101
|
Li D, Ren T, Wang X, Xiao Z, Sun G, Zhang N, Zhao L, Zhong R. Development and in vitro evaluation of carmustine delivery platform: A hypoxia-sensitive anti-drug resistant nanomicelle with BBB penetrating ability. Biomed Pharmacother 2023; 167:115631. [PMID: 37804814 DOI: 10.1016/j.biopha.2023.115631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Glioma is extremely difficult to be completely excised by surgery due to its invasive nature. Thus, chemotherapy still is the mainstay in the treatment of glioma after surgery. However, the natural blood-brain barrier (BBB) greatly restricts the penetration of chemotherapeutic agents into the central nervous system. As a front-line anti-glioma agent in clinical, carmustine (BCNU) exerts antitumor effect by inducing DNA damage at the O6 position of guanine. However, the therapeutic effect of BCNU was largely decreased because of the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and insufficient local drug concentrations. To overcome these obstacles, we synthesized a BCNU-loaded hypoxia-responsive nano-micelle with BBB penetrating capacity and AGT inhibitory activity, named as T80-HA-AZO-BG/BCNU NPs. In this nano-system, Tween 80 (T80) serves as a functional coating on the surface of the micelle, promoting transportation across the BBB. Hyaluronic acid (HA) with active tumor-targeting capability was linked with the hydrophobic O6-benzylguanine (BG) analog via a hypoxia-sensitive azo bond. Under hypoxic tumor microenvironment, the azo bond selectively breaks to release O6-BG as AGT inhibitor and BCNU as DNA alkylating agent. The synthesized T80-HA-AZO-BG/BCNU NPs showed good stability, favorable biocompatibility and hypoxia-responsive drug-releasing ability. T80 modification improved the transportation of the micelle across an in vitro BBB model. Moreover, T80-HA-AZO-BG/BCNU NPs exhibited significantly enhanced cytotoxicity against glioma cell lines with high AGT expression compared with traditional combined medication of BCNU plus O6-BG. We expect that the tumor-targeting nano-micelle designed for chloroethylnitrosourea will provide new tools for the development of effective glioma therapy.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Zhixuan Xiao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
102
|
Ikeda-Motonakano R, Hirabayashi-Nishimuta F, Yada N, Yamasaki R, Nagai-Yoshioka Y, Usui M, Nakazawa K, Yoshiga D, Yoshioka I, Ariyoshi W. Fabrication of a Three-Dimensional Spheroid Culture System for Oral Squamous Cell Carcinomas Using a Microfabricated Device. Cancers (Basel) 2023; 15:5162. [PMID: 37958336 PMCID: PMC10649954 DOI: 10.3390/cancers15215162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be responsible for recurrence, metastasis, and resistance to treatment in many types of cancers; therefore, new treatment strategies targeting CSCs are attracting attention. In this study, we fabricated a polyethylene glycol-tagged microwell device that enabled spheroid formation from human oral squamous carcinoma cells. HSC-3 and Ca9-22 cells cultured in the microwell device aggregated and generated a single spheroid per well within 24-48 h. The circular shape and smooth surface of spheroids were maintained for up to five days, and most cells comprising the spheroids were Calcein AM-positive viable cells. Interestingly, the mRNA expression of CSC markers (Cd44, Oct4, Nanog, and Sox2) were significantly higher in the spheroids than in the monolayer cultures. CSC marker-positive cells were observed throughout the spheroids. Moreover, resistance to cisplatin was enhanced in spheroid-cultured cells compared to that in the monolayer-cultured cells. Furthermore, some CSC marker genes were upregulated in HSC-3 and Ca9-22 cells that were outgrown from spheroids. In xenograft model, the tumor growth in the spheroid implantation group was comparable to that in the monolayer culture group. These results suggest that our spheroid culture system may be a high-throughput tool for producing uniform CSCs in large numbers from oral cancer cells.
Collapse
Affiliation(s)
- Reiko Ikeda-Motonakano
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (R.I.-M.); (R.Y.); (Y.N.-Y.)
- Division of Oral Medicine, Department of Science of Physical Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (F.H.-N.); (D.Y.); (I.Y.)
| | - Fumika Hirabayashi-Nishimuta
- Division of Oral Medicine, Department of Science of Physical Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (F.H.-N.); (D.Y.); (I.Y.)
| | - Naomi Yada
- Division of Oral Pathology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan;
| | - Ryota Yamasaki
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (R.I.-M.); (R.Y.); (Y.N.-Y.)
| | - Yoshie Nagai-Yoshioka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (R.I.-M.); (R.Y.); (Y.N.-Y.)
| | - Michihiko Usui
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan;
| | - Kohji Nakazawa
- Department of Life and Environment Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan;
| | - Daigo Yoshiga
- Division of Oral Medicine, Department of Science of Physical Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (F.H.-N.); (D.Y.); (I.Y.)
| | - Izumi Yoshioka
- Division of Oral Medicine, Department of Science of Physical Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (F.H.-N.); (D.Y.); (I.Y.)
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (R.I.-M.); (R.Y.); (Y.N.-Y.)
| |
Collapse
|
103
|
Sawalha S, Abdallah S, Barham A, Badawi H, Barham Z, Ghareeb A, Misia G, Collavini S, Silvestri A, Prato M, Assali M. Green synthesis of fluorescent carbon nanodots from sage leaves for selective anticancer activity on 2D liver cancer cells and 3D multicellular tumor spheroids. NANOSCALE ADVANCES 2023; 5:5974-5982. [PMID: 37881717 PMCID: PMC10597557 DOI: 10.1039/d3na00269a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/17/2023] [Indexed: 10/27/2023]
Abstract
Carbon nanodots, a family of carbon-based nanomaterials, have been synthesized through different methods from various resources, affecting the properties of the resulting product and their application. Herein, carbon nanodots (CNDs) were synthesized with a green and simple hydrothermal method from sage leaves at 200 °C for 6 hours. The obtained CNDs are well dispersed in water with a negative surface charge (ζ-potential = -11 mV) and an average particle size of 3.6 nm. The synthesized CNDs showed concentration-dependent anticancer activity toward liver cancer (Hep3B) cell lines and decreased the viability of the cancer cells to 23% at the highest used concentration (250 μg ml-1 of CNDs). More interestingly, the cytotoxicity of the CNDs was tested in normal liver cell lines (LX2) revealed that the CNDs at all tested concentrations didn't affect their viability including at the highest concentration showing a viability of 86.7%. The cellular uptake mechanisms of CNDs were investigated and they are thought to be through energy-dependent endocytosis and also through passive diffusion. The main mechanisms of endocytosis were lipid and caveolae-mediated endocytosis. In addition, the CNDs have hindered the formation of 3D spheroids from the Hep3B hepatocellular carcinoma cell line. Hence, it would be concluded that the synthesized CNDs from sage are more highly selective to liver cancer cells than normal ones. The CNDs' cancer-killing ability would be referred to as the production of reactive oxygen species.
Collapse
Affiliation(s)
- Shadi Sawalha
- Chemical Engineering Program, Faculty of Engineering and Information Technology, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Samer Abdallah
- Department of Biology and Biotechnology, Faculty of Science, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Amal Barham
- Chemical Engineering Program, Faculty of Engineering and Information Technology, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Hala Badawi
- Chemical Engineering Program, Faculty of Engineering and Information Technology, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Zeina Barham
- Chemical Engineering Program, Faculty of Engineering and Information Technology, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Ahmad Ghareeb
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Giuseppe Misia
- Department of Chemical and Pharmaceutical Sciences INSTM UdR Trieste, University of Trieste via Licio Giorgieri 1 34127 Trieste Italy
| | - Silvia Collavini
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA) Donostia-San Sebastián 20014 Spain
| | - Alessandro Silvestri
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice Venezia 30170 Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences INSTM UdR Trieste, University of Trieste via Licio Giorgieri 1 34127 Trieste Italy
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA) Donostia-San Sebastián 20014 Spain
| | - Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University P.O. Box 7 Nablus Palestine
| |
Collapse
|
104
|
Adir O, Sagi-Assif O, Meshel T, Ben-Menachem S, Pasmanik-Chor M, Hoon DSB, Witz IP, Izraely S. Heterogeneity in the Metastatic Microenvironment: JunB-Expressing Microglia Cells as Potential Drivers of Melanoma Brain Metastasis Progression. Cancers (Basel) 2023; 15:4979. [PMID: 37894348 PMCID: PMC10605008 DOI: 10.3390/cancers15204979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Reciprocal signaling between melanoma brain metastatic (MBM) cells and microglia reprograms the phenotype of both interaction partners, including upregulation of the transcription factor JunB in microglia. Here, we aimed to elucidate the impact of microglial JunB upregulation on MBM progression. For molecular profiling, we employed RNA-seq and reverse-phase protein array (RPPA). To test microglial JunB functions, we generated microglia variants stably overexpressing JunB (JunBhi) or with downregulated levels of JunB (JunBlo). Melanoma-derived factors, namely leukemia inhibitory factor (LIF), controlled JunB upregulation through Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling. The expression levels of JunB in melanoma-associated microglia were heterogeneous. Flow cytometry analysis revealed the existence of basal-level JunB-expressing microglia alongside microglia highly expressing JunB. Proteomic profiling revealed a differential protein expression in JunBhi and JunBlo cells, namely the expression of microglia activation markers Iba-1 and CD150, and the immunosuppressive molecules SOCS3 and PD-L1. Functionally, JunBhi microglia displayed decreased migratory capacity and phagocytic activity. JunBlo microglia reduced melanoma proliferation and migration, while JunBhi microglia preserved the ability of melanoma cells to proliferate in three-dimensional co-cultures, that was abrogated by targeting leukemia inhibitory factor receptor (LIFR) in control microglia-melanoma spheroids. Altogether, these data highlight a melanoma-mediated heterogenous effect on microglial JunB expression, dictating the nature of their functional involvement in MBM progression. Targeting microglia highly expressing JunB may potentially be utilized for MBM theranostics.
Collapse
Affiliation(s)
- Orit Adir
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Shlomit Ben-Menachem
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Dave S. B. Hoon
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA;
| | - Isaac P. Witz
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| |
Collapse
|
105
|
Bachari A, Nassar N, Telukutla S, Zomer R, Dekiwadia C, Piva TJ, Mantri N. In Vitro Antiproliferative Effect of Cannabis Extract PHEC-66 on Melanoma Cell Lines. Cells 2023; 12:2450. [PMID: 37887294 PMCID: PMC10605078 DOI: 10.3390/cells12202450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Melanoma, an aggressive form of skin cancer, can be fatal if not diagnosed and treated early. Melanoma is widely recognized to resist advanced cancer treatments, including immune checkpoint inhibitors, kinase inhibitors, and chemotherapy. Numerous studies have shown that various Cannabis sativa extracts exhibit potential anticancer effects against different types of tumours both in vitro and in vivo. This study is the first to report that PHEC-66, a Cannabis sativa extract, displays antiproliferative effects against MM418-C1, MM329 and MM96L melanoma cells. Although these findings suggest that PHEC-66 has promising potential as a pharmacotherapeutic agent for melanoma treatment, further research is necessary to evaluate its safety, efficacy, and clinical applications.
Collapse
Affiliation(s)
- Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (A.B.); (S.T.)
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (N.N.); (T.J.P.)
- Faculty of Health, Charles Darwin University, Casuarina, NT 0810, Australia
| | - Srinivasareddy Telukutla
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (A.B.); (S.T.)
| | - Roby Zomer
- MGC Pharmaceuticals Limited, West Perth, WA 6005, Australia;
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, STEM College, RMIT University, Melbourne, VIC 3000, Australia;
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (N.N.); (T.J.P.)
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (A.B.); (S.T.)
