Resistance/insulin) and modulated by medical (metformin/statins) and surgical (bariatric surgery) strategies. miR-4454 was highly expressed in prostate and liver tissues and its expression was increased in prostate and liver cells by insulin. In vitro, overexpression of miR-4454 in prostate cells resulted in decreased expression levels of INSR, GLUT4, and phosphorylation of AMPK/AKT/ERK, as well as in altered expression of key spliceosome components (ESRP1/ESRP2/RBM45/RNU2) and insulin-receptor splicing variants. CONCLUSIONS Obesity was associated to an alteration of the plasmatic miRNA landscape, wherein miR-4454 levels were higher, associated with insulin-resistance and modulated by obesity-controlling interventions. Insulin regulated miR-4454, which, in turn may impair the cellular response to insulin, in a cell type-dependent manner (i.e., prostate gland), by modulating the splicing process.
Collapse
Affiliation(s)
- Vicente Herrero-Aguayo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Juan L López-Cánovas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Lourdes Garrido-Sánchez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Unidad de Gestión Clínica y Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria), Universidad de Málaga, Málaga, Spain
| | - Aura D Herrera-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Service of Endocrinology and Nutrition, Córdoba, Spain
| | | | - Manuel Macías-González
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Unidad de Gestión Clínica y Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria), Universidad de Málaga, Málaga, Spain
| | - José López-Miranda
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Lipids and Atherosclerosis Unit, Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| |
Collapse
|
112
|
Treatment with a dual amylin and calcitonin receptor agonist improves metabolic health in an old, obese, and ovariectomized rat model. ACTA ACUST UNITED AC 2021; 28:423-430. [PMID: 33399320 PMCID: PMC8284344 DOI: 10.1097/gme.0000000000001722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objectives: Menopause is often characterized by detrimental metabolic changes, such as obesity, insulin resistance, and impaired glucose tolerance, often requiring treatment. KeyBioscience Peptides (KBPs) are Dual Amylin and Calcitonin Receptor Agonists which have shown promising metabolic effects in rats. The objective of this study was to investigate the in vivo effect of KBP on the metabolic health in a model driven by unhealthy diet, age, and menopause. Methods: Female Sprague Dawley rats were fed a high-fat diet (HFD) for 3 months before the initiation of the study. At 6 months of age the rats were randomized into groups (n = 12) and subjected to ovariectomy surgery and treatment with KBP: (1) Lean-Sham, (2) HFD-Sham, (3) Lean-OVX, (4) HFD-OVX, (5) HFD-OVX-KBP (10 μg/kg/d), (6) HFD-OVX-KBP (20 μg/kg/d), (7) HFD-OVX-EE2 (30 μg/d 17a-ethynylestradiol). Body weight, food intake, oral glucose tolerance tests (OGTTs), subcutaneous fat, visceral fat, liver weight, and uterus weight were assessed during the 6-month study. Statistical analyses were conducted by one-way ANOVA with Tukey post-hoc test for multiple comparisons. Results: Combination of OVX and HFD led to significant induction of obesity (31% weight increase, P < 0.001) and insulin resistance (13% increase in tAUCglucose during OGTT P < 0.01) compared with the relevant control groups (P < 0.05), and this could be completely rescued by EE2 therapy confirming the model system (P < 0.05). Treatment of OVX-HFD rats with KBP for 26 weeks led to a significant reduction in body weight (13%, P < 0.001) in the high dose and 9% (P < 0.01) in the low dose, with corresponding improvements in fat depot sizes, all compared with HFD-OVX controls. As expected, food intake was suppressed, albeit mainly in the first 2 weeks of treatment, resulting in a reduction of overall caloric intake by 6.5% (P < 0.01) and 12.5% (P < 0.001) in the low and high doses respectively. Furthermore, treatment with KBP reduced the weight of visceral and subcutaneous fat tissues. Finally, KBP treatment significantly improved glucose tolerance, assessed using OGTTs at weeks 8, 16, and 24. Conclusions: The data presented here clearly indicate a positive and sustained effect of KBP treatment on body weight loss, fat depot size, and improved glucose tolerance, illustrating the potential of KBPs as treatments for metabolic complications of overweight and menopause.
