101
|
Lyu L, Wang B, Xiong C, Zhang X, Zhang X, Zhang J. Selective export of autotaxin from the endoplasmic reticulum. J Biol Chem 2017; 292:7011-7022. [PMID: 28298439 DOI: 10.1074/jbc.m116.774356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/13/2017] [Indexed: 12/28/2022] Open
Abstract
Autotaxin (ATX) or ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) is a secretory glycoprotein and functions as the key enzyme for lysophosphatidic acid generation. The mechanism of ATX protein trafficking is largely unknown. Here, we demonstrated that p23, a member of the p24 protein family, was the protein-sorting receptor required for endoplasmic reticulum (ER) export of ATX. A di-phenylalanine (Phe-838/Phe-839) motif in the human ATX C-terminal region was identified as a transport signal essential for the ATX-p23 interaction. Knockdown of individual Sec24 isoforms by siRNA revealed that ER export of ATX was impaired only if Sec24C was down-regulated. These results suggest that ATX is selectively exported from the ER through a p23, Sec24C-dependent pathway. In addition, it was found that AKT signaling played a role in ATX secretion regulation to facilitate ATX ER export by enhancing the nuclear factor of activated T cell-mediated p23 expression. Furthermore, the di-hydrophobic amino acid motifs (FY) also existed in the C-terminal regions of human ENPP1 and ENPP3. Such a p23, Sec24C-dependent selective ER export mechanism is conserved among these ENPP family members.
Collapse
Affiliation(s)
- Lin Lyu
- From the Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Baolu Wang
- From the Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Chaoyang Xiong
- From the Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaotian Zhang
- From the Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaoyan Zhang
- From the Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Junjie Zhang
- From the Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
102
|
Busnelli M, Manzini S, Hilvo M, Parolini C, Ganzetti GS, Dellera F, Ekroos K, Jänis M, Escalante-Alcalde D, Sirtori CR, Laaksonen R, Chiesa G. Liver-specific deletion of the Plpp3 gene alters plasma lipid composition and worsens atherosclerosis in apoE -/- mice. Sci Rep 2017; 7:44503. [PMID: 28291223 PMCID: PMC5349609 DOI: 10.1038/srep44503] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/08/2017] [Indexed: 01/13/2023] Open
Abstract
The PLPP3 gene encodes for a ubiquitous enzyme that dephosphorylates several lipid substrates. Genome-wide association studies identified PLPP3 as a gene that plays a role in coronary artery disease susceptibility. The aim of the study was to investigate the effect of Plpp3 deletion on atherosclerosis development in mice. Because the constitutive deletion of Plpp3 in mice is lethal, conditional Plpp3 hepatocyte-specific null mice were generated by crossing floxed Plpp3 mice with animals expressing Cre recombinase under control of the albumin promoter. The mice were crossed onto the athero-prone apoE-/- background to obtain Plpp3f/fapoE-/-Alb-Cre+ and Plpp3f/fapoE-/-Alb-Cre- offspring, the latter of which were used as controls. The mice were fed chow or a Western diet for 32 or 12 weeks, respectively. On the Western diet, Alb-Cre+ mice developed more atherosclerosis than Alb-Cre- mice, both at the aortic sinus and aorta. Lipidomic analysis showed that hepatic Plpp3 deletion significantly modified the levels of several plasma lipids involved in atherosclerosis, including lactosylceramides, lysophosphatidic acids, and lysophosphatidylinositols. In conclusion, Plpp3 ablation in mice worsened atherosclerosis development. Lipidomic analysis suggested that the hepatic Plpp3 deletion may promote atherosclerosis by increasing plasma levels of several low-abundant pro-atherogenic lipids, thus providing a molecular basis for the observed results.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Giulia S Ganzetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Federica Dellera
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Minna Jänis
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Diana Escalante-Alcalde
- Instituto de Fisiología Celular, División de Neurociencias Universidad Nacional Autónoma de México, Cd. Mx. 04510, México
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
103
|
Yamamoto Y, Itoh T, Yamamoto K. A study of synthetic approaches to 2-acyl DHA lysophosphatidic acid. Org Biomol Chem 2017; 15:8186-8192. [DOI: 10.1039/c7ob01771e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A salt formation suppresses acyl migration of DHA lysophosphatidic acid.
Collapse
Affiliation(s)
- Yoshinori Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry
- Showa Pharmaceutical University
- Machida
- Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry
- Showa Pharmaceutical University
- Machida
- Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry
- Showa Pharmaceutical University
- Machida
- Japan
| |
Collapse
|
104
|
Shah P, Cheasty A, Foxton C, Raynham T, Farooq M, Gutierrez IF, Lejeune A, Pritchard M, Turnbull A, Pang L, Owen P, Boyd S, Stowell A, Jordan A, Hamilton NM, Hitchin JR, Stockley M, MacDonald E, Quesada MJ, Trivier E, Skeete J, Ovaa H, Moolenaar WH, Ryder H. Discovery of potent inhibitors of the lysophospholipase autotaxin. Bioorg Med Chem Lett 2016; 26:5403-5410. [PMID: 27780639 DOI: 10.1016/j.bmcl.2016.10.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/15/2022]
Abstract
The autotaxin-lysophosphatidic acid (ATX-LPA) axis has been implicated in several disease conditions including inflammation, fibrosis and cancer. This makes ATX an attractive drug target and its inhibition may lead to useful therapeutic agents. Through a high throughput screen (HTS) we identified a series of small molecule inhibitors of ATX which have subsequently been optimized for potency, selectivity and developability properties. This has delivered drug-like compounds such as 9v (CRT0273750) which modulate LPA levels in plasma and are suitable for in vivo studies. X-ray crystallography has revealed that these compounds have an unexpected binding mode in that they do not interact with the active site zinc ions but instead occupy the hydrophobic LPC pocket extending from the active site of ATX together with occupying the LPA 'exit' channel.
