101
|
Yacoub JH, Hsu CC, Fishbein TM, Mauro D, Moon A, He AR, Bashir MR, Burke LMB. Therapies for hepatocellular carcinoma: overview, clinical indications, and comparative outcome evaluation-part one: curative intention. Abdom Radiol (NY) 2021; 46:3528-3539. [PMID: 33835223 DOI: 10.1007/s00261-021-03069-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) offers unique management challenges as it commonly occurs in the setting of underlying chronic liver disease. The management of HCC is directed primarily by the clinical stage. The most commonly used staging system is the Barcelona-Clinic Liver Cancer system, which considers tumor burden based on imaging, liver function and the patient's performance status. Early-stage HCC can be managed with therapies of curative intent including surgical resection, liver transplantation, and ablative therapies. This manuscript reviews the various treatment options for HCC with a curative intent, such as locablative therapy types, surgical resection, and transplant. Indications, contraindications and outcomes of the various treatment options are reviewed. Multiple concepts relating to liver transplant are discussed including Milan criteria, OPTN policy, MELD exception points, downstaging to transplant and bridging to transplant.
Collapse
Affiliation(s)
- Joseph H Yacoub
- Department of Radiology, Medstar Georgetown University Hospital, Georgetown University, 3800 Reservoir Rd, NW, Suite CG201, Washington DC, 20007, USA.
| | - Christine C Hsu
- Medstar Georgetown Transplant Institute, Georgetown University, Washington DC, USA
| | - Thomas M Fishbein
- Medstar Georgetown Transplant Institute, Georgetown University, Washington DC, USA
| | - David Mauro
- Department of Radiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - Andrew Moon
- Department of Radiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - Aiwu R He
- Department of Medicine, Georgetown University, Washington DC, USA
| | - Mustafa R Bashir
- Department of Radiology and Medicine (Gastroenterology), Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Advanced Magnetic Resonance Development, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Lauren M B Burke
- Department of Radiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| |
Collapse
|
102
|
Kamioka H, Edaki K, Kasahara H, Tomono T, Yano K, Ogihara T. Drug resistance via radixin-mediated increase of P-glycoprotein membrane expression during SNAI1-induced epithelial-mesenchymal transition in HepG2 cells. J Pharm Pharmacol 2021; 73:1609-1616. [PMID: 34313784 DOI: 10.1093/jpp/rgab051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/20/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Epithelial-mesenchymal transition (EMT) plays a role in cancer metastasis as well as in drug resistance through various mechanisms, including increased drug efflux mediated by P-glycoprotein (P-gp). In this study, we investigated the activation mechanism of P-gp, including its regulatory factors, during EMT in hepatoblastoma-derived HepG2 cells. METHODS HepG2 cells were transfected with SNAI1 using human adenovirus serotype 5 vector. We quantified mRNA and protein expression levels using qRT-PCR and western blot analysis, respectively. P-gp activity was evaluated by uptake assay, and cell viability was assessed by an MTT assay. KEY FINDINGS P-gp protein expression on plasma membrane was higher in SNAI1-transfected cells than in Mock cells, although there was no difference in P-gp protein level in whole cells. Among the scaffold proteins such as ezrin, radixin and moesin (ERM), only radixin was increased in SNAI1-transfected cells. Uptake of both Rho123 and paclitaxel was decreased in SNAI1-transfected cells, and this decrease was blocked by verapamil, a P-gp inhibitor. The reduced susceptibility of SNAI1-transfected cells to paclitaxel was reversed by elacridar, another P-gp inhibitor. CONCLUSIONS Increased expression of radixin during SNAI1-induced EMT leads to increased P-gp membrane expression in HepG2 cells, enhancing P-gp function and thereby increasing drug resistance.
Collapse
Affiliation(s)
- Hiroki Kamioka
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, Japan
| | - Kazue Edaki
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, Japan
| | - Haruka Kasahara
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, Japan
| | - Takumi Tomono
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, Japan.,Laboratory of Drug Delivery System, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata-shi, Osaka, Japan
| | - Kentaro Yano
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, Japan.,Laboratory of Drug Metabolism and Pharmacokinetics, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan
| | - Takuo Ogihara
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, Japan.,Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, Japan
| |
Collapse
|
103
|
Simón Serrano S, Tavecchio M, Grönberg A, Sime W, Jemaà M, Moss S, Gregory MA, Gallay P, Elmér E, Hansson MJ, Massoumi R. Novel Cyclophilin Inhibitor Decreases Cell Proliferation and Tumor Growth in Models of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13123041. [PMID: 34207224 PMCID: PMC8234462 DOI: 10.3390/cancers13123041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cyclophilins, a family of proteins with peptidyl prolyl isomerase activity, have been found to be overexpressed in several cancers, including hepatocellular carcinoma (HCC), and their expression is correlated to a poor prognosis. Cyclophilins play an important role in proliferation and cancer resistance in HCC. In this study, we evaluated the potential capacity of cyclophilin inhibitors as a treatment against HCC. We showed that our selected cyclophilin inhibitor, NV651, was able to decrease cell proliferation in vitro and induce an accumulation of cells in the G2/M phase due to a mitotic block. We could also confirm its capacity to decrease tumor growths in mice and its safety in vitro as well as in vivo. Abstract Hepatocellular carcinoma (HCC), the most common primary liver cancer, is usually diagnosed in its late state. Tyrosine kinase inhibitors such as sorafenib and regorafenib are one of the few treatment options approved for advanced HCC and only prolong the patient’s life expectancy by a few months. Therefore, there is a need for novel effective treatments. Cyclophilins are intracellular proteins that catalyze the cis/trans isomerization of peptide bonds at proline residues. Cyclophilins are known to be overexpressed in HCC, affecting therapy resistance and cell proliferation. In the present study, we explored the potential of cyclophilin inhibitors as new therapeutic options for HCC in vitro and in vivo. Our results showed that the novel cyclophilin inhibitor, NV651, was able to significantly decrease proliferation in a diverse set of HCC cell lines. The exposure of HCC cells to NV651 caused an accumulation of cells during mitosis and consequent accumulation in the G2/M phase of the cell cycle. NV651 reduced tumor growth in vivo using an HCC xenograft model without affecting the body weights of the animals. The safety aspects of NV651 were also confirmed in primary human hepatocytes without any cytotoxic effects. Based on the results obtained in this study, we propose NV651 as a potential treatment strategy for HCC.
Collapse
Affiliation(s)
- Sonia Simón Serrano
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, 223 63 Lund, Sweden; (S.S.S.); (W.S.); (M.J.)
- Abliva AB, Medicon Village, Scheelevägen 2, SE-233 81 Lund, Sweden; (M.T.); (A.G.); (E.E.); (M.J.H.)
| | - Michele Tavecchio
- Abliva AB, Medicon Village, Scheelevägen 2, SE-233 81 Lund, Sweden; (M.T.); (A.G.); (E.E.); (M.J.H.)
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden
| | - Alvar Grönberg
- Abliva AB, Medicon Village, Scheelevägen 2, SE-233 81 Lund, Sweden; (M.T.); (A.G.); (E.E.); (M.J.H.)
| | - Wondossen Sime
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, 223 63 Lund, Sweden; (S.S.S.); (W.S.); (M.J.)
| | - Mohamed Jemaà
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, 223 63 Lund, Sweden; (S.S.S.); (W.S.); (M.J.)
| | - Steven Moss
- Isomerase Therapeutics Ltd., Suite 9, Science Village, Chesterford Research Park, Cambridge CB10 1XL, UK; (S.M.); (M.A.G.)
| | - Matthew Alan Gregory
- Isomerase Therapeutics Ltd., Suite 9, Science Village, Chesterford Research Park, Cambridge CB10 1XL, UK; (S.M.); (M.A.G.)
| | - Philippe Gallay
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Eskil Elmér
- Abliva AB, Medicon Village, Scheelevägen 2, SE-233 81 Lund, Sweden; (M.T.); (A.G.); (E.E.); (M.J.H.)
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden
| | - Magnus Joakim Hansson
- Abliva AB, Medicon Village, Scheelevägen 2, SE-233 81 Lund, Sweden; (M.T.); (A.G.); (E.E.); (M.J.H.)
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden
| | - Ramin Massoumi
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, 223 63 Lund, Sweden; (S.S.S.); (W.S.); (M.J.)
- Correspondence: ; Tel.: +46-46-222-64-30
| |
Collapse
|
104
|
Bhatt S, Kanoujia J, Dhar AK, Singh RK, Rajangam J. Current and Future Scenario of Immunotherapy for the Treatment of Hepatocellular Carcinoma. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716999200818103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The discovery of the immune checkpoint inhibitors such as programed cell death-1 protein/
Programmed death ligand-1 or 2 and (PD-1/PD-L1 or PD-L2) and Cytotoxic T-lymphocyte associated
protein 4 (CTLA-4) paved the way for developing novel cancer treatment. The check
point inhibitors are found to be very efficient in treating many hot tumors (with immune environment)
such as bladder cancer, melanoma, renal cell carcinoma (RCC), non-small cell lung cancer
(NSCLC), etc. Numerous clinical trials have been initiated to evaluate the safety and effectiveness
of immune checkpoint inhibitors for patients with different cancer types, including hepatocellular
carcinoma (HCC), pancreatic and prostate cancer. The results and findings of these trials are highly
appreciated. However, the search for check point inhibitors with better efficacy for the treatment of
HCC is still going on. The present review focuses on advancement in HCC treatments with respect
to various standard therapies and immunotherapy.
Collapse
Affiliation(s)
- Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior-474005, India
| | - Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior-474005, India
| | - Arghya K. Dhar
- Gurunanak Institute of Pharmaceutical Science and Technology, Kolkata-700110, India
| | - Rakesh K. Singh
- Amity Institute of Pharmacy, Amity University Haryana, Manesar, Panchgaon, Haryana 122412, India
| | - Jayaraman Rajangam
- Sree Vidya Niketan College of Pharmacy, Tirupati, Andhra Pradesh 517102, India
| |
Collapse
|
105
|
Lafnoune A, Lee SY, Heo JY, Gourja I, Darkaoui B, Abdelkafi-Koubaa Z, Chgoury F, Daoudi K, Chakir S, Cadi R, Mounaji K, Srairi-Abid N, Marrakchi N, Shum D, Seo HR, Oukkache N. Anti-Cancer Effect of Moroccan Cobra Naja haje Venom and Its Fractions against Hepatocellular Carcinoma in 3D Cell Culture. Toxins (Basel) 2021; 13:toxins13060402. [PMID: 34199838 PMCID: PMC8229680 DOI: 10.3390/toxins13060402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer in adults, the fifth most common malignancy worldwide and the third leading cause of cancer related death. An alternative to the surgical treatments and drugs, such as sorafenib, commonly used in medicine is necessary to overcome this public health problem. In this study, we determine the anticancer effect on HCC of Moroccan cobra Naja haje venom and its fraction obtained by gel filtration chromatography against Huh7.5 cancer cell line. Cells were grown together with WI38 human fibroblast cells, LX2 human hepatic stellate cell line, and human endothelial cells (HUVEC) in MCTS (multi-cellular tumor spheroids) models. The hepatotoxicity of venom and its fractions were also evaluated using the normal hepatocytes cell line (Fa2N-4 cells). Our results showed that an anti HCC activity of Moroccan cobra Naja haje venom and, more specifically, the F7 fraction of gel filtration chromatography exhibited the greatest anti-hepatocellular carcinoma effect by decreasing the size of MCTS. This effect is associated with a low toxicity against normal hepatocytes. These results strongly suggest that the F7 fraction of Moroccan cobra Naja haje venom obtained by gel filtration chromatography possesses the ability to inhibit cancer cells proliferation. More research is needed to identify the specific molecule(s) responsible for the anticancer effect and investigate their mechanism of action.