Collapse
|
113
|
Izar MCDO, Lottenberg AM, Giraldez VZR, Santos Filho RDD, Machado RM, Bertolami A, Assad MHV, Saraiva JFK, Faludi AA, Moreira ASB, Geloneze B, Magnoni CD, Scherr C, Amaral CK, Araújo DBD, Cintra DEC, Nakandakare ER, Fonseca FAH, Mota ICP, Santos JED, Kato JT, Beda LMM, Vieira LP, Bertolami MC, Rogero MM, Lavrador MSF, Nakasato M, Damasceno NRT, Alves RJ, Lara RS, Costa RP, Machado VA. Position Statement on Fat Consumption and Cardiovascular Health - 2021. Arq Bras Cardiol 2021; 116:160-212. [PMID: 33566983 PMCID: PMC8159504 DOI: 10.36660/abc.20201340] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Ana Maria Lottenberg
- Hospital Israelita Albert Einstein (HIAE) - Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), São Paulo, SP - Brasil
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10),São Paulo, São Paulo, SP - Brasil
| | - Viviane Zorzanelli Rocha Giraldez
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP),São Paulo, São Paulo, SP - Brasil
| | - Raul Dias Dos Santos Filho
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP),São Paulo, São Paulo, SP - Brasil
| | - Roberta Marcondes Machado
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10),São Paulo, São Paulo, SP - Brasil
| | - Adriana Bertolami
- Instituto Dante Pazzanese de Cardiologia, São Paulo, São Paulo, SP - Brasil
| | | | | | - André Arpad Faludi
- Instituto Dante Pazzanese de Cardiologia, São Paulo, São Paulo, SP - Brasil
| | | | - Bruno Geloneze
- Universidade Estadual de Campinas (UNICAMP), Campinas, SP - Brasil
| | | | | | | | | | | | | | | | | | | | | | - Lis Mie Misuzawa Beda
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10),São Paulo, São Paulo, SP - Brasil
| | | | | | | | | | - Miyoko Nakasato
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP),São Paulo, São Paulo, SP - Brasil
| | | | - Renato Jorge Alves
- Santa Casa de Misericórdia de São Paulo, São Paulo, São Paulo, SP - Brasil
| | - Roberta Soares Lara
- Núcleo de Alimentação e Nutrição da Sociedade Brasileira de Cardiologia, Rio de Janeiro, RJ - Brasil
| | | | | |
Collapse
|
114
|
Exploring cellular markers of metabolic syndrome in peripheral blood mononuclear cells across the neuropsychiatric spectrum. Brain Behav Immun 2021; 91:673-682. [PMID: 32898636 DOI: 10.1016/j.bbi.2020.07.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Recent evidence suggests that comorbidities between neuropsychiatric conditions and metabolic syndrome may precede and even exacerbate long-term side-effects of psychiatric medication, such as a higher risk of type 2 diabetes and cardiovascular disease, which result in increased mortality. In the present study we compare the expression of key metabolic proteins, including the insulin receptor (CD220), glucose transporter 1 (GLUT1) and fatty acid translocase (CD36), on peripheral blood mononuclear cell subtypes from patients across the neuropsychiatric spectrum, including schizophrenia, bipolar disorder, major depression and autism spectrum conditions (n = 25/condition), relative to typical controls (n = 100). This revealed alterations in the expression of these proteins that were specific to schizophrenia. Further characterization of metabolic alterations in an extended cohort of first-onset antipsychotic drug-naïve schizophrenia patients (n = 58) and controls (n = 63) revealed that the relationship between insulin receptor expression in monocytes and physiological insulin sensitivity was disrupted in schizophrenia and that altered expression of the insulin receptor was associated with whole genome polygenic risk scores for schizophrenia. Finally, longitudinal follow-up of the schizophrenia patients over the course of antipsychotic drug treatment revealed that peripheral metabolic markers predicted changes in psychopathology and the principal side effect of weight gain at clinically relevant time points. These findings suggest that peripheral blood cells can provide an accessible surrogate model for metabolic alterations in schizophrenia and have the potential to stratify subgroups of patients with different clinical outcomes or a greater risk of developing metabolic complications following antipsychotic therapy.
Collapse
|
115
|
Vhora N, Naskar U, Hiray A, Kate AS, Jain A. Recent Advances in In-Vitro Assays for Type 2 Diabetes Mellitus: An Overview. Rev Diabet Stud 2020; 16:13-23. [PMID: 33905469 PMCID: PMC9380092 DOI: 10.1900/rds.2020.16.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/12/2020] [Accepted: 10/17/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND A higher rate of attenuation of molecules in drug discovery has enabled pharmaceutical companies to enhance the efficiency of their hit identification and lead optimization. Selection and development of appropriate in-vitro and in-vivo strategies may improve this process as primary and secondary screening utilize both strategies. In-vivo approaches are too relentless and expensive for assessing hits. Therefore, it has become indispensable to develop and implement suitable in-vitro screening methods to execute the required activities and meet the respective targets. However, the selection of an appropriate in-vitro assay for specific evaluation of cellular activity is no trivial task. It requires thorough investigation of the various parameters involved. AIM In this review, we aim to discuss in-vitro assays for type 2 diabetes (T2D), which have been utilized extensively by researchers over the last five years, including target-based, non-target based, low-throughput, and high-throughput screening assays. METHODS The literature search was conducted using databases including Scifinder, PubMed, ScienceDirect, and Google Scholar to find the significant published articles. DISCUSSION AND CONCLUSION The accuracy and relevance of in-vitro assays have a significant impact on the drug discovery process for T2D, especially in assessing the antidiabetic activity of compounds and identifying the site of effect in high-throughput screening. The report reviews the advantages, limitations, quality parameters, and applications of the probed in-vitro assays, and compares them with one another to enable the selection of the optimal method for any purpose. The information on these assays will accelerate numerous procedures in the drug development process with consistent quality and accuracy.