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
106
|
Jeong SR, Kang M. Exploring Tumor-Immune Interactions in Co-Culture Models of T Cells and Tumor Organoids Derived from Patients. Int J Mol Sci 2023; 24:14609. [PMID: 37834057 PMCID: PMC10572813 DOI: 10.3390/ijms241914609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
The use of patient-derived tumor tissues and cells has led to significant advances in personalized cancer therapy and precision medicine. The advent of genomic sequencing technologies has enabled the comprehensive analysis of tumor characteristics. The three-dimensional tumor organoids derived from self-organizing cancer stem cells are valuable ex vivo models that faithfully replicate the structure, unique features, and genetic characteristics of tumors. These tumor organoids have emerged as innovative tools that are extensively employed in drug testing, genome editing, and transplantation to guide personalized therapy in clinical settings. However, a major limitation of this emerging technology is the absence of a tumor microenvironment that includes immune and stromal cells. The therapeutic efficacy of immune checkpoint inhibitors has underscored the importance of immune cells, particularly cytotoxic T cells that infiltrate the vicinity of tumors, in patient prognosis. To address this limitation, co-culture techniques combining tumor organoids and T cells have been developed, offering diverse avenues for studying individualized drug responsiveness. By integrating cellular components of the tumor microenvironment, including T cells, into tumor organoid cultures, immuno-oncology has embraced this technology, which is rapidly advancing. Recent progress in co-culture models of tumor organoids has allowed for a better understanding of the advantages and limitations of this novel model, thereby exploring its full potential. This review focuses on the current applications of organoid-T cell co-culture models in cancer research and highlights the remaining challenges that need to be addressed for its broader implementation in anti-cancer therapy.
Collapse
Affiliation(s)
- So-Ra Jeong
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Republic of Korea;
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Republic of Korea;
- Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul 06531, Republic of Korea
| |
Collapse
|
107
|
Suryavanshi P, Kudtarkar Y, Chaudhari M, Bodas D. Fabricating a low-temperature synthesized graphene-cellulose acetate-sodium alginate scaffold for the generation of ovarian cancer spheriod and its drug assessment. NANOSCALE ADVANCES 2023; 5:5045-5053. [PMID: 37705775 PMCID: PMC10496900 DOI: 10.1039/d3na00420a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023]
Abstract
3D cell culture can mimic tumor pathophysiology, which reflects cellular morphology and heterogeneity, strongly influencing gene expression, cell behavior, and intracellular signaling. It supports cell-cell and cell-matrix interaction, cell attachment, and proliferation, resulting in rapid and reliable drug screening models. We have generated an ovarian cancer spheroid in interconnected porous scaffolds. The scaffold is fabricated using low-temperature synthesized graphene, cellulose acetate, and sodium alginate. Graphene nanosheets enhance cell proliferation and aggregation, which aids in the formation of cancer spheroids. The spheroids are assessed after day 7 and 14 for the generation of reactive oxygen species (ROS), expression of the hypoxia inducing factor (HIF-1⍺) and vascular endothelial growth factor (VEGF). Production of ROS was observed due to the aggregated tumor mass, and enhanced production of HIF-1⍺ and VEGF results from a lack of oxygen and nutrition. Furthermore, the efficacy of anticancer drug doxorubicin at varying concentrations is assessed on ovarian cancer spheroids by studying the expression of caspase-3/7 at day 7 and 14. The current findings imply that the graphene-cellulose-alginate (GCA) scaffold generates a reliable ovarian cancer spheroid model to test the efficacy of the anticancer drug.
Collapse
Affiliation(s)
- Pooja Suryavanshi
- Nanobioscience Group, Agharkar Research Institute G. G. Agarkar Road Pune 411 004 India
- 2. Savitribai Phule Pune University Ganeshkhind Road Pune 411 007 India
| | - Yohaan Kudtarkar
- Department of Mechanical Engineering, Vishwakarma Institute of Technology (VIT) Bibwewadi Pune 411 037 India
| | - Mangesh Chaudhari
- Department of Mechanical Engineering, Vishwakarma Institute of Technology (VIT) Bibwewadi Pune 411 037 India
| | - Dhananjay Bodas
- Nanobioscience Group, Agharkar Research Institute G. G. Agarkar Road Pune 411 004 India
- 2. Savitribai Phule Pune University Ganeshkhind Road Pune 411 007 India
| |
Collapse
|
108
|
Nkune NW, Abrahamse H. The Efficacy of Zinc Phthalocyanine Nanoconjugate on Melanoma Cells Grown as Three-Dimensional Multicellular Tumour Spheroids. Pharmaceutics 2023; 15:2264. [PMID: 37765232 PMCID: PMC10535874 DOI: 10.3390/pharmaceutics15092264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Melanoma remains a major public health concern that is highly resistant to standard therapeutic approaches. Photodynamic therapy (PDT) is an underutilised cancer therapy with an increased potency and negligible side effects, and it is non-invasive compared to traditional treatment modalities. Three-dimensional multicellular tumour spheroids (MCTS) closely resemble in vivo avascular tumour features, allowing for the more efficient and precise screening of novel anticancer agents with various treatment combinations. In this study, we utilised A375 human melanoma spheroids to screen the phototoxic effect of zinc phthalocyanine tetrasulfonate (ZnPcS4) conjugated to gold nanoparticles (AuNP). The nanoconjugate was synthesised and characterised using ultraviolet-visible spectroscopy, a high-resolution transmission electron microscope (TEM), dynamic light scattering (DLS), and zeta potential (ZP). The phototoxicity of the nanoconjugate was tested on the A375 MCTS using PDT at a fluency of 10 J/cm2. After 24 h, the cellular responses were evaluated via microscopy, an MTT viability assay, an ATP luminescence assay, and cell death induction using annexin propidium iodide. The MTT viability assay demonstrated that the photoactivated ZnPcS4, at a concentration of 12.73 µM, caused an approximately 50% reduction in the cell viability of the spheroids. When conjugated to AuNPs, the latter significantly increased the cellular uptake and cytotoxicity in the melanoma spheroids via the induction of apoptosis. This novel Zinc Phthalocyanine Nanoconjugate shows promise as a more effective PDT treatment modality.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
| |
Collapse
|
109
|
Dalir Abdolahinia E, Han X. The Three-Dimensional In Vitro Cell Culture Models in the Study of Oral Cancer Immune Microenvironment. Cancers (Basel) 2023; 15:4266. [PMID: 37686542 PMCID: PMC10487272 DOI: 10.3390/cancers15174266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The onset and progression of oral cancer are accompanied by a dynamic interaction with the host immune system, and the immune cells within the tumor microenvironment play a pivotal role in the development of the tumor. By exploring the cellular immunity of oral cancer, we can gain insight into the contribution of both tumor cells and immune cells to tumorigenesis. This understanding is crucial for developing effective immunotherapeutic strategies to combat oral cancer. Studies of cancer immunology present unique challenges in terms of modeling due to the extraordinary complexity of the immune system. With its multitude of cellular components, each with distinct subtypes and various activation states, the immune system interacts with cancer cells and other components of the tumor, ultimately shaping the course of the disease. Conventional two-dimensional (2D) culture methods fall short of capturing these intricate cellular interactions. Mouse models enable us to learn about tumor biology in complicated and dynamic physiological systems but have limitations as the murine immune system differs significantly from that of humans. In light of these challenges, three-dimensional (3D) culture systems offer an alternative approach to studying cancer immunology and filling the existing gaps in available models. These 3D culture models provide a means to investigate complex cellular interactions that are difficult to replicate in 2D cultures. The direct study of the interaction between immune cells and cancer cells of human origin offers a more relevant and representative platform compared to mouse models, enabling advancements in our understanding of cancer immunology. This review explores commonly used 3D culture models and highlights their significant contributions to expanding our knowledge of cancer immunology. By harnessing the power of 3D culture systems, we can unlock new insights that pave the way for improved strategies in the battle against oral cancer.
Collapse
Affiliation(s)
| | - Xiaozhe Han
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
110
|
Li D, Wang X, Han K, Sun Y, Ren T, Sun G, Zhang N, Zhao L, Zhong R. Hypoxia and CD44 receptors dual-targeted nano-micelles with AGT-inhibitory activity for the targeting delivery of carmustine. Int J Biol Macromol 2023; 246:125657. [PMID: 37399878 DOI: 10.1016/j.ijbiomac.2023.125657] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/17/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Carmustine (BCNU) is a typical chemotherapy used for treatment of cerebroma and other solid tumors, which exerts antitumor effect by inducing DNA damage at O6 position of guanine. However, the clinical application of BCNU was extremely limited due to the drug resistance mainly mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and absence of tumor-targeting ability. To overcome these limitations, we developed a hypoxia-responsive nanomicelle with AGT inhibitory activity, which was successfully loaded with BCNU. In this nano-system, hyaluronic acid (HA) acts as an active tumor-targeting ligand to bind the overexpressing CD44 receptors on the surface of tumor cells. An azo bond selectively breaks in hypoxic tumor microenvironment to release O6-benzylguanine (BG) as AGT inhibitor and BCNU as DNA alkylating agent. The obtained HA-AZO-BG NPs with shell core structure had an average particle size of 176.98 ± 11.19 nm and exhibited good stability. Meanwhile, HA-AZO-BG NPs possessed a hypoxia-responsive drug release profile. After immobilizing BCNU into HA-AZO-BG NPs, the obtained HA-AZO-BG/BCNU NPs exhibited obvious hypoxia-selectivity and superior cytotoxicity in T98G, A549, MCF-7 and SMMC-7721 cells with IC50 at 189.0, 183.2, 90.1 and 100.1 μm, respectively, under hypoxic condition. Near-infrared imaging in HeLa tumor xenograft models showed that HA-AZO-BG/DiR NPs could effectively accumulate in tumor site at 4 h of post-injection, suggesting its good tumor-targetability. In addition, in vivo anti-tumor efficacy and toxicity evaluation indicated that HA-AZO-BG/BCNU NPs was more effective and less harmful compared to the other groups. After treatment, the tumor weight of HA-AZO-BG/BCNU NPs group was 58.46 % and 63.33 % of the control group and BCNU group, respectively. Overall, HA-AZO-BG/BCNU NPs was expected to be a promising candidate for targeted delivery of BCNU and elimination of chemoresistance.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Kaishuo Han
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Yaqian Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
111
|
Vakhshiteh F, Bagheri Z, Soleimani M, Ahvaraki A, Pournemat P, Alavi SE, Madjd Z. Heterotypic tumor spheroids: a platform for nanomedicine evaluation. J Nanobiotechnology 2023; 21:249. [PMID: 37533100 PMCID: PMC10398970 DOI: 10.1186/s12951-023-02021-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023] Open
Abstract
Nanomedicine has emerged as a promising therapeutic approach, but its translation to the clinic has been hindered by the lack of cellular models to anticipate how tumor cells will respond to therapy. Three-dimensional (3D) cell culture models are thought to more accurately recapitulate key features of primary tumors than two-dimensional (2D) cultures. Heterotypic 3D tumor spheroids, composed of multiple cell types, have become more popular than homotypic spheroids, which consist of a single cell type, as a superior model for mimicking in vivo tumor heterogeneity and physiology. The stromal interactions demonstrated in heterotypic 3D tumor spheroids can affect various aspects, including response to therapy, cancer progression, nanomedicine penetration, and drug resistance. Accordingly, to design more effective anticancer nanomedicinal therapeutics, not only tumor cells but also stromal cells (e.g., fibroblasts and immune cells) should be considered to create a more physiologically relevant in vivo microenvironment. This review aims to demonstrate current knowledge of heterotypic 3D tumor spheroids in cancer research, to illustrate current advances in utilizing these tumor models as a novel and versatile platform for in vitro evaluation of nanomedicine-based therapeutics in cancer research, and to discuss challenges, guidelines, and future directions in this field.