Collapse
Affiliation(s)
- Ayoub Lafnoune
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
- Laboratoire Physiopathologie, Génétique Moléculaire & Biotechnologie, Faculté des Sciences Ain-Chock, Hassan II University of Casablanca, B.P 5366 Maarif, Casablanca 20000, Morocco; (R.C.); (K.M.)
| | - Su-Yeon Lee
- Cancer Biology Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil Bundang-gu, Seong-nam-si 13488, Gyeonggi-do, Korea; (S.-Y.L.); (H.-R.S.)
| | - Jin-Yeong Heo
- Screening Discovery Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil Bundang-gu, Seong-nam-si 13488, Gyeonggi-do, Korea; (J.-Y.H.); (D.S.)
| | - Imane Gourja
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
| | - Bouchra Darkaoui
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
- Laboratoire Physiopathologie, Génétique Moléculaire & Biotechnologie, Faculté des Sciences Ain-Chock, Hassan II University of Casablanca, B.P 5366 Maarif, Casablanca 20000, Morocco; (R.C.); (K.M.)
| | - Zaineb Abdelkafi-Koubaa
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis 1002, Tunisia; (Z.A.-K.); (N.S.-A.); (N.M.)
| | - Fatima Chgoury
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
| | - Khadija Daoudi
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
- Laboratoire Physiopathologie, Génétique Moléculaire & Biotechnologie, Faculté des Sciences Ain-Chock, Hassan II University of Casablanca, B.P 5366 Maarif, Casablanca 20000, Morocco; (R.C.); (K.M.)
| | - Salma Chakir
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
| | - Rachida Cadi
- Laboratoire Physiopathologie, Génétique Moléculaire & Biotechnologie, Faculté des Sciences Ain-Chock, Hassan II University of Casablanca, B.P 5366 Maarif, Casablanca 20000, Morocco; (R.C.); (K.M.)
| | - Khadija Mounaji
- Laboratoire Physiopathologie, Génétique Moléculaire & Biotechnologie, Faculté des Sciences Ain-Chock, Hassan II University of Casablanca, B.P 5366 Maarif, Casablanca 20000, Morocco; (R.C.); (K.M.)
| | - Najet Srairi-Abid
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis 1002, Tunisia; (Z.A.-K.); (N.S.-A.); (N.M.)
| | - Naziha Marrakchi
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis 1002, Tunisia; (Z.A.-K.); (N.S.-A.); (N.M.)
| | - David Shum
- Screening Discovery Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil Bundang-gu, Seong-nam-si 13488, Gyeonggi-do, Korea; (J.-Y.H.); (D.S.)
| | - Haeng-Ran Seo
- Cancer Biology Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil Bundang-gu, Seong-nam-si 13488, Gyeonggi-do, Korea; (S.-Y.L.); (H.-R.S.)
| | - Naoual Oukkache
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
- Correspondence:
| |
Collapse
|
106
|
Buskaran K, Hussein MZ, Moklas MAM, Masarudin MJ, Fakurazi S. Graphene Oxide Loaded with Protocatechuic Acid and Chlorogenic Acid Dual Drug Nanodelivery System for Human Hepatocellular Carcinoma Therapeutic Application. Int J Mol Sci 2021; 22:5786. [PMID: 34071389 PMCID: PMC8198262 DOI: 10.3390/ijms22115786] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma or hepatoma is a primary malignant neoplasm that responsible for 75-90% of all liver cancer in humans. Nanotechnology introduced the dual drug nanodelivery method as one of the initiatives in nanomedicine for cancer therapy. Graphene oxide (GO) loaded with protocatechuic acid (PCA) and chlorogenic acid (CA) have shown some anticancer activities in both passive and active targeting. The physicochemical characterizations for nanocomposites were conducted. Cell cytotoxicity assay and lactate dehydrogenase were conducted to estimate cell cytotoxicity and the severity of cell damage. Next, nanocomposite intracellular drug uptake was analyzed using a transmission electron microscope. The accumulation and localization of fluorescent-labelled nanocomposite in the human hepatocellular carcinoma (HepG2) cells were analyzed using a fluorescent microscope. Subsequently, Annexin V- fluorescein isothiocyanate (FITC)/propidium iodide analysis showed that nanocomposites induced late apoptosis in HepG2 cells. Cell cycle arrest was ascertained at the G2/M phase. There was the depolarization of mitochondrial membrane potential and an upregulation of reactive oxygen species when HepG2 cells were induced by nanocomposites. In conclusion, HepG2 cells treated with a graphene oxide-polyethylene glycol (GOP)-PCA/CA-FA dual drug nanocomposite exhibited significant anticancer activities with less toxicity compared to pristine protocatechuic acid, chlorogenic acid and GOP-PCA/CA nanocomposite, may be due to the utilization of a folic acid-targeting nanodrug delivery system.
Collapse
Affiliation(s)
- Kalaivani Buskaran
- Laboratory for Vaccine and Immunotherapeutic, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, School of Biotechnology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
| | - Sharida Fakurazi
- Laboratory for Vaccine and Immunotherapeutic, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
| |
Collapse
|
107
|
Chen Y, Song S, Zhang L, Zhang Y. Circular RNA hsa_circ_0091579 facilitates the Warburg effect and malignancy of hepatocellular carcinoma cells via the miR-624/H3F3B axis. Clin Transl Oncol 2021; 23:2280-2292. [PMID: 33934291 DOI: 10.1007/s12094-021-02627-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/16/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a primary liver cancer with a high mortality rate. It has been reported that circular RNA hsa_circ_0091579 (circ_0091579) is involved in HCC progression. Nevertheless, the molecular mechanism by which circ_0091579 modulates HCC advancement is indistinct. METHODS The expression of circ_0091579, microRNA (miR)-624, and H3 histone family member 3B (H3F3B) mRNA was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). The extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of HCC cells were analyzed using an extracellular flux analyzer. Adenosine triphosphate (ATP) level was evaluated using a commercial kit. Cell migration, invasion, and apoptosis were assessed by wound-healing, transwell, or flow cytometry assay. The relationship between miR-624 and circ_0091579 or H3F3B was verified using luciferase reporter assay and/or RNA immunoprecipitation (RIP) assay. H3F3B protein level was detected by western blotting. RESULTS Circ_0091579 was upregulated in HCC tissues and cells. Circ_0091579 inhibition decreased xenograft tumor growth in vivo and repressed Warburg effect, migration, invasion, and induced apoptosis of HCC cells in vitro. MiR-624 was downregulated, while H3F3B was upregulated in HCC tissues and cells. Circ_0091579 acted as a miR-624 sponge and regulated H3F3B expression by adsorbing miR-624. MiR-624 inhibitor reversed circ_0091579 downregulation-mediated effects on the Warburg effect and malignant behaviors of HCC cells. H3F3B overexpression reversed the repressive impact of miR-624 mimic on the Warburg effect and malignancy of HCC cells. CONCLUSIONS Circ_0091579 accelerated Warburg effect and tumor growth via upregulating H3F3B via adsorbing miR-624 in HCC, providing evidence to support the involvement of circ_0091579 in the progression of HCC.
Collapse
Affiliation(s)
- Y Chen
- Department of Hepatobiliary Surgery, Tengzhou Central People's Hospital of Shandong Province, Tengzhou, Shandong, China
| | - S Song
- Department of Medical, Yantai Hospital of Traditional Chinese Medicine, Antai, Shandong, China
| | - L Zhang
- Department of Hepatobiliary Vascular Surgery, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Y Zhang
- The Operating Room, Zaozhuang Hospital of Traditional Chinese Medicine, 2666 Taihang Shan Road, Xuecheng District, Zaozhuang, 277000, Shandong, China.
| |
Collapse
|
108
|
Construction of liver hepatocellular carcinoma-specific lncRNA-miRNA-mRNA network based on bioinformatics analysis. PLoS One 2021; 16:e0249881. [PMID: 33861762 PMCID: PMC8051809 DOI: 10.1371/journal.pone.0249881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is one of the major causes of cancer-related death worldwide with increasing incidences, however there are very few studies about the underlying mechanisms and pathways in the development of LIHC. We obtained LIHC samples from The Cancer Genome Atlas (TCGA) to screen differentially expressed mRNAs, lncRNAs, miRNAs and driver mutations. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, Gene ontology enrichment analyses and protein–protein interaction (PPI) network were performed. Moreover, we constructed a competing endogenous lncRNAs-miRNAs-mRNAs network. Finally, cox proportional hazards regression analysis was used to identify important prognostic differentially expressed genes. Total of 1284 mRNAs, 123 lncRNAs, 47 miRNAs were identified within different tissues of LIHC patients. GO analysis indicated that upregulated and downregulated differentially expressed mRNAs (DEmRNAs) were mainly associated with cell division, DNA replication, mitotic sister chromatid segregation and complement activation respectively. Meanwhile, KEGG terms revealed that upregulated and downregulated DEmRNAs were primarily involved in DNA replication, Metabolic pathways, cell cycle and Metabolic pathways, chemical carcinogenesis, retinol metabolism pathway respectively. Among the DERNAs, 542 lncRNAs-miRNAs-mRNAs pairs were predicted to construct a ceRNA regulatory network including 35 DElncRNAs, 26 DEmiRNAs and 112 DEmRNAs. In the Kaplan‐Meier analysis, total of 43 mRNAs, 14 lncRNAs and 3 miRNAs were screened out to be significantly correlated with overall survival of LIHC. The mutation signatures were analyzed and its correlation with immune infiltrates were evaluated using the TIMER in LIHC. Among the mutation genes, TTN mutation is often associated with poor immune infiltration and a worse prognosis in LIHC. This work conducted a novel lncRNAs-miRNAs-mRNAs network and mutation signatures for finding potential molecular mechanisms underlying the development of LIHC. The biomarkers also can be used for predicting prognosis of LIHC.
Collapse
|
109
|
Farzaneh Z, Vosough M, Agarwal T, Farzaneh M. Critical signaling pathways governing hepatocellular carcinoma behavior; small molecule-based approaches. Cancer Cell Int 2021; 21:208. [PMID: 33849569 PMCID: PMC8045321 DOI: 10.1186/s12935-021-01924-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of death due to cancer. Although there are different treatment options, these strategies are not efficient in terms of restricting the tumor cell's proliferation and metastasis. The liver tumor microenvironment contains the non-parenchymal cells with supportive or inhibitory effects on the cancerous phenotype of HCC. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of liver carcinoma cells. Recent studies have established new approaches for the prevention and treatment of HCC using small molecules. Small molecules are compounds with a low molecular weight that usually inhibit the specific targets in signal transduction pathways. These components can induce cell cycle arrest, apoptosis, block metastasis, and tumor growth. Devising strategies for simultaneously targeting HCC and the non-parenchymal population of the tumor could lead to more relevant research outcomes. These strategies may open new avenues for the treatment of HCC with minimal cytotoxic effects on healthy cells. This study provides the latest findings on critical signaling pathways governing HCC behavior and using small molecules in the control of HCC both in vitro and in vivo models.
Collapse
Affiliation(s)
- Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
110
|
Synthesis of sorafenib analogues incorporating a 1,2,3-triazole ring and cytotoxicity towards hepatocellular carcinoma cell lines. Bioorg Chem 2021; 112:104831. [PMID: 33831675 DOI: 10.1016/j.bioorg.2021.104831] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 01/07/2023]
Abstract
A series of 1,2,3-triazole-containing Sorafenib analogues, in which the aryl urea moiety of Sorafenib (1) was replaced with a 1,2,3-triazole ring linking a substituted phenoxy fragment, were prepared successfully via Huisgen 1,3-dipolar cycloaddition and nucleophilic aromatic substitution. The studies of cytotoxicity towards human hepatocellular carcinoma (HCC) cell lines, HepG2 and Huh7, indicated that p-tert-butylphenoxy analogue 2m showed significant inhibitory activity against Huh7 with IC50 = 5.67 ± 0.57 µM. More importantly, 2m showed low cytotoxicity against human embryonal lung fibroblast cell line, MRC-5, with IC50 > 100 µM, suggesting its highly selective cytotoxic activity (SI > 17.6) towards Huh7 which is much superior to that of Sorafenib (SI = 6.73). The molecular docking studies revealed that the analogue 2m bound B-RAF near the binding position of Sorafenib, while it interacted VEGFR2 efficiently at the same binding position of Sorafenib. However, 2m exhibited moderate inhibitory activity toward B-RAF, implying that its anti-Huh7 effect might not strictly relate to inhibition of B-RAF. Wound healing and BrdU cell proliferation assays confirmed anti-cell migration and anti-cell proliferative activities towards Huh7. With its inhibitory efficiency and high safety profile, 2m has been identified as a promising candidate for the treatment of HCC.
Collapse
|
111
|
Maji M, Bhattacharya I, Acharya S, Chakraborty MP, Gupta A, Mukherjee A. Hypoxia Active Platinum(IV) Prodrugs of Orotic Acid Selective to Liver Cancer Cells. Inorg Chem 2021; 60:4342-4346. [PMID: 33711231 DOI: 10.1021/acs.inorgchem.0c03803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Platinum(IV) complexes of orotic acid selectively target liver cancer cells displaying enhanced activity and higher uptake in Hep G2. The comparatively higher expression of Organic Anion Transporter 2 (OAT2) in Hep G2 and decrease in toxicity in the presence of OAT2 inhibitor suggest its involvement in the uptake of the complexes. They are resistant to sequestration by the copper transporter ATP7B, unlike cisplatin and oxaliplatin.
Collapse
Affiliation(s)
- Moumita Maji
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Indira Bhattacharya
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Sourav Acharya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Manas Pratim Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
112
|
Fekri A, Keshk EM, Khalil AGM, Taha I. Synthesis of novel antioxidant and antitumor 5-aminopyrazole derivatives, 2D/3D QSAR, and molecular docking. Mol Divers 2021; 26:781-800. [PMID: 33683569 DOI: 10.1007/s11030-021-10184-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
5-Aminopyrazole serves as a vital precursor for several biologically active pyrazoloazines, including pyrazolopyridine, pyrazolopyrimidine, and pyrazolotriazine, as well as Schiff bases, thiourea, and phthalimide derivatives. In this study, we structurally characterized novel pyrazole derivatives by spectral IR, 1H and 13C NMR, and MASS spectroscopy. We also evaluated antioxidant activity of various derivatives using ABTS and DPPH methods and cytotoxicity in the hepatocellular carcinoma Hep-G2 cells by SRB assay. The most potent antitumor molecules were 5-aminopyrazole derivative 3, chloroacetanilide derivative 8, maleimide derivative 10a, pyrazolopyrimidine 16, and enamine 19, with IC50 values of 41, 3.6, 37, 24.4, and 17.7 μM, respectively. Complementary computational studies predicted QSAR and bioactivity of these molecules. Interestingly, the most effective compounds were also predicted to be kinase inhibitors; in addition, molecular docking with liver receptors (3MBG, 4XCU, and 4G9C) predicted promising interactions.