Collapse
Affiliation(s)
- Nazmina Vhora
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
- These authors contributed equally
| | - Ujjal Naskar
- These authors contributed equally
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Aishwarya Hiray
- These authors contributed equally
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Abhijeet S. Kate
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
- Department of Bioengineering, Birla Institute of Technology Mesra, India
| |
Collapse
|
116
|
Zhou Y, Chen J, Li LH, Chen L. β-elemene down-regulates HIF-lα, VEGF and iNOS in human retinal pigment epithelial cells under high glucose conditions. Int J Ophthalmol 2020; 13:1887-1894. [PMID: 33344186 DOI: 10.18240/ijo.2020.12.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
AIM To investigate the effects and mechanism of β-elemene on the expressions of hypoxia-inducible factor-1α (HIF-lα), vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS) in human retinal pigment epithelial (RPE) cells under high glucose conditions. METHODS ARPE-19 cell line was cultured under eight conditions: 1) low glucose (LG; 5.5 mmol/L); 2) high glucose (HG; 33 mmol/L); 3) high glucose with 20 µg/mL β-elemene (HG+20E); 4) high glucose with 40 µg/mL β-elemene (HG+40E); 5) high glucose with SB203590 [HG+SB203590, p38-mitogen-activated protein kinase (p38-MAPK) pathway inhibitor]; 6) high glucose with LY294002 [HG+LY294002, phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway inhibitor]; 7) high glucose with 40 µg/mL β-elemene and SB203590 (HG+40E+SB203590); and 8) high glucose with 40 µg/mL β-elemene and LY294002 (HG+40E+LY294002). Cells were treated in conditions 1-4 for 24 and 48h, while for 48h in conditions 5-8. Then mRNA and protein levels of HIF-1α, VEGF and iNOS in cells were measured by real-time polymerase chain reaction (qPCR), immunofluorescence and Western blotting, respectively. Furthermore, protein levels of total p38-MAPK, phosphorylated p38-MAPK (p38-MAPK-P), total Akt and phosphorylated Akt (Akt-P) in cells of conditions 2 and 4 which treated for 48h were measured by Western blotting. RESULTS The mRNA levels and protein levels of HIF-1α, VEGF and iNOS in cells were significantly reduced in conditions 3-8 when compared with those in condition 2 (P<0.05). These reductions were more obvious in conditions treated for 48h than in conditions treated for 24h. The protein levels of p38-MAPK-P and Akt-P in cells of condition 4 were significantly lower than in condition 2 (P<0.01). CONCLUSION β-elemene down-regulates HIF-1α, VEGF and iNOS in ARPE-19 cells under a high glucose condition. The inhibitory effect of β-elemene is more significant when its concentration and treatment time are increased, as well as it is combined with SB203590 or LY294002 treatment. P38-MAPK and PI3K/Akt signaling pathways may play a role in this inhibitory effect.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Jun Chen
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Hua Li
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Lei Chen
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
117
|
Lee J, Walter MF, Korach KS, Noguchi CT. Erythropoietin reduces fat mass in female mice lacking estrogen receptor alpha. Mol Metab 2020; 45:101142. [PMID: 33309599 PMCID: PMC7809438 DOI: 10.1016/j.molmet.2020.101142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Erythropoietin (EPO), the cytokine required for erythropoiesis, contributes to metabolic regulation of fat mass and glycemic control. EPO treatment in mice on high-fat diets (HFD) improved glucose tolerance and decreased body weight gain via reduced fat mass in males and ovariectomized females. The decreased fat accumulation with EPO treatment during HFD in ovariectomized females was abrogated with estradiol supplementation, providing evidence for estrogen-related gender-specific EPO action in metabolic regulation. In this study, we examined the cross-talk between estrogen mediated through estrogen receptor α (ERα) and EPO for the regulation of glucose metabolism and fat mass accumulation. Methods Wild-type (WT) mice and mouse models with ERα knockout (ERα−/−) and targeted deletion of ERα in adipose tissue (ERαadipoKO) were used to examine EPO treatment during high-fat diet feeding and after diet-induced obesity. Results ERα−/− mice on HFD exhibited increased fat mass and glucose intolerance. EPO treatment on HFD reduced fat accumulation in male WT and ERα−/− mice and female ERα−/− mice but not female WT mice. EPO reduced HFD increase in adipocyte size in WT mice but not in mice with deletion of ERα independent of EPO-stimulated reduction in fat mass. EPO treatment also improved glucose and insulin tolerance significantly greater in female ERα−/− mice and female ERαadipoKO compared with WT controls. Increased metabolic activity by EPO was associated with browning of white adipocytes as shown by reductions in white fat-associated genes and induction of brown fat-specific uncoupling protein 1 (UCP1). Conclusions This study clearly identified the role of estrogen signaling in modifying EPO regulation of glucose metabolism and the sex-differential EPO effect on fat mass regulation. Cross-talk between EPO and estrogen was implicated for metabolic homeostasis and regulation of body mass in female mice. Erythropoietin regulates fat mass in male but not female mice on high-fat diets. Female estrogen receptor alpha deletion restores erythropoietin fat mass regulation. Estrogen receptor alpha deletion increases erythropoietin regulation of glucose tolerance. Erythropoietin reduced white fat-associated genes and increased uncoupling protein 1. Erythropoietin and estrogen cross-talk is implicated for metabolic homeostasis.
Collapse
Affiliation(s)
- Jeeyoung Lee
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary F Walter
- Clinical Laboratory Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
118
|
Neurochemical regulators of food behavior for pharmacological treatment of obesity: current status and future prospects. Future Med Chem 2020; 12:1865-1884. [PMID: 33040605 DOI: 10.4155/fmc-2019-0361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In recent decades, obesity has become a pandemic disease and appears to be an ultimate medical and social problem. Existing antiobesity drugs show low efficiency and a wide variety of side effects. In this review, we discuss possible mechanisms underlying brain-gut-adipose tissue axis, as well as molecular biochemical characteristics of various neurochemical regulators of body weight and appetite. Multiple brain regions are responsible for eating behavior, hedonic eating and food addiction. The existing pharmacological targets for treatment of obesity were reviewed as well.
