101
|
Neisseria gonorrhoeae Modulates Cell Death in Human Endocervical Epithelial Cells through Export of Exosome-Associated cIAP2. Infect Immun 2015; 83:3410-7. [PMID: 26077759 DOI: 10.1128/iai.00732-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 01/07/2023] Open
Abstract
Several bacterial pathogens persist and survive in the host by modulating host cell death pathways. We previously demonstrated that Neisseria gonorrhoeae, a Gram-negative pathogen responsible for the sexually transmitted infection gonorrhea, protects against exogenous induction of apoptosis in human cervical epithelial cells. However, induction of cell death by N. gonorrhoeae has also been reported in other cell types. The mechanisms by which N. gonorrhoeae modulates cell death are not clear, although a role for the inhibitor of apoptosis-2 (cIAP2) has been proposed. In this study, we confirmed that N. gonorrhoeae induces production of cIAP2 in human cervical epithelial cells. High levels of intracellular cIAP2 were detected early after N. gonorrhoeae stimulation, which was followed by a marked decrease at 24 h. At this time point, we observed increased levels of extracellular cIAP2 associated with exosomes and an overall increase in production of exosomes. Inhibition of cIAP2 in N. gonorrhoeae-stimulated epithelial cells resulted in increased cell death and interleukin-1β (IL-1β) production. Collectively these results indicate that N. gonorrhoeae stimulation of human endocervical epithelial cells induces the release of cIAP2, an essential regulator of cell death and immune signaling.
Collapse
|
102
|
Hosseinian N, Cho Y, Lockey RF, Kolliputi N. The role of the NLRP3 inflammasome in pulmonary diseases. Ther Adv Respir Dis 2015; 9:188-97. [PMID: 26012351 DOI: 10.1177/1753465815586335] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Respiratory diseases and lung injuries are one of the leading causes of death in the world. One critical component of these diseases is exaggerated inflammatory response. The recently discovered inflammasome is believed to play a key role in inflammation. The inflammasome is an oligomer of intracellular proteins that, once activated by an insult or damage signal, produces mature cytokines from the interleukin-1 family that mediate an inflammatory response. Previous research has provided evidence that suggests the role of the inflammasome in the pathogenesis of many chronic respiratory diseases and acute lung injuries, such as transfusion-related acute lung injury, ventilator-induced lung injury, asthma, chronic obstructive pulmonary disease and pulmonary fibrosis. This article summarizes recent research on the inflammasome and reviews proposed molecular models of the role of the inflammasome in several prominent lung diseases and injuries.
Collapse
Affiliation(s)
- Nima Hosseinian
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Young Cho
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 19, Tampa, FL 33612, USA
| |
Collapse
|
103
|
Abais JM, Xia M, Zhang Y, Boini KM, Li PL. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 2015; 22:1111-29. [PMID: 25330206 PMCID: PMC4403231 DOI: 10.1089/ars.2014.5994] [Citation(s) in RCA: 644] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Inflammasomes are multiprotein complexes localized within the cytoplasm of the cell that are responsible for the maturation of proinflammatory cytokines such as interleukin-1β (IL-1β) and IL-18, and the activation of a highly inflammatory form of cell death, pyroptosis. In response to infection or cellular stress, inflammasomes are assembled, activated, and involved in host defense and pathophysiology of diseases. Clarification of the molecular mechanisms leading to the activation of this intracellular inflammatory machinery may provide new insights into the concept of inflammation as the root of and route to human diseases. RECENT ADVANCES The activation of inflammasomes, specifically the most fully characterized inflammasome-the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome, is now emerging as a critical molecular mechanism for many degenerative diseases. Several models have been developed to describe how NLRP3 inflammasomes are activated, including K(+) efflux, lysosome function, endoplasmic reticulum (ER) stress, intracellular calcium, ubiquitination, microRNAs, and, in particular, reactive oxygen species (ROS). CRITICAL ISSUES ROS may serve as a "kindling" or triggering factor to activate NLRP3 inflammasomes as well as "bonfire" or "effector" molecules, resulting in pathological processes. Increasing evidence seeks to understand how this spatiotemporal action of ROS occurs during NLRP3 inflammasome activation, which will be a major focus of this review. FUTURE DIRECTIONS It is imperative to know how this dual action of ROS works during NLRP3 inflammation activation on different stimuli and what relevance such spatiotemporal redox regulation of NLRP3 inflammasomes has in cell or organ functions and possible human diseases.
Collapse
Affiliation(s)
- Justine M Abais
- Department of Pharmacology and Toxicology, Virginia Commonwealth University , Richmond, Virginia
| | | | | | | | | |
Collapse
|
104
|
NLRP3 mediates NF-κB activation and cytokine induction in microbially induced and sterile inflammation. PLoS One 2015; 10:e0119179. [PMID: 25761061 PMCID: PMC4356585 DOI: 10.1371/journal.pone.0119179] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/10/2015] [Indexed: 12/21/2022] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat-containing family, pyrin domain containing 3 (NLRP3) has recently emerged as a central regulator of innate immunity and inflammation in response to both sterile inflammatory and microbial invasion signals. Although its ability to drive proteolytic procaspase-1 processing has drawn more attention, NLPR3 can also activate NF-κB. To clarify the physiological relevance of this latter function, we examined the effect of NLRP3 on NF-κB activation and cytokine induction in RNA-interference-based NLRP3-knockdown cell lines generated from the human monocytic cell line THP-1. Knocking down NLRP3 reduced NF-κB activation and cytokine induction in the early stages of Staphylococcus aureus infection. Expression of cytokine genes induced by Staphylococcus aureus was not inhibited by a caspase-1 inhibitor, and did not occur through an autocrine mechanism in response to newly synthesized cytokines. We also demonstrated that NLRP3 could activate NF-κB and induce cytokines in response to sterile signals, monosodium urate crystals and aluminum adjuvant. Thus, NLRP3 mediates NF-κB activation in both sterile and microbially induced inflammation. Our findings show that not only does NLRP3 activate caspase-1 post-translationally, but it also induces multiple cytokine genes in the innate immune system.
Collapse
|
105
|
Motta V, Soares F, Sun T, Philpott DJ. NOD-like receptors: versatile cytosolic sentinels. Physiol Rev 2015; 95:149-78. [PMID: 25540141 DOI: 10.1152/physrev.00009.2014] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nucleotide binding oligomerization domain (NOD)-like receptors are cytoplasmic pattern-recognition receptors that together with RIG-I-like receptor (retinoic acid-inducible gene 1), Toll-like receptor (TLR), and C-type lectin families make up the innate pathogen pattern recognition system. There are 22 members of NLRs in humans, 34 in mice, and even a larger number in some invertebrates like sea urchins, which contain more than 200 receptors. Although initially described to respond to intracellular pathogens, NLRs have been shown to play important roles in distinct biological processes ranging from regulation of antigen presentation, sensing metabolic changes in the cell, modulation of inflammation, embryo development, cell death, and differentiation of the adaptive immune response. The diversity among NLR receptors is derived from ligand specificity conferred by the leucine-rich repeats and an NH2-terminal effector domain that triggers the activation of different biological pathways. Here, we describe NLR genes associated with different biological processes and the molecular mechanisms underlying their function. Furthermore, we discuss mutations in NLR genes that have been associated with human diseases.
Collapse
Affiliation(s)
- Vinicius Motta
- Departments of Immunology and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Fraser Soares
- Departments of Immunology and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Tian Sun
- Departments of Immunology and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Dana J Philpott
- Departments of Immunology and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
106
|
Abderrazak A, Syrovets T, Couchie D, El Hadri K, Friguet B, Simmet T, Rouis M. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol 2015; 4:296-307. [PMID: 25625584 PMCID: PMC4315937 DOI: 10.1016/j.redox.2015.01.008] [Citation(s) in RCA: 524] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 02/07/2023] Open
Abstract
IL-1β production is critically regulated by cytosolic molecular complexes, termed inflammasomes. Different inflammasome complexes have been described to date. While all inflammasomes recognize certain pathogens, it is the distinctive feature of NLRP3 inflammasome to be activated by many and diverse stimuli making NLRP3 the most versatile, and importantly also the most clinically implicated inflammasome. However, NLRP3 activation has remained the most enigmatic. It is not plausible that the intracellular NLRP3 receptor is able to detect all of its many and diverse triggers through direct interactions; instead, it is discussed that NLRP3 is responding to certain generic cellular stress-signals induced by the multitude of molecules that trigger its activation. An ever increasing number of studies link the sensing of cellular stress signals to a direct pathophysiological role of NLRP3 activation in a wide range of autoinflammatory and autoimmune disorders, and thus provide a novel mechanistic rational, on how molecules trigger and support sterile inflammatory diseases. A vast interest has created to unravel how NLRP3 becomes activated, since mechanistic insight is the prerequisite for a knowledge-based development of therapeutic intervention strategies that specifically target the NLRP3 triggered IL-1β production. In this review, we have updated knowledge on NLRP3 inflammasome assembly and activation and on the pyrin domain in NLRP3 that could represent a drug target to treat sterile inflammatory diseases. We have reported mutations in NLRP3 that were found to be associated with certain diseases. In addition, we have reviewed the functional link between NLRP3 inflammasome, the regulator of cellular redox status Trx/TXNIP complex, endoplasmic reticulum stress and the pathogenesis of diseases such as type 2 diabetes. Finally, we have provided data on NLRP3 inflammasome, as a critical regulator involved in the pathogenesis of obesity and cardiovascular diseases.