Collapse
Affiliation(s)
- Ahmed Fekri
- Chemistry Department, Faculty of Science, Mansoura University, 25 El Gomhouria St, Mansoura, Dakahlia Governorate, 35516, Egypt.
| | - Eman M Keshk
- Chemistry Department, Faculty of Science, Mansoura University, 25 El Gomhouria St, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Abdel-Galil M Khalil
- Chemistry Department, Faculty of Science, Mansoura University, 25 El Gomhouria St, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Israa Taha
- Chemistry Department, Faculty of Science, Mansoura University, 25 El Gomhouria St, Mansoura, Dakahlia Governorate, 35516, Egypt
| |
Collapse
|
113
|
Liver Cancer: Therapeutic Challenges and the Importance of Experimental Models. Can J Gastroenterol Hepatol 2021; 2021:8837811. [PMID: 33728291 PMCID: PMC7937489 DOI: 10.1155/2021/8837811] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/16/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the main causes of death related to cancer worldwide; its etiology is related with infections by C or B hepatitis virus, alcohol consumption, smoking, obesity, nonalcoholic fatty liver disease, diabetes, and iron overload, among other causes. Several kinds of primary liver cancer occur, but we will focus on hepatocellular carcinoma (HCC). Numerous cellular signaling pathways are implicated in hepatocarcinogenesis, including YAP-HIPPO, Wnt-β-catenin, and nuclear factor-κB (NF-κB); these in turn are considered novel therapeutic targets. In this review, the role of lipid metabolism regulated by peroxisome proliferator-activated receptor gamma (PPARγ) in the development of HCC will also be discussed. Moreover, recent evidence has been obtained regarding the participation of epigenetic changes such as acetylation and methylation of histones and DNA methylation in the development of HCC. In this review, we provide detailed and current information about these topics. Experimental models represent useful tools for studying the different stages of liver cancer and help to develop new pharmacologic treatments. Each model in vivo and in vitro has several characteristics and advantages to offer for the study of this disease. Finally, the main therapies approved for the treatment of HCC patients, first- and second-line therapies, are described in this review. We also describe a novel option, pirfenidone, which due to its pharmacological properties could be considered in the future as a therapeutic option for HCC treatment.
Collapse
|
114
|
Preoperative ICG Test to Predict Posthepatectomy Liver Failure and Postoperative Outcomes in Hilar Cholangiocarcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8298737. [PMID: 33681380 PMCID: PMC7925035 DOI: 10.1155/2021/8298737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Preoperative evaluation of hepatic functional reserve in patients with hilar cholangiocarcinoma (hCCA) has vital clinical significance for prevention of posthepatectomy liver failure (PHLF) and mortality. The aim of the present study was to evaluate the clinical significance of the indocyanine green retention rate at 15 minutes (ICG R15) and related factors of postoperative outcomes in patients with hCCA. 147 patients who scheduled for hCCA resection underwent a preoperative ICG test between May 2015 and May 2020 and were prospectively analyzed. Single-factor analysis was used to evaluate the risk factors for PHLF and postoperative outcomes in hCCA. After univariate analysis, significant differences in ICG R15 were found between the PHLF group and the liver function recovered well (LFRW) group (P ≤ 0.05). In terms of postoperative complications, ICG R15 was also a risk factor for moderate-to-severe postoperative complications. Preoperative ICG R15 was significantly associated with PHLF and moderate-to-severe postoperative complications. ICG R15 may become an ideal clinical indicator for the evaluation of liver function reserve before hCCA and can better predict the postoperative complications.
Collapse
|
115
|
Wang W, Zhang C, Yu Q, Zheng X, Yin C, Yan X, Liu G, Song Z. Development of a novel lipid metabolism-based risk score model in hepatocellular carcinoma patients. BMC Gastroenterol 2021; 21:68. [PMID: 33579192 PMCID: PMC7881464 DOI: 10.1186/s12876-021-01638-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Background Liver cancer is one of the most common malignancies worldwide. HCC (hepatocellular carcinoma) is the predominant pathological type of liver cancer, accounting for approximately 75–85 % of all liver cancers. Lipid metabolic reprogramming has emerged as an important feature of HCC. However, the influence of lipid metabolism-related gene expression in HCC patient prognosis remains unknown. In this study, we performed a comprehensive analysis of HCC gene expression data from TCGA (The Cancer Genome Atlas) to acquire further insight into the role of lipid metabolism-related genes in HCC patient prognosis. Methods We analyzed the mRNA expression profiles of 424 HCC patients from the TCGA database. GSEA(Gene Set Enrichment Analysis) was performed to identify lipid metabolism-related gene sets associated with HCC. We performed univariate Cox regression and LASSO(least absolute shrinkage and selection operator) regression analyses to identify genes with prognostic value and develop a prognostic model, which was tested in a validation cohort. We performed Kaplan-Meier survival and ROC (receiver operating characteristic) analyses to evaluate the performance of the model. Results We identified three lipid metabolism-related genes (ME1, MED10, MED22) with prognostic value in HCC and used them to calculate a risk score for each HCC patient. High-risk HCC patients exhibited a significantly lower survival rate than low-risk patients. Multivariate Cox regression analysis revealed that the 3-gene signature was an independent prognostic factor in HCC. Furthermore, the signature provided a highly accurate prediction of HCC patient prognosis. Conclusions We identified three lipid-metabolism-related genes that are upregulated in HCC tissues and established a 3-gene signature-based risk model that can accurately predict HCC patient prognosis. Our findings support the strong links between lipid metabolism and HCC and may facilitate the development of new metabolism-targeted treatment approaches for HCC.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Qihong Yu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.,Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Xichuan Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xueke Yan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Gang Liu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
116
|
Deng LJ, Lei YH, Quan JY, Li BJ, Zhang DM, Tian HY, Chen Y, Zhang EX, Chen L, Ye WC, Ning WM, Yu LZ, Liu JS. 1β-OH-arenobufagin induces mitochondrial apoptosis in hepatocellular carcinoma through the suppression of mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113443. [PMID: 33022344 DOI: 10.1016/j.jep.2020.113443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chansu, dried secretions from Bufonidae, has long been used for cancer treatment as a traditional Chinese medicine. In searching for effective anti-hepatoma agents from Chansu, our preliminary drug screening found that a bufadienolide, namely 1β-hydroxyl-arenobufagin (1β-OH-ABF), displays anti-hepatoma activities. However, the anti-hepatoma effects and molecular mechanisms of 1β-OH-ABF have not been defined. AIM OF THE STUDY To evaluate the anti-hepatoma activity of 1β-OH-ABF against liver cancer Hep3B and HepG2 cells in vitro and in vivo, as well as explore the underlying mechanisms. MATERIALS AND METHODS The anti-proliferative effects of 1β-OH-ABF on liver cancer Hep3B, HepG2, HuH7, SK-HEP-1 and normal hepatocyte LO2 cells were examined by MTT assay and colony formation assay. Hoechst 33258 staining and Annexin V-FITC/PI staining assay were used to analyze apoptosis induced by 1β-OH-ABF. The collapse of the mitochondrial membrane potential (ΔΨm) was detected by JC-1 staining assay. Western blotting was used to examine the expression levels of targeted proteins. The role of mTOR in 1β-OH-ABF-induced apoptosis was investigated using small interfering RNA (siRNA) transfection. Zebrafish xenograft model was established to evaluate the anti-hepatoma effects of 1β-OH-ABF in vivo. RESULTS We found that 1β-OH-ABF inhibits the proliferation of Hep3B, HepG2, HuH7, SK-HEP-1 cells but has little cytotoxicity towards LO2 cells. 1β-OH-ABF induces mitochondria dysfunction and triggers mitochondria apoptotic pathway, which is accompanied by the loss of ΔΨm, upregulation and translocation of Bax, as well as cleavages of caspase-9, caspase-3 and PARP. Mechanistically, 1β-OH-ABF markedly decreases the expression level of p-AKT/AKT and p-mTOR (Ser2248 and Ser2481)/mTOR in a time-dependent manner. Inhibition of mTOR by siRNA strengthens 1β-OH-ABF-mediated apoptosis. Critically, 1β-OH-ABF shows a marked in vivo anti-hepatoma effect on human Hep3B cell xenografts in zebrafish model. CONCLUSION 1β-OH-ABF induces mitochondrial apoptosis through the suppression of mTOR signaling in vitro and in vivo, indicating that 1β-OH-ABF may serve as a potential agent for the treatment of liver cancer.
Collapse
Affiliation(s)
- Li-Juan Deng
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510630, China.
| | - Yu-He Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China.
| | - Jing-Yu Quan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Bao-Jing Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510630, China.
| | - Hai-Yan Tian
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510630, China.
| | - Ye Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510630, China.
| | - En-Xin Zhang
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China.
| | - Lei Chen
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China.
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510630, China.
| | - Wei-Min Ning
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, 523808, China.
| | - Lin-Zhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jun-Shan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
117
|
Jiang G, Ling S, Zhan Q, Zhuang L, Xu X. Downstaging treatment for patients with hepatocelluar carcinoma before transplantation. Transplant Rev (Orlando) 2021; 35:100606. [PMID: 33636480 DOI: 10.1016/j.trre.2021.100606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022]
Abstract
Liver transplantation (LT), one of the radical methods of treating liver cancer, has brought new hope for the treatment of unresectable liver cancer. Currently, patients who meet transplant criteria can achieve a favorable prognosis, but those who exceed transplant criteria tend not to have very satisfactory outcomes. For patients whose tumor burden exceeds the transplant criteria, downstaging treatment is a promising method to reduce tumor burden to within the transplant criteria that may lead to good posttransplant survival. Multiple treatments, such as transcatheter arterial chemoembolization (TACE), transarterial radioembolization (TARE), percutaneous ethanol injection (PEI), and radiofrequency ablation (RFA), have been used as downstaging treatments. However, there are still some issues that limit the effectiveness of downstaging treatments, such as the inclusion criteria for downstaging, which the choice of downstaging treatment method, and the endpoint of downstaging, all of which are worthy of further discussion. Based on the published literature, this review discusses these issues.
Collapse
Affiliation(s)
- Guangjiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Sunbin Ling
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Qifan Zhan
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Li Zhuang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310003, China.
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
118
|
Lin YJ, Ho CM. Is the Rationale of Anatomical Liver Resection for Hepatocellular Carcinoma Universally Adoptable? A Hypothesis-Driven Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:131. [PMID: 33540784 PMCID: PMC7913024 DOI: 10.3390/medicina57020131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023]
Abstract
Surgical resection is the first-line curative treatment modality for resectable hepatocellular carcinoma (HCC). Anatomical resection (AR), described as systematic removal of a liver segment confined by tumor-bearing portal tributaries, may improve survival by reducing the risk of tumor recurrence compared with non-AR. In this article, we propose the rationale for AR and its universal adoption by providing supporting evidence from the advanced understanding of a tumor microenvironment and accumulating clinical experiences of locoregional tumor ablation therapeutics. AR may be advantageous because it completely removes the en-bloc by interrupting tumor vascular supply and thus extirpates the spreading of tumor microthrombi, if they ever exist, within the supplying portal vein. However, HCC is a hypervascular tumor that can promote neoangiogenesis in the local tumor microenvironment, which in itself can break through the anatomical boundary within the liver and even retrieve nourishment from extrahepatic vessels, such as inferior phrenic or omental arteries. Additionally, increasing clinical evidence for locoregional tumor ablation therapies, such as radiofrequency ablation, predominantly performed as a non-anatomical approach, suggests comparable outcomes for surgical resection, particularly in small HCC and colorectal, hepatic metastases. Moreover, liver transplantation for HCC, which can be considered as AR of the whole liver followed by implantation of a new graft, is not universally free from post-transplant tumor recurrence. Overall, AR should not be considered the gold standard among all surgical resection methods. Surgical resection is fundamentally reliant on choosing the optimal margin width to achieve en-bloc tumor niche removal while balancing between oncological radicality and the preservation of postoperative liver function. The importance of this is to liberate surgical resilience in hepatocellular carcinoma. The overall success of HCC treatment is determined by the clearance of the theoretical niche. Developing biomolecular-guided navigation device/technologies may provide surgical guidance toward the total removal of microscopic tumor niche to achieve superior oncological outcomes.
Collapse
Affiliation(s)
| | - Cheng-Maw Ho
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan South Road, Taipei 100, Taiwan;
| |
Collapse
|
119
|
Ting CT, Cheng YY, Tsai TH. Preclinical Pharmacokinetic Interaction and Histopathological Analyses of Hedyotis diffusa on Sorafenib in Rats. ACS OMEGA 2021; 6:3060-3067. [PMID: 33553923 PMCID: PMC7860071 DOI: 10.1021/acsomega.0c05461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Sorafenib is one of the most effective target therapeutic agents for patients with late-stage hepatocellular carcinoma. To seek possible alternative adjuvant agents to enhance the efficacy and improve the side effect of sorafenib, Hedyotis diffusa, one of the most prescribed phytomedicines for treating liver cancer patients in Taiwan, was evaluated in this work. We hypothesized that H. diffusa extract is a safety herb combination on the pharmacokinetic and pharmacodynamic effects of sorafenib. We designed treatments of sorafenib in combination with or without H. diffusa extract to examine its pharmacokinetic properties and effects on liver inflammation. The HPLC-photodiode-array method was designed for monitoring the plasma level and pharmacokinetic parameter of sorafenib in rat plasma. The pharmacokinetic results demonstrated that the area under the curve of sorafenib (10 mg/kg, p.o.) in combination with various doses of H. diffusa formulation (1, 3, and 10 g/kg, p.o.) for 5 consecutive days were 5560 ± 1392, 7965 ± 2055, 7271 ± 1371, and 8821 ± 1705 min μg/mL, respectively, no significant difference when compared with sorafenib treatment alone. Furthermore, the hepatic activity in rats administered with sorafenib with/without H. diffusa extract was quantitatively scored by modified hepatic activity index grading. H. diffusa extract in the range of 1 to 10 g/kg per day did not elicit significant herb-induced hepatotoxicity in rats, based on the histopathological study. Consequently, our findings provided positive safety outcomes for the administration of sorafenib in combination with the phytomedicine H. diffusa.