Collapse
Affiliation(s)
- Pritom Shah
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Anne Cheasty
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Caroline Foxton
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Tony Raynham
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Muddasar Farooq
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Irene Farre Gutierrez
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Aurore Lejeune
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Michelle Pritchard
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Andrew Turnbull
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Leon Pang
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Paul Owen
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Susan Boyd
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Alexandra Stowell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Allan Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Niall M Hamilton
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - James R Hitchin
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Martin Stockley
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Ellen MacDonald
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Mar Jimenez Quesada
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Elisabeth Trivier
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Jana Skeete
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Huib Ovaa
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Wouter H Moolenaar
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Hamish Ryder
- Cancer Research Technology, Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
105
|
Plastira I, Bernhart E, Goeritzer M, Reicher H, Kumble VB, Kogelnik N, Wintersperger A, Hammer A, Schlager S, Jandl K, Heinemann A, Kratky D, Malle E, Sattler W. 1-Oleyl-lysophosphatidic acid (LPA) promotes polarization of BV-2 and primary murine microglia towards an M1-like phenotype. J Neuroinflammation 2016; 13:205. [PMID: 27565558 PMCID: PMC5002165 DOI: 10.1186/s12974-016-0701-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/20/2016] [Indexed: 01/09/2023] Open
Abstract
Background Microglia, the immunocompetent cells of the CNS, rapidly respond to brain injury and disease by altering their morphology and phenotype to adopt an activated state. Microglia can exist broadly between two different states, namely the classical (M1) and the alternative (M2) phenotype. The first is characterized by the production of pro-inflammatory cytokines/chemokines and reactive oxygen and/or nitrogen species. In contrast, alternatively activated microglia are typified by an anti-inflammatory phenotype supporting wound healing and debris clearance. The objective of the present study was to determine the outcome of lysophosphatidic acid (LPA)-mediated signaling events on microglia polarization. Methods LPA receptor expression and cyto-/chemokine mRNA levels in BV-2 and primary murine microglia (PMM) were determined by qPCR. M1/M2 marker expression was analyzed by Western blotting, immunofluorescence microscopy, or flow cytometry. Cyto-/chemokine secretion was quantitated by ELISA. Results BV-2 cells express LPA receptor 2 (LPA2), 3, 5, and 6, whereas PMM express LPA1, 2, 4, 5, and 6. We show that LPA treatment of BV-2 and PMM leads to a shift towards a pro-inflammatory M1-like phenotype. LPA treatment increased CD40 and CD86 (M1 markers) and reduced CD206 (M2 marker) expression. LPA increased inducible nitric oxide synthase (iNOS) and COX-2 levels (both M1), while the M2 marker Arginase-1 was suppressed in BV-2 cells. Immunofluorescence studies (iNOS, COX-2, Arginase-1, and RELMα) extended these findings to PMM. Upregulation of M1 markers in BV-2 and PMM was accompanied by increased cyto-/chemokine transcription and secretion (IL-1β, TNFα, IL-6, CCL5, and CXCL2). The pharmacological LPA5 antagonist TCLPA5 blunted most of these pro-inflammatory responses. Conclusions LPA drives BV-2 and PMM towards a pro-inflammatory M1-like phenotype. Suppression by TCLPA5 indicates that the LPA/LPA5 signaling axis could represent a potential pharmacological target to interfere with microglia polarization in disease.
Collapse
Affiliation(s)
- Ioanna Plastira
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Madeleine Goeritzer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Vishwanath Bhat Kumble
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Nora Kogelnik
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Andrea Wintersperger
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Stefanie Schlager
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Katharina Jandl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria. .,BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
106
|
Dasgupta S, Kumar V. Type II NKT cells: a distinct CD1d-restricted immune regulatory NKT cell subset. Immunogenetics 2016; 68:665-76. [PMID: 27405300 PMCID: PMC6334657 DOI: 10.1007/s00251-016-0930-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
Abstract
Type II natural killer T cells (NKT) are a subset of the innate-like CD1d-restricted lymphocytes that are reactive to lipid antigens. Unlike the type I NKT cells, which express a semi-invariant TCR, type II NKT cells express a broader TCR repertoire. Additionally, other features, such as their predominance over type I cells in humans versus mice, the nature of their ligands, CD1d/lipid/TCR binding, and modulation of immune responses, distinguish type II NKT cells from type I NKT cells. Interestingly, it is the self-lipid-reactivity of type II NKT cells that has helped define their physiological role in health and in disease. The discovery of sulfatide as one of the major antigens for CD1d-restricted type II NKT cells in mice has been instrumental in the characterization of these cells, including the TCR repertoire, the crystal structure of the CD1d/lipid/TCR complex, and their function. Subsequently, several other glycolipids and phospholipids from both endogenous and microbial sources have been shown to activate type II NKT cells. The activation of a specific subset of type II NKT cells following administration with sulfatide or lysophosphatidylcholine (LPC) leads to engagement of a dominant immunoregulatory pathway associated with the inactivation of type I NKT cells, conventional dendritic cells, and inhibition of the proinflammatory Th1/Th17 cells. Thus, type II NKT cells have been shown to be immunosuppressive in autoimmune diseases, inflammatory liver diseases, and in cancer. Knowing their relatively higher prevalence in human than type I NKT cells, understanding their biology is imperative for health and disease.
Collapse
Affiliation(s)
- Suryasarathi Dasgupta
- Division of Gastroenterology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Vipin Kumar
- Division of Gastroenterology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
107
|
Knowlden SA, Hillman SE, Chapman TJ, Patil R, Miller DD, Tigyi G, Georas SN. Novel Inhibitory Effect of a Lysophosphatidic Acid 2 Agonist on Allergen-Driven Airway Inflammation. Am J Respir Cell Mol Biol 2016; 54:402-9. [PMID: 26248018 DOI: 10.1165/rcmb.2015-0124oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a pleiotropic lipid signaling molecule associated with asthma pathobiology. LPA elicits its effects by binding to at least six known cell surface G protein-coupled receptors (LPA1-6) that are expressed in the lung in a cell type-specific manner. LPA2 in particular has emerged as an attractive therapeutic target in asthma because it appears to transduce inhibitory or cell-protective signals. We studied a novel and specific small molecule LPA2 agonist (2-[4-(1,3-dioxo-1H,3H-benzoisoquinolin-2-yl)butylsulfamoyl] benzoic acid [DBIBB]) in a mouse model of house dust mite-induced allergic airway inflammation. Mice injected with DBIBB developed significantly less airway and lung inflammation compared with vehicle-treated controls. Levels of lung Th2 cytokines were also significantly attenuated by DBIBB. We conclude that pharmacologic activation of LPA2 attenuates Th2-driven allergic airway inflammation in a mouse model of asthma. Targeting LPA receptor signaling holds therapeutic promise in allergic asthma.
Collapse
Affiliation(s)
- Sara A Knowlden
- 1 Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Sara E Hillman
- 2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Timothy J Chapman
- 2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Renukadevi Patil
- 3 Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and.,4 Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Duane D Miller
- 4 Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Gabor Tigyi
- 3 Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Steve N Georas
- 1 Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York.,2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
108
|
Schulz O, Hammerschmidt SI, Moschovakis GL, Förster R. Chemokines and Chemokine Receptors in Lymphoid Tissue Dynamics. Annu Rev Immunol 2016; 34:203-42. [DOI: 10.1146/annurev-immunol-041015-055649] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olga Schulz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| | | | | | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
109
|
G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling. Int J Mol Sci 2016; 17:215. [PMID: 26861299 PMCID: PMC4783947 DOI: 10.3390/ijms17020215] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/13/2022] Open
Abstract
A hallmark of G-protein-coupled receptors (GPCRs) is their ability to recognize and respond to chemically diverse ligands. Lysophospholipids constitute a relatively recent addition to these ligands and carry out their biological functions by activating G-proteins coupled to a large family of cell-surface receptors. This review aims to highlight salient features of cell signaling by one class of these receptors, known as lysophosphatidic acid (LPA) receptors, in the context of phosphatidylinositol 3-kinase (PI3K)-AKT pathway activation. LPA moieties efficiently activate AKT phosphorylation and activation in a multitude of cell types. The interplay between LPA, its receptors, the associated Gαi/o subunits, PI3K and AKT contributes to the regulation of cell survival, migration, proliferation and confers chemotherapy-resistance in certain cancers. However, detailed information on the regulation of PI3K-AKT signals induced by LPA receptors is missing from the literature. Here, some urgent issues for investigation are highlighted.