Collapse
|
119
|
Guerra B, Issinger OG. Role of Protein Kinase CK2 in Aberrant Lipid Metabolism in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13100292. [PMID: 33027921 PMCID: PMC7601870 DOI: 10.3390/ph13100292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Uncontrolled proliferation is a feature defining cancer and it is linked to the ability of cancer cells to effectively adapt their metabolic needs in response to a harsh tumor environment. Metabolic reprogramming is considered a hallmark of cancer and includes increased glucose uptake and processing, and increased glutamine utilization, but also the deregulation of lipid and cholesterol-associated signal transduction, as highlighted in recent years. In the first part of the review, we will (i) provide an overview of the major types of lipids found in eukaryotic cells and their importance as mediators of intracellular signaling pathways (ii) analyze the main metabolic changes occurring in cancer development and the role of oncogenic signaling in supporting aberrant lipid metabolism and (iii) discuss combination strategies as powerful new approaches to cancer treatment. The second part of the review will address the emerging role of CK2, a conserved serine/threonine protein kinase, in lipid homeostasis with an emphasis regarding its function in lipogenesis and adipogenesis. Evidence will be provided that CK2 regulates these processes at multiple levels. This suggests that its pharmacological inhibition combined with dietary restrictions and/or inhibitors of metabolic targets could represent an effective way to undermine the dependency of cancer cells on lipids to interfere with tumor progression.
Collapse
|
120
|
Herst PM, Aars J, Joly Beauparlant C, Bodein A, Dalvai M, Gagné D, Droit A, Bailey JL, Routti H. Adipose Tissue Transcriptome Is Related to Pollutant Exposure in Polar Bear Mother-Cub Pairs from Svalbard, Norway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11365-11375. [PMID: 32808525 DOI: 10.1021/acs.est.0c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Being at the food chain apex, polar bears (Ursus maritimus) are highly contaminated with persistent organic pollutants (POPs). Females transfer POPs to their offspring through gestation and lactation; therefore, young cubs present higher POPs concentrations than their mothers. Recent studies suggest that POPs affect the lipid metabolism in female polar bears; however, the mechanisms and impact on their offspring remain unknown. Here, we hypothesized that exposure to POPs differentially alters genome-wide gene transcription in the adipose tissue from mother polar bears and their cubs, highlighting molecular differences in response between adults and young. Adipose tissue biopsies were collected from 13 adult female polar bears and their twin cubs in Svalbard, Norway, in April 2011, 2012, and 2013. Total RNA extracted from biopsies was subjected to next-generation RNA sequencing. Plasma concentrations of summed polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers in mothers ranged from 897 to 13620 ng/g wet weight and were associated with altered adipose tissue gene expression in both mothers and cubs. In mothers, 2502 and 2586 genes in total were positively and negatively, respectively, correlated to POP exposure, whereas in cubs, 2585 positively and 1690 negatively genes. Between mothers and cubs, 743 positively and negatively genes overlapped between mothers and cubs suggesting partially shared molecular responses to ΣPOPs. ΣPOP-associated genes were involved in numerous metabolic pathways in mothers and cubs, indicating that POP exposure alters the energy metabolism, which, in turn, may be linked to metabolic dysfunction.
Collapse
Affiliation(s)
- Pauline M Herst
- Department of Animal Sciences, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Laval University, Quebec City G1V 0A6, Canada
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - Charles Joly Beauparlant
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Laval University, Quebec City G1V 0A6, Canada
| | - Antoine Bodein
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Laval University, Quebec City G1V 0A6, Canada
| | - Mathieu Dalvai
- Department of Animal Sciences, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Laval University, Quebec City G1V 0A6, Canada
| | - Dominic Gagné
- Department of Animal Sciences, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Laval University, Quebec City G1V 0A6, Canada
| | - Arnaud Droit
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Laval University, Quebec City G1V 0A6, Canada
| | - Janice L Bailey
- Department of Animal Sciences, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Laval University, Quebec City G1V 0A6, Canada
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| |
Collapse
|
121
|
Onogi Y, Khalil AEMM, Ussar S. Identification and characterization of adipose surface epitopes. Biochem J 2020; 477:2509-2541. [PMID: 32648930 PMCID: PMC7360119 DOI: 10.1042/bcj20190462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Adipose tissue is a central regulator of metabolism and an important pharmacological target to treat the metabolic consequences of obesity, such as insulin resistance and dyslipidemia. Among the various cellular compartments, the adipocyte cell surface is especially appealing as a drug target as it contains various proteins that when activated or inhibited promote adipocyte health, change its endocrine function and eventually maintain or restore whole-body insulin sensitivity. In addition, cell surface proteins are readily accessible by various drug classes. However, targeting individual cell surface proteins in adipocytes has been difficult due to important functions of these proteins outside adipose tissue, raising various safety concerns. Thus, one of the biggest challenges is the lack of adipose selective surface proteins and/or targeting reagents. Here, we discuss several receptor families with an important function in adipogenesis and mature adipocytes to highlight the complexity at the cell surface and illustrate the problems with identifying adipose selective proteins. We then discuss that, while no unique adipocyte surface protein might exist, how splicing, posttranslational modifications as well as protein/protein interactions can create enormous diversity at the cell surface that vastly expands the space of potentially unique epitopes and how these selective epitopes can be identified and targeted.