Collapse
Affiliation(s)
- Chin-Tsung Ting
- Division
of Gastrointestinal Surgery, Department of Surgery, Ren-Ai Branch, Taipei City Hospital, Taipei 10629, Taiwan
- General
Education Center, University of Taipei, Taipei 10617, Taiwan
- Institute
of Traditional Medicine, School of Medicine,National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yung-Yi Cheng
- Natural
Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Tung-Hu Tsai
- Institute
of Traditional Medicine, School of Medicine,National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Graduate
Institute of Acupuncture Science, China
Medical University, Taichung 40402, Taiwan
- School of
Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
120
|
Wei L, Owen D, Rosen B, Guo X, Cuneo K, Lawrence TS, Ten Haken R, El Naqa I. A deep survival interpretable radiomics model of hepatocellular carcinoma patients. Phys Med 2021; 82:295-305. [PMID: 33714190 PMCID: PMC8035300 DOI: 10.1016/j.ejmp.2021.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
This work aims to identify a new radiomics signature using imaging phenotypes and clinical variables for risk prediction of overall survival (OS) in hepatocellular carcinoma (HCC) patients treated with stereotactic body radiation therapy (SBRT). 167 patients were retrospectively analyzed with repeated nested cross-validation to mitigate overfitting issues. 56 radiomic features were extracted from pre-treatment contrast-enhanced (CE) CT images. 37 clinical factors were obtained from patients' electronic records. Variational autoencoders (VAE) based survival models were designed for radiomics and clinical features and a convolutional neural network (CNN) survival model was used for the CECT. Finally, radiomics, clinical and raw image deep learning network (DNN) models were combined to predict the risk probability for OS. The final models yielded c-indices of 0.579 (95%CI: 0.544-0.621), 0.629 (95%CI: 0.601-0.643), 0.581 (95%CI: 0.553-0.613) and 0.650 (95%CI: 0.635-0.683) for radiomics, clinical, image input and combined models on nested cross validation scheme, respectively. Integrated gradients method was used to interpret the trained models. Our interpretability analysis of the DNN showed that the top ranked features were clinical liver function and liver exclusive of tumor radiomics features, which suggests a prominent role of side effects and toxicities in liver outside the tumor region in determining the survival rate of these patients. In summary, novel deep radiomic analysis provides improved performance for risk assessment of HCC prognosis compared with Cox survival models and may facilitate stratification of HCC patients and personalization of their treatment strategies. Liver function was found to contribute most to the OS for these HCC patients and radiomics can aid in their management.
Collapse
Affiliation(s)
- Lise Wei
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin Rosen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Xinzhou Guo
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Kyle Cuneo
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Randall Ten Haken
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
121
|
Helal M, Yan C, Gong Z. Stimulation of hepatocarcinogenesis by activated cholangiocytes via Il17a/f1 pathway in kras transgenic zebrafish model. Sci Rep 2021; 11:1372. [PMID: 33446803 PMCID: PMC7809472 DOI: 10.1038/s41598-020-80621-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
It has been well known that tumor progression is dependent on secreted factors not only from tumor cells but also from other surrounding non-tumor cells. In the current study, we investigated the role of cholangiocytes during hepatocarcinogenesis following induction of oncogenic krasV12 expression in hepatocytes using an inducible transgenic zebrafish model. Upon induction of carcinogenesis in hepatocytes, a progressive cell proliferation in cholangiocytes was observed. The proliferative response in cholangiocytes was induced by enhanced lipogenesis and bile acids secretion from hepatocytes through activation of Sphingosine 1 phosphate receptor 2 (S1pr2), a known cholangiocyte receptor involving in cholangiocyte proliferation. Enhancement and inhibition of S1pr2 could accelerate or inhibit cholangiocyte proliferation and hepatocarcinogenesis respectively. Gene expression analysis of hepatocytes and cholangiocytes showed that cholangiocytes stimulated carcinogenesis in hepatocytes via an inflammatory cytokine, Il17a/f1, which activated its receptor (Il17ra1a) on hepatocytes and enhanced hepatocarcinogenesis via an ERK dependent pathway. Thus, the enhancing effect of cholangiocytes on hepatocarcinogenesis is likely via an inflammatory loop.
Collapse
Affiliation(s)
- Mohamed Helal
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore ,grid.419615.e0000 0004 0404 7762Marine Pollution Lab, Marine Environment Division, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Chuan Yan
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhiyuan Gong
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
122
|
A Meta-Analysis on the Rate of Hepatocellular Carcinoma Recurrence after Liver Transplant and Associations to Etiology, Alpha-Fetoprotein, Income and Ethnicity. J Clin Med 2021; 10:jcm10020238. [PMID: 33440759 PMCID: PMC7828059 DOI: 10.3390/jcm10020238] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) recurrence after liver transplant is associated with a poor prognosis and significantly increases morbidity and mortality among liver transplant patients. Therefore, this meta-analysis aims to evaluate the overall prevalence of HCC recurrence following liver transplant. Medline and Embase databases were searched, and a meta-analysis of proportions was conducted. Observational studies reporting the prevalence of recurrent hepatocellular carcinoma (HCC) after liver transplant were included, with the analysis being stratified by adherence to Milan criteria, ethnicity, socio-economic status, alpha fetoprotein (AFP) levels, living donor vs. deceased donor, and the underlying aetiology of the liver disease. A meta-regression on the date of the study completion was also performed. Of a total 40,495 patients, 3888 developed an HCC recurrence. The overall prevalence of recurrent HCC was 13% (CI: 0.12-0.15). Patients beyond the Milan criteria (MC) were more likely to recur than patients within MC. Asian populations had the greatest prevalence of HCC recurrence (19%; CI: 0.15-0.24) when compared to Western (12%; CI: 0.11-0.13) and Latin American populations (11%; CI: 0.09-0.14). The prevalence of recurrent HCC was the highest in patients infected with hepatitis B virus (HBV) (18%; CI: 0.11-0.27) compared to other aetiologies. A higher AFP also resulted in an increased recurrence. This highlights interesting differences based on ethnicity, income, and aetiology, and further studies are needed to determine the reasons for the disparity.
Collapse
|
123
|
Zhang X, El-Serag HB, Thrift AP. Predictors of five-year survival among patients with hepatocellular carcinoma in the United States: an analysis of SEER-Medicare. Cancer Causes Control 2021; 32:317-325. [PMID: 33394207 DOI: 10.1007/s10552-020-01386-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/17/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Most patients with hepatocellular carcinoma (HCC) are ≥ 65 years old at diagnosis and ~ 20% present with disease amenable to curative intent surgical therapy. The aim of this study was to examine whether treatment, the demographic variables, and clinical factors could predict 5-year survival among HCC patients. METHODS We included patients, 66 years or older, diagnosed with a first primary HCC from 1994 through 2007 in the SEER-Medicare database, and followed up until death or 31 December 2012. Curative intent treatment was defined as liver transplantation, surgery resection, or ablation. We estimated odds ratios (OR) and 95% confidence intervals (CI) for associations with 5-year survival using logistic regression. RESULTS We identified 10,826 patients with HCC with mean age 75.3 (standard deviation, 6.4) years. Most were male (62.2%) and non-Hispanic white (59.7%). Overall, only 8.1% of patients were alive 5 years post-HCC diagnosis date. Among all patients that survived ≥ 5 years, 69.8% received potentially curative treatment. Conversely, patients who received potentially curative treatment represented only 15.7% of patients who survived < 5 years. Curative intent treatment was the strongest predictor for surviving ≥ 5 years (vs. none/palliative treatment; adjusted OR 8.12, 95% CI 6.90-9.64). While stage at diagnosis and comorbidities were also independently associated with ≥ 5-year survival in HCC patients, these factors did not improve discrimination between short- and long-term survivors. CONCLUSIONS Curative intent treatment was the strongest predictor for survival ≥ 5 years among HCC patients. Given the limited availability of liver transplant and limited eligibility for surgical resection, finding curative intent HCC therapies remain critically important.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA. .,Baylor College of Medicine, One Baylor Plaza, MS: BCM307, Room 613D, Houston, TX, 77030-3498, USA.
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Aaron P Thrift
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
124
|
Mihcin S, Gagliardo C, Toia P, Dennison A, Strehlow J, Melzer A. MR-guided focused ultrasound application for moving target tumor ablation in abdominal area: coil selection. Acta Radiol 2021; 62:3-11. [PMID: 32276552 DOI: 10.1177/0284185120914059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Magnetic Resonance Imaging (MRI)-guided Focused Ultrasound Surgery (MRgFUS) is a non-invasive thermal ablation method utilizing high-intensity focused ultrasound (HI-FU) energy for tissue ablation under MRI with real-time thermal mapping. Ablating to a dynamic target as in the liver is very challenging, requiring approval. A novel quality-assured liver tumor ablation system has been proposed for clinics. The paper reports the evaluation of conventional and new MR-receiving coils. PURPOSE To evaluate the suitability of MR coils as part of the MRgFUS treatment system for liver, while simulating breathing motion in pre-clinical settings. MATERIAL AND METHODS The novel software communicates with the MR scanner and the transducer. To monitor the temperature via proton resonance frequency (PRF) methodology echo planar imaging (EPI) sequence was used while the algorithms of static, static and dynamic tracking were tested with sonications of 100 W for 30 s on tissue-mimicking phantoms. Different coil sets were used to assess the performance of the system for fitness for dynamic thermometry. Finally, in vivo experiments were performed over a porcine model. RESULTS Single-loop four-channel Duoflex and Gem coils provided adequate signal-to-noise ratio and contrast with consistent thermal readings. Body array coils showed severe loss of signal in dynamic cases since the integration of tracking algorithm causes low efficiency. CONCLUSION Body array coils are unsuitable for MRgFUS of the liver due to signal loss. The dedicated coil set with a single loop around the FUS transducer combined with four-channel arrays might be the best option for liver treatment using dynamic MRgFUS applications.
Collapse
Affiliation(s)
- Senay Mihcin
- IMSaT, Division of Imaging and Technology School of Medicine. University of Dundee, Dundee, UK
| | - Cesare Gagliardo
- Section of Radiological Sciences, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Patrizia Toia
- Section of Radiological Sciences, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Andrew Dennison
- IMSaT, Division of Imaging and Technology School of Medicine. University of Dundee, Dundee, UK
| | - Jan Strehlow
- Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany
| | - Andreas Melzer
- IMSaT, Division of Imaging and Technology School of Medicine. University of Dundee, Dundee, UK
| |
Collapse
|
125
|
Chang JW, Lee JS, Lee HW, Kim BK, Park JY, Kim DY, Ahn SH, Seo YS, Lee HA, Kim MN, Lee YR, Hwang SG, Rim KS, Um SH, Tak WY, Kweon YO, Park SY, Kim SU. Validation of risk prediction scores for hepatocellular carcinoma in patients with chronic hepatitis B treated with entecavir or tenofovir. J Viral Hepat 2021; 28:95-104. [PMID: 33029863 DOI: 10.1111/jvh.13411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022]
Abstract
Several prediction scores for the early detection of hepatocellular carcinoma (HCC) are available. We validated the predictive accuracy of age, albumin, sex, liver cirrhosis (AASL), RESCUE-B, PAGE-B and modified PAGE-B (mPAGE-B) scores in chronic hepatitis B (CHB) patients treated with entecavir (ETV) or tenofovir disoproxil fumarate (TDF). Between 2007 and 2014, 3171 patients were recruited (1645, ETV; 1517, TDF). The predictive accuracy of each prediction score was assessed. The mean age of the study population (1977 men; 1194 women) was 48.8 years. Liver cirrhosis was present in 1040 (32.8%) patients. During follow-up (median, 58.2 months), 280 (8.8%) patients developed HCC; these patients were significantly older; more likely to be male; had significantly higher proportions of liver cirrhosis, hypertension and diabetes; and had significantly higher values for the four risk scores than those who did not develop HCC (all P < .05). Older age (hazard ratio [HR] = 1.048), male sex (HR = 2.142), liver cirrhosis (HR = 3.144) and prolonged prothrombin time (HR = 2.589) were independently associated with an increased risk of HCC (all P < .05), whereas a higher platelet count (HR = 0.996) was independently associated with a decreased risk of HCC (P < .05). The predictive accuracy of AASL score was the highest for 3- and 5-year HCC predictions (areas under the curve [AUCs] = 0.818 and 0.816, respectively), followed by RESCUE-B, PAGE-B and mPAGE-B scores (AUC = 0.780-0.815 and 0.769-0.814, respectively). In conclusion, four HCC prediction scores were assessed in Korean CHB patients treated with ETV or TDF. The AASL score showed the highest predictive accuracy.