Collapse
Affiliation(s)
- Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zeinab Bagheri
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Marziye Soleimani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Akram Ahvaraki
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Parisa Pournemat
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Seyed Ebrahim Alavi
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
112
|
Cheng C, Deneke N, Moon HR, Choi SR, Ospina-Muñoz N, Elzey BD, Davis CS, Chiu GTC, Han B. Inkjet-printed morphogenesis of tumor-stroma interface using bi-cellular bioinks of collagen-poly(N-isopropyl acrylamide-co-methyl methacrylate) mixture. MATERIALS TODAY. ADVANCES 2023; 19:100408. [PMID: 37691883 PMCID: PMC10486313 DOI: 10.1016/j.mtadv.2023.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Recent advances in biomaterials and 3D printing/culture methods enable various tissue-engineered tumor models. However, it is still challenging to achieve native tumor-like characteristics due to lower cell density than native tissues and prolonged culture duration for maturation. Here, we report a new method to create tumoroids with a mechanically active tumor-stroma interface at extremely high cell density. This method, named "inkjet-printed morphogenesis" (iPM) of the tumor-stroma interface, is based on a hypothesis that cellular contractile force can significantly remodel the cell-laden polymer matrix to form densely-packed tissue-like constructs. Thus, differential cell-derived compaction of tumor cells and cancer-associated fibroblasts (CAFs) can be used to build a mechanically active tumor-stroma interface. In this methods, two kinds of bioinks are prepared, in which tumor cells and CAFs are suspended respectively in the mixture of collagen and poly (N-isopropyl acrylamide-co-methyl methacrylate) solution. These two cellular inks are inkjet-printed in multi-line or multi-layer patterns. As a result of cell-derived compaction, the resulting structure forms tumoroids with mechanically active tumor-stroma interface at extremely high cell density. We further test our working hypothesis that the morphogenesis can be controlled by manipulating the force balance between cellular contractile force and matrix stiffness. Furthermore, this new concept of "morphogenetic printing" is demonstrated to create more complex structures beyond current 3D bioprinting techniques.
Collapse
Affiliation(s)
- Cih Cheng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Naomi Deneke
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - Hye-ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sae Rome Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Bennett D. Elzey
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Chelsea S. Davis
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - George T.-C Chiu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
113
|
Arutyunyan IV, Soboleva AG, Kovtunov EA, Kosyreva AM, Kudelkina VV, Alekseeva AI, Elchaninov AV, Jumaniyazova ED, Goldshtein DV, Bolshakova GB, Fatkhudinov TK. Gene Expression Profile of 3D Spheroids in Comparison with 2D Cell Cultures and Tissue Strains of Diffuse High-Grade Gliomas. Bull Exp Biol Med 2023; 175:576-584. [PMID: 37770789 DOI: 10.1007/s10517-023-05906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 09/30/2023]
Abstract
The use of relevant, accessible, and easily reproducible preclinical models of diffuse gliomas is a prerequisite for the development of successful therapeutic approaches to their treatment. Here we studied the gene expression profile of 3D spheroids in a comparison with 2D cell cultures and tissue strains of diffuse high-grade gliomas. Using real time PCR, we evaluated the expression of Gfap, Cd44, Pten, S100b, Vegfa, Hif1a, Sox2, Melk, Gdnf, and Mgmt genes playing an important role in the progression of gliomas and regulating tumor cell proliferation, adhesion, invasion, plasticity, apoptosis, DNA repair, and recruitment of tumor-associated cells. Gene expression analysis showed that 3D spheroids are more similar to tumor tissue strains by the expression levels of Gfap, Cd44, and Pten, while the expression levels of Hif1a and Sox2 in 3D spheroids did not differ from those of 2D cell cultures, the expression levels S100b and Vegfa in 3D spheroids was higher than in other models, and the expression levels of Melk, Gdnf, and Mgmt genes changed diversely. Thus, 3D spheroid model more closely mimics the tumor tissue than 2D cell culture, but still is not the most relevant, probably due to too small size of spheroids, which does not allow reproducing hypoxia and apoptotic and necrotic processes in the tumor tissue.
Collapse
Affiliation(s)
- I V Arutyunyan
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia.
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia.
| | - A G Soboleva
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - E A Kovtunov
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
| | - A M Kosyreva
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - V V Kudelkina
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - A I Alekseeva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - A V Elchaninov
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - E D Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
| | - D V Goldshtein
- N. P. Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - G B Bolshakova
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - T Kh Fatkhudinov
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Institute of Medicine, Peoples' Friendship, University of Russia, RUDN University), Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| |
Collapse
|
114
|
Scalise M, Marino F, Salerno L, Amato N, Quercia C, Siracusa C, Filardo A, Chiefalo A, Pagano L, Misdea G, Salerno N, De Angelis A, Urbanek K, Viglietto G, Torella D, Cianflone E. Adult Multipotent Cardiac Progenitor-Derived Spheroids: A Reproducible Model of In Vitro Cardiomyocyte Commitment and Specification. Cells 2023; 12:1793. [PMID: 37443827 PMCID: PMC10341123 DOI: 10.3390/cells12131793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Three-dimensional cell culture systems hold great promise for bridging the gap between in vitro cell-based model systems and small animal models to study tissue biology and disease. Among 3D cell culture systems, stem-cell-derived spheroids have attracted significant interest as a strategy to better mimic in vivo conditions. Cardiac stem cell/progenitor (CSC)-derived spheroids (CSs) provide a relevant platform for cardiac regeneration. METHODS We compared three different cell culture scaffold-free systems, (i) ultra-low attachment plates, (ii) hanging drops (both requiring a 2D/3D switch), and (iii) agarose micro-molds (entirely 3D), for CSC-derived CS formation and their cardiomyocyte commitment in vitro. RESULTS The switch from a 2D to a 3D culture microenvironment per se guides cell plasticity and myogenic differentiation within CS and is necessary for robust cardiomyocyte differentiation. On the contrary, 2D monolayer CSC cultures show a significant reduced cardiomyocyte differentiation potential compared to 3D CS culture. Forced aggregation into spheroids using hanging drop improves CS myogenic differentiation when compared to ultra-low attachment plates. Performing CS formation and myogenic differentiation exclusively in 3D culture using agarose micro-molds maximizes the cardiomyocyte yield. CONCLUSIONS A 3D culture system instructs CS myogenic differentiation, thus representing a valid model that can be used to study adult cardiac regenerative biology.
Collapse
Affiliation(s)
- Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Nunzia Amato
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Claudia Quercia
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Andrea Filardo
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Loredana Pagano
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Giuseppe Misdea
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Nadia Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 88121 Naples, Italy;
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| |
Collapse
|
115
|
Tunable hybrid hydrogels with multicellular spheroids for modeling desmoplastic pancreatic cancer. Bioact Mater 2023; 25:360-373. [PMID: 36879666 PMCID: PMC9984297 DOI: 10.1016/j.bioactmat.2023.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
The tumor microenvironment consists of diverse, complex etiological factors. The matrix component of pancreatic ductal adenocarcinoma (PDAC) plays an important role not only in physical properties such as tissue rigidity but also in cancer progression and therapeutic responsiveness. Although significant efforts have been made to model desmoplastic PDAC, existing models could not fully recapitulate the etiology to mimic and understand the progression of PDAC. Here, two major components in desmoplastic pancreatic matrices, hyaluronic acid- and gelatin-based hydrogels, are engineered to provide matrices for tumor spheroids composed of PDAC and cancer-associated fibroblasts (CAF). Shape analysis profiles reveals that incorporating CAF contributes to a more compact tissue formation. Higher expression levels of markers associated with proliferation, epithelial to mesenchymal transition, mechanotransduction, and progression are observed for cancer-CAF spheroids cultured in hyper desmoplastic matrix-mimicking hydrogels, while the trend can be observed when those are cultured in desmoplastic matrix-mimicking hydrogels with the presence of transforming growth factor-β1 (TGF-β1). The proposed multicellular pancreatic tumor model, in combination with proper mechanical properties and TGF-β1 supplement, makes strides in developing advanced pancreatic models for resembling and monitoring the progression of pancreatic tumors, which could be potentially applicable for realizing personalized medicine and drug testing applications.
Collapse
|
116
|
Seo JY, Park SB, Kim SY, Seo GJ, Jang HK, Lee TJ. Acoustic and Magnetic Stimuli-Based Three-Dimensional Cell Culture Platform for Tissue Engineering. Tissue Eng Regen Med 2023; 20:563-580. [PMID: 37052782 PMCID: PMC10313605 DOI: 10.1007/s13770-023-00539-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
In a conventional two-dimensional (2D) culture method, cells are attached to the bottom of the culture dish and grow into a monolayer. These 2D culture methods are easy to handle, cost-effective, reproducible, and adaptable to growing many different types of cells. However, monolayer 2D cell culture conditions are far from those of natural tissue, indicating the need for a three-dimensional (3D) culture system. Various methods, such as hanging drop, scaffolds, hydrogels, microfluid systems, and bioreactor systems, have been utilized for 3D cell culture. Recently, external physical stimulation-based 3D cell culture platforms, such as acoustic and magnetic forces, were introduced. Acoustic waves can establish acoustic radiation force, which can induce suspended objects to gather in the pressure node region and aggregate to form clusters. Magnetic targeting consists of two components, a magnetically responsive carrier and a magnetic field gradient source. In a magnetic-based 3D cell culture platform, cells are aggregated by changing the magnetic force. Magnetic fields can manipulate cells through two different methods: positive magnetophoresis and negative magnetophoresis. Positive magnetophoresis is a way of imparting magnetic properties to cells by labeling them with magnetic nanoparticles. Negative magnetophoresis is a label-free principle-based method. 3D cell structures, such as spheroids, 3D network structures, and cell sheets, have been successfully fabricated using this acoustic and magnetic stimuli-based 3D cell culture platform. Additionally, fabricated 3D cell structures showed enhanced cell behavior, such as differentiation potential and tissue regeneration. Therefore, physical stimuli-based 3D cell culture platforms could be promising tools for tissue engineering.
Collapse
Affiliation(s)
- Ju Yeon Seo
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Song Bin Park
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Seo Yeon Kim
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Gyeong Jin Seo
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Hyeon-Ki Jang
- Division of Chemical Engineering and Bioengineering, College of Art Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Tae-Jin Lee
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
117
|
Zingales V, Esposito MR, Torriero N, Taroncher M, Cimetta E, Ruiz MJ. The Growing Importance of Three-Dimensional Models and Microphysiological Systems in the Assessment of Mycotoxin Toxicity. Toxins (Basel) 2023; 15:422. [PMID: 37505691 PMCID: PMC10467068 DOI: 10.3390/toxins15070422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
Current investigations in the field of toxicology mostly rely on 2D cell cultures and animal models. Although well-accepted, the traditional 2D cell-culture approach has evident drawbacks and is distant from the in vivo microenvironment. To overcome these limitations, increasing efforts have been made in the development of alternative models that can better recapitulate the in vivo architecture of tissues and organs. Even though the use of 3D cultures is gaining popularity, there are still open questions on their robustness and standardization. In this review, we discuss the current spheroid culture and organ-on-a-chip techniques as well as the main conceptual and technical considerations for the correct establishment of such models. For each system, the toxicological functional assays are then discussed, highlighting their major advantages, disadvantages, and limitations. Finally, a focus on the applications of 3D cell culture for mycotoxin toxicity assessments is provided. Given the known difficulties in defining the safety ranges of exposure for regulatory agency policies, we are confident that the application of alternative methods may greatly improve the overall risk assessment.