Collapse
Affiliation(s)
- Yasuhiro Onogi
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ahmed Elagamy Mohamed Mahmoud Khalil
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Siegfried Ussar
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
122
|
Tissue-specific disruption of Kbtbd2 uncovers adipocyte-intrinsic and -extrinsic features of the teeny lipodystrophy syndrome. Proc Natl Acad Sci U S A 2020; 117:11829-11835. [PMID: 32381739 PMCID: PMC7260979 DOI: 10.1073/pnas.2000118117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To examine the function of KBTBD2 in different cell types, we knocked the gene out in adipocytes, liver, and muscle cells. None of these conditional knockouts could reproduce the growth retardation observed in mice with a global knockout. An adipose tissue-specific knockout was similar to a global knockout in most respects; however, hyperglycemia was less severe and hyperinsulinemia was more sustained. An adipose tissue-specific knockout caused insulin resistance in other tissues, demonstrating an adipose-extrinsic effect of the mutation. Loss of KBTBD2 in all tissues causes the teeny phenotype, characterized by insulin resistance with late failure of insulin production, severe hyperglycemia/diabetes, lipodystrophy, hepatosteatosis, and growth retardation. KBTBD2 maintains insulin sensitivity in adipocytes by restricting the abundance of p85α. However, the possible physiological contribution or contributions of KBTBD2 have not yet been examined in other tissues. Here we show that mice with an adipocyte-specific knockout of Kbtbd2 accumulate p85α in white and brown adipose tissues, causing insulin resistance, moderate rather than severe hyperglycemia, sustained hyperinsulinemia without late failure of insulin production, and lipodystrophy leading to ectopic lipid accumulation in the liver. Adipocyte-extrinsic insulin resistance was observed in liver and muscle. None of these abnormalities were observed in liver- or muscle-specific Kbtbd2 knockout mice. Mice with Kbtbd2 knockout in adipocytes, liver, and muscle all showed normal growth, suggesting that KBTBD2 may be necessary to ensure IGF1 signaling in other tissues, notably bone. While much of the teeny phenotype results from loss of KBTBD2 in adipocytes, some features are adipocyte-extrinsic.
Collapse
|
123
|
Hopkins BD, Goncalves MD, Cantley LC. Insulin-PI3K signalling: an evolutionarily insulated metabolic driver of cancer. Nat Rev Endocrinol 2020; 16:276-283. [PMID: 32127696 PMCID: PMC7286536 DOI: 10.1038/s41574-020-0329-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2020] [Indexed: 12/17/2022]
Abstract
Cancer is driven by incremental changes that accumulate, eventually leading to oncogenic transformation. Although genetic alterations dominate the way cancer biologists think about oncogenesis, growing evidence suggests that systemic factors (for example, insulin, oestrogen and inflammatory cytokines) and their intracellular pathways activate oncogenic signals and contribute to targetable phenotypes. Systemic factors can have a critical role in both tumour initiation and therapeutic responses as increasingly targeted and personalized therapeutic regimens are used to treat patients with cancer. The endocrine system controls cell growth and metabolism by providing extracellular cues that integrate systemic nutrient status with cellular activities such as proliferation and survival via the production of metabolites and hormones such as insulin. When insulin binds to its receptor, it initiates a sequence of phosphorylation events that lead to activation of the catalytic activity of phosphoinositide 3-kinase (PI3K), a lipid kinase that coordinates the intake and utilization of glucose, and mTOR, a kinase downstream of PI3K that stimulates transcription and translation. When chronically activated, the PI3K pathway can drive malignant transformation. Here, we discuss the insulin-PI3K signalling cascade and emphasize its roles in normal cells (including coordinating cell metabolism and growth), highlighting the features of this network that make it ideal for co-option by cancer cells. Furthermore, we discuss how this signalling network can affect therapeutic responses and how novel metabolic-based strategies might enhance treatment efficacy for cancer.
Collapse
Affiliation(s)
- Benjamin D Hopkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Marcus D Goncalves
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
124
|
Chowdhury HH. Differences in cytosolic glucose dynamics in astrocytes and adipocytes measured by FRET-based nanosensors. Biophys Chem 2020; 261:106377. [PMID: 32302866 DOI: 10.1016/j.bpc.2020.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022]
Abstract
The cellular response to fluctuations in blood glucose levels consists of integrative regulation of cell glucose uptake and glucose utilization in the cytosol, resulting in altered levels of glucose in the cytosol. Cytosolic glucose is difficult to be measured in the intact tissue, however recently methods have become available that allow measurements of glucose in single living cells with fluorescence resonance energy transfer (FRET) based protein sensors. By studying the dynamics of cytosolic glucose levels in different experimental settings, we can gain insights into the properties of plasma membrane permeability to glucose and glucose utilization in the cytosol, and how these processes are modulated by different environmental conditions, agents and enzymes. In this review, we compare the cytosolic regulation of glucose in adipocytes and astrocytes - two important regulators of energy balance and glucose homeostasis in whole body and brain, respectively, with particular emphasis on the data obtained with FRET based protein sensors as well as other biochemical and molecular approaches.
Collapse
Affiliation(s)
- Helena H Chowdhury
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, 1000 Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia.
| |
Collapse
|
125
|
Poklukar K, Čandek-Potokar M, Batorek Lukač N, Tomažin U, Škrlep M. Lipid Deposition and Metabolism in Local and Modern Pig Breeds: A Review. Animals (Basel) 2020; 10:E424. [PMID: 32138208 PMCID: PMC7142902 DOI: 10.3390/ani10030424] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/25/2022] Open
Abstract
Modern pig breeds, which have been genetically improved to achieve fast growth and a lean meat deposition, differ from local pig breeds with respect to fat deposition, fat specific metabolic characteristics and various other properties. The present review aimed to elucidate the mechanisms underlying the differences between fatty local and modern lean pig breeds in adipose tissue deposition and lipid metabolism, taking into consideration morphological, cellular, biochemical, transcriptomic and proteomic perspectives. Compared to modern breeds, local pig breeds accumulate larger amounts of fat, which generally contains more monounsaturated and saturated fatty acids; they exhibit a higher adipocyte size and higher activity of lipogenic enzymes. Studies using transcriptomic and proteomic approaches highlighted several processes like immune response, fatty-acid turn-over, oxidoreductase activity, mitochondrial function, etc. which differ between local and modern pig breeds.