Collapse
Affiliation(s)
- Amna Abderrazak
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing - IBPS, F-75005 Paris, France; CNRS-UMR 8256, F-75005 Paris, France; Inserm U1164, F-75005 Paris, France
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, D-89081 Ulm, Germany
| | - Dominique Couchie
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing - IBPS, F-75005 Paris, France; CNRS-UMR 8256, F-75005 Paris, France; Inserm U1164, F-75005 Paris, France
| | - Khadija El Hadri
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing - IBPS, F-75005 Paris, France; CNRS-UMR 8256, F-75005 Paris, France; Inserm U1164, F-75005 Paris, France
| | - Bertrand Friguet
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing - IBPS, F-75005 Paris, France; CNRS-UMR 8256, F-75005 Paris, France; Inserm U1164, F-75005 Paris, France
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, D-89081 Ulm, Germany
| | - Mustapha Rouis
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing - IBPS, F-75005 Paris, France; CNRS-UMR 8256, F-75005 Paris, France; Inserm U1164, F-75005 Paris, France.
| |
Collapse
|
107
|
Li X, Liu S, Luo J, Liu A, Tang S, Liu S, Yu M, Zhang Y. Helicobacter pylori induces IL-1β and IL-18 production in human monocytic cell line through activation of NLRP3 inflammasome via ROS signaling pathway. Pathog Dis 2015; 73:ftu024. [DOI: 10.1093/femspd/ftu024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2014] [Indexed: 12/21/2022] Open
|
108
|
Yang Y, Jiang G, Zhang P, Fan J. Programmed cell death and its role in inflammation. Mil Med Res 2015; 2:12. [PMID: 26045969 PMCID: PMC4455968 DOI: 10.1186/s40779-015-0039-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
Cell death plays an important role in the regulation of inflammation and may be the result of inflammation. The maintenance of tissue homeostasis necessitates both the recognition and removal of invading microbial pathogens as well as the clearance of dying cells. In the past few decades, emerging knowledge on cell death and inflammation has enriched our molecular understanding of the signaling pathways that mediate various programs of cell death and multiple types of inflammatory responses. This review provides an overview of the major types of cell death related to inflammation. Modification of cell death pathways is likely to be a logical therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Yong Yang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433 China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433 China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433 China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ; Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240 USA
| |
Collapse
|
109
|
|
110
|
Chen IY, Ichinohe T. Response of host inflammasomes to viral infection. Trends Microbiol 2015; 23:55-63. [PMID: 25456015 DOI: 10.1016/j.tim.2014.09.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 02/06/2023]
Abstract
Inflammasomes are multiprotein complexes that induce downstream immune responses to specific pathogens, environmental stimuli, and host cell damage. Components of specific viruses activate different inflammasomes; for example, the influenza A virus M2 protein and encephalomyocarditis virus (EMCV) 2B protein activate the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome, whereas viral double-stranded RNA (dsRNA) activates the retinoic acid inducible gene-I (RIG-I) inflammasome. Once activated in response to viral infection, inflammasomes induce the activation of caspases and the release of mature forms of interleukin-1β (IL-1β) and IL-18. Here we review the association between viral infection and inflammasome activation. Identifying the mechanisms underlying virus-induced inflammasome activation is important if we are to develop novel therapeutic strategies to target viruses.
Collapse
Affiliation(s)
- I-Yin Chen
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Takeshi Ichinohe
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
111
|
ADP-ribosylation of NLRP3 by Mycoplasma pneumoniae CARDS toxin regulates inflammasome activity. mBio 2014; 5:mBio.02186-14. [PMID: 25538194 PMCID: PMC4278538 DOI: 10.1128/mbio.02186-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The inflammasome is a major regulator of inflammation through its activation of procaspase-1, which cleaves prointerleukin-1β (pro-IL-1β) into its mature form. IL-1β is a critical proinflammatory cytokine that dictates the severity of inflammation associated with a wide spectrum of inflammatory diseases. NLRP3 is a key component of the inflammasome complex, and multiple signals and stimuli trigger formation of the NLRP3 inflammasome complex. In the current study, we uncovered a yet unknown mechanism of NLRP3 inflammasome activation by a pathogen-derived factor. We show that the unique bacterial ADP-ribosylating and vacuolating toxin produced by Mycoplasma pneumoniae and designated community-acquired respiratory distress syndrome (CARDS) toxin activates the NLRP3 inflammasome by colocalizing with the NLRP3 inflammasome and catalyzing the ADP-ribosylation of NLRP3. Mutant full-length CARDS toxin lacking ADP-ribosyltransferase (ADPRT) activity and truncated CARDS toxins unable to bind to macrophages and be internalized failed to activate the NLRP3 inflammasome. These studies demonstrate that CARDS toxin-mediated ADP-ribosylation constitutes an important posttranslational modification of NLRP3, that ADPRT activity of CARDS toxin is essential for NLRP3 inflammasome activation, and that posttranslational ADPRT-mediated modification of the inflammasome is a newly discovered mechanism for inflammasome activation with subsequent release of IL-1β and associated pathologies. Inflammation is a fundamental innate immune response to environmental factors, including infections. The inflammasome represents a multiprotein complex that regulates inflammation via its ability to activate specific proinflammatory cytokines, resulting in an effective host protective response. However, excessive release of proinflammatory cytokines can occur following infection that skews the host response to “hyperinflammation” with exaggerated tissue damage. Mycoplasma pneumoniae, a common bacterial airway pathogen, possesses a unique protein toxin with ADP-ribosyltransferase and vacuolating properties capable of reproducing the robust inflammation and cytopathology associated with mycoplasma infection. Here, we show that the toxin uniquely activates the NLRP3 inflammasome by colocalizing with and ADP-ribosylating NLRP3, possibly leading to “hyperinflammation” and thus uncovering a novel target for therapeutic intervention.
Collapse
|
112
|
Vick EJ, Park HS, Huff KA, Brooks KM, Farone AL, Farone MB. Gardnerella vaginalis triggers NLRP3 inflammasome recruitment in THP-1 monocytes. J Reprod Immunol 2014; 106:67-75. [DOI: 10.1016/j.jri.2014.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/05/2014] [Accepted: 08/19/2014] [Indexed: 01/09/2023]
|
113
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
114
|
Ritter M, Straubinger K, Schmidt S, Busch DH, Hagner S, Garn H, Prazeres da Costa C, Layland LE. Functional relevance of NLRP3 inflammasome-mediated interleukin (IL)-1β during acute allergic airway inflammation. Clin Exp Immunol 2014; 178:212-23. [PMID: 24943899 DOI: 10.1111/cei.12400] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2014] [Indexed: 12/12/2022] Open
Abstract
Overall asthmatic symptoms can be controlled with diverse therapeutic agents. However, certain symptomatic individuals remain at risk for serious morbidity and mortality, which prompts the identification of novel therapeutic targets and treatment strategies. Thus, using an adjuvant-free T helper type 2 (Th2) murine model, we have deciphered the role of interleukin (IL)-1 signalling during allergic airway inflammation (AAI). Because functional IL-1β depends on inflammasome activation we first studied asthmatic manifestations in specific inflammasome-deficient [NACHT, LRR and PYD domains-containing protein 3 (NLRP3(-/-) ) and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC(-/-) )] and IL-1 receptor type 1(-/-) (IL-1R1(-/-) ) mice on the BALB/c background. To verify the onset of disease we assessed cellular infiltration in the bronchial regions, lung pathology, airway hyperresponsiveness and ovalbumin (OVA)-specific immune responses. In the absence of NLRP3 inflammasome-mediated IL-1β release all symptoms of AAI were reduced, except OVA-specific immunoglobulin levels. To address whether manipulating IL-1 signalling reduced asthmatic development, we administered the IL-1R antagonist anakinra (Kineret®) during critical immunological time-points: sensitization or challenge. Amelioration of asthmatic symptoms was only observed when anakinra was administered during OVA challenge. Our findings indicate that blocking IL-1 signalling could be a potential complementary therapy for allergic airway inflammation.