Collapse
Affiliation(s)
- Veronica Zingales
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain;
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Maria Rosaria Esposito
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Noemi Torriero
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Mercedes Taroncher
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain;
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - María-José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain;
| |
Collapse
|
118
|
Polloni L, Costa TR, Morais LP, Borges BC, Teixeira SC, de Melo Fernandes TA, Correia LIV, Bastos LM, Amorim FG, Quinton L, Soares AM, Silva MJB, Ferro EAV, Lopes DS, de Melo Rodrigues Ávila V. Oxidative stress induced by Pollonein-LAAO, a new L-amino acid oxidase from Bothrops moojeni venom, prompts prostate tumor spheroid cell death and impairs the cellular invasion process in vitro. Cell Signal 2023:110785. [PMID: 37364850 DOI: 10.1016/j.cellsig.2023.110785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Cancer cells produce abnormal levels of reactive oxygen species (ROS) that contribute to promote their malignant phenotype. In this framework, we hypothesized that the change in ROS concentration above threshold could impair key events of prostate cancer cells (PC-3) progression. Our results demonstrated that Pollonein-LAAO, a new L-amino acid oxidase obtained from Bothrops moojeni venom, was cytotoxic to PC-3 cells in two-dimensional and in tumor spheroid assays. Pollonein-LAAO was able to increase the intracellular ROS generation that culminates in cell death from apoptosis by both intrinsic and extrinsic pathways due to the up-regulation of TP53, BAX, BAD, TNFRSF10B and CASP8. Additionally, Pollonein-LAAO reduced mitochondrial membrane potential and caused G0/G1 phase to delay, due to the up-regulation of CDKN1A and the down-regulation of the expression of CDK2 and E2F. Interestingly, Pollonein-LAAO inhibited critical steps of the cellular invasion process (migration, invasion and adhesion), due to the down-regulation of SNAI1, VIM, MMP2, ITGA2, ITGAV and ITGB3. Furthermore, the Pollonein-LAAO effects were associated with the intracellular ROS production, since the presence of catalase restored the invasiveness of PC-3 cells. In this sense, this study contributes to the potential use of Pollonein-LAAO as ROS-based agent to enhance the current understanding of cancer treatment strategies.
Collapse
Affiliation(s)
- Lorena Polloni
- Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil.
| | - Tássia Rafaella Costa
- Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Lorena Pinheiro Morais
- Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Samuel Cota Teixeira
- Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | | | | | - Luciana Machado Bastos
- Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | | | - Loïc Quinton
- Department of Chemistry, University of Liège, Liège, Belgium
| | - Andreimar Martins Soares
- Oswaldo Cruz Foundation (FIOCRUZ) Rondônia, Federal University of Rondônia (UNIR), and National Institute of Science and Technology of Epidemiology of the Western Amazon (INCT-EPIAMO), Porto Velho, RO, Brazil
| | | | | | - Daiana Silva Lopes
- Multidisciplinary Institute for Health, Federal University of Bahia - UFBA, Vitoria da Conquista, BA, Brazil
| | | |
Collapse
|
119
|
Narmi MT, Shoja HM, Haiaty S, Mahdipour M, Rahbarghazi R. Melatonin blunted the angiogenic activity in 3D colon cancer tumoroids by the reduction of endocan. Cancer Cell Int 2023; 23:118. [PMID: 37337165 DOI: 10.1186/s12935-023-02951-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Complexity and heterogeneity of the tumor niche are closely associated with the failure of therapeutic protocols. Unfortunately, most data have been obtained from conventional 2D culture systems which are not completely comparable to in vivo microenvironments. Reconstructed 3D cultures composed of multiple cells are valid cell-based tumor models to recapitulate in vivo-like interaction between the cancer cells and stromal cells and the oncostatic properties of therapeutics. Here, we aimed to assess the tumoricidal properties of melatonin on close-to-real colon cancer tumoroids in in vitro conditions. METHODS Using the hanging drop method, colon cancer tumoroids composed of three cell lines, including adenocarcinoma HT-29 cells, fibroblasts (HFFF2), and endothelial cells (HUVECs) at a ratio of 2: 1: 1, respectively were developed using 2.5% methylcellulose. Tumoroids were exposed to different concentrations of melatonin, from 0.005 to 0.8 mM and 4 to 10 mM, for 48 h. The survival rate was measured by MTT and LDH leakage assays. Protein levels of endocan and VEGF were assessed using western blotting. Using histological examination (H & E) staining, the integrity of cells within the tumoroid parenchyma was monitored. RESULTS Despite the reduction of viability rate in lower doses, the structure of tumoroids remained unchanged. In contrast, treatment of tumoroids with higher doses of melatonin, 4 and 10 mM, led to disaggregation of cells and reduction of tumoroid diameter compared to the non-treated control tumoroids (p < 0.05). By increasing melatonin concentration from 4 to 10 mM, the number of necrotic cells increased. Data showed the significant suppression of endocan in melatonin-treated tumoroids related to the non-treated controls (p < 0.05). According to our data, melatonin in higher doses did not alter protein levels of VEGF (p > 0.05). CONCLUSIONS Melatonin can exert its tumoricidal properties on colon cancer tumoroids via the reduction of tumor cell viability and inhibition of the specific pro-angiogenesis factor.
Collapse
Affiliation(s)
- Maryam Taghavi Narmi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 51666-16471, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Mohajjel Shoja
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 51666-16471, Iran.
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
120
|
Pereira-Nunes A, Ferreira H, Abreu S, Guedes M, Neves NM, Baltazar F, Granja S. Combination Therapy With CD147-Targeted Nanoparticles Carrying Phenformin Decreases Lung Cancer Growth. Adv Biol (Weinh) 2023:e2300080. [PMID: 37303292 DOI: 10.1002/adbi.202300080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/26/2023] [Indexed: 06/13/2023]
Abstract
Lung cancer is one of the most fatal cancers worldwide. Resistance to conventional therapies remains a hindrance to patient treatment. Therefore, the development of more effective anti-cancer therapeutic strategies is imperative. Solid tumors exhibit a hyperglycolytic phenotype, leading to enhanced lactate production; and, consequently, its extrusion to the tumor microenvironment. Previous data reveals that inhibition of CD147, the chaperone of lactate transporters (MCTs), decreases lactate export in lung cancer cells and sensitizes them to phenformin, leading to a drastic decrease in cell growth. In this study, the development of anti-CD147 targeted liposomes (LUVs) carrying phenformin is envisioned, and their efficacy is evaluated to eliminate lung cancer cells. Herein, the therapeutic effect of free phenformin and anti-CD147 antibody, as well as the efficacy of anti-CD147 LUVs carrying phenformin on A549, H292, and PC-9 cell growth, metabolism, and invasion, are evaluated. Data reveals that phenformin decreases 2D and 3D-cancer cell growth and that the anti-CD147 antibody reduces cell invasion. Importantly, anti-CD147 LUVs carrying phenformin are internalized by cancer cells and impaired lung cancer cell growth in vitro and in vivo. Overall, these results provide evidence for the effectiveness of anti-CD147 LUVs carrying phenformin in compromising lung cancer cell aggressiveness.
Collapse
Affiliation(s)
- Andreia Pereira-Nunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, 4710-057, Portugal
| | - Helena Ferreira
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, 4710-057, Portugal
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
| | - Sara Abreu
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, 4710-057, Portugal
| | - Marta Guedes
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, 4710-057, Portugal
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
| | - Nuno M Neves
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, 4710-057, Portugal
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, 4710-057, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, 4710-057, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, ESS|P.PORTO, Porto, 4200-072, Portugal
| |
Collapse
|
121
|
Carvalho SM, Mansur AAP, da Silveira IB, Pires TFS, Victória HFV, Krambrock K, Leite MF, Mansur HS. Nanozymes with Peroxidase-like Activity for Ferroptosis-Driven Biocatalytic Nanotherapeutics of Glioblastoma Cancer: 2D and 3D Spheroids Models. Pharmaceutics 2023; 15:1702. [PMID: 37376150 DOI: 10.3390/pharmaceutics15061702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain cancer in adults. Despite the remarkable advancements in recent years in the realm of cancer diagnosis and therapy, regrettably, GBM remains the most lethal form of brain cancer. In this view, the fascinating area of nanotechnology has emerged as an innovative strategy for developing novel nanomaterials for cancer nanomedicine, such as artificial enzymes, termed nanozymes, with intrinsic enzyme-like activities. Therefore, this study reports for the first time the design, synthesis, and extensive characterization of innovative colloidal nanostructures made of cobalt-doped iron oxide nanoparticles chemically stabilized by a carboxymethylcellulose capping ligand (i.e., Co-MION), creating a peroxidase-like (POD) nanozyme for biocatalytically killing GBM cancer cells. These nanoconjugates were produced using a strictly green aqueous process under mild conditions to create non-toxic bioengineered nanotherapeutics against GBM cells. The nanozyme (Co-MION) showed a magnetite inorganic crystalline core with a uniform spherical morphology (diameter, 2R = 6-7 nm) stabilized by the CMC biopolymer, producing a hydrodynamic diameter (HD) of 41-52 nm and a negatively charged surface (ZP~-50 mV). Thus, we created supramolecular water-dispersible colloidal nanostructures composed of an inorganic core (Cox-MION) and a surrounding biopolymer shell (CMC). The nanozymes confirmed the cytotoxicity evaluated by an MTT bioassay using a 2D culture in vitro of U87 brain cancer cells, which was concentration-dependent and boosted by increasing the cobalt-doping content in the nanosystems. Additionally, the results confirmed that the lethality of U87 brain cancer cells was predominantly caused by the production of toxic cell-damaging reactive oxygen species (ROS) through the in situ generation of hydroxyl radicals (·OH) by the peroxidase-like activity displayed by nanozymes. Thus, the nanozymes induced apoptosis (i.e., programmed cell death) and ferroptosis (i.e., lipid peroxidation) pathways by intracellular biocatalytic enzyme-like activity. More importantly, based on the 3D spheroids model, these nanozymes inhibited tumor growth and remarkably reduced the malignant tumor volume after the nanotherapeutic treatment (ΔV~40%). The kinetics of the anticancer activity of these novel nanotherapeutic agents decreased with the time of incubation of the GBM 3D models, indicating a similar trend commonly observed in tumor microenvironments (TMEs). Furthermore, the results demonstrated that the 2D in vitro model overestimated the relative efficiency of the anticancer agents (i.e., nanozymes and the DOX drug) compared to the 3D spheroid models. These findings are notable as they evidenced that the 3D spheroid model resembles more precisely the TME of "real" brain cancer tumors in patients than 2D cell cultures. Thus, based on our groundwork, 3D tumor spheroid models might be able to offer transitional systems between conventional 2D cell cultures and complex biological in vivo models for evaluating anticancer agents more precisely. These nanotherapeutics offer a wide avenue of opportunities to develop innovative nanomedicines for fighting against cancerous tumors and reducing the frequency of severe side effects in conventionally applied chemotherapy-based treatments.
Collapse
Affiliation(s)
- Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Izabela B da Silveira
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Thaisa F S Pires
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Henrique F V Victória
- Department of Physics, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Klaus Krambrock
- Department of Physics, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - M Fátima Leite
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
122
|
Chattopadhyay S, Sarkar SS, Saproo S, Yadav S, Antil D, Das B, Naidu S. Apoptosis-targeted gene therapy for non-small cell lung cancer using chitosan-poly-lactic-co-glycolic acid -based nano-delivery system and CASP8 and miRs 29A-B1 and 34A. Front Bioeng Biotechnol 2023; 11:1188652. [PMID: 37346791 PMCID: PMC10281530 DOI: 10.3389/fbioe.2023.1188652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, with resistance to apoptosis being a major driver of therapeutic resistance and aggressive phenotype. This study aimed to develop a novel gene therapy approach for NSCLC by targeting resistance to apoptosis. Loss of function mutations of caspase 8 (CASP8) and downregulation of microRNAs (miRs) 29A-B1 and 34A were identified as key contributors to resistance to apoptosis in NSCLC. A biodegradable polymeric nano-gene delivery system composed of chitosan-poly-lactic-co-glycolic acid was formulated to deliver initiator CASP8 and miRs 29A-B1 and 34A. The nano-formulation efficiently encapsulated the therapeutic genes effectively internalized into NSCLC cells and induced significant apoptosis. Evaluation of the nano-formulation in A549 tumor spheroids showed a significant increase in apoptosis within the core of the spheroids, suggesting effective penetration into the spheroid structures. We provide a novel nano-formulation that demonstrate therapeutic potential for suicidal gene therapy in NSCLC.