Collapse
Affiliation(s)
- Jin Won Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Seung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Hye Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Yeon Seok Seo
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Han Ah Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Mi Na Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Yu Rim Lee
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Seong Gyu Hwang
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Kyu Sung Rim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Soon Ho Um
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Won Young Tak
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Young Oh Kweon
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Soo Young Park
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Liver Center, Severance Hospital, Seoul, Korea
| |
Collapse
|
126
|
Zhao Z, Song J, Zhang D, Wu F, Tu J, Ji J. Oxysophocarpine suppresses FGFR1-overexpressed hepatocellular carcinoma growth and sensitizes the therapeutic effect of lenvatinib. Life Sci 2021; 264:118642. [PMID: 33148422 DOI: 10.1016/j.lfs.2020.118642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
Abstract
AIMS Hepatocellular carcinoma (HCC) is an aggressive solid tumor with restricted therapeutics. Lenvatinib is the second approved frontline drug for advanced HCC, however lenvatinib-resistant cases have been reported in clinical. Overexpression of fibroblast growth factor receptor (FGFR1) has been found to be associated with advanced HCC. This study was aimed to investigate the relationship between FGFR1 overexpression and lenvatinib resistance, and explore the potential candidate that can sensitize lenvatinib against FGFR1-overexpressed HCC. MAIN METHODS Development of FGFR1 overexpression was accomplished in Hep3B and HepG2 cell lines by pCDH-FGFR1 lentiviral vector. In vitro, cell proliferation, colony formation, cell migration and cell apoptosis assays were used to explore the effect of lenvatinib and Oxysophocarpine. In vivo, BALB/c nude mice were burdened with subcutaneous FGFR1-overexpressed Hep3B tumor to assess the therapeutic effect of lenvatinib and Oxysophocarpine. qRT-PCR and western blotting were further used to identify the underlying mechanism. KEY FINDINGS Here, we revealed that overexpressed FGFR1 and its downstream AKT/mTOR and ERK signaling activation could induce lenvatinib resistance in HCC. In vivo and in vitro results showed Oxysophocarpine inhibited the proliferation and induced the apoptosis of FGFR1-overexpressed HCC cells. Oxysophocarpine could further sensitize FGFR1-overexpressed HCC cells to lenvatinib treatment. Mechanism studies revealed that Oxysophocarpine downregulated FGFR1 expression along with downstream AKT/mTOR and ERK signaling to sensitize lenvatinib against FGFR1-overexpressed HCC. SIGNIFICANCES These data collectively provided evidence that FGFR1 overexpression could be a potential cause of lenvatinib resistance and Oxysophocarpine could be an ideal combined therapy with lenvatinib in HCC treatment.
Collapse
MESH Headings
- Alkaloids/pharmacology
- Alkaloids/therapeutic use
- Animals
- Apoptosis/drug effects
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- MAP Kinase Signaling System/drug effects
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Phenylurea Compounds
- Proto-Oncogene Proteins c-akt/metabolism
- Quinolines
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- TOR Serine-Threonine Kinases/metabolism
- Mice
Collapse
Affiliation(s)
- Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China; Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China; Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China
| | - Dengke Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China; Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China
| | - Fazong Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China; Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China; Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China; Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China.
| |
Collapse
|
127
|
Multivalent rubber-like RNA nanoparticles for targeted co-delivery of paclitaxel and MiRNA to silence the drug efflux transporter and liver cancer drug resistance. J Control Release 2020; 330:173-184. [PMID: 33316298 DOI: 10.1016/j.jconrel.2020.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Analogous to the border customs, liver mainly functions as a filter to detoxify chemicals and metabolite administered orally or intravenously. Besides, the liver cancer cells overexpress the drug exporters which cause high drug effluxion from liver cancer cells, leading to chemoresistance and a diminished chemotherapeutic effect on liver cancer. Recently, we found that RNA nanoparticles display rubber-like property that can rapidly deliver therapeutics to tumor site efficiently and the rest of the RNA nanoparticle were cleared by renal excretion within half hour after systemic injection. Therefore, we designed a new multivalent RNA nanoparticle harboring three copies of hepatocyte targeting-ligands, one copy of miR122, and 24 copies of Paclitaxel to overcome the drug effluxion and chemoresistance thus, synergistically treating HCC. The hepatocyte targeting ligands introduce tumor specificity to the RNA nanoparticles as they selectively bind and internalize into liver cancer cells. The rubber-like RNA nanoparticles allow for enhanced targeting ability to the HCC tumors. The RNA nanoparticles carrying miR122 and PTX were delivered to the liver cancer cells efficiently due to their rubber-like property to enhance their EPR as well as the receptor-mediated endocytosis by hepatocyte targeting-ligands. The miR122 efficiently silenced the drug exporters and the oncogenic proteins. The synergistic effect between miR122 and PTX was confirmed by HSA (Highest Single Agent) synergy model. IC50 was determined to be 460 nM. In vivo studies on mice xenografts revealed that the RNA nanoparticle predominantly accumulated in HCC tumor sites and efficiently inhibited the tumor growth after multiple IV injection. This demonstrates the potential of the rubber-like multivalent RNA nanoparticles to conquest the liver cancer, a currently incurable lethal disease.
Collapse
|
128
|
Zhang J, Yang G, Li Q, Xie F. Increased fibrillarin expression is associated with tumor progression and an unfavorable prognosis in hepatocellular carcinoma. Oncol Lett 2020; 21:92. [PMID: 33376525 PMCID: PMC7751345 DOI: 10.3892/ol.2020.12353] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and third most common cause of cancer-associated mortality worldwide. Hepatectomy and liver transplantation are the main treatments for early HCC. Immunotherapy and targeted therapy for advanced HCC have become increasingly popular; however, their clinical benefits are limited. Thus, identification of novel therapeutic targets for advanced HCC remains essential. Fibrillarin (FBL) is an essential nucleolar protein that catalyzes the 2′-O-methylation of ribosomal RNAs. Recently, experimental data have suggested that FBL can influence breast-cancer progression. However, the association between FBL expression and HCC remains known. In the present study, the UALCAN database was used to assess FBL mRNA expression in HCC. Immunohistochemistry analysis was performed to detect FBL protein expression in 139 patients with HCC. In addition, bioinformatic analysis was performed using the UALCAN, the Database for Annotation, Visualization and Integrated Discovery, cBioportal and TargetScan databases. Data were analyzed using Kaplan-Meier curves and the log-rank test, and a Cox proportional hazards regression model. The results demonstrated that FBL expression was significantly higher in tumor tissues compared with para-tumor tissues. Furthermore, high FBL expression was significantly associated with tumor diameter and advanced TNM stage in HCC. High FBL expression also predicted a shorter overall survival time and disease-free survival time in patients with HCC. Bioinformatics analysis demonstrated that FBL may be regulated by methylation modification. In addition, analyses of functional annotations using the Gene Ontology database indicated that FBL-related genes were predominantly enriched in DNA repair and proliferation-related cell-signaling pathways. Notably, high FBL expression signified larger tumor diameter, advanced tumor stage and a poor prognosis. Taken together, the results of the present study suggest that FBL may be a potential target for HCC treatment.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Gang Yang
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qiang Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Fei Xie
- Department of Hepatobiliary Surgery, The First People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| |
Collapse
|
129
|
Worlikar T, Mendiratta-Lala M, Vlaisavljevich E, Hubbard R, Shi J, Hall TL, Cho CS, Lee FT, Greve J, Xu Z. Effects of Histotripsy on Local Tumor Progression in an in vivo Orthotopic Rodent Liver Tumor Model. BME FRONTIERS 2020; 2020. [PMID: 34327513 PMCID: PMC8318009 DOI: 10.34133/2020/9830304] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective and Impact Statement This is the first longitudinal study investigating the effects of histotripsy on local tumor progression in an in vivo orthotopic, immunocompetent rat hepatocellular carcinoma (HCC) model. Introduction Histotripsy is the first noninvasive, nonionizing, nonthermal, mechanical ablation technique using ultrasound to generate acoustic cavitation to liquefy the target tissue into acellular debris with millimeter accuracy. Previously, histotripsy has demonstrated in vivo ablation of noncancerous liver tissue. Methods N1-S1 HCC tumors were generated in the livers of immunocompetent rats (n = 6, control; n = 15, treatment). Real-time ultrasound-guided histotripsy was applied to ablate either 100% tumor volume + up to 2mm margin (n = 9, complete treatment) or 50-75% tumor volume (n = 6, partial treatment) by delivering 1-2 cycle histotripsy pulses at 100 Hz PRF (pulse repetition frequency) with p - ≥30MPa using a custom 1MHz transducer. Rats were monitored weekly using MRI (magnetic resonance imaging) for 3 months or until tumors reached ~25mm. Results MRI revealed effective post-histotripsy reduction of tumor burden with near-complete resorption of the ablated tumor in 14/15 (93.3%) treated rats. Histopathology showed <5mm shrunken, non-tumoral, fibrous tissue at the treatment site at 3 months. Rats with increased tumor burden (3/6 control and 1 partial treatment) were euthanized early by 2-4 weeks. In 3 other controls, histology revealed fibrous tissue at original tumor site at 3 months. There was no evidence of histotripsy-induced off-target tissue injury. Conclusion Complete and partial histotripsy ablation resulted in effective tumor removal for 14/15 rats, with no evidence of local tumor progression or recurrence.
Collapse
Affiliation(s)
- Tejaswi Worlikar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Ryan Hubbard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Clifford S Cho
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Surgery, VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48105, USA
| | - Fred T Lee
- Department of Radiology, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Joan Greve
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
130
|
Zhang Z, He CZ, Qin YQ, Liao JJ, Huang ST, Mo S, Li HM, Lin JY. Exploring the mechanism of resistance to sorafenib in two hepatocellular carcinoma cell lines. Aging (Albany NY) 2020; 12:24255-24269. [PMID: 33234725 PMCID: PMC7762478 DOI: 10.18632/aging.104195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Sorafenib has long been the only approved systemic therapy for advanced hepatocellular carcinoma (HCC), but most patients show primary or acquired drug resistance. In the present study, RNA was extracted from sorafenib-resistant and -sensitive clones of the HCC cell lines HepG2 and Huh7. Protein-protein interaction networks of the up- and down-regulated genes common to the two sorafenib-resistant cell lines were extracted and subjected to modular analysis in order to identify functional modules. Functional enrichment analysis showed the modules were involved in different biological processes and pathways. These results indicate that sorafenib resistance in HCC is complicated and heterogeneous. The potential regulators of each functional module, including transcription factors, microRNAs and long non-coding RNAs, were explored to construct a comprehensive transcriptional regulatory network related to sorafenib resistance in HCC. Our results provide new insights into sorafenib resistance of HCC at the level of transcriptional regulation.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, Guangxi, China
| | - Cheng-Zu He
- Department of Oncology, the People’s Hospital of Binyang County, Binyang 530405, Guangxi, China
| | - Ya-Qin Qin
- Department of Liver Disease, The Affiliated Nanning Infectious Disease Hospital of Guangxi Medical University and The Fourth People’s Hospital of Nanning, Nanning 530023, Guangxi, China
| | - Jian-Jun Liao
- Department of Oncology, the People’s Hospital of Binyang County, Binyang 530405, Guangxi, China
| | - Shang-Tao Huang
- Department of Oncology, the People’s Hospital of Binyang County, Binyang 530405, Guangxi, China
| | - Steven Mo
- YuanDong International Academy of Life Sciences, Nanning 530229, Guangxi, China
| | - Hong-Mian Li
- Department of Medical Laboratory Center, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, Guangxi, China
| | - Jian-Yan Lin
- Department of Public Health, The Affiliated Nanning Infectious Disease Hospital of Guangxi Medical University and The Fourth People’s Hospital of Nanning, Nanning 530023, Guangxi, China
| |
Collapse
|
131
|
Asgharzadeh F, Jafarzadeh-Esfehani R, Hassanian SM, Ferns GA, Avan A, Khazaei M. Renin-angiotensin System Inhibitors and Development of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. Curr Pharm Des 2020; 26:5079-5085. [PMID: 32660400 DOI: 10.2174/1381612826666200713165018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/19/2020] [Indexed: 12/30/2022]
Abstract
Background:
There are controversial results available about using angiotensin-converting enzyme
inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) and the development of cancers or improvement of
clinical outcomes. Studies reported that using ACEI/ARB may enhance the development of hepatocellular carcinoma
(HCC) and clinical outcomes.
Objective:
This meta-analysis aimed to assess the relationship between ACEI/ARB therapy and the development
of HCC.
Methods:
PubMed, EMBASE and the Cochrane library were reviewed to identify clinical studies investigating
the association between ACEI/ARB therapy and the risk of HCC development. The pooled risk ratio (RR) with
95% confidence intervals collected for the association between using ACEIs/ARBs and HCC development.
Results:
Patients with HCC benefit from the treatment with both ACEIs and ARBs (RR 0.704, 95% CI 0.526-
0.944, p = 0.019). However, only using ARBs was related to HCC risk (0.545 95% CI 0.470-0.632, P<0.0001).
Moreover, the study types were significantly related to the observed effects of using both ARBs and ACEIs. Only
cohort studies were significantly related to achieving better results (RR=0.513, 95% CI= 0.442-0.597, P<0.0001).