Collapse
Affiliation(s)
- M Ritter
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Clinic Bonn, Bonn, Germany; Institute of Medical Microbiology, Immunology and Hygiene (MIH), Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Zhu Y, Jiang J, Said-Sadier N, Boxx G, Champion C, Tetlow A, Kickhoefer VA, Rome LH, Ojcius DM, Kelly KA. Activation of the NLRP3 inflammasome by vault nanoparticles expressing a chlamydial epitope. Vaccine 2014; 33:298-306. [PMID: 25448112 DOI: 10.1016/j.vaccine.2014.11.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/04/2014] [Accepted: 11/15/2014] [Indexed: 11/28/2022]
Abstract
The full potential of vaccines relies on development of effective delivery systems and adjuvants and is critical for development of successful vaccine candidates. We have shown that recombinant vaults engineered to encapsulate microbial epitopes are highly stable structures and are an ideal vaccine vehicle for epitope delivery which does not require the inclusion of an adjuvant. We studied the ability of vaults which were engineered for use as a vaccine containing an immunogenic epitope of Chlamydia trachomatis, polymorphic membrane protein G (PmpG), to be internalized into human monocytes and behave as a "natural adjuvant". We here show that incubation of monocytes with the PmpG-1-vaults activates caspase-1 and stimulates IL-1β secretion through a process requiring the NLRP3 inflammasome and that cathepsin B and Syk are involved in the inflammasome activation. We also observed that the PmpG-1-vaults are internalized through a pathway that is transiently acidic and leads to destabilization of lysosomes. In addition, immunization of mice with PmpG-1-vaults induced PmpG-1 responsive CD4(+) cells upon re-stimulation with PmpG peptide in vitro, suggesting that vault vaccines can be engineered for specific adaptive immune responses. We conclude that PmpG-1-vault vaccines can stimulate NLRP3 inflammasomes and induce PmpG-specific T cell responses.
Collapse
Affiliation(s)
- Ye Zhu
- Department of Molecular Cell Biology, and Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Janina Jiang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Najwane Said-Sadier
- Department of Molecular Cell Biology, and Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Gale Boxx
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Cheryl Champion
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ashley Tetlow
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Valerie A Kickhoefer
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA
| | - Leonard H Rome
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA
| | - David M Ojcius
- Department of Molecular Cell Biology, and Health Sciences Research Institute, University of California, Merced, CA 95343, USA.
| | - Kathleen A Kelly
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
116
|
Chen Z, Jin H, Hou Y, Wang B, Chen C, Yang Z, Ding D, Zuo Y, Ren S. Activated P2X7 receptor upregulates the expression levels of NALP3 in P388D1 murine macrophage‑like cells. Mol Med Rep 2014; 11:1542-6. [PMID: 25351950 DOI: 10.3892/mmr.2014.2776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 10/01/2014] [Indexed: 11/06/2022] Open
Abstract
The aims of the current study were to systematically analyze the regulation of the expression of NALP3 by the P2X7 receptor in P388D1 murine macrophage‑like cells, and to investigate the association between the P2X7 receptor and the NALP3 at the molecular level. Cell culture, RNA transfection, adenosine triphosphate (ATP)‑induced expression of NALP3, reverse transcription polymerase chain reaction and western blotting were used to explore the association between the P2X7 receptor and NALP3‑encoding gene in P388D1 murine macrophage‑like cells at the molecular level. The ATP‑activated P2X7 receptor can induce the upregulation of NALP3 expression at the gene and protein levels in P388D1 cells. These results demonstrated that the activation of P2X7 increases the expression levels of NALP3 in P388D1 murine macrophage‑like cells.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Hongfei Jin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yahui Hou
- Department of Clinical Biochemistry, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Bo Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Chunlin Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ziyi Yang
- Department of Clinical Biochemistry, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Dongbing Ding
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yunfei Zuo
- Department of Clinical Biochemistry, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shuangyi Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
117
|
Abstract
Inflammasomes are large cytosolic multiprotein complexes that assemble in response to detection of infection- or stress-associated stimuli and lead to the activation of caspase-1-mediated inflammatory responses, including cleavage and unconventional secretion of the leaderless proinflammatory cytokines IL-1β and IL-18, and initiation of an inflammatory form of cell death referred to as pyroptosis. Inflammasome activation can be induced by a wide variety of microbial pathogens and generally mediates host defense through activation of rapid inflammatory responses and restriction of pathogen replication. In addition to its role in defense against pathogens, recent studies have suggested that the inflammasome is also a critical regulator of the commensal microbiota in the intestine. Finally, inflammasomes have been widely implicated in the development and progression of various chronic diseases, such as gout, atherosclerosis, and metabolic syndrome. In this perspective, we discuss the role of inflammasomes in infectious and noninfectious inflammation and highlight areas of interest for future studies of inflammasomes in host defense and chronic disease.
Collapse
Affiliation(s)
- Marcel R de Zoete
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Shu Zhu
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520 Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
118
|
Toomey CB, Cauvi DM, Hamel JC, Ramirez AE, Pollard KM. Cathepsin B regulates the appearance and severity of mercury-induced inflammation and autoimmunity. Toxicol Sci 2014; 142:339-49. [PMID: 25237059 DOI: 10.1093/toxsci/kfu189] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Susceptibility and resistance to systemic autoimmunity are genetically regulated. This is particularly true for murine mercury-induced autoimmunity (mHgIA) where DBA/2J mice are considered resistant to disease including polyclonal B cell activation, autoantibody responses, and immune complex deposits. To identify possible mechanisms for the resistance to mHgIA, we exposed mHgIA sensitive B10.S and resistant DBA/2J mice to HgCl2 and assessed inflammation and pro-inflammatory responses at the site of exposure and subsequent development of markers of systemic autoimmunity. DBA/2J mice showed little evidence of induration at the site of exposure, expression of proinflammatory cytokines, T cell activation, or autoantibody production, although they did exhibit increased levels of total serum IgG and IgG1. In contrast B10.S mice developed significant inflammation together with increased expression of inflammasome component NLRP3, proinflammatory cytokines IL-1β, TNF-α, and IFN-γ, hypergammaglobulinemia, splenomegaly, CD4(+) T-cell activation, and production of autoantibodies. Inflammation in B10.S mice was associated with a selective increase in activity of cysteine cathepsin B but not cathepsins L or S. Increased cathepsin B activity was not dependent on cytokines required for mHgIA but treatment with CA-074, a cathepsin B inhibitor, led to transient reduction of local induration, expression of inflammatory cytokines, and subsequent attenuation of the systemic adaptive immune response. These findings demonstrate that sensitivity to mHgIA is linked to an early cathepsin B regulated inflammatory response which can be pharmacologically exploited to abrogate the subsequent adaptive autoimmune response which leads to disease.
Collapse
Affiliation(s)
- Christopher B Toomey
- *Department of Ophthalmology, School of Medicine, Duke University, 2351 Erwin Road, Durham, North Carolina 27710, Department of Surgery and Center for Investigations of Health and Education Disparities, School of Medicine, University of California, San Diego, 9500 Gilman Drive, No. 0739, La Jolla, California 92093-0739 and Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - David M Cauvi
- *Department of Ophthalmology, School of Medicine, Duke University, 2351 Erwin Road, Durham, North Carolina 27710, Department of Surgery and Center for Investigations of Health and Education Disparities, School of Medicine, University of California, San Diego, 9500 Gilman Drive, No. 0739, La Jolla, California 92093-0739 and Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - John C Hamel
- *Department of Ophthalmology, School of Medicine, Duke University, 2351 Erwin Road, Durham, North Carolina 27710, Department of Surgery and Center for Investigations of Health and Education Disparities, School of Medicine, University of California, San Diego, 9500 Gilman Drive, No. 0739, La Jolla, California 92093-0739 and Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Andrea E Ramirez
- *Department of Ophthalmology, School of Medicine, Duke University, 2351 Erwin Road, Durham, North Carolina 27710, Department of Surgery and Center for Investigations of Health and Education Disparities, School of Medicine, University of California, San Diego, 9500 Gilman Drive, No. 0739, La Jolla, California 92093-0739 and Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - K Michael Pollard
- *Department of Ophthalmology, School of Medicine, Duke University, 2351 Erwin Road, Durham, North Carolina 27710, Department of Surgery and Center for Investigations of Health and Education Disparities, School of Medicine, University of California, San Diego, 9500 Gilman Drive, No. 0739, La Jolla, California 92093-0739 and Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
119
|
Abdullah Z, Knolle PA. Scaling of immune responses against intracellular bacterial infection. EMBO J 2014; 33:2283-94. [PMID: 25225613 DOI: 10.15252/embj.201489055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Macrophages detect bacterial infection through pattern recognition receptors (PRRs) localized at the cell surface, in intracellular vesicles or in the cytosol. Discrimination of viable and virulent bacteria from non-virulent bacteria (dead or viable) is necessary to appropriately scale the anti-bacterial immune response. Such scaling of anti-bacterial immunity is necessary to control the infection, but also to avoid immunopathology or bacterial persistence. PRR-mediated detection of bacterial constituents in the cytosol rather than at the cell surface along with cytosolic recognition of secreted bacterial nucleic acids indicates viability and virulence of infecting bacteria. The effector responses triggered by activation of cytosolic PRRs, in particular the RIG-I-induced simultaneous rapid type I IFN induction and inflammasome activation, are crucial for timely control of bacterial infection by innate and adaptive immunity. The knowledge on the PRRs and the effector responses relevant for control of infection with intracellular bacteria will help to develop strategies to overcome chronic infection.