Collapse
|
123
|
Ferreira T, Gama A, Seixas F, Faustino-Rocha AI, Lopes C, Gaspar VM, Mano JF, Medeiros R, Oliveira PA. Mammary Glands of Women, Female Dogs and Female Rats: Similarities and Differences to Be Considered in Breast Cancer Research. Vet Sci 2023; 10:379. [PMID: 37368765 DOI: 10.3390/vetsci10060379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer is one of the most common and well-known types of cancer among women worldwide and is the most frequent neoplasm in intact female dogs. Female dogs are considered attractive models or studying spontaneous breast cancer, whereas female rats are currently the most widely used animal models for breast cancer research in the laboratory context. Both female dogs and female rats have contributed to the advancement of scientific knowledge in this field, and, in a "One Health" approach, they have allowed broad understanding of specific biopathological pathways, influence of environmental factors and screening/discovery of candidate therapies. This review aims to clearly showcase the similarities and differences among woman, female dog and female rat concerning to anatomical, physiological and histological features of the mammary gland and breast/mammary cancer epidemiology, in order to better portray breast tumorigenesis, and to ensure appropriate conclusions and extrapolation of results among species. We also discuss the major aspects that stand out in these species. The mammary glands of female dogs and women share structural similarities, especially with respect to the lactiferous ducts and lymphatic drainage. In contrast, female rats have only one lactiferous duct per nipple. A comprehensive comparison between humans and dogs is given a special focus, as these species share several aspects in terms of breast/mammary cancer epidemiology, such as age of onset, hormonal etiology, risk factors, and the clinical course of the disease. Holistically, it is clear that each species has advantages and limitations that researchers must consider during the development of experimental designs and data analysis.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, 7004-516 Évora, Portugal
- Comprehensive Health Research Center, 7004-516 Évora, Portugal
| | - Carlos Lopes
- Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- Research Department of the Portuguese League against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177 Porto, Portugal
- Virology Service, Portuguese Institute of Oncology (IPO), 4200-072 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, 4249-004 Porto, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
124
|
Tofani LB, Luiz MT, Paes Dutra JA, Abriata JP, Chorilli M. Three-dimensional culture models: emerging platforms for screening the antitumoral efficacy of nanomedicines. Nanomedicine (Lond) 2023; 18:633-647. [PMID: 37183804 DOI: 10.2217/nnm-2022-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Nanomedicines have been investigated for delivering drugs to tumors due to their ability to accumulate in the tumor tissues. 2D in vitro cell culture has been used to investigate the antitumoral potential of nanomedicines. However, a 2D model cannot adequately mimic the in vivo tissue conditions because of the lack of cell-cell interaction, a gradient of nutrients and the expression of genes. To overcome this limitation, 3D cell culture models have emerged as promising platforms that better replicate the complexity of native tumors. For this purpose, different techniques can be used to produce 3D models, including scaffold-free, scaffold-based and microfluidic-based models. This review addresses the principles, advantages and limitations of these culture methods for evaluating the antitumoral efficacy of nanomedicines.
Collapse
Affiliation(s)
- Larissa Bueno Tofani
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Marcela Tavares Luiz
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| | - Jessyca Aparecida Paes Dutra
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| | - Juliana Palma Abriata
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| |
Collapse
|
125
|
Neuer AL, Vogel A, Gogos A, Kissling VM, Tsolaki E, Herrmann IK. Metal-Organic Framework Mediated Radio-Enhancement Assessed in High-Throughput-Compatible 3D Tumor Spheroid Co-Cultures. Adv Biol (Weinh) 2023:e2300075. [PMID: 37178330 DOI: 10.1002/adbi.202300075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Inorganic nanomaterials have gained increasing attention in radiation oncology, owing to their radiation therapy enhancing properties. To accelerate candidate material selection and overcome the disconnect between conventional 2D cell culture and in vivo findings, screening platforms unifying high-throughput with physiologically relevant endpoint analysis based on 3D in vitro models are promising. Here, a 3D tumor spheroid co-culture model based on cancerous and healthy human cells is presented for the concurrent assessment of radio-enhancement efficacy, toxicity, and intratissural biodistribution with full ultrastructural context of radioenhancer candidate materials. Its potential for rapid candidate materials screening is showcased based on the example of nano-sized metal-organic frameworks (nMOFs) and direct benchmarking against gold nanoparticles (the current "gold standard"). Dose enhancement factors (DEFs) ranging between 1.4 and 1.8 are measured for Hf-, Ti-, TiZr-, and Au-based materials in 3D tissues and are overall lower than in 2D cell cultures, where DEF values exceeding 2 are found. In summary, the presented co-cultured tumor spheroid-healthy fibroblast model with tissue-like characteristics may serve as high-throughput platform enabling rapid, cell line-specific endpoint analysis for therapeutic efficacy and toxicity assessment, as well as accelerated radio-enhancer candidate screening.
Collapse
Affiliation(s)
- Anna Lena Neuer
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Alexandra Vogel
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Alexander Gogos
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Vera M Kissling
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Elena Tsolaki
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
126
|
Raik S, Sharma P, Kumar S, Rattan V, Das A, Kumar N, Srinivasan R, Bhattacharyya S. Three-dimensional spheroid culture of dental pulp-derived stromal cells enhance their biological and regenerative properties for potential therapeutic applications. Int J Biochem Cell Biol 2023; 160:106422. [PMID: 37172928 DOI: 10.1016/j.biocel.2023.106422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Mesenchymal stem/stromal cell (MSC) spheroids generated in a three-dimensional (3D) culture system serve as a surrogate model that maintain stem cell characteristics since these mimic the in vivo behavior of cells and tissue more closely. Our study involved a detailed characterization of the spheroids generated in ultra-low attachment flasks. The spheroids were evaluated and compared for their morphology, structural integrity, viability, proliferation, biocomponents, stem cell phenotype and differentiation abilities with monolayer culture derived cells (2D culture). The in-vivo therapeutic efficacy of DPSCs derived from 2D and 3D culture was also assessed by transplanting them in an animal model of the critical-sized calvarial defect. DPSCs formed compact and well-organized multicellular spheroids when cultured in ultra-low attachment condition with superior stemness, differentiation, and regenerative abilities than monolayer cells. They maintained lower proliferative state and showed marked difference in the cellular biocomponents such as lipid, amide and nucleic acid between DPSCs from 2D and 3D cultures. The scaffold-free 3D culture efficiently preserves DPSCs intrinsic properties and functionality by maintaining them in the state close to the native tissues. The scaffold free 3D culture methods allow easy collection of a large number of multicellular spheroids of DPSCs and therefore, this can be adopted as a feasible and efficient method of generating robust spheroids for various in-vitro and in-vivo therapeutic applications.
Collapse
Affiliation(s)
- Shalini Raik
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India
| | - Prakshi Sharma
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India
| | - Saroj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Vidya Rattan
- Unit of oral and maxillofacial surgery, Department of Oral Health Sciences, PGIMER, Chandigarh, India
| | - Ashim Das
- Department of Histopathology, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Radhika Srinivasan
- Department of Cytology and Gynecologic Pathology, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
127
|
Zinn DA, Mehner C, Patel T. Protocol for generation of multicellular spheroids through reduced gravity. STAR Protoc 2023; 4:102264. [PMID: 37133991 DOI: 10.1016/j.xpro.2023.102264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/15/2023] [Accepted: 04/03/2023] [Indexed: 05/04/2023] Open
Abstract
Multicellular spheroids are useful models for drug testing or studying tumor biology, but their production requires specialized approaches. Here, we present a protocol to produce viable spheroids by slow rotation around a horizontal axis using standard culture tubes. We describe steps for both seed and starter culture, and maintenance and expansion of spheroids. We detail assessment of spheroid size, count, viability, and immunohistochemistry. This protocol reduces gravitational forces that lead to cell clumping and is amenable to high-throughput use.
Collapse
Affiliation(s)
- Dylan A Zinn
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Christine Mehner
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
128
|
Weil Y, Shafran Y, Sobolev M, Afrimzon E, Zurgil N, Deutsch M, Schiffer Z. Spatial-temporal correlations in the speckle pattern for the characterization of cellular motion within a 3D object. BIOMEDICAL OPTICS EXPRESS 2023; 14:1974-1991. [PMID: 37206140 PMCID: PMC10191657 DOI: 10.1364/boe.476526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/27/2022] [Accepted: 01/05/2023] [Indexed: 05/21/2023]
Abstract
Dynamic light scattering analysis has been demonstrated recently to be a promising tool for the assessment of structural changes taking place inside opaque tissue samples. Specifically, quantification of velocity and direction of cellular motion inside spheroids and organoids has attracted much attention as a potent indicator in personalized therapy research. Here, we propose a method for the quantitative extraction of cellular motion, velocity, and direction, by applying a concept of speckle spatial-temporal correlation dynamics. Numerical simulations and experimental results obtained on phantom and biological spheroids are presented.
Collapse
|
129
|
Kutle I, Polten R, Hachenberg J, Klapdor R, Morgan M, Schambach A. Tumor Organoid and Spheroid Models for Cervical Cancer. Cancers (Basel) 2023; 15:cancers15092518. [PMID: 37173984 PMCID: PMC10177622 DOI: 10.3390/cancers15092518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Cervical cancer is one of the most common malignant diseases in women worldwide. Despite the global introduction of a preventive vaccine against the leading cause of cervical cancer, human papillomavirus (HPV) infection, the incidence of this malignant disease is still very high, especially in economically challenged areas. New advances in cancer therapy, especially the rapid development and application of different immunotherapy strategies, have shown promising pre-clinical and clinical results. However, mortality from advanced stages of cervical cancer remains a significant concern. Precise and thorough evaluation of potential novel anti-cancer therapies in pre-clinical phases is indispensable for efficient development of new, more successful treatment options for cancer patients. Recently, 3D tumor models have become the gold standard in pre-clinical cancer research due to their capacity to better mimic the architecture and microenvironment of tumor tissue as compared to standard two-dimensional (2D) cell cultures. This review will focus on the application of spheroids and patient-derived organoids (PDOs) as tumor models to develop novel therapies against cervical cancer, with an emphasis on the immunotherapies that specifically target cancer cells and modulate the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Ivana Kutle
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Polten
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jens Hachenberg
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| | - Rüdiger Klapdor
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
130
|
Venuta A, Nasso R, Gisonna A, Iuliano R, Montesarchio S, Acampora V, Sepe L, Avagliano A, Arcone R, Arcucci A, Ruocco MR. Celecoxib, a Non-Steroidal Anti-Inflammatory Drug, Exerts a Toxic Effect on Human Melanoma Cells Grown as 2D and 3D Cell Cultures. Life (Basel) 2023; 13:life13041067. [PMID: 37109596 PMCID: PMC10141119 DOI: 10.3390/life13041067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Cutaneous melanoma (CM) remains one of the leading causes of tumor mortality due to its high metastatic spread. CM growth is influenced by inflammation regulated by prostaglandins (PGs) whose synthesis is catalyzed by cyclooxygenases (COXs). COX inhibitors, including non-steroidal anti-inflammatory drugs (NSAIDs), can inhibit tumor development and growth. In particular, in vitro experiments have shown that celecoxib, a NSAID, inhibits the growth of some tumor cell lines. However, two-dimensional (2D) cell cultures, used in traditional in vitro anticancer assays, often show poor efficacy due to a lack of an in vivo like cellular environment. Three-dimensional (3D) cell cultures, such as spheroids, are better models because they can mimic the common features displayed by human solid tumors. Hence, in this study, we evaluated the anti-neoplastic potential of celecoxib, in both 2D and 3D cell cultures of A2058 and SAN melanoma cell lines. In particular, celecoxib reduced the cell viability and migratory capability and triggered the apoptosis of melanoma cells grown as 2D cultures. When celecoxib was tested on 3D melanoma cell cultures, the drug exerted an inhibitory effect on cell outgrowth from spheroids and reduced the invasiveness of melanoma cell spheroids into the hydrogel matrix. This work suggests that celecoxib could represent a new potential therapeutic approach in melanoma therapy.