Conclusion:
Despite the small number and heterogeneity of the studies evaluating the relationship between
treatment with ARBs and ACEIs and the development of HCC, our meta-analysis demonstrates that they may
reduce the risk of HCC.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed M. Hassanian
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
132
|
Yang L, Yuan Z, Zhang Y, Cui Z, Li Y, Hou J, Liu X, Liu Z, Shi R, Tian Q, Wang J, Wang L. MiniPDX-guided postoperative anticancer treatment can effectively prolong the survival of patients with hepatocellular carcinoma. Cancer Chemother Pharmacol 2020; 87:125-134. [PMID: 33141330 DOI: 10.1007/s00280-020-04182-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The recurrence rate of hepatocellular carcinoma (HCC) after partial hepatectomy is still high. How to choose the most appropriate anti-tumor drug in the early postoperative period is crucial to improve the prognosis of patients. Recently, MiniPDX has been widely used as a new and reliable preclinical research model capable of predicting the sensitivities of anti-tumor drugs. METHODS Twenty-eight patients with HCC were selected to use the MiniPDX model to screen the most sensitive anti-tumor drugs from five groups of drug regimens for preventive treatment after partial hepatectomy, and another 42 patients with HCC were selected to be treated with Sorafenib during the same period as the control group. The tumor-free survival rate and overall survival rate were analyzed and compared between these two groups. The relationship between drug sensitivity and biomarkers related to HCC was also analyzed. RESULTS Kaplan-Meier survival curve analysis showed that the tumor-free survival (DFS) of patients in the MiniPDX group was significantly longer than that in the control group (median DFS: 25.8 months vs. 18.2 months, P = 0.022, HR 2.19, 95% CI 1.17-4.12). The overall survival (OS) of the patients in the MiniPDX group was also longer than that in the control group (median OS: 29.4 months vs. 23.8 months, P = 0.039, HR 2.37, 95% CI 1.12-5.00). The longest follow-up period was 36 months. The relationship analyzed between the efficacy of the five drugs (Regorafenib, Regorafenib, Lenvatinib, Gemcitabine, 5-FU + Oxaliplatin) and AFP, Ki-67, VEGFR, FGFR, P53, and Nrf2 showed different correlations. CONCLUSION The use of the MiniPDX model to select drugs to guide anti-tumor treatment after partial hepatectomy could effectively prolong the survival of patients with HCC.
Collapse
Affiliation(s)
- Long Yang
- Medical School of Nankai University, No. 94, Weijin Road, Nankai District, Tianjin, China
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, China
| | - Zheyue Yuan
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, China.
| | - Zilin Cui
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, China
| | - Yang Li
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, China
| | - Jiancun Hou
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, China
| | - Xiaolong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, China
| | - Rui Shi
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, China
| | - Qing Tian
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, China
| | - Jian Wang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, China
| | - Lianjiang Wang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, China
| |
Collapse
|
133
|
Song H, Liu Y, Li X, Chen S, Xie R, Chen D, Gao H, Wang G, Cai B, Yang X. Long noncoding RNA CASC11 promotes hepatocarcinogenesis and HCC progression through EIF4A3-mediated E2F1 activation. Clin Transl Med 2020; 10:e220. [PMID: 33252856 PMCID: PMC7643871 DOI: 10.1002/ctm2.220] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Growing evidences have been revealing that long noncoding RNAs are vital factors in oncogenesis and tumor development. Among them, cancer susceptibility candidate 11 (CASC11) has displayed an impressively essential role in various kinds of cancers including hepatocellular carcinoma (HCC). Nevertheless, its role and potential mechanism in HCC still remain to be fully investigated. METHODS CASC11 expression level was evaluated by real-time polymerase chain reaction, western blotting, and in situ hybridization staining in HCC patients, and its prognostic effect was analyzed. The role of CASC11 in HCC tumorigenesis and progression was investigated by cell proliferation assay, transwell assay, extracellular acidification rate, western blotting, flow cytometry, and an in vivo xenograft model. The interactions among CASC11, E2F transcription factor 1 (E2F1), and eukaryotic translation initiation factor 4A3 (EIF4A3) were explored by using quantitative reverse transcriptase polymerase chain reaction, western blotting, RNA-binding protein immunoprecipitation assay, and chromatin immunoprecipitation assays. RESULTS Upregulation of CASC11 was confirmed in HCC tissues and associated with poor prognosis. Loss of function assays showed inhibition of CASC11 expression suppressed HCC cells proliferation, mobility, and glucose metabolism and promoted apoptosis. E2F1 expression significantly decreased after inhibition of CASC11. Rescue experiments illustrated that E2F1 overexpression alleviated the suppression of CASC11 inhibition on HCC progression in vitro and in vivo. Mechanistically, CASC11 recruited EIF4A3 to enhance the stability of E2F1 mRNA. CASC11 and E2F1 impacted the activation of the NF-κB signaling and PI3K/AKT/mTOR pathway and further regulated the expression PD-L1 that is an important target of immunotherapy. In addition, we identified YY1 could modulate CASC11 expression by binding to its promoter. CONCLUSIONS Our data revealed that CASC11 promoted the progression of HCC by means of EIF4A3-mediated E2F1 upregulation, indicating CASC11 is a promising diagnostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Hang Song
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| | - Yan Liu
- Department of Interventional RadiologyBeijing Chao‐yang Hospital Affiliated with Capital Medical UniversityBeijingChina
- The Key Laboratory of Bio‐Medical DiagnosticsSuzhou Institute of Biomedical Engineering and Technology, Chinese Academy of SciencesSuzhouChina
| | - Xinquan Li
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| | - Shuhua Chen
- Department of laboratory medicine, Yunfu People's HospitalSouthern Medical UniversityYunfuChina
| | - Rongzhang Xie
- Department of laboratory medicine, Yunfu People's HospitalSouthern Medical UniversityYunfuChina
| | - Dabao Chen
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| | - Huawu Gao
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| | - Guoquan Wang
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| | - Biao Cai
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
- Anhui Academy of Chinese MedicineInstitute of Integrated Chinese and Western MedicineHefeiChina
- Anhui Province Key Laboratory of Chinese Medicinal FormulaAnhui University of Chinese MedicineHefeiChina
| | - Xiangyu Yang
- Department of Interventional RadiologyBeijing Chao‐yang Hospital Affiliated with Capital Medical UniversityBeijingChina
| |
Collapse
|
134
|
Dos Santos DC, Rafique J, Saba S, Almeida GM, Siminski T, Pádua C, Filho DW, Zamoner A, Braga AL, Pedrosa RC, Ourique F. Apoptosis oxidative damage-mediated and antiproliferative effect of selenylated imidazo[1,2-a]pyridines on hepatocellular carcinoma HepG2 cells and in vivo. J Biochem Mol Toxicol 2020; 35:e22663. [PMID: 33125183 DOI: 10.1002/jbt.22663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Imidazo[1,2-a]pyridines (IP) and organoselenium compounds have been widely exploited in medicinal chemistry due to their pharmacological activities. Hepatocellular carcinoma (HCC) has few treatment options, and unfortunately, the prognosis is poor. Thus, the development of novel therapeutic drugs is urgent. The present study aimed at evaluating the antitumor mechanism of selenylated IP against HepG2 cells and in vivo. The selenylated IP named IP-Se-06 (3-((2-methoxyphenyl)selanyl)-7-methyl-2-phenylimidazol[1,2-a]pyridine) showed high cytotoxicity against HepG2 cells (half-maximal inhibitory concentration [IC50 ] = 0.03 µM) and selectivity for this tumor cell line. At nontoxic concentration, IP-Se-06 decreased the protein levels of Bcl-xL and increased the levels of p53, leading to inhibition of cell proliferation and apoptosis. This compound decreased the level of extracellular signal-regulated kinase 1/2 protein and changed the levels of proteins involved in the drive of the cell cycle, tumor growth, and survival (cyclin B1, cyclin-dependent kinase 2). In addition, IP-Se-06 decreased the number of cells in the S phase. In addition, IP-Se-06 led to increased generation of reactive oxygen species, changed antioxidant defenses, and caused DNA fragmentation. Finally, IP-Se-06 significantly inhibited the growth of Ehrlich ascites tumors in mice, increased survival time, and inhibited angiogenesis. Therefore, IP-Se-06 may be an important compound regarding the development of a therapeutic drug for HCC treatment.
Collapse
Affiliation(s)
- Daniela Coelho Dos Santos
- Departamento de Bioquímica, Laboratório de Bioquímica Experimental (LABIOEX), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Jamal Rafique
- Departamento de Química, Instituto de Química (INQUI), Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Sumbal Saba
- Departamento de Química Orgânica, Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André, São Paulo, Brazil
| | - Gabriela M Almeida
- Departamento de Bioquímica, Laboratório de Bioquímica Experimental (LABIOEX), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Tâmila Siminski
- Departamento de Bioquímica, Laboratório de Bioquímica Experimental (LABIOEX), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Cynthia Pádua
- Departamento de Bioquímica, Laboratório de Bioquímica Experimental (LABIOEX), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Danilo W Filho
- Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Ariane Zamoner
- Departamento de Bioquímica, Laboratório de Bioquímica e Sinalização Celular (LaBioSignal), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Antonio L Braga
- Departamento de Química, Laboratório de Síntese de Substâncias de Selênio Bioativas (LabSelen), Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Rozangela C Pedrosa
- Departamento de Bioquímica, Laboratório de Bioquímica Experimental (LABIOEX), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Fabiana Ourique
- Departamento de Bioquímica, Laboratório de Bioquímica Experimental (LABIOEX), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.,Departamento de Bioquímica, Laboratório de Bioquímica e Sinalização Celular (LaBioSignal), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
135
|
Amin MN, Siddiqui SA, Ibrahim M, Hakim ML, Ahammed MS, Kabir A, Sultana F. Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Med 2020; 8:2050312120965752. [PMID: 33194199 PMCID: PMC7594225 DOI: 10.1177/2050312120965752] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory cytokines are highly inducible small glycoproteins or regulatory proteins of low molecular weight secreted by different cell types. They regulate intercellular communication and mediate a number of physiological functions in the human immune system. Numerous prospective studies report that inflammatory cytokines strongly predict coronary artery disease, myocardial infarction, heart failure and other adverse cardiac events. Inflammatory cascade is believed to be a causative factor in the development of atherosclerotic process. Several aspects of atherogenesis are accelerated by cytokines. This article provides an overall overview of current understanding of cytokines in various cardiovascular events. Besides, inflammatory cytokines trigger cellular events that can induce malignancy and carcinogenesis. Elevated expression of several cytokines such as interleukin-1, interleukin-6, interleukin-10, tumor necrosis factor-α, macrophage migration inhibitory factor and transforming growth factor-β are involved in tumor initiation and progression. Thus, they exert a pivotal role in cancer pathogenesis. This review highlights the role of several cytokines in various events of tumorigenesis. Actually, this article summarizes the contributions of cytokines in the pathogenesis of cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Mohammad Nurul Amin
- Department of Pharmacy, Atish Dipankar
University of Science and Technology, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research
Center, Dhaka, Bangladesh
| | - Shafayet Ahmed Siddiqui
- Department of Pharmacy, Atish Dipankar
University of Science and Technology, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research
Center, Dhaka, Bangladesh
| | - Md Ibrahim
- College of Medicine, University of South
Alabama, Mobile, AL, USA
| | - Md Lukman Hakim
- Department of Pharmaceutical Sciences,
North South University, Dhaka, Bangladesh
| | - Md. Salim Ahammed
- Department of Pharmacy, University of
Information Technology and Sciences, Dhaka, Bangladesh
| | - Asma Kabir
- Department of Pharmacy, Atish Dipankar
University of Science and Technology, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research
Center, Dhaka, Bangladesh
| | - Farhana Sultana
- Department of Pharmacy, Atish Dipankar
University of Science and Technology, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research
Center, Dhaka, Bangladesh
| |
Collapse
|
136
|
Zhang C, Yang M, Ericsson AC. The Potential Gut Microbiota-Mediated Treatment Options for Liver Cancer. Front Oncol 2020; 10:524205. [PMID: 33163393 PMCID: PMC7591398 DOI: 10.3389/fonc.2020.524205] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancer is one of the leading causes of cancer death worldwide. Surgical and non-surgical treatments are optional for liver cancer therapy based on the cancer stage. Accumulating studies show that the gut–liver axis influences the progression of liver diseases, including liver inflammation, fibrosis, cirrhosis, and cancer. However, the role of gut microbiota and their derived components and metabolites in liver cancer remains to be further clarified. In this review, we discuss the roles of gut microbiota and specific bacterial species in HCC and the strategies to modulate gut microbiota to improve antitumor therapy. Given the limitation of current treatments, gut microbiota-mediated therapy is a potential option for HCC treatment, including fiber diet and vegetable diet, antimicrobials, probiotics, and pharmaceutical inhibitors. Also, gut microbiota can be used as a marker for early diagnosis of HCC. HCC occurs dependent on various environmental and genetic factors, including diet and sex. Furthermore, gut microbiota impacts the immunotherapy of HCC treatment. Therefore, a better understanding of the role of the gut–liver axis in liver cancer is critically important to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, United States
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States.,University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
137
|
Kronenfeld JP, Goel N. ASO Author Reflections: Access to Care and Screening Inequities for Patients At Risk for Hepatocellular Carcinoma. Ann Surg Oncol 2020; 28:1937-1938. [PMID: 32974697 DOI: 10.1245/s10434-020-09172-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Joshua P Kronenfeld
- Division of Surgical Oncology, Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Neha Goel
- Division of Surgical Oncology, Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
138
|
Yan J, Shu M, Li X, Yu H, Chen S, Xie S. Prognostic Score-based Clinical Factors and Metabolism-related Biomarkers for Predicting the Progression of Hepatocellular Carcinoma. Evol Bioinform Online 2020; 16:1176934320951571. [PMID: 33013158 PMCID: PMC7518001 DOI: 10.1177/1176934320951571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/24/2020] [Indexed: 11/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor representing more than 90% of primary liver cancer. This study aimed to identify metabolism-related biomarkers with prognostic value by developing the novel prognostic score (PS) model. Transcriptomic profiles derived from TCGA and EBIArray databases were analyzed to identify differentially expressed genes (DEGs) in HCC tumor samples compared with normal samples. The overlapped genes between DEGs and metabolism-related genes (crucial genes) were screened and functionally analyzed. A novel PS model was constructed to identify optimal signature genes. Cox regression analysis was performed to identify independent clinical factors related to prognosis. Nomogram model was constructed to estimate the predictability of clinical factors. Finally, protein expression of crucial genes was explored in different cancer tissues and cell types from the Human Protein Atlas (HPA). We screened a total of 305 overlapped genes (differentially expressed metabolism-related genes). These genes were mainly involved in "oxidation reduction," "steroid hormone biosynthesis," "fatty acid metabolic process," and "linoleic acid metabolism." Furthermore, we screened ten optimal DEGs (CYP2C9, CYP3A4, and TKT, among others) by using the PS model. Two clinical factors of pathologic stage (P < .001, HR: 1.512 [1.219-1.875]) and PS status (P <.001, HR: 2.259 [1.522-3.354]) were independent prognostic predictors by cox regression analysis. Nomogram model showed a high predicted probability of overall survival time, and the AUC value was 0.837. The expression status of 7 proteins was frequently altered in normal or differential tumor tissues, such as liver cancer and stomach cancer samples.We have identified several metabolism-related biomarkers for prognosis prediction of HCC based on the PS model. Two clinical factors were independent prognostic predictors of pathologic stage and PS status (high/low risk). The prognosis prediction model described in this study is a useful and stable method for novel biomarker identification.