Collapse
Affiliation(s)
- Klavdija Poklukar
- Agricultural Institute of Slovenia, Ljubljana SI-1000, Slovenia; (K.P.); (M.Č.-P.); (N.B.L.); (U.T.)
| | - Marjeta Čandek-Potokar
- Agricultural Institute of Slovenia, Ljubljana SI-1000, Slovenia; (K.P.); (M.Č.-P.); (N.B.L.); (U.T.)
- University of Maribor, Faculty of Agriculture and Life Sciences, Hoče SI-2311, Slovenia
| | - Nina Batorek Lukač
- Agricultural Institute of Slovenia, Ljubljana SI-1000, Slovenia; (K.P.); (M.Č.-P.); (N.B.L.); (U.T.)
| | - Urška Tomažin
- Agricultural Institute of Slovenia, Ljubljana SI-1000, Slovenia; (K.P.); (M.Č.-P.); (N.B.L.); (U.T.)
| | - Martin Škrlep
- Agricultural Institute of Slovenia, Ljubljana SI-1000, Slovenia; (K.P.); (M.Č.-P.); (N.B.L.); (U.T.)
| |
Collapse
|
126
|
Yang J, Fukuchi KI. TIR-Domain-Containing Adaptor-Inducing Interferon- β (TRIF) Is Involved in Glucose Metabolism in Adipose Tissue through the Insulin/AKT Signaling Pathway. Int J Endocrinol 2020; 2020:6942307. [PMID: 33376487 PMCID: PMC7744180 DOI: 10.1155/2020/6942307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 01/06/2023] Open
Abstract
Obesity significantly increases the risk of developing type 2 diabetes mellitus and other metabolic diseases. Obesity is associated with chronic low-grade inflammation in white adipose tissues, which is thought to play an essential role in developing insulin resistance. Many lines of evidence indicate that toll-like receptors (TLRs) and their downstream signaling pathways are involved in development of chronic low-grade inflammation and insulin resistance, which are associated with obesity. Mice lacking molecules positively involved in the TLR signaling pathways are generally protected from high-fat diet-induced inflammation and insulin resistance. In this study, we have determined the effects of genetic deficiency of toll/interleukin-1 receptor-domain-containing adaptor-inducing interferon-β (TRIF) on food intake, bodyweight, glucose metabolism, adipose tissue macrophage polarization, and insulin signaling in normal chow diet-fed mice to investigate the role of the TRIF-dependent TLR signaling in adipose tissue metabolism and inflammation. TRIF deficiency (TRIF-/-) increased food intake and bodyweight. The significant increase in bodyweight in TRIF-/- mice was discernible as early as 24 weeks of age and sustained thereafter. TRIF-/- mice showed impaired glucose tolerance in glucose tolerance tests, but their insulin tolerance tests were similar to those in TRIF+/+ mice. Although no difference was found in the epididymal adipose mass between the two groups, the percentage of CD206+ M2 macrophages in epididymal adipose tissue decreased in TRIF-/- mice compared with those in TRIF+/+ mice. Furthermore, activation of epididymal adipose AKT in response to insulin stimulation was remarkably diminished in TRIF-/- mice compared with TRIF+/+ mice. Our results indicate that the TRIF-dependent TLR signaling contributes to maintaining insulin/AKT signaling and M2 macrophages in epididymal adipose tissue under a normal chow diet and provide new evidence that TLR4-targeted therapies for type 2 diabetes require caution.
Collapse
Affiliation(s)
- Junling Yang
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL 61605, USA
| | - Ken-Ichiro Fukuchi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL 61605, USA
| |
Collapse
|
127
|
Yao S, Zhang J, Zhan Y, Shi Y, Yu Y, Zheng L, Xu N, Luo G. Insulin Resistance in Apolipoprotein M Knockout Mice is Mediated by the Protein Kinase Akt Signaling Pathway. Endocr Metab Immune Disord Drug Targets 2020; 20:771-780. [PMID: 31702495 PMCID: PMC7360917 DOI: 10.2174/1871530319666191023125820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Previous clinical studies have suggested that apolipoprotein M (apoM) is involved in glucose metabolism and plays a causative role in insulin sensitivity. OBJECTIVE The potential mechanism of apoM on modulating glucose homeostasis is explored and differentially expressed genes are analyzed by employing ApoM deficient (ApoM-/- ) and wild type (WT) mice. METHODS The metabolism of glucose in the hepatic tissues of high-fat diet ApoM-/- and WT mice was measured by a glycomics approach. Bioinformatic analysis was applied for analyzing the levels of differentially expressed mRNAs in the liver tissues of these mice. The insulin sensitivity of ApoM-/- and WT mice was compared using the insulin tolerance test and the phosphorylation levels of protein kinase Akt (AKT) and insulin stimulation in different tissues were examined by Western blot. RESULTS The majority of the hepatic glucose metabolites exhibited lower concentration levels in the ApoM-/- mice compared with those of the WT mice. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that ApoM deficiency affected the genes associated with the metabolism of glucose. The insulin tolerance test suggested that insulin sensitivity was impaired in ApoM-/- mice. The phosphorylation levels of AKT in muscle and adipose tissues of ApoM-/- mice were significantly diminished in response to insulin stimulation compared with those noted in WT mice. CONCLUSION ApoM deficiency led to the disorders of glucose metabolism and altered genes related to glucose metabolism in mice liver. In vivo data indicated that apoM might augment insulin sensitivity by AKT-dependent mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ning Xu
- Address correspondence to these two authors at the Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, 213003, Changzhou, China; Tel: +86-0519-68870619; E-mail: , and the Section of Clinical Chemistry & Pharmacology, Institute of Laboratory Medicine, Lunds University, S-22185 Lund, Sweden; E-mail:
| | - Guanghua Luo
- Address correspondence to these two authors at the Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, 213003, Changzhou, China; Tel: +86-0519-68870619; E-mail: , and the Section of Clinical Chemistry & Pharmacology, Institute of Laboratory Medicine, Lunds University, S-22185 Lund, Sweden; E-mail:
| |
Collapse
|
128
|