Collapse
Affiliation(s)
- Zeinab Abdullah
- Institutes of Molecular Medicine and Experimental Immunology, Universität Bonn, Bonn, Germany
| | - Percy A Knolle
- Institutes of Molecular Medicine and Experimental Immunology, Universität Bonn, Bonn, Germany Institute of Molecular Immunology (IMI), Technische Universität München, München, Germany
| |
Collapse
|
120
|
Walsh JG, Reinke SN, Mamik MK, McKenzie BA, Maingat F, Branton WG, Broadhurst DI, Power C. Rapid inflammasome activation in microglia contributes to brain disease in HIV/AIDS. Retrovirology 2014; 11:35. [PMID: 24886384 PMCID: PMC4038111 DOI: 10.1186/1742-4690-11-35] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/24/2014] [Indexed: 01/18/2023] Open
Abstract
Background Human immunodeficiency virus type 1(HIV-1) infects and activates innate immune cells in the brain resulting in inflammation and neuronal death with accompanying neurological deficits. Induction of inflammasomes causes cleavage and release of IL-1β and IL-18, representing pathogenic processes that underlie inflammatory diseases although their contribution HIV-associated brain disease is unknown. Results Investigation of inflammasome-associated genes revealed that IL-1β, IL-18 and caspase-1 were induced in brains of HIV-infected persons and detected in brain microglial cells. HIV-1 infection induced pro-IL-1β in human microglia at 4 hr post-infection with peak IL-1β release at 24 hr, which was accompanied by intracellular ASC translocation and caspase-1 activation. HIV-dependent release of IL-1β from a human macrophage cell line, THP-1, was inhibited by NLRP3 deficiency and high extracellular [K+]. Exposure of microglia to HIV-1 gp120 caused IL-1β production and similarly, HIV-1 envelope pseudotyped viral particles induced IL-1β release, unlike VSV-G pseudotyped particles. Infection of cultured feline macrophages by the related lentivirus, feline immunodeficiency virus (FIV), also resulted in the prompt induction of IL-1β. In vivo FIV infection activated multiple inflammasome-associated genes in microglia, which was accompanied by neuronal loss in cerebral cortex and neurological deficits. Multivariate analyses of data from FIV-infected and uninfected animals disclosed that IL-1β, NLRP3 and caspase-1 expression in cerebral cortex represented key molecular determinants of neurological deficits. Conclusions NLRP3 inflammasome activation was an early and integral aspect of lentivirus infection of microglia, which was associated with lentivirus-induced brain disease. Inflammasome activation in the brain might represent a potential target for therapeutic interventions in HIV/AIDS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christopher Power
- Department of Medicine (Neurology), Heritage Medical Research Centre 6-11, University of Alberta, Edmonton T6G 2S2, Canada.
| |
Collapse
|
121
|
Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci U S A 2014; 111:7403-8. [PMID: 24803432 DOI: 10.1073/pnas.1402911111] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pathogen recognition by nucleotide-binding oligomerization domain-like receptor (NLR) results in the formation of a macromolecular protein complex (inflammasome) that drives protective inflammatory responses in the host. It is thought that the number of inflammasome complexes forming in a cell is determined by the number of NLRs being activated, with each NLR initiating its own inflammasome assembly independent of one another; however, we show here that the important foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) simultaneously activates at least two NLRs, whereas only a single inflammasome complex is formed in a macrophage. Both nucleotide-binding domain and leucine-rich repeat caspase recruitment domain 4 and nucleotide-binding domain and leucine-rich repeat pyrin domain 3 are simultaneously present in the same inflammasome, where both NLRs are required to drive IL-1β processing within the Salmonella-infected cell and to regulate the bacterial burden in mice. Superresolution imaging of Salmonella-infected macrophages revealed a macromolecular complex with an outer ring of apoptosis-associated speck-like protein containing a caspase activation and recruitment domain and an inner ring of NLRs, with active caspase effectors containing the pro-IL-1β substrate localized internal to the ring structure. Our data reveal the spatial localization of different components of the inflammasome and how different members of the NLR family cooperate to drive robust IL-1β processing during Salmonella infection.
Collapse
|
122
|
Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 2014; 15:135-47. [PMID: 24452471 DOI: 10.1038/nrm3737] [Citation(s) in RCA: 1316] [Impact Index Per Article: 131.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell death research was revitalized by the understanding that necrosis can occur in a highly regulated and genetically controlled manner. Although RIPK1 (receptor-interacting protein kinase 1)- and RIPK3-MLKL (mixed lineage kinase domain-like)-mediated necroptosis is the most understood form of regulated necrosis, other examples of this process are emerging, including cell death mechanisms known as parthanatos, oxytosis, ferroptosis, NETosis, pyronecrosis and pyroptosis. Elucidating how these pathways of regulated necrosis are interconnected at the molecular level should enable this process to be therapeutically targeted.
Collapse
Affiliation(s)
- Tom Vanden Berghe
- 1] Molecular Signaling and Cell Death Unit, Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent University, 9052 Ghent, Belgium. [2]
| | - Andreas Linkermann
- 1] Division of Nephrology and Hypertension, Christian-Albrechts-University, 24105 Kiel, Germany. [2]
| | - Sandrine Jouan-Lanhouet
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent University, 9052 Ghent, Belgium
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
123
|
Contassot E, French LE. New insights into acne pathogenesis: propionibacterium acnes activates the inflammasome. J Invest Dermatol 2014; 134:310-313. [PMID: 24424454 DOI: 10.1038/jid.2013.505] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The precise contribution of the commensal bacterium Propionibacterium acnes (P. acnes) in the inflammatory response associated with acne vulgaris remains controversial. In this issue Qin et al. show that P. acnes induces robust IL-1β secretion in monocytic cells by triggering the activation of the NLRP3 inflammasome. In vivo, the encounter of P. acnes and macrophages in the peri-follicular dermis could locally result in the release of substantial amounts of IL-1β and therefore exacerbate inflammation. Such findings suggest that molecules targeting IL-1β and/or the NLRP3 inflammasome may constitute new treatment possibilities for acne vulgaris.
Collapse
Affiliation(s)
- Emmanuel Contassot
- Dermatology Department, University Hospital of Zürich, Zürich, Switzerland
| | - Lars E French
- Dermatology Department, University Hospital of Zürich, Zürich, Switzerland.
| |
Collapse
|
124
|
Bachove I, Chang C. Anakinra and related drugs targeting interleukin-1 in the treatment of cryopyrin-associated periodic syndromes. Open Access Rheumatol 2014; 6:15-25. [PMID: 27790031 PMCID: PMC5045113 DOI: 10.2147/oarrr.s46017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Anakinra is an interleukin (IL) receptor antagonist that works by blocking the biological activity of IL-1 by competitively inhibiting binding of IL-1 to the type 1 interleukin receptor. IL-1 production is induced in response to inflammatory stimuli and mediates various physiological mechanisms, including inflammation and immunological reactions. Patients with neonatal onset multisystem inflammatory disease (NOMID) produce excess IL-1β, a major proinflammatory cytokine that regulates innate immune responses. Anakinra binds competitively and this results in a rapid reduction in disease severity. NOMID, also known as chronic infantile neurologic, cutaneous, articular syndrome, is the most severe clinical phenotype in the spectrum of cryopyrin-associated periodic syndromes. It is characterized by cutaneous symptoms, arthropathy, and central nervous system involvement. Extensive studies in patients with NOMID have led to advances in characterizing the extent of organ-specific involvement and damage that occurs with chronic overproduction of IL-1β. NOMID is caused predominantly by mutations in the NLRP3/CIAS1 gene that encodes for the protein cryopyrin, leading to activation of the “NLRP3 inflammasome complex”. This in turn regulates the maturation and secretion of the inflammatory cytokine, IL-1β. The clinical value of IL-1β has been demonstrated by the positive response of patients after treatment with anakinra, with rapid improvement in clinical symptoms, markers of inflammation, and a significant decrease in major organ manifestations.
Collapse
Affiliation(s)
- Inessa Bachove
- Cooper University Hospital, Children's Regional Hospital, Camden, NJ, USA
| | - Christopher Chang
- Division of Allergy and Immunology, Thomas Jefferson University, Wilmington, DE, USA
| |
Collapse
|
125
|
Li R, Ji Z, Chang CH, Dunphy DR, Cai X, Meng H, Zhang H, Sun B, Wang X, Dong J, Lin S, Wang M, Liao YP, Brinker CJ, Nel A, Xia T. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design. ACS NANO 2014; 8:1771-83. [PMID: 24417322 PMCID: PMC3988685 DOI: 10.1021/nn406166n] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/13/2014] [Indexed: 05/19/2023]
Abstract
Growing international exploitation of rare earth oxides (REOs) for commercial and biological use has increased the possibility of human exposure and adverse health effects. Occupational exposure to rare earth materials in miners and polishers leads to a severe form of pneumoconiosis, while gadolinium-containing MRI contrast agents cause nephrogenic systemic fibrosis in patients with renal impairment. The mechanisms for inducing these adverse pro-fibrogenic effects are of considerable importance for the safety assessment of REO particles as well as presenting opportunities for safer design. In this study, using a well-prepared REO library, we obtained a mechanistic understanding of how REOs induce cellular and pulmonary damage by a compartmentalized intracellular biotransformation process in lysosomes that results in pro-fibrogenic growth factor production and lung fibrosis. We demonstrate that rare earth oxide ion shedding in acidifying macrophage lysosomes leads to biotic phosphate complexation that results in organelle damage due to stripping of phosphates from the surrounding lipid bilayer. This results in nanoparticle biotransformation into urchin shaped structures and setting in motion a series of events that trigger NLRP3 inflammasome activation, IL-1β release, TGF-β1 and PDGF-AA production. However, pretreatment of REO nanoparticles with phosphate in a neutral pH environment prevents biological transformation and pro-fibrogenic effects. This can be used as a safer design principle for producing rare earth nanoparticles for biological use.