Collapse
|
110
|
Ackerman SJ, Park GY, Christman JW, Nyenhuis S, Berdyshev E, Natarajan V. Polyunsaturated lysophosphatidic acid as a potential asthma biomarker. Biomark Med 2016; 10:123-35. [PMID: 26808693 PMCID: PMC4881841 DOI: 10.2217/bmm.15.93] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/08/2015] [Indexed: 12/13/2022] Open
Abstract
Lysophosphatidic acid (LPA), a lipid mediator in biological fluids and tissues, is generated mainly by autotaxin that hydrolyzes lysophosphatidylcholine to LPA and choline. Total LPA levels are increased in bronchoalveolar lavage fluid from asthmatic lung, and are strongly induced following subsegmental bronchoprovocation with allergen in subjects with allergic asthma. Polyunsaturated molecular species of LPA (C22:5 and C22:6) are selectively synthesized in the airways of asthma subjects following allergen challenge and in mouse models of allergic airway inflammation, having been identified and quantified by LC/MS/MS lipidomics. This review discusses current knowledge of LPA production in asthmatic lung and the potential utility of polyunsaturated LPA molecular species as novel biomarkers in bronchoalveolar lavage fluid and exhaled breath condensate of asthma subjects.
Collapse
Affiliation(s)
- Steven J Ackerman
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Gye Young Park
- Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - John W Christman
- Department of Medicine, Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Sharmilee Nyenhuis
- Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Viswanathan Natarajan
- Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
111
|
Reprint of: “Synthetic lipids and their role in defining macromolecular assemblies”. Chem Phys Lipids 2016; 194:149-57. [DOI: 10.1016/j.chemphyslip.2015.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 11/23/2022]
|
112
|
Federico L, Jeong KJ, Vellano CP, Mills GB. Autotaxin, a lysophospholipase D with pleomorphic effects in oncogenesis and cancer progression. J Lipid Res 2016; 57:25-35. [PMID: 25977291 PMCID: PMC4689343 DOI: 10.1194/jlr.r060020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/07/2015] [Indexed: 12/18/2022] Open
Abstract
The ectonucleotide pyrophosphatase/phosphodiesterase type 2, more commonly known as autotaxin (ATX), is an ecto-lysophospholipase D encoded by the human ENNP2 gene. ATX is expressed in multiple tissues and participates in numerous key physiologic and pathologic processes, including neural development, obesity, inflammation, and oncogenesis, through the generation of the bioactive lipid, lysophosphatidic acid. Overwhelming evidence indicates that altered ATX activity leads to oncogenesis and cancer progression through the modulation of multiple hallmarks of cancer pathobiology. Here, we review the structural and catalytic characteristics of the ectoenzyme, how its expression and maturation processes are regulated, and how the systemic integration of its pleomorphic effects on cells and tissues may contribute to cancer initiation, progression, and therapy. Additionally, the up-to-date spectrum of the most frequent ATX genomic alterations from The Cancer Genome Atlas project is reported for a subset of cancers.
Collapse
Affiliation(s)
- Lorenzo Federico
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Kang Jin Jeong
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Christopher P Vellano
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Gordon B Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
113
|
Ren X, Zhang J, Fu X, Ma S, Wang C, Wang J, Tian S, Liu S, Zhao B, Wang X. LC-MS based metabolomics identification of novel biomarkers of tobacco smoke-induced chronic bronchitis. Biomed Chromatogr 2016; 30:68-74. [PMID: 26390017 DOI: 10.1002/bmc.3620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/30/2015] [Accepted: 09/18/2015] [Indexed: 12/31/2022]
Abstract
Tobacco smoke (TS) is a major causative agent to lead to chronic bronchitis (CB). However the mechanisms of CB induced by TS are unclear. In this report, rats were exposed to different concentrations of TS and the metabolic features of CB were characterized by using a nontargeted metabolic profiling method based on liquid chromatography-mass spectrometry (LC-MS) to detect the altered metabolic patterns in serum from CB rats and investigate the mechanisms of CB. 11 potential biomarkers were identified in serum of rats. Among them, the levels of lysophosphatidylethanolamine (18:1), lysophosphatidic acid (18:1), lysophosphatidylethanolamine (18:0), lysophosphatidylethanolamine (16:0), lysophosphatidylethanolamine (20:4), docosahexaenoic acid, 5-hydroxyindoleacetic acid and 5'-carboxy-γ-tocopherol were higher in TS group compared to control group. Conversely, the levels of 4-imidazolone-5-propionic acid, 12-hydroxyeicosatetraenoic acid and uridine were lower in TS group. The results indicated that the mechanism of CB was related to amino acid metabolism and lipid metabolism, particularly lipid metabolism. In addition, lysophosphatidylethanolamines were proved to be important mediators, which could be used as biomarkers to diagnose CB. These results also suggested that metabolomics was suitable for diagnosing CB and elucidating the possible metabolic pathways of TS-induced CB.
Collapse
Affiliation(s)
- Xiaolei Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6, WangJing ZhongHuan South Street, Chao-Yang District, Beijing, 100102, People's Republic of China
| | - Jiayu Zhang
- Center of Scientific Experiment, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, People's Republic of China
| | - Xiaorui Fu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6, WangJing ZhongHuan South Street, Chao-Yang District, Beijing, 100102, People's Republic of China
| | - Shuangshuang Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6, WangJing ZhongHuan South Street, Chao-Yang District, Beijing, 100102, People's Republic of China
| | - Chunguo Wang
- Center of Scientific Experiment, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, People's Republic of China
| | - Juan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6, WangJing ZhongHuan South Street, Chao-Yang District, Beijing, 100102, People's Republic of China
| | - Simin Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6, WangJing ZhongHuan South Street, Chao-Yang District, Beijing, 100102, People's Republic of China
| | - Siqi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6, WangJing ZhongHuan South Street, Chao-Yang District, Beijing, 100102, People's Republic of China
| | - Baosheng Zhao
- Center of Scientific Experiment, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, People's Republic of China
| | - Xueyong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6, WangJing ZhongHuan South Street, Chao-Yang District, Beijing, 100102, People's Republic of China
| |
Collapse
|
114
|
Ryu JM, Han HJ. Autotaxin-LPA axis regulates hMSC migration by adherent junction disruption and cytoskeletal rearrangement via LPAR1/3-dependent PKC/GSK3β/β-catenin and PKC/Rho GTPase pathways. Stem Cells 2015; 33:819-32. [PMID: 25376707 DOI: 10.1002/stem.1882] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022]
Abstract
Bioactive molecules and stem cell-based regenerative engineering is emerging a promising approach for regenerating tissues. Autotaxin (ATX) is a key enzyme that regulates lysophosphatidic acid (LPA) levels in biological fluids, which exerts a wide range of cellular functions. However, the biological role of ATX in human umbilical cord blood-derived mesenchymal stem cells (hMSCs) migration remains to be fully elucidated. In this study, we observed that hMSCs, which were stimulated with LPA, accelerated wound healing, and LPA increased the migration of hMSCs into a wound site in a mouse skin wound healing model. In an experiment to investigate the effect of LPA on hMSC migration, ATX and LPA increased hMSC migration in a dose-dependent manner, and LPA receptor 1/3 siRNA transfections inhibited the ATX-induced cell migration. Furthermore, LPA increased Ca(2+) influx and PKC phosphorylation, which were blocked by Gαi and Gαq knockdown as well as by Ptx pretreatment. LPA increased GSK3β phosphorylation and β-catenin activation. LPA induced the cytosol to nuclear translocation of β-catenin, which was inhibited by PKC inhibitors. LPA stimulated the binding of β-catenin on the E-box located in the promoter of the CDH-1 gene and decreased CDH-1 promoter activity. In addition, the ATX and LPA-induced increase in hMSC migration was blocked by β-catenin siRNA transfection. LPA-induced PKC phosphorylation is also involved in Rac1 and CDC42 activation, and Rac1 and CDC42 knockdown abolished LPA-induced F-actin reorganization. In conclusion, ATX/LPA stimulates the migration of hMSCs through LPAR1/3-dependent E-cadherin reduction and cytoskeletal rearrangement via PKC/GSK3β/β-catenin and PKC/Rho GTPase pathways.