Jian T, Lü H, Ding X, Wu Y, Zuo Y, Li J, Chen J, Gu H. Polyphenol-rich Trapa quadrispinosa pericarp extract ameliorates high-fat diet induced non-alcoholic fatty liver disease by regulating lipid metabolism and insulin resistance in mice. PeerJ 2019; 7:e8165. [PMID: 31803542 PMCID: PMC6886490 DOI: 10.7717/peerj.8165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023] Open
Abstract
In China, Trapa quadrispinosa (also called water caltrop) has long been used as a function food and folk medicine to treat diabetes mellitus for years. In the present study, the extract of T. quadrispinosa pericarp (TQPE) which mainly contains hydrolysable tannins was prepared to investigate the potential therapeutic action in non-alcoholic fatty liver disease (NAFLD) mice induced by high fat-diet (HFD). After the administration of TQPE (15, 30 mg/kg/day) for 8 weeks, the increased weight of body and liver were significantly suppressed. TQPE also ameliorated liver lipid deposition and reduced lipids parameters of blood in mice. Moreover, TQPE attenuated oxidative stress and showed a hepatoprotective effect in mice. TQPE was also found to decrease the value of homeostatic model assessment for insulin resistance. In addition, TQPE administration increased the phosphorylation of AMP-activated protein kinase (AMPK) and Acetyl-CoA carboxylase (ACC) and inhibited sterol regulatory element-binding protein (SREBP) in the liver tissue. Meanwhile, TQPE elevated insulin receptor substrate-1 (IRs-1) and protein kinase B (Akt) phosphorylation. These results reflected that, as a nature product, TQPE is a potential agent for suppressing the process of NAFLD via regulation of the AMPK/SREBP/ACC and IRs-1/Akt pathways.
Collapse
Affiliation(s)
- Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Han Lü
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiaoqin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yuexian Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yuanyuan Zuo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jiawei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.,Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Hong Gu
- Department of Colorectal Surgery, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin, China
| |
Collapse
|
129
|
Zhang L, He Y, Wu C, Wu M, Chen X, Luo J, Cai Y, Xia P, Chen B. Altered expression of glucose metabolism associated genes in a tacrolimus‑induced post‑transplantation diabetes mellitus in rat model. Int J Mol Med 2019; 44:1495-1504. [PMID: 31432104 DOI: 10.3892/ijmm.2019.4313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 04/17/2019] [Indexed: 11/06/2022] Open
Abstract
Post‑transplantation diabetes mellitus (PTDM) is a known side effect in transplant recipients administered with immunosuppressant drugs, such as tacrolimus (Tac). Although injury of islet cells is considered a major reason for Tac‑induced PTDM, the involvement of insulin resistance in PTDM remains unknown. In the present study, expression levels of adipocytokines, glucose metabolism associated genes and peroxisome proliferator‑activated receptor (PPAR)‑γ in adipose, muscular and liver tissues from a rat model induced with Tac (1 mg/kg/day) were examined. Rats developed hyperglycemia and glucose intolerance after 10 days of Tac administration. A subgroup of diabetic rats was further treated with rosiglitazone (4 mg/kg), a PPAR‑γ activator. Adipose, muscle and liver tissues were obtained on day 15 after induction and the results demonstrated that expression levels of adipocytokines, PPAR‑γ and proteins in the insulin associated signaling pathway varied in the different groups. Rosiglitazone administration significantly improved hyperglycemia, glucose intolerance and expression levels of proteins associated with insulin signaling, as well as adipocytokines expression. The results of this study demonstrated that adipocytokines and PPAR‑γ signaling may serve important roles in the pathogenesis of Tac‑induced PTDM, which may provide a promising application in the treatment of PTDM in the future.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yunqiang He
- Department of Endocrinology and Metabolism, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Cunzao Wu
- Department of Transplantation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Minmin Wu
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xuehai Chen
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jiao Luo
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yong Cai
- Department of Transplantation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Peng Xia
- Department of Transplantation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bicheng Chen
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
130
|
Hafidi ME, Buelna-Chontal M, Sánchez-Muñoz F, Carbó R. Adipogenesis: A Necessary but Harmful Strategy. Int J Mol Sci 2019; 20:ijms20153657. [PMID: 31357412 PMCID: PMC6696444 DOI: 10.3390/ijms20153657] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is considered to significantly increase the risk of the development of a vast range of metabolic diseases. However, adipogenesis is a complex physiological process, necessary to sequester lipids effectively to avoid lipotoxicity in other tissues, like the liver, heart, muscle, essential for maintaining metabolic homeostasis and has a crucial role as a component of the innate immune system, far beyond than only being an inert mass of energy storage. In pathophysiological conditions, adipogenesis promotes a pro-inflammatory state, angiogenesis and the release of adipokines, which become dangerous to health. It results in a hypoxic state, causing oxidative stress and the synthesis and release of harmful free fatty acids. In this review, we try to explain the mechanisms occurring at the breaking point, at which adipogenesis leads to an uncontrolled lipotoxicity. This review highlights the types of adipose tissue and their functions, their way of storing lipids until a critical point, which is associated with hypoxia, inflammation, insulin resistance as well as lipodystrophy and adipogenesis modulation by Krüppel-like factors and miRNAs.