Collapse
Affiliation(s)
- Jia Yan
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Ming Shu
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Xiang Li
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Hua Yu
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Shuhuai Chen
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Shujie Xie
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
139
|
Polidoro MA, Mikulak J, Cazzetta V, Lleo A, Mavilio D, Torzilli G, Donadon M. Tumor microenvironment in primary liver tumors: A challenging role of natural killer cells. World J Gastroenterol 2020; 26:4900-4918. [PMID: 32952338 PMCID: PMC7476172 DOI: 10.3748/wjg.v26.i33.4900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, several studies have been focused on elucidate the role of tumor microenvironment (TME) in cancer development and progression. Within TME, cells from adaptive and innate immune system are one of the main abundant components. The dynamic interactions between immune and cancer cells lead to the activation of complex molecular mechanisms that sustain tumor growth. This important cross-talk has been elucidate for several kind of tumors and occurs also in patients with liver cancer, such as hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Liver is well-known to be an important immunological organ with unique microenvironment. Here, in normal conditions, the rich immune-infiltrating cells cooperate with non-parenchymal cells, such as liver sinusoidal endothelial cells and Kupffer cells, favoring self-tolerance against gut antigens. The presence of underling liver immunosuppressive microenvironment highlights the importance to dissect the interaction between HCC and iCCA cells with immune infiltrating cells, in order to understand how this cross-talk promotes tumor growth. Deeper attention is, in fact, focused on immune-based therapy for these tumors, as promising approach to counteract the intrinsic anti-tumor activity of this microenvironment. In this review, we will examine the key pathways underlying TME cell-cell communications, with deeper focus on the role of natural killer cells in primary liver tumors, such as HCC and iCCA, as new opportunities for immune-based therapeutic strategies.
Collapse
Affiliation(s)
- Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Rozzano 20089, Milan, Italy
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| | - Ana Lleo
- Hepatobiliary Immunopathology Laboratory, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Internal Medicine, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Rozzano 20089, Milan, Italy
| | - Guido Torzilli
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| | - Matteo Donadon
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| |
Collapse
|
140
|
Shahzadi I, Ali Z, Bukhari S, Narula AS, Mirza B, Mohammadinejad R. Possible applications of salvianolic acid B against different cancers. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:218-238. [PMID: 36046777 PMCID: PMC9400738 DOI: 10.37349/etat.2020.00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second death causing disease worldwide after cardiovascular abnormalities. The difficulty in treating tumor cells with more precise targeted interventions and recurrence of cancer after treatment may pose great difficulty in developing sustainable therapeutic regimens. These limitations have prompted the need to explore several compounds with ability to cease tumor growth while at the same time induce apoptosis of tumor cells. Several studies have emphasized the use of natural compounds as antitumor agents due to their high efficacy against cancer cells and low toxicity in normal cells. Salvianolic acid B (SAB), a naturally occurring phenolic compound extracted from the radix of Chinese herb Salvia miltiorrhiza can induce apoptosis in different types of tumor cells. It can be used to treat cardiovascular and neurodegenerative disorders, hepatic fibrosis, and cancers. Several studies have shown that SAB can mitigate tumorigenesis by modulating MAPK, PI3K/AKT, and NF-ĸB signaling pathways. It also sensitizes the tumor cells to different anti-cancer agents by reversing the multi-drug resistance mechanisms found in tumor cells. This review summarizes the studies showing antitumor potential of SAB in different types of cancer cell lines, animal models and highlights the possible mechanisms through which SAB can induce apoptosis, inhibit growth and metastasis in tumor cells. Moreover, the possible role of nano-technological approaches to induce targeted delivery of SAB to eradicate tumor cells has been also discussed.
Collapse
Affiliation(s)
- Iram Shahzadi
- Plant Molecular Biology Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan
| | - Zain Ali
- Molecular Cancer Therapeutics Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan
| | - Sidra Bukhari
- Molecular Cancer Therapeutics Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan; Naula Research, Chapel Hill, NC 27516, USA
| | | | - Bushra Mirza
- Plant Molecular Biology Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| |
Collapse
|
141
|
Chang TT, Ho CH. Plasma proteome atlas for differentiating tumor stage and post-surgical prognosis of hepatocellular carcinoma and cholangiocarcinoma. PLoS One 2020; 15:e0238251. [PMID: 32845921 PMCID: PMC7449477 DOI: 10.1371/journal.pone.0238251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022] Open
Abstract
Although mass spectrometry-based plasma proteomics enables sensitive and large-scale discovery and validation of biomarkers for various diseases, its integrative application to hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) is not well investigated. Therefore, we analyzed albumin- and immunoglobulin G-depleted plasma samples from 148 and 60 patients with HCC and CCA, respectively, using liquid chromatography-tandem mass spectrometry. The algorithm used to measure the content of each protein was the percentage of exponentially modified protein abundance index. From 5320 proteins assayed in plasma, 53 and 25 biomarker candidates were identified for HCC and CCA, respectively. The abundance of six and two HCC markers particularly protruded in stage II and III, respectively, whereas plasma serine protease inhibitor was the sole marker the level of which steadily decreased with CCA progression. From a prognostic facet, we showed candidate markers and their cutoff levels for evaluating probability of tumor recurrence and patient survival period. Combination Kaplan-Meier models showed that HCC stage III or IV and both the content of alpha-2-HS-glycoprotein and apolipoprotein CIII <0.2% exhibited the poorest post-surgical recurrence-free and overall survivals. Furthermore, the content of afamin ≥0.2% played a significant role on the poor prognosis in patients with CCA. Our findings, taken together, characterized novel plasma biomarker signatures in dissecting tumor stages and post-surgical outcomes of HCC and CCA.
Collapse
Affiliation(s)
- Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsun Ho
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
- * E-mail:
| |
Collapse
|
142
|
Xie SC, Zhang JQ, Jiang XL, Hua YY, Xie SW, Qin YA, Yang YJ. LncRNA CRNDE facilitates epigenetic suppression of CELF2 and LATS2 to promote proliferation, migration and chemoresistance in hepatocellular carcinoma. Cell Death Dis 2020; 11:676. [PMID: 32826865 PMCID: PMC7442829 DOI: 10.1038/s41419-020-02853-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/08/2023]
Abstract
Our study aimed to investigate the expression, functional significance, and related mechanism of long noncoding RNA CRNDE (colorectal neoplasia differentially expressed) in hepatocellular carcinoma (HCC) pathogenesis. The resulted revealed that CRNDE was significantly overexpressed in HCC tissues and cell lines, and was statistically correlated with poor clinical outcome. CRNDE knockdown markedly decreased HCC cell proliferation, migration, and chemoresistance. In addition, in vivo experiments confirmed the suppressive effect of CRNDE knockdown on HCC progression. Mechanically, CRNDE directly bound to EZH2 (enhancer of zeste homolog), SUZ12 (suppressor of zeste 12), SUV39H1, and mediated their inhibition of tumor suppressor genes, including CUGBP Elav-like family member 2 (CELF2) and large tumor suppressor 2 (LATS2). CELF2 exerted tumor suppressive effect in HCC and was involved in CRNDE-mediated oncogenic effect. In addition, the oncogenic effects of CRNDE on HCC proliferation, migration and tumorigenesis, as well as its inhibition of Hippo pathway were abolished by LATS2 overexpression. Together, our work demonstrated the importance of CRNDE in HCC progression and elucidated the underlying molecular mechanisms. These findings provided new insights into HCC pathogenesis and chemoresistance mediated by CRNDE.
Collapse
Affiliation(s)
- Shu-Cai Xie
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China
| | - Jian-Quan Zhang
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China
| | - Xi-Li Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, 410007, Hunan Province, People's Republic of China
| | - Yong-Yong Hua
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China
| | - Shao-Wei Xie
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China
| | - Ye-Ang Qin
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China
| | - Yi-Jun Yang
- Department of Hepatobiliary Surgery, Haikou People's Hospital /Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan Province, People's Republic of China.
| |
Collapse
|
143
|
Chen CY, Fang JY, Chen CC, Chuang WY, Leu YL, Ueng SH, Wei LS, Cheng SF, Hsueh C, Wang TH. 2-O-Methylmagnolol, a Magnolol Derivative, Suppresses Hepatocellular Carcinoma Progression via Inhibiting Class I Histone Deacetylase Expression. Front Oncol 2020; 10:1319. [PMID: 32850418 PMCID: PMC7431949 DOI: 10.3389/fonc.2020.01319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
Magnolia officinalis is widely used in Southeast Asian countries for the treatment of fever, headache, diarrhea, and stroke. Magnolol is a phenolic compound extracted from M. officinalis, with proven antibacterial, antioxidant, anti-inflammatory, and anticancer activities. In this study, we modified magnolol to synthesize a methoxylated derivative, 2-O-methylmagnolol (MM1), and investigated the use of MM1, and magnolol in the treatment of liver cancer. We found that both magnolol and MM1 exhibited inhibitory effects on the growth, migration, and invasion of hepatocellular carcinoma (HCC) cell lines and halted the cell cycle at the G1 phase. MM1 also demonstrated a substantially better tumor-suppressive effect than magnolol. Further analysis suggested that by inhibiting class I histone deacetylase expression in HCC cell lines, magnolol and MM1 induced p21 expression and p53 activation, thereby causing cell cycle arrest and inhibiting HCC cell growth, migration, and invasion. Subsequently, we verified the significant tumor-suppressive effects of magnolol and MM1 in an animal model. Collectively, these findings demonstrate the anti-HCC activities of magnolol and MM1 and their potential for clinical use.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan City, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Taoyuan City, Taiwan
| | - Wen-Yu Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan City, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan City, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Shir-Hwa Ueng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan City, Taiwan
| | - Li-Shan Wei
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Shu-Fang Cheng
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Taoyuan City, Taiwan
| | - Chuen Hsueh
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan City, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| |
Collapse
|
144
|
Jeganathan S, Budziszewski E, Bielecki P, Kolios MC, Exner AA. In situ forming implants exposed to ultrasound enhance therapeutic efficacy in subcutaneous murine tumors. J Control Release 2020; 324:146-155. [PMID: 32389777 PMCID: PMC7725358 DOI: 10.1016/j.jconrel.2020.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022]
Abstract
In situ forming implants (ISFIs) allow for a high initial intratumoral concentration and sustained release of the chemotherapeutic. However, clinical translation is impeded primarily due to limited drug penetration from the tumor/boundary interface and poor intratumoral drug retention. Therapeutic ultrasound (TUS) has become a popular approach for improving drug penetration of transdermal devices and increasing cellular uptake of nanoparticles. These effects are driven by the mechanical and thermal bioeffects associated with TUS. In this study, we characterize the released drug penetration, retention, and overall therapeutic response when exposing ISFI to the combination of the mechanical and thermal effects of TUS (C-TUS). ISFIs were intratumorally injected into subcutaneous murine tumors then exposed to C-TUS (exposure: 5 min, duty factor: 0.33, frequency: 3 MHz, intensity: 2.2 W/cm2, pulse duration: 2 ms, pulse repetition frequency: 165 Hz, effective radiating area: 5 cm2, energy delivered: 896 J, time average intensity: 0.88 W/cm2). Tumors treated with the combination of ISFI + C-TUS demonstrated a 2.5-fold increase in maximum drug penetration and a 3-fold increase in drug retention at 5- and 8-days post-injection, respectively, compared to ISFIs without TUS exposure. These improvements in drug penetration and retention translated into an enhanced therapeutic response. Mice treated with ISFI + C-TUS showed a 62.6% reduction in tumor progression, a 50.0% increase in median survival time, and a 26.6% increase in necrotic percentage compared to ISFIs without TUS exposure. Combining intratumoral ISFIs with TUS may be beneficial for addressing some long-standing challenges with local drug delivery in cancer treatment and may serve as a viable noninvasive method to improve the poor clinical success of local drug delivery systems.