Collapse
Affiliation(s)
- Jung Min Ryu
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea; BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea
| | | |
Collapse
|
115
|
Howard P, Twycross R, Grove G, Charlesworth S, Mihalyo M, Wilcock A. Rifampin (INN Rifampicin). J Pain Symptom Manage 2015; 50:891-5. [PMID: 26432572 DOI: 10.1016/j.jpainsymman.2015.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 12/12/2022]
Abstract
Therapeutic Reviews aim to provide essential independent information for health professionals about drugs used in palliative and hospice care. Additional content is available on www.palliativedrugs.com. Country-specific books (Hospice and Palliative Care Formulary USA, and Palliative Care Formulary, British and Canadian editions) are also available and can be ordered from www.palliativedrugs.com. The series editors welcome feedback on the articles (hq@palliativedrugs.com).
Collapse
Affiliation(s)
- Paul Howard
- Earl Mountbatten Hospice, Isle of Wight, United Kingdom
| | | | - Graham Grove
- Earl Mountbatten Hospice, Isle of Wight, United Kingdom
| | | | - Mary Mihalyo
- Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
116
|
Chu X, Wei X, Lu S, He P. Autotaxin-LPA receptor axis in the pathogenesis of lung diseases. Int J Clin Exp Med 2015; 8:17117-17122. [PMID: 26770305 PMCID: PMC4694205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a small lipid which mediates a variety of cellular functions via the activation of LPA receptors. LPA is generated from lysophosphatidylcholine by the extracellular enzyme, autotaxin (ATX). Elevated ATX expression, LPA production and their signaling pathways have been reported in multiple pathological conditions of lung tissue, including inflammation, fibrosis and cancer. Emerging evidence has highlighted the importance of ATX and LPA receptors in the pathogenesis of lung diseases. Here, we briefly review the current knowledge of different roles of the ATX-LPA receptor axis in lung diseases focusing on inflammation, fibrosis and cancer.
Collapse
Affiliation(s)
| | - Xiaojie Wei
- People’s Hospital of RizhaoRizhao, Shandong, China
| | - Shaolin Lu
- People’s Hospital of RizhaoRizhao, Shandong, China
| | - Peijian He
- Department of Internal Medicine, Emory UniversityAtlanta, Georgia, USA
| |
Collapse
|
117
|
Parrill AL. Synthetic lipids and their role in defining macromolecular assemblies. Chem Phys Lipids 2015; 191:38-47. [DOI: 10.1016/j.chemphyslip.2015.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
118
|
Benesch MGK, Tang X, Dewald J, Dong WF, Mackey JR, Hemmings DG, McMullen TPW, Brindley DN. Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of autotaxin expression and breast cancer progression. FASEB J 2015; 29:3990-4000. [DOI: 10.1096/fj.15-274480] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023]
|
119
|
Benesch MGK, Tang X, Venkatraman G, Bekele RT, Brindley DN. Recent advances in targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo. J Biomed Res 2015; 30:272-84. [PMID: 27533936 PMCID: PMC4946318 DOI: 10.7555/jbr.30.20150058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/12/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular lysophosphatidate (LPA) is a potent bioactive lipid that signals through six G-protein-coupled receptors. This signaling is required for embryogenesis, tissue repair and remodeling processes. LPA is produced from circulating lysophosphatidylcholine by autotaxin (ATX), and is degraded outside cells by a family of three enzymes called the lipid phosphate phosphatases (LPPs). In many pathological conditions, particularly in cancers, LPA concentrations are increased due to high ATX expression and low LPP activity. In cancers, LPA signaling drives tumor growth, angiogenesis, metastasis, resistance to chemotherapy and decreased efficacy of radiotherapy. Hence, targeting the ATX-LPA-LPP axis is an attractive strategy for introducing novel adjuvant therapeutic options. In this review, we will summarize current progress in targeting the ATX-LPA-LPP axis with inhibitors of autotaxin activity, LPA receptor antagonists, LPA monoclonal antibodies, and increasing low LPP expression. Some of these agents are already in clinical trials and have applications beyond cancer, including chronic inflammatory diseases.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Ganesh Venkatraman
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Raie T Bekele
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada.
| |
Collapse
|
120
|
Song J, Guan M, Zhao Z, Zhang J. Type I Interferons Function as Autocrine and Paracrine Factors to Induce Autotaxin in Response to TLR Activation. PLoS One 2015; 10:e0136629. [PMID: 26313906 PMCID: PMC4552386 DOI: 10.1371/journal.pone.0136629] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 08/05/2015] [Indexed: 12/30/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an important phospholipid mediator in inflammation and immunity. However, the mechanism of LPA regulation during inflammatory response is largely unknown. Autotaxin (ATX) is the key enzyme to produce extracellular LPA from lysophosphatidylcholine (LPC). In this study, we found that ATX was induced in monocytic THP-1 cells by TLR4 ligand lipopolysaccharide (LPS), TLR9 ligand CpG oligonucleotide, and TLR3 ligand poly(I:C), respectively. The ATX induction by TLR ligand was abolished by the neutralizing antibody against IFN-β or the knockdown of IFNAR1, indicating that type I IFN autocrine loop is responsible for the ATX induction upon TLR activation. Both IFN-β and IFN-α were able to induce ATX expression via the JAK-STAT and PI3K-AKT pathways but with different time-dependent manners. The ATX induction by IFN-β was dramatically enhanced by IFN-γ, which had no significant effect on ATX expression alone, suggesting a synergy effect between type I and type II IFNs in ATX induction. Extracellular LPA levels were significantly increased when THP-1 cells were treated with IFN-α/β or TLR ligands. In addition, the type I IFN-mediated ATX induction was identified in human monocyte-derived dendritic cells (moDCs) stimulated with LPS or poly(I:C), and IFN-α/β could induce ATX expression in human peripheral blood mononuclear cells (PBMCs) and monocytes isolated form blood samples. These results suggest that, in response to TLR activation, ATX is induced through a type I INF autocrine-paracrine loop to enhance LPA generation.
Collapse
Affiliation(s)
- Jianwen Song
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ming Guan
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Zhenwen Zhao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Junjie Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
121
|
LPA Promotes T Cell Recruitment through Synthesis of CXCL13. Mediators Inflamm 2015; 2015:248492. [PMID: 26339130 PMCID: PMC4539179 DOI: 10.1155/2015/248492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 02/05/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid playing an important role in various inflammatory diseases by inducing expression and secretion of many inflammatory cytokines/chemokines. Here we report in a murine air pouch model of inflammation that LPA induced CXCL13 secretion in a time-dependent manner and with exacerbation of the response when LPA was administered after a pretreatment with TNF-α, a key inflammatory cytokine. LPA mediates recruitment of leukocytes, including that of CD3+ cells into unprimed and TNF-α-primed air pouches. CXCL13 neutralization using a blocking antibody injected into air pouches prior to administration of LPA into TNF-α-primed air pouches decreased CD3+ cell influx. Our data highlight that LPA-mediated CXCL13 secretion plays a role in T cell recruitment and participates in regulation of the inflammatory response.