Collapse
Affiliation(s)
- Ruibin Li
- Division of NanoMedicine, Department of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Zhaoxia Ji
- California NanoSystems Institute, University of California, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Darren R. Dunphy
- Department of Chemical and Nuclear Engineering, University of New Mexico, University of New Mexico MSC01 1120, Albuquerque, New Mexico 87131, United States
| | - Xiaoming Cai
- Department of Pharmacology, School of Medicine, University of California, 360 Med Surge II, Irvine, California 92697, United States
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Haiyuan Zhang
- California NanoSystems Institute, University of California, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Bingbing Sun
- Division of NanoMedicine, Department of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Xiang Wang
- California NanoSystems Institute, University of California, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Juyao Dong
- Department of Chemistry & Biochemisty, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Sijie Lin
- California NanoSystems Institute, University of California, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Meiying Wang
- Division of NanoMedicine, Department of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - C. Jeffrey Brinker
- Department of Chemical and Nuclear Engineering, University of New Mexico, University of New Mexico MSC01 1120, Albuquerque, New Mexico 87131, United States
| | - Andre Nel
- Division of NanoMedicine, Department of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Address correspondence to ,
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Address correspondence to ,
| |
Collapse
|
126
|
Zughaier SM, Kandler JL, Shafer WM. Neisseria gonorrhoeae modulates iron-limiting innate immune defenses in macrophages. PLoS One 2014; 9:e87688. [PMID: 24489950 PMCID: PMC3905030 DOI: 10.1371/journal.pone.0087688] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/01/2014] [Indexed: 11/19/2022] Open
Abstract
Neisseria gonorrhoeae is a strict human pathogen that causes the sexually transmitted infection termed gonorrhea. The gonococcus can survive extracellularly and intracellularly, but in both environments the bacteria must acquire iron from host proteins for survival. However, upon infection the host uses a defensive response by limiting the bioavailability of iron by a number of mechanisms including the enhanced expression of hepcidin, the master iron-regulating hormone, which reduces iron uptake from the gut and retains iron in macrophages. The host also secretes the antibacterial protein NGAL, which sequesters bacterial siderophores and therefore inhibits bacterial growth. To learn whether intracellular gonococci can subvert this defensive response, we examined expression of host genes that encode proteins involved in modulating levels of intracellular iron. We found that N. gonorrhoeae can survive in association (tightly adherent and intracellular) with monocytes and macrophages and upregulates a panel of its iron-responsive genes in this environment. We also found that gonococcal infection of human monocytes or murine macrophages resulted in the upregulation of hepcidin, NGAL, and NRAMP1 as well as downregulation of the expression of the gene encoding the short chain 3-hydroxybutyrate dehydrogenase (BDH2); BDH2 catalyzes the production of the mammalian siderophore 2,5-DHBA involved in chelating and detoxifying iron. Based on these findings, we propose that N. gonorrhoeae can subvert the iron-limiting innate immune defenses to facilitate iron acquisition and intracellular survival.
Collapse
Affiliation(s)
- Susu M. Zughaier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| | - Justin L. Kandler
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Decatur, Georgia, United States of America
| |
Collapse
|
127
|
Abstract
Microglia and macrophages in the CNS contain multimolecular complexes termed inflammasomes. Inflammasomes function as intracellular sensors for infectious agents as well as for host-derived danger signals that are associated with neurological diseases, including meningitis, stroke and Alzheimer's disease. Assembly of an inflammasome activates caspase 1 and, subsequently, the proteolysis and release of the cytokines interleukin-1β and interleukin-18, as well as pyroptotic cell death. Since the discovery of inflammasomes in 2002, there has been burgeoning recognition of their complexities and functions. Here, we review the current understanding of the functions of different inflammasomes in the CNS and their roles in neurological diseases.
Collapse
Affiliation(s)
- John G Walsh
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Daniel A Muruve
- Department of Medicine (Nephrology), University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
128
|
Jin HS, Park JK, Jo EK. Toll-like Receptors and NOD-like Receptors in Innate Immune Defense during Pathogenic Infection. ACTA ACUST UNITED AC 2014. [DOI: 10.4167/jbv.2014.44.3.215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hyo Sun Jin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jeong-Kyu Park
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
129
|
Liew A, Narasaraju T, Phoon M, Wang S, Tan K, Chow V. Caspase-1-Deficient Mice are More Susceptible Than Wild-Type Mice to Pneumonia Induced by Influenza A (H1N1). EUR J INFLAMM 2014. [DOI: 10.1177/1721727x1401200112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although inflammasome-mediated caspase-1 activity and subsequent maturation of IL-1β are critical in host immune response against influenza, their roles in lung pathogenesis are not completely understood. Enhanced susceptibility of caspase-1-deficient mice to influenza has been attributed to decreased inflammation and augmented epithelial damage, while increased IL-1β release has been shown to exacerbate lung pathology. We challenged caspase-1-knockout and wild-type mice with high doses of influenza A (H1N1) virus (500 pfu). Only 10% mortality occurred in wild-type mice, in contrast to 40% mortality in caspase-1-knockout mice which exhibited severe pathologic manifestations as a result of overwhelming inflammatory and cytokine/chemokine responses. Infected caspase-1 knockout mice revealed neutrophil-dominant recruitment and elevated apoptotic inflammatory cells in the lungs, while 20% of these animals displayed focal lymphocytic infiltrates in the brains suggestive of mild focal encephalitis. In infected caspase-1 knockout mice, cytokine/chemokine levels were reduced at 3 days post-infection, but robust increase in the levels of TNF-α, IL-6, MIP-1α, MCP-1, MIP-1β and RANTES were observed at 6 days post-infection, coinciding with exaggerated neutrophil influx. These results support our previous findings implicating excessive neutrophil infiltration in pathologic complications during influenza pneumonia. In addition, we observed an induction of IL-1β release in caspase-1 knock-out mice at 6 days post-infection, indicating the involvement of caspase-1-independent activation of IL-1β. Microarray analyses of the lungs of infected caspase-1 knockout mice revealed upregulation of immune and inflammatory genes including CCL8, CCL4, IFN-γ, ICOS, PRF-1, KLRA4, KLRA7, KLRA18, NKG7, LTB4R and PTX3. Collectively, our data suggest that caspase-1-mediated effects are critical against severe influenza infection which can also trigger robust caspase-1-independent inflammatory responses, thus alluding to the complexity of innate immune regulation.
Collapse
Affiliation(s)
- A.A. Liew
- Host and Pathogen Interactivity Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - T. Narasaraju
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - M.C. Phoon
- Host and Pathogen Interactivity Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - S. Wang
- Department of Pathology, National University Health System, Singapore
| | - K.B. Tan
- Department of Pathology, National University Health System, Singapore
| | - V.T. Chow
- Host and Pathogen Interactivity Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| |
Collapse
|
130
|
Abstract
The elaboration of an effective immune response against pathogenic microbes such as viruses, intracellular bacteria or protozoan parasites relies on the recognition of microbial products called pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs). Ligation of the PRRs leads to synthesis and secretion of pro-inflammatory cytokines and chemokines. Infected cells and other stressed cells also release host-cell derived molecules, called damage-associated molecular patterns (DAMPs, danger signals, or alarmins), which are generic markers for damage. DAMPs are recognized by specific receptors on both immune and nonimmune cells, which, depending on the target cell and the cellular context, can lead to cell differentiation or cell death, and either inflammation or inhibition of inflammation. Recent research has revealed that DAMPs and PAMPs synergize to permit secretion of pro-inflammatory cytokines such as interleukin-1β (IL-1β): PAMPs stimulate synthesis of pro-IL-1β, but not its secretion; while DAMPs can stimulate assembly of an inflammasome containing, usually, a Nod-like receptor (NLR) member, and activation of the protease caspase-1, which cleaves pro-IL-1β into IL-1β, allowing its secretion. Other NLR members do not participate in formation of inflammasomes but play other essential roles in regulation of the innate immune response.
Collapse
Affiliation(s)
- Najwane Saïd-Sadier
- Molecular Cell Biology, and Health Sciences Research Institute, University of California, Merced, CA, USA
| | | |
Collapse
|
131
|
Ratsimandresy RA, Dorfleutner A, Stehlik C. An Update on PYRIN Domain-Containing Pattern Recognition Receptors: From Immunity to Pathology. Front Immunol 2013; 4:440. [PMID: 24367371 PMCID: PMC3856626 DOI: 10.3389/fimmu.2013.00440] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/25/2013] [Indexed: 12/11/2022] Open
Abstract
Cytosolic pattern recognition receptors (PRRs) sense a wide range of endogenous danger-associated molecular patterns as well as exogenous pathogen-associated molecular patterns. In particular, Nod-like receptors containing a pyrin domain (PYD), called NLRPs, and AIM2-like receptors (ALRs) have been shown to play a critical role in host defense by facilitating clearance of pathogens and maintaining a healthy gut microflora. NLRPs and ALRs both encode a PYD, which is crucial for relaying signals that result in an efficient innate immune response through activation of several key innate immune signaling pathways. However, mutations in these PRRs have been linked to the development of auto-inflammatory and autoimmune diseases. In addition, they have been implicated in metabolic diseases. In this review, we summarize the function of PYD-containing NLRPs and ALRs and address their contribution to innate immunity, host defense, and immune-linked diseases.