Collapse
Affiliation(s)
- Selva Jeganathan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Emily Budziszewski
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Peter Bielecki
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Michael C Kolios
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
| | - Agata A Exner
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; Department of Radiology, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
145
|
Luu S, Hsu C, Silberfein EJ. Demographic and Clinicopathologic Factors of Patients With Hepatocellular Carcinoma in a Safety Net Hospital. J Surg Res 2020; 256:374-380. [PMID: 32739621 DOI: 10.1016/j.jss.2020.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/02/2020] [Accepted: 06/14/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Safety net hospitals have historically cared for a disproportionate number of patients of low socioeconomic status, racial and ethnic minorities, and patients with cancer. These innate challenges make safety net hospitals important in understanding how to improve access to cancer care in order to fit the needs of vulnerable patients and ultimately improve their outcomes. The purpose of this study is to characterize the current state and treatment of hepatocellular carcinoma (HCC) at Ben Taub Hospital, a safety net hospital in Houston, Texas. MATERIALS AND METHODS A retrospective chart review was performed to review the demographic characteristics, clinicopathologic data, treatment strategies, and outcomes of HCC patients at Ben Taub Hospital between January 2012 and December 2014. RESULTS Two-hundred twenty-six men and 78 women with a mean age of 58 y underwent evaluation. Most (87%) were either uninsured or covered by Medicaid. The majority (69%) of patients presented with advanced (stage 2 or more) disease, with 58% of patients presenting with multiple lesions. Of the 40% that presented with a solitary lesion, the average size was 4.97 cm. Transarterial chemoembolization was used in 37% of patients and sorafenib was given to 26% of patients. Five patients underwent successful transplant. One hundred seventeen (38%) patients died of their disease, 25 patients are alive with no evidence of disease, and 159 patients have been lost to follow-up. CONCLUSIONS Most patients with HCC presented to this safety net hospital with advanced disease; however, multiple local and systemic treatments were offered. Screening programs to detect HCC at an earlier stage are essential for successful long-term outcomes in a resource-strapped hospital with limited access to liver transplantation.
Collapse
Affiliation(s)
- Sommer Luu
- Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Cary Hsu
- Department of Surgery, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
146
|
Identification of the Novel Oncogenic Role of SAAL1 and Its Therapeutic Potential in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12071843. [PMID: 32650537 PMCID: PMC7408781 DOI: 10.3390/cancers12071843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide, affecting over 700,000 people per year. The treatment effect in advanced HCC is still disappointing and prognosis of advanced HCC remains poor. Hence, to find more effective therapeutic targets to improve the treatment outcome of HCC is of urgent need. In this study, we reported the novel oncogenic function of SAAL1 (serum amyloid A-like 1) in HCC, which previously is considered as an inflammation-related gene. We found that SAAL1 was significantly upregulated in HCC tumor tissues when compared to the adjacent normal tissues and high expression of SAAL1 correlated with shorter overall survival in The Cancer Genome Atlas (TCGA) HCC database. Functionally, we showed that the depletion of SAAL1 significantly reduced cell proliferation, 3D colony formation, and migration/invasion abilities of HCC cancer cells. Furthermore, suppression of SAAL1 impaired the HGF/Met-driven Akt/mTOR phosphorylation cascade and increased the chemosensitivity of HCC cells to sorafenib and foretinib treatment. Our data indicated that SAAL1 plays an important role in HCC via mediating oncogenic HGF/Met-driven Akt/mTOR signaling and could serve as an independent prognostic marker, as well as a promising therapeutic target for HCC patients.
Collapse
|
147
|
Yang Y, Liao Y, Gui YP, Zhao L, Guo LB. GL-V9 reverses adriamycin resistance in hepatocellular carcinoma cells by affecting JNK2-related autophagy. Chin J Nat Med 2020; 18:491-499. [PMID: 32616189 DOI: 10.1016/s1875-5364(20)30059-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Adriamycin resistance in HCC seriously hinders the treatment of patients, it is necessary to investigate the mechanisms. Autophagy is involved in adriamycin resistance and JNK2 is related to autophagy. However, whether JNK2 inducing drug resistance though autophagy is unknown. GL-V9, a new synthesized flavonoid derivative, has been proved of its anti-tumor effects. The aim of the study is to explore the role of JNK2-related autophagy on adriamycin-induced drug resistance and the effects of GL-V9 on reversing adriamycin resistance. We concluded that JNK2 played an important role in drug resistance induced by adriamycin. The high expression of JNK2 activated protective autophagy in Hep G2-DOXR cells under non-stress condition, which protected cells from drug attacking. Furthermore, we found that GL-V9 reversed adriamycin resistance by blocking the JNK2-related protective autophagy in HCC.
Collapse
Affiliation(s)
- Yue Yang
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China
| | - Yan Liao
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China
| | - Yan-Ping Gui
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China
| | - Li Zhao
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing 211100, China.
| | - Lu-Bo Guo
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.
| |
Collapse
|
148
|
Lim ZW, Varma VB, Ramanujan RV, Miserez A. Magnetically responsive peptide coacervates for dual hyperthermia and chemotherapy treatments of liver cancer. Acta Biomater 2020; 110:221-230. [PMID: 32422317 DOI: 10.1016/j.actbio.2020.04.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Liver cancer is an aggressive malignancy associated with high levels of mortality and morbidity. Doxorubicin (Dox) is often used to slow down liver cancer progression; however its efficacy is limited, and its severe side effects prevent its routine use at therapeutic concentrations. We present a biomimetic peptide that coacervates into micro-droplets, within which both Dox and magnetic nanoparticles (MNPs) can be sequestered. These Dox-loaded Magnetic Coacervates (DMCs) can be used for thermo-chemotherapy, with the controlled release of Dox triggered by an external Alternating Magnetic Field (AMF). The DMCs are internalized by the cells via an energy-independent mechanism which is not based on endocytosis. Application of AMF generates a temperature of 45 °C within the DMCs, triggering their disassembly and the simultaneous release of Dox, thereby resulting in dual hyperthermia and chemotherapy for more efficient cancer therapy. In vitro studies conducted under AMF reveal that DMCs are cytocompatible and effective in inducing HepG2 liver cancer cell death. Thermo-chemotherapy treatment against HepG2 cells is also shown to be more effective compared to either hyperthermia or chemotherapy treatments alone. Thus, our novel peptide DMCs can open avenues in theranostic strategies against liver cancer through programmable, wireless, and remote control of Dox release. STATEMENT OF SIGNIFICANCE: Simultaneous administration of chemical and thermal therapy (thermo-chemotherapy) is more effective in inducing liver cancer cell death and improving survival rate. Thus, there is a keen interest in developing suitable carriers for thermo-chemotherapy. Coacervate micro-droplets display significant advantages, including high loading capacity, fast self-assembly in aqueous environments, and liquid-like behavior. However, they have not yet been explored as carriers for thermo-chemotherapy. Here, we demonstrate that peptide coacervate micro-droplets can co-encapsulate Dox and magnetic nanoparticles and cross the cell membrane. Applying an alternating magnetic field to cells containing drug-loaded coacervates triggers the release of Dox as well as the localized heating by magnetic hyperthermia, resulting in efficient liver cancer cell death by dual thermo-chemotherapy.
Collapse
Affiliation(s)
- Zhi Wei Lim
- Biological and Biomimetic Materials Laboratory, Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 637553
| | - Vijaykumar B Varma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Raju V Ramanujan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Ali Miserez
- Biological and Biomimetic Materials Laboratory, Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 637553; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| |
Collapse
|
149
|
Zhao Y, Wu H, Xing X, Ma Y, Ji S, Xu X, Zhao X, Wang S, Jiang W, Fang C, Zhang L, Yan F, Wang X. CD13 Induces Autophagy to Promote Hepatocellular Carcinoma Cell Chemoresistance Through the P38/Hsp27/CREB/ATG7 Pathway. J Pharmacol Exp Ther 2020; 374:512-520. [PMID: 32571958 DOI: 10.1124/jpet.120.265637] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
The chemoresistance of hepatocellular carcinoma (HCC) is a serious problem that directly hinders the effect of chemotherapeutic agents. We previously reported that Aminopeptidase N (CD13) inhibition can enhance the cytotoxic efficacy of chemotherapy agents. In the present study, we use liver cancer cells to explore the molecular mechanism accounting for the relationship between CD13 and chemoresistance. We demonstrate that CD13 overexpression activates the P38/heat shock protein 27/cAMP response element-binding protein (CREB) signaling pathway to limit the efficacy of cytotoxic agents. Moreover, blockade of P38 or CREB sensitizes HCC cells to 5-fluorouracil. Then we reveal that CREB binds to the autophagy related 7 (ATG7) promoter to induce autophagy and promote HCC cell chemoresistance. CD13 inhibition also downregulates the expression of ATG7, autophagy, and tumor cell growth in vivo. Overall, the combination a CD13 inhibitor and chemotherapeutic agents may be a potential strategy for overcoming drug resistance in HCC. SIGNIFICANCE STATEMENT: Our study demonstrates that Aminopeptidase N (CD13) promotes hepatocellular carcinoma (HCC) cell chemoresistance via the P38/heat shock protein 27/cAMP response element-binding protein (CREB) pathway. CREB regulates autophagy related 7 transcription and expression to induce autophagy. Our results collectively suggest that CD13 may serve as a potential target for overcoming HCC resistance.
Collapse
Affiliation(s)
- Yan Zhao
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Huina Wu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Xiaoyan Xing
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Yuqian Ma
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Shengping Ji
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Xinyue Xu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Xin Zhao
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Sensen Wang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Wenyan Jiang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Chunyan Fang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Lei Zhang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Fang Yan
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| | - Xuejian Wang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China (Y.Z., H.W., X.Xi., Y.M., S.J., X.Xu., X.Z., S.W., W.J., C.F., L.Z., F.Y., X.W.) and Department of pharmacy, Southwestern Lu Hospital, Liaocheng, Shandong, China (H.W.)
| |
Collapse
|
150
|
Kotiv BN, Dzidzava II, Alent’yev SA, Smorodsky AV, Makhmudov KI, Apollonov AA, Soldatov SA, Zubarev PN. Complex treatment of hepatocellular carcinoma at early (BCLC-A) and intermediate (BCLC-B) stages. ANNALY KHIRURGICHESKOY GEPATOLOGII = ANNALS OF HPB SURGERY 2020; 25:55-66. [DOI: 10.16931/1995-5464.2020255-66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Аim. Evaluation of the effectiveness of hepatocellular carcinoma treatment at early BCLC-A and intermediate BCLC-B stages by the combined use of liver resections and locoregional therapy.Materials and methods. The study included 142 patients with hepatocellular carcinoma. At the BCLC-A stage – 46 observations, at the BCLC-B stage – 96 observations. Chronic hepatitis and cirrhosis of various etiologies were detected in 58 (40.8%) patients. Liver resection of various volumes, transarterial chemoembolization and radiofrequency ablation were used for treatment. With the tumor progression and the ineffectiveness of locoregional therapy, targeted therapy was prescribed.Results. Four groups of patients were identified depending on treatment tactics. In group 1, 28 patients underwent radical liver resections; in group 2, 37 patients underwent preoperative transarterial chemoembolization and liver resection. In group 3, 63 patients underwent therapeutic transarterial chemoembolization and radiofrequency ablation. In group 4, 14 patients underwent transarterial chemoembolization followed by hepatic arterial infusion of chemotherapy and targeted therapy. Overall survival in groups 1 and 2 significantly exceeds survival rates in groups 3 and 4. The median overall survival in groups 1–4 was 39, 37.5, 19.5, and 7.5 months (p1–3 = 0.0001 ; p1–4 = 0.0009, p2–3 = 0.018 , p 2–4 = 0.001). The cumulative one, three and five year survival rates in groups 1 and 2 did not significantly differ (87.8% and 80.0%, 82.5% and 75.0%, 68.2% and 58.0%, 54.5% and 41.0%, respectively, p1–2 = 0.076). However, group 1 consisted exclusively of patients with BCLC-A stages with solitary tumors less than 6.5 cm in diameter, group 2 included large BCLC-A tumors and multiple tumors BCLC-B stages (67.6%).Conclusion. For the treatment of patients with hepatocellular carcinoma BCLC-A and BCLC-B stages, a multimodal approach should be applied, including differential use and a rational combination of regional chemotherapy and resection techniques, taking into account the functional state of the liver.
Collapse
Affiliation(s)
- B. N. Kotiv
- Kirov Military Medical Academy, Ministry of Defence of the Russian Federation
| | - I. I. Dzidzava
- Kirov Military Medical Academy, Ministry of Defence of the Russian Federation
| | - S. A. Alent’yev
- Kirov Military Medical Academy, Ministry of Defence of the Russian Federation
| | - A. V. Smorodsky
- Kirov Military Medical Academy, Ministry of Defence of the Russian Federation
| | - K. I. Makhmudov
- Kirov Military Medical Academy, Ministry of Defence of the Russian Federation
| | - A. A. Apollonov
- Kirov Military Medical Academy, Ministry of Defence of the Russian Federation
| | - S. A. Soldatov
- Kirov Military Medical Academy, Ministry of Defence of the Russian Federation
| | - P. N. Zubarev
- Kirov Military Medical Academy, Ministry of Defence of the Russian Federation
| |
Collapse
|