Collapse
|
122
|
Kollert S, Dombert B, Döring F, Wischmeyer E. Activation of TRESK channels by the inflammatory mediator lysophosphatidic acid balances nociceptive signalling. Sci Rep 2015. [PMID: 26224542 PMCID: PMC4519772 DOI: 10.1038/srep12548] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In dorsal root ganglia (DRG) neurons TRESK channels constitute a major current component of the standing outward current IKSO. A prominent physiological role of TRESK has been attributed to pain sensation. During inflammation mediators of pain e.g. lysophosphatidic acid (LPA) are released and modulate nociception. We demonstrate co-expression of TRESK and LPA receptors in DRG neurons. Heterologous expression of TRESK and LPA receptors in Xenopus oocytes revealed augmentation of basal K+ currents upon LPA application. In DRG neurons nociception can result from TRPV1 activation by capsaicin or LPA. Upon co-expression in Xenopus oocytes LPA simultaneously increased both depolarising TRPV1 and hyperpolarising TRESK currents. Patch-clamp recordings in cultured DRG neurons from TRESK[wt] mice displayed increased IKSO after application of LPA whereas under these conditions IKSO in neurons from TRESK[ko] mice remained unaltered. Under current-clamp conditions LPA application differentially modulated excitability in these genotypes upon depolarising pulses. Spike frequency was attenuated in TRESK[wt] neurons and, in contrast, augmented in TRESK[ko] neurons. Accordingly, excitation of nociceptive neurons by LPA is balanced by co-activation of TRESK channels. Hence excitation of sensory neurons is strongly controlled by the activity of TRESK channels, which therefore are good candidates for the treatment of pain disorders.
Collapse
Affiliation(s)
- Sina Kollert
- Institute of Physiology, AG Molecular Electrophysiology, University of Würzburg, 97070 Würzburg Germany
| | - Benjamin Dombert
- Institute for Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Frank Döring
- Institute of Physiology, AG Molecular Electrophysiology, University of Würzburg, 97070 Würzburg Germany
| | - Erhard Wischmeyer
- Institute of Physiology, AG Molecular Electrophysiology, University of Würzburg, 97070 Würzburg Germany
| |
Collapse
|
123
|
Mouratis MA, Magkrioti C, Oikonomou N, Katsifa A, Prestwich GD, Kaffe E, Aidinis V. Autotaxin and Endotoxin-Induced Acute Lung Injury. PLoS One 2015. [PMID: 26196781 PMCID: PMC4509763 DOI: 10.1371/journal.pone.0133619] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acute Lung Injury (ALI) is a life-threatening, diffuse heterogeneous lung injury characterized by acute onset, pulmonary edema and respiratory failure. Lipopolysaccharide (LPS) is a common cause of both direct and indirect lung injury and when administered to a mouse induces a lung phenotype exhibiting some of the clinical characteristics of human ALI. Here, we report that LPS inhalation in mice results in increased bronchoalveolar lavage fluid (BALF) levels of Autotaxin (ATX, Enpp2), a lysophospholipase D largely responsible for the conversion of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA) in biological fluids and chronically inflamed sites. In agreement, gradual increases were also detected in BALF LPA levels, following inflammation and pulmonary edema. However, genetic or pharmacologic targeting of ATX had minor effects in ALI severity, suggesting no major involvement of the ATX/LPA axis in acute inflammation. Moreover, systemic, chronic exposure to increased ATX/LPA levels was shown to predispose to and/or to promote acute inflammation and ALI unlike chronic inflammatory pathophysiological situations, further suggesting a differential involvement of the ATX/LPA axis in acute versus chronic pulmonary inflammation.
Collapse
Affiliation(s)
- Marios-Angelos Mouratis
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| | - Christiana Magkrioti
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| | - Nikos Oikonomou
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| | - Aggeliki Katsifa
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| | - Glenn D. Prestwich
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Eleanna Kaffe
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
- * E-mail:
| |
Collapse
|
124
|
Binder BYK, Williams PA, Silva EA, Leach JK. Lysophosphatidic Acid and Sphingosine-1-Phosphate: A Concise Review of Biological Function and Applications for Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:531-42. [PMID: 26035484 DOI: 10.1089/ten.teb.2015.0107] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The presentation and controlled release of bioactive signals to direct cellular growth and differentiation represents a widely used strategy in tissue engineering. Historically, work in this field has primarily focused on the delivery of large cytokines and growth factors, which can be costly to manufacture and difficult to deliver in a sustained manner. There has been a marked increase over the past decade in the pursuit of lipid mediators due to their wide range of effects over multiple cell types, low cost, and ease of scale-up. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two bioactive lysophospholipids (LPLs) that have gained attention for use as pharmacological agents in tissue engineering applications. While these lipids can have similar effects on cellular response, they possess distinct chemical backbones, mechanisms of synthesis and degradation, and signaling pathways using a discrete set of G-protein-coupled receptors (GPCRs). LPA and S1P predominantly act extracellularly on their GPCRs and can directly regulate cell survival, differentiation, cytokine secretion, proliferation, and migration--each of the important functions that must be considered in regenerative medicine. In addition to these potent physiological functions, these LPLs play pivotal roles in a number of pathophysiological processes. To capitalize on the promise of these molecules in tissue engineering, these lipids have been incorporated into biomaterials for in vivo delivery. Here, we survey the effects of LPA and S1P on both cellular- and tissue-level phenotypes, with an eye toward regulating stem/progenitor cell growth and differentiation. In particular, we examine work that has translational applications for cell-based tissue engineering strategies in promoting cell survival, bone and cartilage engineering, and therapeutic angiogenesis.