Collapse
Affiliation(s)
- Alessandro Venuta
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rosarita Nasso
- Department of Movement Sciences and Wellness, University of Naples "Parthenope", 80133 Naples, Italy
| | - Armando Gisonna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Roberta Iuliano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Sara Montesarchio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Vittoria Acampora
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rosaria Arcone
- Department of Movement Sciences and Wellness, University of Naples "Parthenope", 80133 Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
131
|
Prakash N, Kim J, Jeon J, Kim S, Arai Y, Bello AB, Park H, Lee SH. Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSCs) from pluripotent stem cells (PSCs). Biomater Res 2023; 27:31. [PMID: 37072836 PMCID: PMC10114339 DOI: 10.1186/s40824-023-00371-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
The use of mesenchymal stem cells (MSCs) for clinical purposes has skyrocketed in the past decade. Their multilineage differentiation potentials and immunomodulatory properties have facilitated the discovery of therapies for various illnesses. MSCs can be isolated from infant and adult tissue sources, which means they are easily available. However, this raises concerns because of the heterogeneity among the various MSC sources, which limits their effective use. Variabilities arise from donor- and tissue-specific differences, such as age, sex, and tissue source. Moreover, adult-sourced MSCs have limited proliferation potentials, which hinders their long-term therapeutic efficacy. These limitations of adult MSCs have prompted researchers to develop a new method for generating MSCs. Pluripotent stem cells (PSCs), such as embryonic stem cells and induced PSCs (iPSCs), can differentiate into various types of cells. Herein, a thorough review of the characteristics, functions, and clinical importance of MSCs is presented. The existing sources of MSCs, including adult- and infant-based sources, are compared. The most recent techniques for deriving MSCs from iPSCs, with a focus on biomaterial-assisted methods in both two- and three-dimensional culture systems, are listed and elaborated. Finally, several opportunities to develop improved methods for efficiently producing MSCs with the aim of advancing their various clinical applications are described.
Collapse
Affiliation(s)
- Nityanand Prakash
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jiseong Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jieun Jeon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Siyeon Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06911, Korea.
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| |
Collapse
|
132
|
Goel R, Gulwani D, Upadhyay P, Sarangthem V, Singh TD. Unsung versatility of elastin-like polypeptide inspired spheroid fabrication: A review. Int J Biol Macromol 2023; 234:123664. [PMID: 36791934 DOI: 10.1016/j.ijbiomac.2023.123664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Lately, 3D cell culture technique has gained a lot of appreciation as a research model. Augmented with technological advancements, the area of 3D cell culture is growing rapidly with a diverse array of scaffolds being tested. This is especially the case for spheroid cultures. The culture of cells as spheroids provides opportunities for unanticipated vision into biological phenomena with its application to drug discovery, metabolic profiling, stem cell research as well as tumor, and disease biology. Spheroid fabrication techniques are broadly categorised into matrix-dependent and matrix-independent techniques. While there is a profusion of spheroid fabrication substrates with substantial biological relevance, an economical, modular, and bio-compatible substrate for high throughput production of spheroids is lacking. In this review, we posit the prospects of elastin-like polypeptides (ELPs) as a broad-spectrum spheroid fabrication platform. Elastin-like polypeptides are nature inspired, size-tunable genetically engineered polymers with wide applicability in various arena of biological considerations, has been employed for spheroid culture with profound utility. The technology offers a cheap, high-throughput, reproducible alternative for spheroid culture with exquisite adaptability. Here, we will brief the applicability of 3D cultures as compared to 2D cultures with spheroids being the focal point of the review. Common approaches to spheroid fabrication are discussed with existential limitations. Finally, the versatility of elastin-like polypeptide inspired substrates for spheroid culture has been discussed.
Collapse
Affiliation(s)
- Ridhima Goel
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepak Gulwani
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Priyanka Upadhyay
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijaya Sarangthem
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Thoudam Debraj Singh
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
133
|
Fröhlich E. The Variety of 3D Breast Cancer Models for the Study of Tumor Physiology and Drug Screening. Int J Mol Sci 2023; 24:ijms24087116. [PMID: 37108283 PMCID: PMC10139112 DOI: 10.3390/ijms24087116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer is the most common cancer in women and responsible for multiple deaths worldwide. 3D cancer models enable a better representation of tumor physiology than the conventional 2D cultures. This review summarizes the important components of physiologically relevant 3D models and describes the spectrum of 3D breast cancer models, e.g., spheroids, organoids, breast cancer on a chip and bioprinted tissues. The generation of spheroids is relatively standardized and easy to perform. Microfluidic systems allow control over the environment and the inclusion of sensors and can be combined with spheroids or bioprinted models. The strength of bioprinting relies on the spatial control of the cells and the modulation of the extracellular matrix. Except for the predominant use of breast cancer cell lines, the models differ in stromal cell composition, matrices and fluid flow. Organoids are most appropriate for personalized treatment, but all technologies can mimic most aspects of breast cancer physiology. Fetal bovine serum as a culture supplement and Matrigel as a scaffold limit the reproducibility and standardization of the listed 3D models. The integration of adipocytes is needed because they possess an important role in breast cancer.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
134
|
Lyu X, Cui F, Zhou H, Cao B, Zhang X, Cai M, Yang S, Sun B, Li G. 3D co-culture of macrophages and fibroblasts in a sessile drop array for unveiling the role of macrophages in skin wound-healing. Biosens Bioelectron 2023; 225:115111. [PMID: 36731395 DOI: 10.1016/j.bios.2023.115111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
Three-dimensional (3D) heterotypic multicellular spheroid models play important roles in researches of the proliferation and remodeling phases in wound healing. This study aimed to develop a sessile drop array to cultivate 3D spheroids and simulate wound healing stage in vitro using NIH-3T3 fibroblasts and M2-type macrophages. By the aid of the offset of surface tension and gravity, the sessile drop array is able to transfer cell suspensions to spheroids via the superhydrophobic surface of each microwell. Meanwhile, each microwell has a cylinder hole at its bottom that provides adequate oxygen to the spheroid. It demonstrated that the NIH-3T3 fibroblast spheroid and the 3T3 fibroblast/M2-type macrophage heterotypic multicellular spheroid can form and maintain physiological activities within nine days. In order to further investigate the structure without destroying the entire spheroid, we reconstructed its 3D morphology using transparent processing technology and the Z-stack function of confocal microscopy. Additionally, a nano antibody-based 3D immunostaining assay was used to analyze the proliferation and differentiation characteristics of these cells. It found that M2-type macrophages were capable of promoting the differentiation of 3T3 fibroblast spheroid. In this study, a novel, inexpensive platform was constructed for developing spheroids, as well as a 3D immunofluorescence method for investigating the macrophage-associated wound healing microenvironment.
Collapse
Affiliation(s)
- Xiaoyan Lyu
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Feiyun Cui
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Hang Zhou
- The Ministry of Education Key Laboratory of Clinical Diagnostics, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bo Cao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Xiaolan Zhang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Minghui Cai
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Shulong Yang
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Bangyong Sun
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China
| | - Gang Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
135
|
Singh N, Patel K, Navalkar A, Kadu P, Datta D, Chatterjee D, Mukherjee S, Shaw R, Gahlot N, Shaw A, Jadhav S, Maji SK. Amyloid fibril-based thixotropic hydrogels for modeling of tumor spheroids in vitro. Biomaterials 2023; 295:122032. [PMID: 36791521 DOI: 10.1016/j.biomaterials.2023.122032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/28/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Biomaterials mimicking extracellular matrices (ECM) for three-dimensional (3D) cultures have gained immense interest in tumor modeling and in vitro organ development. Here, we introduce a new class of amyloid fibril-based peptide hydrogels as a versatile biomimetic ECM scaffold for 3D cell culture and homogenous tumor spheroid modeling. We show that these amyloid fibril-based hydrogels are thixotropic and allow cancer cell adhesion, proliferation, and migration. All seven designed hydrogels support 3D cell culture with five different cancer cell lines forming spheroid with necrotic core and upregulation of the cancer biomarkers. We further developed the homogenous, single spheroid using the drop cast method and the data suggest that all hydrogels support the tumor spheroid formation but with different necrotic core diameters. The detailed gene expression analysis of MCF7 spheroid by microarray suggested the involvement of pro-oncogenes and significant regulatory pathways responsible for tumor spheroid formation. Further, using breast tumor tissue from a mouse xenograft model, we show that selected amyloid hydrogels support the formation of tumor spheroids with a well-defined necrotic core, cancer-associated gene expression, higher drug resistance, and tumor heterogeneity reminiscent of the original tumor. Altogether, we have developed an easy-to-use, rapid, cost-effective, and scalable platform for generating in vitro cancer models for the screening of anti-cancer therapeutics and developing personalized medicine.
Collapse
Affiliation(s)
- Namrata Singh
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Komal Patel
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Debalina Datta
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Debdeep Chatterjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Semanti Mukherjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Ranjit Shaw
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Nitisha Gahlot
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Abhishek Shaw
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | | | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
136
|
Serpeloni JM, Ribeiro DL, Weiss GF, de Oliveira LCB, Fujiike AY, Nunes HL, da Rocha CQ, Guembarovski RL, Cólus IMDS. Flavonoid brachydin B decreases viability, proliferation, and migration in human metastatic prostate (DU145) cells grown in 2D and 3D culture models. Toxicol Res (Camb) 2023; 12:321-331. [PMID: 37125333 PMCID: PMC10141769 DOI: 10.1093/toxres/tfad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 04/05/2023] Open
Abstract
Brachydin B (BrB) is a unique dimeric flavonoid extracted from Fridericia platyphylla (Cham.) LG Lohmann with different biological activities. However, the antitumoral potential of this flavonoid is unclear. In our study, we evaluated the effects of the BrB flavonoid on cell viability (MTT, resazurin, and lactate dehydrogenase assays), proliferation (protein dosage and clonogenic assay), and migration/invasion (3D ECM gel, wound-healing, and transwell assays) of metastatic prostate (DU145) cells cultured both as traditional 2D monolayers and 3D tumor spheroids in vitro. The results showed that the BrB flavonoid promotes cytotoxic effects from ≥1.50 μM after 24 h of treatment in DU145 cells in monolayers. In 3D prostate tumor spheroids, BrB also induced cytotoxic effects at higher concentrations after longer treatment (48, 72, and 168 h). Furthermore, BrB treatment is associated with reduced DU145 clonogenicity in 2D cultures, as well as decreased area/volume of 3D tumor spheroids. Finally, BrB (6 μM) reduced cell migration/invasion in 2D monolayers and promoted antimigratory effects in DU145 tumor spheroids (≥30 μM). In conclusion, the antitumoral and antimigratory effects observed in DU145 cells cultured in 2D and 3D models are promising results for future studies with BrB using in vivo models and confirm this molecule as a candidate for metastatic prostate cancer therapy.