Collapse
Affiliation(s)
- Rojo A Ratsimandresy
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA ; Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| |
Collapse
|
132
|
Sedimbi SK, Hägglöf T, Karlsson MCI. IL-18 in inflammatory and autoimmune disease. Cell Mol Life Sci 2013; 70:4795-808. [PMID: 23892891 PMCID: PMC11113411 DOI: 10.1007/s00018-013-1425-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/04/2013] [Accepted: 07/11/2013] [Indexed: 12/24/2022]
Abstract
Inflammation serves as the first line of defense in response to tissue injury, guiding the immune system to ensure preservation of the host. The inflammatory response can be divided into a quick initial phase mediated mainly by innate immune cells including neutrophils and macrophages, followed by a late phase that is dominated by lymphocytes. Early in the new millennium, a key component of the inflammatory reaction was discovered with the identification of a number of cytosolic sensor proteins (Nod-like receptors) that assembled into a common structure, the 'inflammasome'. This structure includes an enzyme, caspase-1, which upon activation cleaves pro-forms of cytokines leading to subsequent release of active IL-1 and IL-18. This review focuses on the role of IL-18 in inflammatory responses with emphasis on autoimmune diseases.
Collapse
Affiliation(s)
- Saikiran K. Sedimbi
- Department of Medicine-Solna, Translational Immunology Unit, Karolinska Institutet, Karolinska University Hospital Solna, L2:04, 171 76 Stockholm, Sweden
| | - Thomas Hägglöf
- Department of Medicine-Solna, Translational Immunology Unit, Karolinska Institutet, Karolinska University Hospital Solna, L2:04, 171 76 Stockholm, Sweden
| | - Mikael C. I. Karlsson
- Department of Medicine-Solna, Translational Immunology Unit, Karolinska Institutet, Karolinska University Hospital Solna, L2:04, 171 76 Stockholm, Sweden
| |
Collapse
|
133
|
Different responses of human mononuclear phagocyte populations to Mycobacterium tuberculosis. Tuberculosis (Edinb) 2013; 94:111-22. [PMID: 24360327 DOI: 10.1016/j.tube.2013.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/29/2013] [Accepted: 11/02/2013] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis (Mtb) infects different populations of macrophages. Alveolar macrophages (AMs) are initially infected, and their response may contribute to controlling Mtb infection and dissemination. However, Mtb infection may disseminate to other tissues, infecting a wide variety of macrophages. Given the difficulty in obtaining AMs, monocyte-derived macrophages (MDMs) are used to model macrophage-mycobacteria interactions in humans. However, the response of other tissue macrophages to Mtb infection has been poorly explored. We have compared MDMs, AMs and splenic human macrophages (SMs) for their in vitro capacity to control Mtb growth, cytokine production, and induction of cell death in response to Mtb H37Rv, and the Colombian isolate UT205, and to the virulence factor ESAT-6. Significant differences in the magnitude of cell death and cytokine production depending mainly on the Mtb strain were observed; however, no major differences in the mycobacteriostatic/mycobacteriocidal activity were detected among the macrophage populations. Infection with the clinical isolate UT205 was associated with an increased cell death with membrane damage, particularly in IFNγ-treated SMs and H37Rv induced a higher production of cytokines compared to UT205. These results are concordant with the interpretation of a differential response to Mtb infection mainly depending upon the strain of Mtb.
Collapse
|
134
|
Murphy N, Grehan B, Lynch MA. Glial uptake of amyloid beta induces NLRP3 inflammasome formation via cathepsin-dependent degradation of NLRP10. Neuromolecular Med 2013; 16:205-15. [PMID: 24197756 DOI: 10.1007/s12017-013-8274-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 10/26/2013] [Indexed: 12/12/2022]
Abstract
The NLRP3 inflammasome forms in response to a diverse range of stimuli and is responsible for the processing and release of interleukin-1β (IL-1β) from the immunocompetent cells of the brain. The pathological peptide of Alzheimer's disease, amyloid beta (Aβ), induces formation of the NLRP3 inflammasome in a manner dependent on the family of proteases, cathepsins; however, the pathway by which cathepsins induce formation of the inflammasome has not yet been elucidated. In this study, we show that Aβ treatment of primary rat glial cultures increases cathepsin activation in the cytosol, formation of the NLRP3 inflammasome, caspase 1 activation and IL-1β release. We also show that a second NOD-like protein, NLRP10, is found bound to apoptosis-associated speck-like protein under resting conditions; however, with Aβ treatment, both in vitro and in vivo, NLRP10 is decreased. Further to these data, we show that cathepsins are capable of degrading NLRP10 and that treatment of glial cultures with recombinant NLRP10 reduces Aβ-induced caspase 1 activation and IL-1β release. We propose that Aβ-induced cathepsin released into the cytosol degrades NLRP10, thus allowing dissociation of NLRP3 and formation of the inflammasome.
Collapse
Affiliation(s)
- Niamh Murphy
- Department of Physiology, Trinity College Institute of Neuroscience, Trinity College, College Green, Dublin 2, Ireland,
| | | | | |
Collapse
|
135
|
Kistowska M, Gehrke S, Jankovic D, Kerl K, Fettelschoss A, Feldmeyer L, Fenini G, Kolios A, Navarini A, Ganceviciene R, Schauber J, Contassot E, French LE. IL-1β drives inflammatory responses to propionibacterium acnes in vitro and in vivo. J Invest Dermatol 2013; 134:677-685. [PMID: 24157462 DOI: 10.1038/jid.2013.438] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/26/2013] [Accepted: 09/06/2013] [Indexed: 12/13/2022]
Abstract
Acne vulgaris is potentially a severe skin disease associated with colonization of the pilo-sebaceous unit by the commensal bacterium Propionibacterium acnes and inflammation. P. acnes is considered to contribute to inflammation in acne, but the pathways involved are unclear. Here we reveal a mechanism that regulates inflammatory responses to P. acnes. We show that IL-1β mRNA and the active processed form of IL-1β are abundant in inflammatory acne lesions. Moreover, we identify P. acnes as a trigger of monocyte-macrophage NLRP3-inflammasome activation, IL-1β processing and secretion that is dependent on phagocytosis, lysosomal destabilization, reactive oxygen species, and cellular K+ efflux. In mice, inflammation induced by P. acnes is critically dependent on IL-1β and the NLRP3 inflammasome of myeloid cells. These findings show that the commensal P. acnes-by activating the inflammasome-can trigger an innate immune response in the skin, thus establishing the NLRP3-inflammasome and IL-1β as possible therapeutic targets in acne.
Collapse
Affiliation(s)
| | - Samuel Gehrke
- Department of Dermatology, University Hospital, Zürich, Switzerland
| | - Dragana Jankovic
- Department of Dermatology, University Hospital, Zürich, Switzerland
| | - Katrin Kerl
- Department of Dermatology, University Hospital, Zürich, Switzerland
| | | | | | - Gabriele Fenini
- Department of Dermatology, University Hospital, Zürich, Switzerland
| | - Antonios Kolios
- Department of Dermatology, University Hospital, Zürich, Switzerland
| | | | - Ruta Ganceviciene
- Centre of Dermatovenereology, Vilnius University Hospital, Vilnius, Lithuania
| | - Jürgen Schauber
- Department of Dermatology and Allergy, Ludwig-Maximilian University, Munich, Germany
| | | | - Lars E French
- Department of Dermatology, University Hospital, Zürich, Switzerland.
| |
Collapse
|
136
|
Ferrand J, Ferrero RL. Recognition of Extracellular Bacteria by NLRs and Its Role in the Development of Adaptive Immunity. Front Immunol 2013; 4:344. [PMID: 24155747 PMCID: PMC3801148 DOI: 10.3389/fimmu.2013.00344] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/07/2013] [Indexed: 01/21/2023] Open
Abstract
Innate immune recognition of bacteria is the first requirement for mounting an effective immune response able to control infection. Over the previous decade, the general paradigm was that extracellular bacteria were only sensed by cell surface-expressed Toll-like receptors (TLRs), whereas cytoplasmic sensors, including members of the Nod-like receptor (NLR) family, were specific to pathogens capable of breaching the host cell membrane. It has become apparent, however, that intracellular innate immune molecules, such as the NLRs, play key roles in the sensing of not only intracellular, but also extracellular bacterial pathogens or their components. In this review, we will discuss the various mechanisms used by bacteria to activate NLR signaling in host cells. These mechanisms include bacterial secretion systems, pore-forming toxins, and outer membrane vesicles. We will then focus on the influence of NLR activation on the development of adaptive immune responses in different cell types.