Collapse
Affiliation(s)
- Bernard Y K Binder
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Priscilla A Williams
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Eduardo A Silva
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - J Kent Leach
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California.,2 Department of Orthopaedic Surgery, School of Medicine, University of California , Davis, Sacramento, California
| |
Collapse
|
125
|
Aimo L, Liechti R, Hyka-Nouspikel N, Niknejad A, Gleizes A, Götz L, Kuznetsov D, David FPA, van der Goot FG, Riezman H, Bougueleret L, Xenarios I, Bridge A. The SwissLipids knowledgebase for lipid biology. Bioinformatics 2015; 31:2860-6. [PMID: 25943471 PMCID: PMC4547616 DOI: 10.1093/bioinformatics/btv285] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/29/2015] [Indexed: 12/20/2022] Open
Abstract
MOTIVATION Lipids are a large and diverse group of biological molecules with roles in membrane formation, energy storage and signaling. Cellular lipidomes may contain tens of thousands of structures, a staggering degree of complexity whose significance is not yet fully understood. High-throughput mass spectrometry-based platforms provide a means to study this complexity, but the interpretation of lipidomic data and its integration with prior knowledge of lipid biology suffers from a lack of appropriate tools to manage the data and extract knowledge from it. RESULTS To facilitate the description and exploration of lipidomic data and its integration with prior biological knowledge, we have developed a knowledge resource for lipids and their biology-SwissLipids. SwissLipids provides curated knowledge of lipid structures and metabolism which is used to generate an in silico library of feasible lipid structures. These are arranged in a hierarchical classification that links mass spectrometry analytical outputs to all possible lipid structures, metabolic reactions and enzymes. SwissLipids provides a reference namespace for lipidomic data publication, data exploration and hypothesis generation. The current version of SwissLipids includes over 244 000 known and theoretically possible lipid structures, over 800 proteins, and curated links to published knowledge from over 620 peer-reviewed publications. We are continually updating the SwissLipids hierarchy with new lipid categories and new expert curated knowledge. AVAILABILITY SwissLipids is freely available at http://www.swisslipids.org/. CONTACT alan.bridge@isb-sib.ch SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lucila Aimo
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Robin Liechti
- Vital-IT, SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, CH-1015 Lausanne, Switzerland
| | - Nevila Hyka-Nouspikel
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Anne Niknejad
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Anne Gleizes
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Lou Götz
- Vital-IT, SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, CH-1015 Lausanne, Switzerland
| | - Dmitry Kuznetsov
- Vital-IT, SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, CH-1015 Lausanne, Switzerland
| | - Fabrice P A David
- Bioinformatics and Biostatistics Core Facility, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - F Gisou van der Goot
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland, Switzerland National Centre of Competence in Research "Chemical Biology", University of Geneva, CH-1211 Geneva, Switzerland and
| | - Lydie Bougueleret
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Ioannis Xenarios
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland, Vital-IT, SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, CH-1015 Lausanne, Switzerland, Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland, Centre for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Alan Bridge
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
126
|
Barbayianni E, Kaffe E, Aidinis V, Kokotos G. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res 2015; 58:76-96. [DOI: 10.1016/j.plipres.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
|
127
|
Reschen ME, Gaulton KJ, Lin D, Soilleux EJ, Morris AJ, Smyth SS, O'Callaghan CA. Lipid-induced epigenomic changes in human macrophages identify a coronary artery disease-associated variant that regulates PPAP2B Expression through Altered C/EBP-beta binding. PLoS Genet 2015; 11:e1005061. [PMID: 25835000 PMCID: PMC4383549 DOI: 10.1371/journal.pgen.1005061] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 02/09/2015] [Indexed: 01/17/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified over 40 loci that affect risk of coronary artery disease (CAD) and the causal mechanisms at the majority of loci are unknown. Recent studies have suggested that many causal GWAS variants influence disease through altered transcriptional regulation in disease-relevant cell types. We explored changes in transcriptional regulation during a key pathophysiological event in CAD, the environmental lipid-induced transformation of macrophages to lipid-laden foam cells. We used a combination of open chromatin mapping with formaldehyde-assisted isolation of regulatory elements (FAIRE-seq) and enhancer and transcription factor mapping using chromatin immuno-precipitation (ChIP-seq) in primary human macrophages before and after exposure to atherogenic oxidized low-density lipoprotein (oxLDL), with resultant foam cell formation. OxLDL-induced foam cell formation was associated with changes in a subset of open chromatin and active enhancer sites that strongly correlated with expression changes of nearby genes. OxLDL-regulated enhancers were enriched for several transcription factors including C/EBP-beta, which has no previously documented role in foam cell formation. OxLDL exposure up-regulated C/EBP-beta expression and increased genomic binding events, most prominently around genes involved in inflammatory response pathways. Variants at CAD-associated loci were significantly and specifically enriched in the subset of chromatin sites altered by oxLDL exposure, including rs72664324 in an oxLDL-induced enhancer at the PPAP2B locus. OxLDL increased C/EBP beta binding to this site and C/EBP beta binding and enhancer activity were stronger with the protective A allele of rs72664324. In addition, expression of the PPAP2B protein product LPP3 was present in foam cells in human atherosclerotic plaques and oxLDL exposure up-regulated LPP3 in macrophages resulting in increased degradation of pro-inflammatory mediators. Our results demonstrate a genetic mechanism contributing to CAD risk at the PPAP2B locus and highlight the value of studying epigenetic changes in disease processes involving pathogenic environmental stimuli.
Collapse
Affiliation(s)
- Michael E. Reschen
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kyle J. Gaulton
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Da Lin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Elizabeth J. Soilleux
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford and Department of Cellular Pathology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
| | - Susan S. Smyth
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
| | | |
Collapse
|
128
|
Decreased peritoneal ovarian cancer growth in mice lacking expression of lipid phosphate phosphohydrolase 1. PLoS One 2015; 10:e0120071. [PMID: 25769037 PMCID: PMC4359083 DOI: 10.1371/journal.pone.0120071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/03/2015] [Indexed: 01/02/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid that enhances ovarian cancer cell proliferation, migration and invasion in vitro and stimulates peritoneal metastasis in vivo. LPA is generated through the action of autotaxin or phospholipases, and degradation begins with lipid phosphate phosphohydrolase (LPP)-dependent removal of the phosphate. While the effects of LPA on ovarian cancer progression are clear, the effects of LPA metabolism within the tumor microenvironment on peritoneal metastasis have not been reported. We examined the contribution of lipid phosphatase activity to ovarian cancer peritoneal metastasis using mice deficient in LPP1 expression. Homozygous deletion of LPP1 (LPP1 KO) results in elevated levels and decreased turnover of LPA in vivo. Within 2 weeks of intraperitoneal injection of syngeneic mouse ovarian cancer cells, we observed enhanced tumor seeding in the LPP1 KO mice compared to wild type. However, tumor growth plateaued in the LPP1 KO mice by 3 weeks while tumors continued to grow in wild type mice. The decreased tumor burden was accompanied by increased apoptosis and no change in proliferation or angiogenesis. Tumor growth was restored and apoptosis reversed with exogenous administration of LPA. Together, these observations demonstrate that the elevated levels of LPA per se in LPP1 KO mice do not inhibit tumor growth. Rather, the data support the notion that either elevated LPA concentration or altered LPA metabolism affects other growth-promoting contributions of the tumor microenvironment.
Collapse
|
129
|
|
130
|
Immunomodulatory lysophosphatidylserines are regulated by ABHD16A and ABHD12 interplay. Nat Chem Biol 2015; 11:164-71. [PMID: 25580854 PMCID: PMC4301979 DOI: 10.1038/nchembio.1721] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/04/2014] [Indexed: 01/25/2023]
|
131
|
Shewchuk BM. Prostaglandins and n-3 polyunsaturated fatty acids in the regulation of the hypothalamic-pituitary axis. Prostaglandins Leukot Essent Fatty Acids 2014; 91:277-87. [PMID: 25287609 DOI: 10.1016/j.plefa.2014.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/23/2014] [Accepted: 09/11/2014] [Indexed: 12/26/2022]
Abstract
The hypothalamic-pituitary (H-P) axis integrates complex physiological and environmental signals and responds to these cues by modulating the synthesis and secretion of multiple pituitary hormones to regulate peripheral tissues. Prostaglandins are a component of this regulatory system, affecting multiple hormone synthesis and secretion pathways in the H-P axis. The implications of these actions are that physiological processes or disease states that alter prostaglandin levels in the hypothalamus or pituitary can impinge on H-P axis function. Considering the role of prostaglandins in mediating inflammation, the potential for neuroinflammation to affect H-P axis function in this manner may be significant. In addition, the mitigating effects of n-3 polyunsaturated fatty acids (n-3 PUFA) on the inflammation-associated synthesis of prostaglandins and their role as substrates for pro-resolving lipid mediators may also include effects in the H-P axis. One context in which neuroinflammation may play a role is in the etiology of diet-induced obesity, which also correlates with altered pituitary hormone levels. This review will survey evidence for the actions of prostaglandins and other lipid mediators in the H-P axis, and will address the potential for obesity-associated inflammation and n-3 PUFA to impinge on these mechanisms.