Collapse
Affiliation(s)
- Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Paraná, 86057-970, Brazil
| | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Gabriela Fátima Weiss
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Paraná, 86057-970, Brazil
| | | | - Andressa Yuri Fujiike
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Paraná, 86057-970, Brazil
| | - Higor Lopes Nunes
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Paraná, 86057-970, Brazil
| | - Claudia Quintino da Rocha
- Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís, Maranhão, 65080-805, Brazil
| | - Roberta Losi Guembarovski
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Paraná, 86057-970, Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Paraná, 86057-970, Brazil
| |
Collapse
|
137
|
Al-Rekabi Z, Dondi C, Faruqui N, Siddiqui NS, Elowsson L, Rissler J, Kåredal M, Mudway I, Larsson-Callerfelt AK, Shaw M. Uncovering the cytotoxic effects of air pollution with multi-modal imaging of in vitro respiratory models. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221426. [PMID: 37063998 PMCID: PMC10090883 DOI: 10.1098/rsos.221426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Annually, an estimated seven million deaths are linked to exposure to airborne pollutants. Despite extensive epidemiological evidence supporting clear associations between poor air quality and a range of short- and long-term health effects, there are considerable gaps in our understanding of the specific mechanisms by which pollutant exposure induces adverse biological responses at the cellular and tissue levels. The development of more complex, predictive, in vitro respiratory models, including two- and three-dimensional cell cultures, spheroids, organoids and tissue cultures, along with more realistic aerosol exposure systems, offers new opportunities to investigate the cytotoxic effects of airborne particulates under controlled laboratory conditions. Parallel advances in high-resolution microscopy have resulted in a range of in vitro imaging tools capable of visualizing and analysing biological systems across unprecedented scales of length, time and complexity. This article considers state-of-the-art in vitro respiratory models and aerosol exposure systems and how they can be interrogated using high-resolution microscopy techniques to investigate cell-pollutant interactions, from the uptake and trafficking of particles to structural and functional modification of subcellular organelles and cells. These data can provide a mechanistic basis from which to advance our understanding of the health effects of airborne particulate pollution and develop improved mitigation measures.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Camilla Dondi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Nilofar Faruqui
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Nazia S. Siddiqui
- Faculty of Medical Sciences, University College London, London, UK
- Kingston Hospital NHS Foundation Trust, Kingston upon Thames, UK
| | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jenny Rissler
- Bioeconomy and Health, RISE Research Institutes of Sweden, Lund, Sweden
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Monica Kåredal
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Ian Mudway
- MRC Centre for Environment and Health, Imperial College London, London, UK
- National Institute of Health Protection Research Unit in Environmental Exposures and Health, London, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | | - Michael Shaw
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
- Department of Computer Science, University College London, London, UK
| |
Collapse
|
138
|
Tosca EM, Ronchi D, Facciolo D, Magni P. Replacement, Reduction, and Refinement of Animal Experiments in Anticancer Drug Development: The Contribution of 3D In Vitro Cancer Models in the Drug Efficacy Assessment. Biomedicines 2023; 11:biomedicines11041058. [PMID: 37189676 DOI: 10.3390/biomedicines11041058] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
In the last decades three-dimensional (3D) in vitro cancer models have been proposed as a bridge between bidimensional (2D) cell cultures and in vivo animal models, the gold standards in the preclinical assessment of anticancer drug efficacy. 3D in vitro cancer models can be generated through a multitude of techniques, from both immortalized cancer cell lines and primary patient-derived tumor tissue. Among them, spheroids and organoids represent the most versatile and promising models, as they faithfully recapitulate the complexity and heterogeneity of human cancers. Although their recent applications include drug screening programs and personalized medicine, 3D in vitro cancer models have not yet been established as preclinical tools for studying anticancer drug efficacy and supporting preclinical-to-clinical translation, which remains mainly based on animal experimentation. In this review, we describe the state-of-the-art of 3D in vitro cancer models for the efficacy evaluation of anticancer agents, focusing on their potential contribution to replace, reduce and refine animal experimentations, highlighting their strength and weakness, and discussing possible perspectives to overcome current challenges.
Collapse
|
139
|
Leitner N, Ertl R, Gabner S, Fuchs-Baumgartinger A, Walter I, Hlavaty J. Isolation and Characterization of Novel Canine Osteosarcoma Cell Lines from Chemotherapy-Naïve Patients. Cells 2023; 12:cells12071026. [PMID: 37048099 PMCID: PMC10093184 DOI: 10.3390/cells12071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The present study aimed to establish novel canine osteosarcoma cell lines (COS3600, COS3600B, COS4074) and characterize the recently described COS4288 cells. The established D-17 cell line served as a reference. Analyzed cell lines differed notably in their biological characteristics. Calculated doubling times were between 22 h for COS3600B and 426 h for COS4074 cells. COS3600B and COS4288 cells produced visible colonies after anchorage-independent growth in soft agar. COS4288 cells were identified as cells with the highest migratory capacity. All cells displayed the ability to invade through an artificial basement membrane matrix. Immunohistochemical analyses revealed the mesenchymal origin of all COS cell lines as well as positive staining for the osteosarcoma-relevant proteins alkaline phosphatase and karyopherin α2. Expression of p53 was confirmed in all tested cell lines. Gene expression analyses of selected genes linked to cellular immune checkpoints (CD270, CD274, CD276), kinase activity (MET, ERBB2), and metastatic potential (MMP-2, MMP-9) as well as selected long non-coding RNA (MALAT1) and microRNAs (miR-9, miR-34a, miR-93) are provided. All tested cell lines were able to grow as multicellular spheroids. In all spheroids except COS4288, calcium deposition was detected by von Kossa staining. We believe that these new cell lines serve as useful biological models for future studies.
Collapse
Affiliation(s)
- Natascha Leitner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Simone Gabner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | | | - Ingrid Walter
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Juraj Hlavaty
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
- Correspondence: ; Tel.: +431-250-77-3402; Fax: +431-250-77-3490
| |
Collapse
|
140
|
Evaluating the RIST Molecular-Targeted Regimen in a Three-Dimensional Neuroblastoma Spheroid Cell Culture Model. Cancers (Basel) 2023; 15:cancers15061749. [PMID: 36980635 PMCID: PMC10046822 DOI: 10.3390/cancers15061749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Background: The outcome for patients with high-risk neuroblastoma remains poor and novel treatment strategies are urgently needed. The RIST protocol represents a novel metronomic and multimodal treatment strategy for high-risk neuroblastoma combining molecular-targeted drugs as ‘pre-treatment’ with a conventional chemotherapy backbone, currently evaluated in a phase II clinical trial. For preclinical drug testing, cancer cell growth as spheroid compared to mo-nolayer cultures is of advantage since it reproduces a wide range of tumor characteristics, including the three-dimensional architecture and cancer stem cell (CSC) properties. The objective of this study was to establish a neuroblastoma spheroid model for the rigorous assessment of the RIST treatment protocol. Methods: Evaluation of CSC marker expression was performed by mRNA and protein analysis and spheroid viability by luminescence-based assays. Aberrant expression of RNA-binding protein La in neuroblastoma was assessed by tissue microarray analysis and patients’ data mining. Results: Spheroid cultures showed increased expression of a subgroup of CSC-like markers (CXCR4, NANOG and BMI) and higher Thr389 phosphorylation of the neuroblastoma-associated RNA-binding protein La when compared to monolayer cultures. Molecular-targeted ‘pre-treatment’ of spheroids decreased neoplastic signaling and CSC marker expression. Conclusions: The RIST treatment protocol efficiently reduced the viability of neuroblastoma spheroids characterized by advanced CSC properties.
Collapse
|
141
|
Rosado-Galindo H, Domenech M. Surface roughness modulates EGFR signaling and stemness of triple-negative breast cancer cells. Front Cell Dev Biol 2023; 11:1124250. [PMID: 36968199 PMCID: PMC10030610 DOI: 10.3389/fcell.2023.1124250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Cancer stem cells (CSC), a major culprit of drug-resistant phenotypes and tumor relapse, represent less than 2 % of the bulk of TNBC cells, making them difficult to isolate, study, and thus, limiting our understanding of the pathogenesis of the disease. Current methods for CSC enrichment, such as 3D spheroid culture, genetic modification, and stem cell conditioning, are time consuming, expensive, and unsuitable for high-throughput assays. One way to address these limitations is to use topographical stimuli to enhance CSC populations in planar culture. Physical cues in the breast tumor microenvironment can influence cell behavior through changes in the mechanical properties of the extracellular matrix (ECM). In this study, we used topographical cues on polystyrene films to investigate their effect on the proteome and stemness of standard TNBC cell lines. Methods: The topographical polystyrene-based array was generated using razor printing and polishing methods. Proteome data were analyzed and enriched bioprocesses were identified using R software. Stemness was assessed measuring CD44, CD24 and ALDH markers using flow cytometry, immunofluorescence, detection assays, and further validated with mammosphere assay. EGF/EGFR expression and activity was evaluated using enzyme-linked immunosorbent assay (ELISA), immunofluorescence and antibody membrane array. A dose-response assay was performed to further investigate the effect of surface topography on the sensitivity of cells to the EGFR inhibitor. Results: Surface roughness enriched the CSC population and modulated epidermal growth factor receptor (EGFR) signaling activity in TNBC cells. Enhanced proliferation of MDA-MB-468 cells in roughness correlated with upregulation of the epidermal growth factor (EGF) ligand, which in turn corresponded with a 3-fold increase in the expression of EGFR and a 42% increase in its phosphorylation compared to standard smooth culture surfaces. The results also demonstrated that phenotypic changes associated with topographical (roughness) stimuli significantly decreased the drug sensitivity to the EGFR inhibitor gefitinib. In addition, the proportion of CD44+/CD24-/ALDH+ was enhanced on surface roughness in both MDA-MB-231 and MDA-MB-468 cell lines. We also demonstrated that YAP/TAZ activation decreased in a roughness-dependent manner, confirming the mechanosensing effect of the topographies on the oncogenic activity of the cells. Discussion: Overall, this study demonstrates the potential of surface roughness as a culture strategy to influence oncogenic activity in TNBC cells and enrich CSC populations in planar cultures. Such a culture strategy may benefit high-throughput screening studies seeking to identify compounds with broader tumor efficacy.
Collapse
Affiliation(s)
| | - Maribella Domenech
- Bioengineering Program, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
| |
Collapse
|
142
|
Wang X, Chauhan G, Tacderas ARL, Muth A, Gupta V. Surface-Modified Inhaled Microparticle-Encapsulated Celastrol for Enhanced Efficacy in Malignant Pleural Mesothelioma. Int J Mol Sci 2023; 24:5204. [PMID: 36982279 PMCID: PMC10049545 DOI: 10.3390/ijms24065204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer affecting the pleural lining of the lungs. Celastrol (Cela), a pentacyclic triterpenoid, has demonstrated promising therapeutic potential as an antioxidant, anti-inflammatory, neuroprotective agent, and anti-cancer agent. In this study, we developed inhaled surface-modified Cela-loaded poly(lactic-co-glycolic) acid (PLGA) microparticles (Cela MPs) for the treatment of MPM using a double emulsion solvent evaporation method. The optimized Cela MPs exhibited high entrapment efficiency (72.8 ± 6.1%) and possessed a wrinkled surface with a mean geometric diameter of ~2 µm and an aerodynamic diameter of 4.5 ± 0.1 µm, suggesting them to be suitable for pulmonary delivery. A subsequent release study showed an initial burst release up to 59.9 ± 2.9%, followed by sustained release. The therapeutic efficacy of Cela MPs was evaluated against four mesothelioma cell lines, where Cela MP exhibited significant reduction in IC50 values, and blank MPs produced no toxicity to normal cells. Additionally, a 3D-spheroid study was performed where a single dose of Cela MP at 1.0 µM significantly inhibited spheroid growth. Cela MP was also able to retain the antioxidant activity of Cela only while mechanistic studies revealed triggered autophagy and an induction of apoptosis. Therefore, these studies highlight the anti-mesothelioma activity of Cela and demonstrate that Cela MPs are a promising inhalable medicine for MPM treatment.
Collapse
Affiliation(s)
- Xuechun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Alison R. L. Tacderas
- Department of Biological Sciences, College of Liberal Arts and Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| |
Collapse
|
143
|
Mohandas S, Gayatri V, Kumaran K, Gopinath V, Paulmurugan R, Ramkumar KM. New Frontiers in Three-Dimensional Culture Platforms to Improve Diabetes Research. Pharmaceutics 2023; 15:pharmaceutics15030725. [PMID: 36986591 PMCID: PMC10056755 DOI: 10.3390/pharmaceutics15030725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetes mellitus is associated with defects in islet β-cell functioning and consequent hyperglycemia resulting in multi-organ damage. Physiologically relevant models that mimic human diabetic progression are urgently needed to identify new drug targets. Three-dimensional (3D) cell-culture systems are gaining a considerable interest in diabetic disease modelling and are being utilized as platforms for diabetic drug discovery and pancreatic tissue engineering. Three-dimensional models offer a marked advantage in obtaining physiologically relevant information and improve drug selectivity over conventional 2D (two-dimensional) cultures and rodent models. Indeed, recent evidence persuasively supports the adoption of appropriate 3D cell technology in β-cell cultivation. This review article provides a considerably updated view of the benefits of employing 3D models in the experimental workflow compared to conventional animal and 2D models. We compile the latest innovations in this field and discuss the various strategies used to generate 3D culture models in diabetic research. We also critically review the advantages and the limitations of each 3D technology, with particular attention to the maintenance of β-cell morphology, functionality, and intercellular crosstalk. Furthermore, we emphasize the scope of improvement needed in the 3D culture systems employed in diabetes research and the promises they hold as excellent research platforms in managing diabetes.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Vijaya Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kriya Kumaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Vipin Gopinath
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Molecular Oncology Division, Malabar Cancer Centre, Moozhikkara P.O, Thalassery 670103, Kerala, India
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (R.P.); (K.M.R.)