Collapse
Affiliation(s)
- Jonathan Ferrand
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University , Clayton, VIC , Australia
| | | |
Collapse
|
137
|
Hexa-acylated lipid A is required for host inflammatory response to Neisseria gonorrhoeae in experimental gonorrhea. Infect Immun 2013; 82:184-92. [PMID: 24126526 DOI: 10.1128/iai.00890-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae causes gonorrhea, a sexually transmitted infection characterized by inflammation of the cervix or urethra. However, a significant subset of patients with N. gonorrhoeae remain asymptomatic, without evidence of localized inflammation. Inflammatory responses to N. gonorrhoeae are generated by host innate immune recognition of N. gonorrhoeae by several innate immune signaling pathways, including lipooligosaccharide (LOS) and other pathogen-derived molecules through activation of innate immune signaling systems, including toll-like receptor 4 (TLR4) and the interleukin-1β (IL-1β) processing complex known as the inflammasome. The lipooligosaccharide of N. gonorrhoeae has a hexa-acylated lipid A. N. gonorrhoeae strains that carry an inactivated msbB (also known as lpxL1) gene produce a penta-acylated lipid A and exhibit reduced biofilm formation, survival in epithelial cells, and induction of epithelial cell inflammatory signaling. We now show that msbB-deficient N. gonorrhoeae induces less inflammatory signaling in human monocytic cell lines and murine macrophages than the parent organism. The penta-acylated LOS exhibits reduced toll-like receptor 4 signaling but does not affect N. gonorrhoeae-mediated activation of the inflammasome. We demonstrate that N. gonorrhoeae msbB is dispensable for initiating and maintaining infection in a murine model of gonorrhea. Interestingly, infection with msbB-deficient N. gonorrhoeae is associated with less localized inflammation. Combined, these data suggest that TLR4-mediated recognition of N. gonorrhoeae LOS plays an important role in the pathogenesis of symptomatic gonorrhea infection and that alterations in lipid A biosynthesis may play a role in determining symptomatic and asymptomatic infections.
Collapse
|
138
|
Kim JJ, Jo EK. NLRP3 inflammasome and host protection against bacterial infection. J Korean Med Sci 2013; 28:1415-23. [PMID: 24133343 PMCID: PMC3792593 DOI: 10.3346/jkms.2013.28.10.1415] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/20/2013] [Indexed: 01/30/2023] Open
Abstract
The inflammasome is a multi-protein complex that induces maturation of inflammatory cytokines interleukin (IL)-1β and IL-18 through activation of caspase-1. Several nucleotide binding oligomerization domain-like receptor family members, including NLRP3, recognize unique microbial and danger components and play a central role in inflammasome activation. The NLRP3 inflammasome is critical for maintenance of homeostasis against pathogenic infections. However, inflammasome activation acts as a double-edged sword for various bacterial infections. When the IL-1 family of cytokines is secreted excessively, they cause tissue damage and extensive inflammatory responses that are potentially hazardous for the host. Emerging evidence has shown that diverse bacterial pathogens or their components negatively regulate inflammasome activation to escape the immune response. In this review, we discuss the current knowledge of the roles and regulation of the NLRP3 inflammasome during bacterial infections. Activation and regulation of the NLRP3 inflammasome should be tightly controlled to prevent virulence and pathology during infections. Understanding the roles and regulatory mechanisms of the NLRP3 inflammasome is essential for developing potential treatment approaches against pathogenic infections.
Collapse
Affiliation(s)
- Jwa-Jin Kim
- Department of Microbiology and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
139
|
Jerse AE, Bash MC, Russell MW. Vaccines against gonorrhea: current status and future challenges. Vaccine 2013; 32:1579-87. [PMID: 24016806 DOI: 10.1016/j.vaccine.2013.08.067] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/10/2013] [Accepted: 08/17/2013] [Indexed: 01/11/2023]
Abstract
Gonorrhea occurs at high incidence throughout the world and significantly impacts reproductive health and the spread of human immunodeficiency virus. Current control measures are inadequate and seriously threatened by the rapid emergence of antibiotic resistance. Progress on gonorrhea vaccines has been slow; however, recent advances justify significant effort in this area. Conserved vaccine antigens have been identified that elicit bactericidal antibodies and, or play key roles in pathogenesis that could be targeted by a vaccine-induced response. A murine genital tract infection model is available for systematic testing of antigens, immunization routes and adjuvants, and transgenic mice exist to relieve some host restrictions. Furthermore, mechanisms by which Neisseria gonorrhoeae avoids inducing a protective adaptive response are being elucidated using human cells and the mouse model. Induction of a Th1 response in mice clears infection and induces a memory response, which suggests Th1-inducing adjuvants may be key in vaccine-induced protection. Continued research in this area should include human testing and clinical studies to confirm or negate findings from experimental systems and to define protective host factors.
Collapse
Affiliation(s)
- Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebért School of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| | - Margaret C Bash
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 1400 Rockville Pike, Bethesda, MD 20814, USA.
| | - Michael W Russell
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, 3435 Main Street, Buffalo, NY 14214-3000, USA.
| |
Collapse
|
140
|
Cytosolic flagellin-induced lysosomal pathway regulates inflammasome-dependent and -independent macrophage responses. Proc Natl Acad Sci U S A 2013; 110:E3321-30. [PMID: 23942123 DOI: 10.1073/pnas.1305316110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
NAIP5/NLRC4 (neuronal apoptosis inhibitory protein 5/nucleotide oligomerization domain-like receptor family, caspase activation recruitment domain domain-containing 4) inflammasome activation by cytosolic flagellin results in caspase-1-mediated processing and secretion of IL-1β/IL-18 and pyroptosis, an inflammatory cell death pathway. Here, we found that although NLRC4, ASC, and caspase-1 are required for IL-1β secretion in response to cytosolic flagellin, cell death, nevertheless, occurs in the absence of these molecules. Cytosolic flagellin-induced inflammasome-independent cell death is accompanied by IL-1α secretion and is temporally correlated with the restriction of Salmonella Typhimurium infection. Despite displaying some apoptotic features, this peculiar form of cell death do not require caspase activation but is regulated by a lysosomal pathway, in which cathepsin B and cathepsin D play redundant roles. Moreover, cathepsin B contributes to NAIP5/NLRC4 inflammasome-induced pyroptosis and IL-1α and IL-1β production in response to cytosolic flagellin. Together, our data describe a pathway induced by cytosolic flagellin that induces a peculiar form of cell death and regulates inflammasome-mediated effector mechanisms of macrophages.
Collapse
|
141
|
Mavrogiorgos N, Mekasha S, Yang Y, Kelliher MA, Ingalls RR. Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response. Innate Immun 2013; 20:377-89. [PMID: 23884094 DOI: 10.1177/1753425913493453] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
NOD1 and NOD2 are members of the NOD-like receptor family of cytosolic pattern recognition receptors that recognize specific fragments of the bacterial cell wall component peptidoglycan. Neisseria species are unique amongst Gram-negative bacteria in that they turn over large amounts of peptidoglycan during growth. We examined the ability of NOD1 and NOD2 to recognize Neisseria gonorrhoeae, and determined the role of NOD-dependent signaling in regulating the immune response to gonococcal infection. Gonococci, as well as conditioned medium from mid-logarithmic phase grown bacteria, were capable of activating both human NOD1 and NOD2, as well as mouse NOD2, leading to the activation of the transcription factor NF-κB and polyubiquitination of the adaptor receptor-interacting serine-threonine kinase 2. We identified a number of cytokines and chemokines that were differentially expressed in wild type versus NOD2-deficient macrophages in response to gonococcal infection. Moreover, NOD2 signaling up-regulated complement pathway components and cytosolic nucleic acid sensors, suggesting a broad impact of NOD activation on innate immunity. Thus, NOD1 and NOD2 are important intracellular regulators of the immune response to infection with N. gonorrhoeae. Given the intracellular lifestyle of this pathogen, we believe these cytosolic receptors may provide a key innate immune defense mechanism for the host during gonococcal infection.
Collapse
Affiliation(s)
- Nikolaos Mavrogiorgos
- 1Section of Infectious Diseases, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
142
|
Role of inflammasomes and their regulators in prostate cancer initiation, progression and metastasis. Cell Mol Biol Lett 2013; 18:355-67. [PMID: 23793845 PMCID: PMC6275599 DOI: 10.2478/s11658-013-0095-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/13/2013] [Indexed: 11/22/2022] Open
Abstract
Prostate cancer is one of the main cancers that affect men, especially older men. Though there has been considerable progress in understanding the progression of prostate cancer, the drivers of its development need to be studied more comprehensively. The emergence of resistant forms has also increased the clinical challenges involved in the treatment of prostate cancer. Recent evidence has suggested that inflammation might play an important role at various stages of cancer development. This review focuses on inflammasome research that is relevant to prostate cancer and indicates future avenues of study into its effective prevention and treatment through inflammasome regulation. With regard to prostate cancer, such research is still in its early stages. Further study is certainly necessary to gain a broader understanding of prostate cancer development and to create successful therapy solutions.