Collapse
Affiliation(s)
- Brian M Shewchuk
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|
132
|
Maricic I, Girardi E, Zajonc DM, Kumar V. Recognition of lysophosphatidylcholine by type II NKT cells and protection from an inflammatory liver disease. THE JOURNAL OF IMMUNOLOGY 2014; 193:4580-9. [PMID: 25261475 DOI: 10.4049/jimmunol.1400699] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lipids presented by the MHC class I-like molecule, CD1d, are recognized by NK T (NKT) cells, which can be broadly categorized into two subsets. The well-characterized type I NKT cells express a semi-invariant TCR and can recognize both α- and β-linked glycolipids, whereas type II NKT cells are less well studied, express a relatively diverse TCR repertoire, and recognize β-linked lipids. Recent structural studies have shown a distinct mode of recognition of a self-glycolipid sulfatide bound to CD1d by a type II NKT TCR. To further characterize Ag recognition by these cells, we have used the structural data and screened other small molecules able to bind to CD1d and activate type II NKT cells. Using plate-bound CD1d and APC-based Ag presentation assay, we found that phospholipids such as lysophosphatidylcholine (LPC) can stimulate the sulfatide-reactive type II NKT hybridoma Hy19.3 in a CD1d-dependent manner. Using plasmon resonance studies, we found that this type II NKT TCR binds with CD1d-bound LPC with micromolar affinities similar to that for sulfatide. Furthermore, LPC-mediated activation of type II NKT cells leads to anergy induction in type I NKT cells and affords protection from Con A-induced hepatitis. These data indicate that, in addition to self-glycolipids, self-lysophospholipids are also recognized by type II NKT cells. Because lysophospholipids are involved during inflammation, our findings have implications for not only understanding activation of type II NKT cells in physiological settings, but also for the development of immune intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Igor Maricic
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| |
Collapse
|
133
|
Beyoğlu D, Krausz KW, Martin J, Maurhofer O, Dorow J, Ceglarek U, Gonzalez FJ, Dufour JF, Idle JR. Disruption of tumor suppressor gene Hint1 leads to remodeling of the lipid metabolic phenotype of mouse liver. J Lipid Res 2014; 55:2309-19. [PMID: 25193995 DOI: 10.1194/jlr.m050682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A lipidomic and metabolomic investigation of serum and liver from mice was performed to gain insight into the tumor suppressor gene Hint1. A major reprogramming of lipid homeostasis was found in both serum and liver of Hint1-null (Hint(-/-)) mice, with significant changes in the levels of many lipid molecules, as compared with gender-, age-, and strain-matched WT mice. In the Hint1(-/-) mice, serum total and esterified cholesterol were reduced 2.5-fold, and lysophosphatidylcholines (LPCs) and lysophosphatidic acids were 10-fold elevated in serum, with a corresponding fall in phosphatidylcholines (PCs). In the liver, MUFAs and PUFAs, including arachidonic acid (AA) and its metabolic precursors, were also raised, as was mRNA encoding enzymes involved in AA de novo synthesis. There was also a significant 50% increase in hepatic macrophages in the Hint1(-/-) mice. Several hepatic ceramides and acylcarnitines were decreased in the livers of Hint1(-/-) mice. The changes in serum LPCs and PCs were neither related to hepatic phospholipase A2 activity nor to mRNAs encoding lysophosphatidylcholine acetyltransferases 1-4. The lipidomic phenotype of the Hint1(-/-) mouse revealed decreased inflammatory eicosanoids with elevated proliferative mediators that, combined with decreased ceramide apoptosis signaling molecules, may contribute to the tumor suppressor activity of Hint1.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Juliette Martin
- Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland
| | - Olivier Maurhofer
- Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland
| | - Juliane Dorow
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jean-François Dufour
- Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland
| | - Jeffrey R Idle
- Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
134
|
Lee JH, McDonald MLN, Cho MH, Wan ES, Castaldi PJ, Hunninghake GM, Marchetti N, Lynch DA, Crapo JD, Lomas DA, Coxson HO, Bakke PS, Silverman EK, Hersh CP. DNAH5 is associated with total lung capacity in chronic obstructive pulmonary disease. Respir Res 2014; 15:97. [PMID: 25134640 PMCID: PMC4169636 DOI: 10.1186/s12931-014-0097-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/07/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by expiratory flow limitation, causing air trapping and lung hyperinflation. Hyperinflation leads to reduced exercise tolerance and poor quality of life in COPD patients. Total lung capacity (TLC) is an indicator of hyperinflation particularly in subjects with moderate-to-severe airflow obstruction. The aim of our study was to identify genetic variants associated with TLC in COPD. METHODS We performed genome-wide association studies (GWASs) in white subjects from three cohorts: the COPDGene Study; the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); and GenKOLS (Bergen, Norway). All subjects were current or ex-smokers with at least moderate airflow obstruction, defined by a ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC) <0.7 and FEV1 < 80% predicted on post-bronchodilator spirometry. TLC was calculated by using volumetric computed tomography scans at full inspiration (TLCCT). Genotyping in each cohort was completed, with statistical imputation of additional markers. To find genetic variants associated with TLCCT, linear regression models were used, with adjustment for age, sex, pack-years of smoking, height, and principal components for genetic ancestry. Results were summarized using fixed-effect meta-analysis. RESULTS Analysis of a total of 4,543 COPD subjects identified one genome-wide significant locus on chromosome 5p15.2 (rs114929486, β = 0.42L, P = 4.66 × 10-8). CONCLUSIONS In COPD, TLCCT was associated with a SNP in dynein, axonemal, heavy chain 5 (DNAH5), a gene in which genetic variants can cause primary ciliary dyskinesia. DNAH5 could have an effect on hyperinflation in COPD.