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (R.P.); (K.M.R.)
| |
Collapse
|
144
|
Rapid generation of homogenous tumor spheroid microtissues in a scaffold-free platform for high-throughput screening of a novel combination nanomedicine. PLoS One 2023; 18:e0282064. [PMID: 36800370 PMCID: PMC9937506 DOI: 10.1371/journal.pone.0282064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Combination nanomedicine is a potent strategy for cancer treatment. Exploiting different mechanisms of action, a novel triple drug delivery system of 5-fluorouracil, curcumin, and piperine co-loaded human serum albumin nanoparticles (5FU-CUR-PIP-HSA-NPs) was developed via the self-assembly method for suppressing breast tumor. Both hydrophobic and hydrophilic drugs were successfully encapsulated in the HSA NPs with a high drug loading efficiency (DLE) of 10%. Successful clinical translation of nanomedicines, however, is a challenging process requiring considerable preclinical in vitro and in vivo animal tests. The aim of this study was to develop a homemade preclinical 3D culture model in the standard 96-well plates in a cost and time-effective novel approach for the rapid generation of homogenous compact tumor spheroids for disease modeling, and anticancer therapeutic/nanomedicine screening. The knowledge of drug screening can be enhanced by employing such a model in a high-throughput manner. Accordingly, to validate the formulated drug delivery system and investigate the cellular uptake and cytotoxicity effect of the nanoformulation, 3D tumor spheroids were employed. The practicality of the nanomedicine system was substantiated in different tests. The in vitro uptake of the NPs into the tight 3D tumor spheroids was facilitated by the semi-spherical shape of the NPs with a proper size and surface charge. 5FU-CUR-PIP-HSA-NPs demonstrated high potency of migration inhibition as a part of successful anti-metastatic therapy as well. The remarkable differences in 2D and 3D cytotoxicities emphasize the importance of employing 3D tumor models as an intermediate step prior to in vivo animal experiments for drug/nanomedicine screening.
Collapse
|
145
|
Kieda J, Appak-Baskoy S, Jeyhani M, Navi M, Chan KWY, Tsai SSH. Microfluidically-generated Encapsulated Spheroids (μ-GELS): An All-Aqueous Droplet Microfluidics Platform for Multicellular Spheroids Generation. ACS Biomater Sci Eng 2023; 9:1043-1052. [PMID: 36626575 DOI: 10.1021/acsbiomaterials.2c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Spheroids are three-dimensional clusters of cells that serve as in vitro tumor models to recapitulate in vivo morphology. A limitation of many existing on-chip platforms for spheroid formation is the use of cytotoxic organic solvents as the continuous phase in droplet generation processes. All-aqueous methods do not contain cytotoxic organic solvents but have so far been unable to achieve complete hydrogel gelation on chip. Here, we describe an enhanced droplet microfluidic platform that achieves on-chip gelation of all-aqueous hydrogel multicellular spheroids (MCSs). Specifically, we generate dextran-alginate droplets containing MCF-7 breast cancer cells, surrounded by polyethylene glycol, at a flow-focusing junction. Droplets then travel to a second flow-focusing junction where they interact with calcium chloride and gel on chip to form hydrogel MCSs. On-chip gelation of the MCSs is possible here because of an embedded capillary at the second junction that delays the droplet gelation, which prevents channel clogging problems that would otherwise exist. In drug-free experiments, we demonstrate that MCSs remain viable for 6 days. We also confirm the applicability of this system for cancer drug testing by observing that dose-dependent cell death is achievable using doxorubicin.
Collapse
Affiliation(s)
- Jennifer Kieda
- Graduate Program in Biomedical Engineering, Toronto Metropolitan University, TorontoM5B 2K3, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, TorontoM5B 2K3, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST) - A partnership between Toronto Metropolitan University and St. Michael's Hospital, TorontoM5B 1W8, Canada
| | - Sila Appak-Baskoy
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, TorontoM5B 2K3, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST) - A partnership between Toronto Metropolitan University and St. Michael's Hospital, TorontoM5B 1W8, Canada.,Department of Chemistry and Biology, Toronto Metropolitan University, TorontoM5B 2K3, Canada
| | - Morteza Jeyhani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, TorontoM5B 2K3, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST) - A partnership between Toronto Metropolitan University and St. Michael's Hospital, TorontoM5B 1W8, Canada.,Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, TorontoM5B 2K3, Canada
| | - Maryam Navi
- Graduate Program in Biomedical Engineering, Toronto Metropolitan University, TorontoM5B 2K3, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, TorontoM5B 2K3, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST) - A partnership between Toronto Metropolitan University and St. Michael's Hospital, TorontoM5B 1W8, Canada
| | - Katherine W Y Chan
- Graduate Program in Biomedical Engineering, Toronto Metropolitan University, TorontoM5B 2K3, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, TorontoM5B 2K3, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST) - A partnership between Toronto Metropolitan University and St. Michael's Hospital, TorontoM5B 1W8, Canada
| | - Scott S H Tsai
- Graduate Program in Biomedical Engineering, Toronto Metropolitan University, TorontoM5B 2K3, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, TorontoM5B 2K3, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST) - A partnership between Toronto Metropolitan University and St. Michael's Hospital, TorontoM5B 1W8, Canada.,Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, TorontoM5B 2K3, Canada
| |
Collapse
|
146
|
Use of 3D Spheroid Models for the Assessment of RT Response in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24043763. [PMID: 36835181 PMCID: PMC9963786 DOI: 10.3390/ijms24043763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Radiotherapy (RT) is a key player in the treatment of head and neck cancer (HNC). The RT response, however, is variable and influenced by multiple tumoral and tumor microenvironmental factors, such as human papillomavirus (HPV) infections and hypoxia. To investigate the biological mechanisms behind these variable responses, preclinical models are crucial. Up till now, 2D clonogenic and in vivo assays have remained the gold standard, although the popularity of 3D models is rising. In this study, we investigate the use of 3D spheroid models as a preclinical tool for radiobiological research by comparing the RT response of two HPV-positive and two HPV-negative HNC spheroid models to the RT response of their corresponding 2D and in vivo models. We demonstrate that HPV-positive spheroids keep their higher intrinsic radiosensitivity when compared to HPV-negative spheroids. A good correlation is found in the RT response between HPV-positive SCC154 and HPV-negative CAL27 spheroids and their respective xenografts. In addition, 3D spheroids are able to capture the heterogeneity of RT responses within HPV-positive and HPV-negative models. Moreover, we demonstrate the potential use of 3D spheroids in the study of the mechanisms underlying these RT responses in a spatial manner by whole-mount Ki-67 and pimonidazole staining. Overall, our results show that 3D spheroids are a promising model to assess the RT response in HNC.
Collapse
|
147
|
Ünal S, Varan G, Benito JM, Aktaş Y, Bilensoy E. Insight into oral amphiphilic cyclodextrin nanoparticles for colorectal cancer: comprehensive mathematical model of drug release kinetic studies and antitumoral efficacy in 3D spheroid colon tumors. Beilstein J Org Chem 2023; 19:139-157. [PMID: 36814451 PMCID: PMC9940600 DOI: 10.3762/bjoc.19.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer type globally and ranks second in cancer-related deaths. With the current treatment possibilities, a definitive, safe, and effective treatment approach for CRC has not been presented yet. However, new drug delivery systems show promise in this field. Amphiphilic cyclodextrin-based nanocarriers are innovative and interesting formulation approaches for targeting the colon through oral administration. In our previous studies, oral chemotherapy for colon tumors was aimed and promising results were obtained with formulation development studies, mucin interaction, mucus penetration, cytotoxicity, and permeability in 2D cell culture, and furthermore in vivo antitumoral and antimetastatic efficacy in early and late-stage colon cancer models and biodistribution after single dose oral administration. This study was carried out to further elucidate oral camptothecin (CPT)-loaded amphiphilic cyclodextrin nanoparticles for the local treatment of colorectal tumors in terms of their drug release behavior and efficacy in 3-dimensional tumor models to predict the in vivo efficacy of different nanocarriers. The main objective was to build a bridge between formulation development and in vitro phase and animal studies. In this context, CPT-loaded polycationic-β-cyclodextrin nanoparticles caused reduced cell viability in CT26 and HT29 colon carcinoma spheroid tumors of mice and human origin, respectively. In addition, the release profile, which is one of the critical quality parameters in new drug delivery systems, was investigated mathematically by release kinetic modeling for the first time. The overall findings indicated that the strategy of orally targeting anticancer drugs such as CPT with positively charged poly-β-CD-C6 nanoparticles to colon tumors for local and/or systemic efficacy is a promising approach.
Collapse
Affiliation(s)
- Sedat Ünal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Gamze Varan
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06100, Ankara, Turkey
| | - Juan M Benito
- Institute for Chemical Research, CSIC - University of Sevilla, Av. Americo Vespucio 49, 41092, Sevilla, Spain
| | - Yeşim Aktaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| |
Collapse
|
148
|
Edamana S, Login FH, Riishede A, Dam VS, Tramm T, Nejsum LN. The cell polarity protein Scribble is downregulated by the water channel aquaporin-5 in breast cancer cells. Am J Physiol Cell Physiol 2023; 324:C307-C319. [PMID: 36468842 DOI: 10.1152/ajpcell.00311.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast carcinomas originate from cells in the terminal duct-lobular unit. Carcinomas are associated with increased cell proliferation and migration, altered cellular adhesion, as well as loss of epithelial polarity. In breast cancer, aberrant and high levels of aquaporin-5 (AQP5) are associated with increased metastasis, poor prognosis, and cancer recurrence. AQP5 increases the proliferation and migration of cancer cells, and ectopic expression of AQP5 in normal epithelial cells reduces cell-cell adhesion and increases cell detachment and dissemination from migrating cell sheets, the latter via AQP5-mediated activation of the Ras pathway. Here, we investigated if AQP5 also affects cellular polarity by examining the relationship between the essential polarity protein Scribble and AQP5. In tissue samples from invasive lobular and ductal carcinomas, the majority of cells with high AQP5 expression displayed low Scribble levels, indicating an inverse relationship. Probing for interactions via a Glutathione S-transferase pull-down experiment revealed that AQP5 and Scribble interacted. Moreover, overexpression of AQP5 in the breast cancer cell line MCF7 reduced both size and circularity of three-dimensional (3-D) spheroids and induced cell detachment and dissemination from migrating cell sheets. In addition, Scribble levels were reduced. An AQP5 mutant cell line, which cannot activate Ras (AQP5S156A) signaling, displayed unchanged spheroid size and circularity and an intermediate level of Scribble, indicating that the effect of AQP5 on Scribble is, at least in part, dependent on AQP5-mediated activation of Ras. Thus, our results suggest that high AQP5 expression negatively regulates the essential polarity protein Scribble and thus, can affect cellular polarity in breast cancer.
Collapse
Affiliation(s)
- Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andreas Riishede
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vibeke S Dam
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
149
|
Promises and challenges for targeting the immunological players in the tumor micro-environment – Critical determinants for NP-based therapy. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
150
|
Microfabrication methods for 3D spheroids formation and their application in biomedical engineering. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|