Collapse
|
143
|
Chen KW, Schroder K. Antimicrobial functions of inflammasomes. Curr Opin Microbiol 2013; 16:311-8. [DOI: 10.1016/j.mib.2013.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/04/2013] [Accepted: 02/07/2013] [Indexed: 12/14/2022]
|
144
|
Higa N, Toma C, Nohara T, Nakasone N, Takaesu G, Suzuki T. Lose the battle to win the war: bacterial strategies for evading host inflammasome activation. Trends Microbiol 2013; 21:342-9. [PMID: 23712018 DOI: 10.1016/j.tim.2013.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/31/2013] [Accepted: 04/22/2013] [Indexed: 01/20/2023]
Abstract
The inflammasome is composed of nucleotide-binding, oligomerization domain (NOD)-like receptor (NLR) proteins, and leads to caspase-1 activation and subsequent secretion of the proinflammatory cytokines interleukin 1β (IL-1β) and interleukin-18 (IL-18). After certain pathogenic bacteria infect host cells, such as macrophages, NLR-mediated inflammasome activation is triggered to form part of the host defenses against the invading pathogens. However, recent evidence has shown that bacteria have strategies for evading inflammasome activation in host cells. In this review, we focus on NLR-mediated inflammasome activation and bacterial evasion of the inflammasome as part of the battle between the host defenses and pathogens.
Collapse
Affiliation(s)
- Naomi Higa
- Department of Molecular Bacteriology and Immunology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0125, Japan
| | | | | | | | | | | |
Collapse
|
145
|
NLRP3 activation induces ASC-dependent programmed necrotic cell death, which leads to neutrophilic inflammation. Cell Death Dis 2013; 4:e644. [PMID: 23703389 PMCID: PMC3674376 DOI: 10.1038/cddis.2013.169] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NLR family pyrin domain containing 3 (NLRP3) is a cytoplasmic pattern recognition receptor that regulates innate immune responses by forming a protein complex, the inflammasome. It leads to production of proinflammatory cytokine productions such as interleukin 1β (IL-1β). We and others demonstrated that an induction of activated NLRP3 also induced cell death. However, little is known about the characteristics and mechanisms of the cell death and its involvement in the pathogenesis of inflammatory conditions. In this study, we established cell lines in which NLRP3 was induced by doxycycline using a tetracycline-inducible expression (Tet-on) system. Using this system, the expression of NLRP3 mutants in cryopyrin-associated periodic syndrome (CAPS) patients was sufficient for the induction of necrotic cell death without lipopolysaccharide stimulation or generation of mature IL-1β. We also found that CA074-Me, a cathepsin B inhibitor, blocked cell death before oligomerization of apoptosis-associated speck-like protein containing a CARD (ASC), whereas Z-VAD-fmk, a pan-caspase inhibitor, blocked the cell death after the oligomerization. Silencing of the ASC gene (Pycard) by small hairpin RNA treatment inhibited the NLRP3 mutant-induced cell death, but silencing of the caspase-1 gene (Casp1) did not. Taken together, these results indicated that ASC was indispensable for NLRP3-mediated programmed necrotic cell death, and that this type of cell death was distinct from ‘pyroptosis', which requires caspase-1. Finally, we demonstrated in an in vivo model that the programmed necrotic cell death induced by activated NLRP3 could cause neutrophil infiltration, indicating a possible role of cell death in neutrophil infiltration of skin lesions in CAPS patients.
Collapse
|
146
|
The Inhibition of Inflammasome by Brazilian Propolis (EPP-AF). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:418508. [PMID: 23690844 PMCID: PMC3652175 DOI: 10.1155/2013/418508] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/18/2013] [Indexed: 01/12/2023]
Abstract
Propolis extracts have gained the attention of consumers and researchers due to their unique chemical compositions and functional properties such as its anti-inflammatory activity. Recently, it was described a complex that is also important in inflammatory processes, named inflammasome. The inflammasomes are a large molecular platform formed in the cell cytosol in response to stress signals, toxins, and microbial infections. Once activated, the inflammasome induces caspase-1, which in turn induces the processing of inflammatory cytokines such as IL-1β and IL-18. So, to understand inflammasomes regulation becomes crucial to treat several disorders including autoinflammatory diseases. Since green propolis extracts are able to regulate inflammatory pathways, this work purpose was to investigate if this extract could also act on inflammasomes regulation. First, the extract was characterized and it demonstrated the presence of important compounds, especially Artepillin C. This extract was effective in reducing the IL-1β secretion in mouse macrophages and this reduction was correlated with a decrease in activation of the protease caspase-1. Furthermore, we found that the extract at a concentration of 30 μg/mL was not toxic to the cells even after a 18-hour treatment. Altogether, these data indicate that Brazilian green propolis (EPP-AF) extract has a role in regulating the inflammasomes.
Collapse
|
147
|
Amsler L, Malouli D, DeFilippis V. The inflammasome as a target of modulation by DNA viruses. Future Virol 2013; 8:357-370. [PMID: 24955107 DOI: 10.2217/fvl.13.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cellular innate immune response represents the initial reaction of a host against infecting pathogens. Host cells detect incoming microbes by way of a large and expanding array of receptors that react with evolutionarily conserved molecular patterns exhibited by microbial intruders. These receptors are responsible for initiating signaling that leads to both transcriptional activation of immunologically important genes as well as protease-dependent processing of cellular proteins. The inflammasome refers to a protein complex that functions as an activation platform for the cysteine protease caspase-1, which then processes inflammatory molecules such as IL-1β and IL-18 into functional forms. Assembly of this complex is triggered following receptor-mediated detection of pathogen-associated molecules. Receptors have been identified that are essential to inflammasome activation in response to numerous molecular patterns including virus-associated molecules such as DNA. In fact, the importance of cytoplasmic DNA as an immune stimulus is exemplified by the existence of at least nine distinct cellular receptors capable of initiating innate reactivity in response to this molecule. Viruses that employ DNA as genomic material include herpesviruses, poxviruses and adenoviruses. Each has been described as capable of inducing inflammasome-mediated activity. Interestingly, however, the cellular molecules responsible for these responses appear to vary according to host species, cell type and even viral strain. Secretion of IL-1β and IL-18 are important components of antimicrobial immunity and, as a result, pathogens have evolved factors to evade or counteract this response. This includes DNA-based viruses, many of which encode multiple redundant counteractive molecules. However, it is clear that such phenotypes are only beginning to be uncovered. The purpose of this review is to describe what is known regarding the activation of inflammasome-mediated processes in response to infection with well-examined families of DNA viruses and to discuss characterized mechanisms of manipulation and neutralization of inflammasome-dependent activity. This review aims to shed light on the biologically important phenomena regarding this virus-host interaction and to highlight key areas where important information is lacking.
Collapse
Affiliation(s)
- Lisi Amsler
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505, NW 185th Avenue, Beaverton, OR 97006, USA
| | - Daniel Malouli
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505, NW 185th Avenue, Beaverton, OR 97006, USA
| | - Victor DeFilippis
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505, NW 185th Avenue, Beaverton, OR 97006, USA
| |
Collapse
|
148
|
Regulation of HMGB1 release by inflammasomes. Protein Cell 2013; 4:163-7. [PMID: 23483477 DOI: 10.1007/s13238-012-2118-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/12/2012] [Indexed: 01/03/2023] Open
Abstract
High mobility group box 1 (HMGB1) is an evolutionarily conserved non-histone chromatin-binding protein. During infection or injury, activated immune cells and damaged cells release HMGB1 into the extracellular space, where HMGB1 functions as a proinflammatory mediator and contributes importantly to the pathogenesis of inflammatory diseases. Recent studies reveal that inflammasomes, intracellular protein complexes, critically regulate HMGB1 release from activated immune cells in response to a variety of exogenous and endogenous danger signals. Double stranded RNA dependent kinase (PKR), an intracellular danger-sensing molecule, physically interacts with inflammasome components and is important for inflammasome activation and HMGB1 release. Together, these studies not only unravel novel mechanisms of HMGB1 release during inflammation, but also provide potential therapeutic targets to treat HMGB1-related inflammatory diseases.
Collapse
|
149
|
Zambetti LP, Laudisi F, Licandro G, Ricciardi-Castagnoli P, Mortellaro A. The rhapsody of NLRPs: master players of inflammation...and a lot more. Immunol Res 2012; 53:78-90. [PMID: 22427013 DOI: 10.1007/s12026-012-8272-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Nucleotide-binding oligomerization domain, Leucine-rich Repeat and Pyrin domain containing (NLRP) family and corresponding inflammasomes are important intracellular sensors of microbial pathogens and stress signals that promote caspase-1-mediated release of IL-1β and IL-18. Studies using targeted disruption of NLRP1 and NLRP3 have revealed key roles for these inflammasomes in innate immunity and inflammation, as well as in autoimmune diseases, metabolic disorders, and cancers. The newly identified family members NLRP6, NLRP10, and NLRP12 are emerging as important molecules regulating gut homeostasis in mouse models, as well as being correlated to human diseases. Here, we review our current knowledge of NLRP1 and NLRP3 biology, from molecular structure, function, and proposed models of activation to associations with several human disorders. New insights into novel NLRPs that act as regulators of intestinal immunity are also discussed.
Collapse
Affiliation(s)
- Lia Paola Zambetti
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04 Immunos, Biopolis, Singapore
| | | | | | | | | |
Collapse
|
150
|
Affiliation(s)
- Mohamed Lamkanfi
- Department of Biochemistry, Ghent University, Ghent 9000, Belgium
- Department of Medical Protein Research, VIB, Ghent 9000, Belgium;
| | - Vishva M. Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, California 94080;
| |
Collapse
|