Collapse
Affiliation(s)
- Jin Hwa Lee
- />Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- />Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Merry-Lynn N McDonald
- />Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Michael H Cho
- />Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- />Division of Pulmonary and Critical Care, Brigham and Women’s Hospital, Boston, MA USA
| | - Emily S Wan
- />Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- />Division of Pulmonary and Critical Care, Brigham and Women’s Hospital, Boston, MA USA
| | - Peter J Castaldi
- />Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Gary M Hunninghake
- />Division of Pulmonary and Critical Care, Brigham and Women’s Hospital, Boston, MA USA
| | - Nathaniel Marchetti
- />Division of Pulmonary and Critical Care Medicine, Department of Medicine, Temple University School of Medicine, Philadelphia, PA USA
| | | | | | - David A Lomas
- />Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Harvey O Coxson
- />Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Per S Bakke
- />Department of Clinical Science, University of Bergen, Bergen, Norway
- />Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Edwin K Silverman
- />Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- />Division of Pulmonary and Critical Care, Brigham and Women’s Hospital, Boston, MA USA
| | - Craig P Hersh
- />Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- />Division of Pulmonary and Critical Care, Brigham and Women’s Hospital, Boston, MA USA
| | - the COPDGene and ECLIPSE Investigators
- />Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- />Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, South Korea
- />Division of Pulmonary and Critical Care, Brigham and Women’s Hospital, Boston, MA USA
- />Division of Pulmonary and Critical Care Medicine, Department of Medicine, Temple University School of Medicine, Philadelphia, PA USA
- />National Jewish Health, Denver, CO USA
- />Wolfson Institute for Biomedical Research, University College London, London, UK
- />Department of Radiology, University of British Columbia, Vancouver, Canada
- />Department of Clinical Science, University of Bergen, Bergen, Norway
- />Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
135
|
Alcántara-Hernández R, Hernández-Méndez A, García-Sáinz JA. The phosphoinositide-dependent protein kinase 1 inhibitor, UCN-01, induces fragmentation: possible role of metalloproteinases. Eur J Pharmacol 2014; 740:88-96. [PMID: 25016091 DOI: 10.1016/j.ejphar.2014.06.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/28/2014] [Accepted: 06/20/2014] [Indexed: 12/26/2022]
Abstract
Phosphoinositide-dependent protein kinase 1 (PDK1) is a key enzyme, master regulator of cellular proliferation and metabolism; it is considered a key target for pharmacological intervention. Using membranes obtained from DDT1 MF-2 cells, phospho-PDK1 was identified by Western blotting, as two major protein bands of Mr 58-68 kDa. Cell incubation with the PDK1 inhibitor, UCN-01, induced a time- and concentration-dependent decrease in the amount of phospho-PDK1 with a concomitant appearance of a ≈42 kDa phosphorylated fragment. Knocking down PDK1 diminished the amount of phospho-PDK1 detected in membranes, accompanied by similarly decreased fragment generation. UCN-01-induced fragment generation was also observed in membranes from cells stably expressing a myc-tagged PDK1 construct. Other PDK1 inhibitors were also tested: OSU-03012 induced a clear decrease in phospho-PDK1 and increased the presence of the phosphorylated fragment in membrane preparations; in contrast, GSK2334470 and staurosporine induced only marginal increases in the amount of PDK1 fragment. Galardin and batimastat, two metalloproteinase inhibitors, markedly attenuated inhibitor-induced PDK1 fragment generation. Metalloproteinases 2, 3, and 9 co-immunoprecipitated with myc-PDK1 under baseline conditions and this interaction was stimulated by UCN-01; batimastat also markedly diminished this effect of the PDK1 inhibitor. Our results indicate that a series of protein kinase inhibitors, namely UCN-01 and OSU-03012 and to a lesser extent GSK2334470 and staurosporine induce PDK1 fragmentation and suggest that metalloproteinases could participate in this effect.
Collapse
Key Words
- Batimastat (BB-94) (CID 5362422). Galardin (GM 6001) (PubChem CID 132519)
- GSK2334470, (3S,6R)-1-[6-(3-amino-1H-indazol-6-yl)-2-(methylamino)-4-pyrimidinyl]-N-cyclohexyl-6-methyl-3-piperidinecarboxamide. ) (PubChem CID 46215815)
- OSU-03012, (2-amino-N-[4-[5-(2-phenanthrenyl)-3-trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-acetamide) (PubChem CID 10027278)
- PDK1
- Protein fragmentation
- Protein kinase
- Protein kinase inhibitor
- Staurosporine (PubChem CID 44259)
- UCN-01
- UCN-01, (7-hydroxystaurosporine (3R*,8S*, 9R*, 10R*,12R*)-2,3,9,10,11,12-hexahydro-3-hydroxy-9-methoxy-8-methyl-10-(methylamino)-8,12-epoxy-1H, 8H-2,7b,12a-triazadibenzo[a,g]-cyclonona[cde]triden-1-one) (PubChem CID 3078519)
Collapse
Affiliation(s)
- Rocío Alcántara-Hernández
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México DF 04510, México
| | - Aurelio Hernández-Méndez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México DF 04510, México
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México DF 04510, México.
| |
Collapse
|
136
|
Knowlden SA, Capece T, Popovic M, Chapman TJ, Rezaee F, Kim M, Georas SN. Regulation of T cell motility in vitro and in vivo by LPA and LPA2. PLoS One 2014; 9:e101655. [PMID: 25003200 PMCID: PMC4086949 DOI: 10.1371/journal.pone.0101655] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/10/2014] [Indexed: 12/11/2022] Open
Abstract
Lysophosphatidic acid (LPA) and the LPA-generating enzyme autotaxin (ATX) have been implicated in lymphocyte trafficking and the regulation of lymphocyte entry into lymph nodes. High local concentrations of LPA are thought to be present in lymph node high endothelial venules, suggesting a direct influence of LPA on cell migration. However, little is known about the mechanism of action of LPA, and more work is needed to define the expression and function of the six known G protein-coupled receptors (LPA 1-6) in T cells. We studied the effects of 18∶1 and 16∶0 LPA on naïve CD4+ T cell migration and show that LPA induces CD4+ T cell chemorepulsion in a Transwell system, and also improves the quality of non-directed migration on ICAM-1 and CCL21 coated plates. Using intravital two-photon microscopy, lpa2-/- CD4+ T cells display a striking defect in early migratory behavior at HEVs and in lymph nodes. However, later homeostatic recirculation and LPA-directed migration in vitro were unaffected by loss of lpa2. Taken together, these data highlight a previously unsuspected and non-redundant role for LPA2 in intranodal T cell motility, and suggest that specific functions of LPA may be manipulated by targeting T cell LPA receptors.
Collapse
Affiliation(s)
- Sara A. Knowlden
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Tara Capece
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Milan Popovic
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Timothy J. Chapman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Fariba Rezaee
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Steve N. Georas
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
137
|
Nagamatsu T, Iwasawa-Kawai Y, Ichikawa M, Kawana K, Yamashita T, Osuga Y, Fujii T, Schust DJ. Emerging roles for lysophospholipid mediators in pregnancy. Am J Reprod Immunol 2014; 72:182-91. [PMID: 24689547 DOI: 10.1111/aji.12239] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/25/2014] [Indexed: 12/22/2022] Open
Abstract
Recent progress in lipid research has unveiled new biologic roles for lysophospholipids as mediators of intercellular signaling. Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are representative lysophospholipids. Accumulating evidence suggests that, acting as intercellular mediators, these and other lysophospholipids may play important roles in physiological and pathological situations. This review discusses the possible involvement of LPA and S1P in reproductive processes, with a focus on the regulatory mechanisms of pregnancy maintenance. As LPA promotes prostaglandin synthesis, mediators in the LPA pathway may also play a significant role in implantation and parturition. S1P signaling is thought to be essential in vascular formation within the uteroplacental unit and in fetomaternal immunologic interactions. Derangements in either one of these lysophospholipid signaling pathways could result in pregnancy complications that may include implantation failure, preeclampsia, and preterm labor.
Collapse
Affiliation(s)
- Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|