Collapse
Affiliation(s)
- Mohammed El Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico.
| |
Collapse
|
131
|
Revilla G, Corcoy R, Moral A, Escolà-Gil JC, Mato E. Cross-Talk between Inflammatory Mediators and the Epithelial Mesenchymal Transition Process in the Development of Thyroid Carcinoma. Int J Mol Sci 2019; 20:ijms20102466. [PMID: 31109060 PMCID: PMC6566886 DOI: 10.3390/ijms20102466] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
There is strong association between inflammatory processes and their main metabolic mediators, such as leptin, adiponectin secretion, and low/high-density lipoproteins, with the cancer risk and aggressive behavior of solid tumors. In this scenario, cancer cells (CCs) and cancer stem cells (CSCs) have important roles. These cellular populations, which come from differentiated cells and progenitor stem cells, have increased metabolic requirements when it comes to maintaining or expanding the tumors, and they serve as links to some inflammatory mediators. Although the molecular mechanisms that are involved in these associations remain unclear, the two following cellular pathways have been suggested: 1) the mesenchymal-epithelial transition (MET) process, which permits the differentiation of adult stem cells throughout the acquisition of cell polarity and the adhesion to epithelia, as well to new cellular lineages (CSCs); and, 2) a reverse process, termed the epithelial-mesenchymal transition (EMT), where, in pathophysiological conditions (tissue injury, inflammatory process, and oxidative stress), the differentiated cells can acquire a multipotent stem cell-like phenotype. The molecular mechanisms that regulate both EMT and MET are complex and poorly understood. Especially, in the thyroid gland, little is known regarding MET/EMT and the role of CCs or CSCs, providing an exciting, new area of knowledge to be investigated. This article reviews the progress to date in research on the role of inflammatory mediators and metabolic reprogramming during the carcinogenesis process of the thyroid gland and the EMT pathways.
Collapse
Affiliation(s)
- Giovanna Revilla
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau (HSCSP), 08041 Barcelona, Spain.
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Rosa Corcoy
- Department of Endocrinology, Hospital de la Santa Creu i Sant Pau (HSCSP), 08025 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Antonio Moral
- Department of General Surgery-Hospital de la Santa Creu i Sant Pau (HSCSP), 08025 Barcelona, Spain.
- Departament de Cirugia, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau (HSCSP), 08041 Barcelona, Spain.
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Eugenia Mato
- Department of Endocrinology, Hospital de la Santa Creu i Sant Pau (HSCSP), 08025 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
132
|
Perugini J, Di Mercurio E, Tossetta G, Severi I, Monaco F, Reguzzoni M, Tomasetti M, Dani C, Cinti S, Giordano A. Biological Effects of Ciliary Neurotrophic Factor on hMADS Adipocytes. Front Endocrinol (Lausanne) 2019; 10:768. [PMID: 31781039 PMCID: PMC6861295 DOI: 10.3389/fendo.2019.00768] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Administration of ciliary neurotrophic factor (CNTF) to experimental animals exerts anti-obesity effects by acting on multiple targets. In white adipose tissue CNTF reduces lipid content, promotes fatty acid (FA) oxidation and improves insulin sensitivity. This study was performed to establish whether CNTF exerts similar effects on human white adipocytes. To this end, adipose differentiation was induced in vitro in human multipotent adipose-derived stem (hMADS) cells. CNTF receptor α (CNTFRα) expression was assessed in hMADS cells and adipocytes by qRT-PCR, Western blotting, and immunocytochemistry. After administration of human recombinant CNTF, signaling pathways and gene expression were evaluated by Western blotting and qRT-PCR. Glucose uptake was assessed by measuring 2-nitrobenzodeoxyglucose uptake with a fluorescence plate reader. Lastly, CNTF-induced anti-inflammatory responses were evaluated in hMADS adipocytes stressed with tumor necrosis factor α (TNFα) for 24 h. Results showed that CNTFRα protein expression was higher in undifferentiated hMADS cells than in hMADS adipocytes, where it was however clearly detectable. In hMADS adipocytes, 1 nM CNTF strongly activated the JAK-STAT3 (Janus kinase-signaling transducer and activator of transcription 3) pathway and acutely and transiently activated the AMPK (AMP-activated protein kinase) and AKT (protein kinase B) pathways. Acute CNTF treatment for 20 min significantly increased basal glucose uptake and was associated with increased AKT phosphorylation. Longer-term (24 and 48 h) treatment reduced the expression of lipogenic markers (FA synthase and sterol regulatory element-binding protein-1) and increased the expression of lipolytic [hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL)] and mitochondrial (peroxisome proliferator-activated receptor γ coactivator-1α and carnitine palmitoyltransferase 1) markers. In TNFα-treated hMADS adipocytes, CNTF significantly reduced the expression of monocyte chemoattractant protein 1 and TNFα-induced AKT inhibition. Collectively, these findings demonstrate for the first time that CNTF plays a role also in human adipocytes, driving their metabolism toward a less lipid-storing and more energy-consuming phenotype.
Collapse
Affiliation(s)
- Jessica Perugini
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Eleonora Di Mercurio
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Marcella Reguzzoni
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Christian Dani
- Université Côte d'Azur, CNRS, INSERM, iBV, Faculté de Médecine, Nice, France
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
- Center of Obesity, United Hospitals, Marche Polytechnic University, Ancona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
- *Correspondence: Antonio Giordano
| |
Collapse
|