101
|
Townsend EA, Negus SS, Poklis JL, Banks ML. Lorcaserin maintenance fails to attenuate heroin vs. food choice in rhesus monkeys. Drug Alcohol Depend 2020; 208:107848. [PMID: 31982193 PMCID: PMC7039750 DOI: 10.1016/j.drugalcdep.2020.107848] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The current opioid crisis has reinvigorated preclinical research in the evaluation of non-opioid candidate treatments for opioid use disorder (OUD). Emerging evidence suggests 5-HT2C receptor agonists may attenuate the abuse-related effects of opioids. This study evaluated effectiveness of 7-day treatment with the clinically available 5-HT2C agonist lorcaserin (Belviq®) on heroin-vs.-food choice in rhesus monkeys. Lorcaserin effects were compared to effects produced by 7-day saline substitution and by 7-day treatment with the opioid antagonist naltrexone. METHODS Adult male (1) and female (6) rhesus monkeys were trained to respond under a concurrent schedule of food delivery (1 g pellets, fixed-ratio 100 schedule) and intravenous heroin injections (0-0.032 mg/kg/injection, fixed-ratio 10 schedule) during daily 2 h sessions. Heroin choice dose-effect functions were determined daily before and following 7-day saline substitution or 7-day continuous treatment with naltrexone (0.0032-0.032 mg/kg/h, IV) or lorcaserin (0.032-0.32 mg/kg/h, IV). RESULTS Under baseline conditions, increasing heroin doses maintained a dose-dependent increase in heroin choice. Both saline substitution and 7-day naltrexone treatment significantly attenuated heroin choice and produced a reciprocal increase in food choice. Continuous lorcaserin (0.32 mg/kg/h) treatment significantly increased heroin choice. CONCLUSIONS In contrast to saline substitution and naltrexone, lorcaserin treatment was ineffective to reduce heroin-vs.-food choice. These preclinical results do not support the therapeutic potential and continued evaluation of lorcaserin as a candidate OUD treatment.
Collapse
Affiliation(s)
- E Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
102
|
Activation of GLP-1 receptors attenuates oxycodone taking and seeking without compromising the antinociceptive effects of oxycodone in rats. Neuropsychopharmacology 2020; 45:451-461. [PMID: 31581176 PMCID: PMC6969180 DOI: 10.1038/s41386-019-0531-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
Despite the effectiveness of current medications to treat opioid use disorder, there is still a high rate of relapse following detoxification. Thus, there is critical need for innovative studies aimed at identifying novel neurobiological mechanisms that could be targeted to treat opioid use disorder. A growing body of preclinical evidence indicates that glucagon-like peptide-1 (GLP-1) receptor agonists reduce drug reinforcement. However, the efficacy of GLP-1 receptor agonists in attenuating opioid-mediated behaviors has not been thoroughly investigated. Using recently established models of opioid-taking and -seeking behaviors, we showed that systemic administration of the GLP-1 receptor agonist exendin-4 reduced oxycodone self-administration and the reinstatement of oxycodone-seeking behavior in rats. We also identified behaviorally selective doses of exendin-4 that reduced opioid-taking and -seeking behaviors and did not produce adverse feeding effects in oxycodone-experienced rats. To identify a central site of action, we showed that systemic exendin-4 penetrated the brain and bound putative GLP-1 receptors on dopamine D1 receptor- and dopamine D2 receptor-expressing medium spiny neurons in the nucleus accumbens shell. Consistent with our systemic studies, infusions of exendin-4 directly into the accumbens shell attenuated oxycodone self-administration and the reinstatement of oxycodone-seeking behavior without affecting ad libitum food intake. Finally, exendin-4 did not alter the analgesic effects of oxycodone, suggesting that activation of GLP-1 receptors attenuated opioid reinforcement without reducing the thermal antinociceptive effects of oxycodone. Taken together, these findings suggest that GLP-1 receptors could serve as potential molecular targets for pharmacotherapies aimed at reducing opioid use disorder.
Collapse
|
103
|
Abijo T, Blum K, Gondré-Lewis MC. Neuropharmacological and Neurogenetic Correlates of Opioid Use Disorder (OUD) As a Function of Ethnicity: Relevance to Precision Addiction Medicine. Curr Neuropharmacol 2020; 18:578-595. [PMID: 31744450 PMCID: PMC7457418 DOI: 10.2174/1570159x17666191118125702] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/31/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Over 100 people die daily from opioid overdose and $78.5B per year is spent on treatment efforts, however, the real societal cost is multifold greater. Alternative strategies to eradicate/manage drug misuse and addiction need consideration. The perception of opioid addiction as a social/criminal problem has evolved to evidence-based considerations of them as clinical disorders with a genetic basis. We present evaluations of the genetics of addiction with ancestryspecific risk profiles for consideration. OBJECTIVE Studies of gene variants associated with predisposition to substance use disorders (SUDs) are monolithic, and exclude many ethnic groups, especially Hispanics and African Americans. We evaluate gene polymorphisms that impact brain reward and predispose individuals to opioid addictions, with a focus on the disparity of research which includes individuals of African and Hispanic descent. METHODOLOGY PubMed and Google Scholar were searched for: Opioid Use Disorder (OUD), Genome- wide association studies (GWAS); genetic variants; polymorphisms, restriction fragment length polymorphisms (RFLP); genomics, epigenetics, race, ethnic group, ethnicity, ancestry, Caucasian/ White, African American/Black, Hispanic, Asian, addictive behaviors, reward deficiency syndrome (RDS), mutation, insertion/deletion, and promotor region. RESULTS Many studies exclude non-White individuals. Studies that include diverse populations report ethnicity-specific frequencies of risk genes, with certain polymorphisms specifically associated with Caucasian and not African-American or Hispanic susceptibility to OUD or SUDs, and vice versa. CONCLUSION To adapt precision medicine-based addiction management in a blended society, we propose that ethnicity/ancestry-informed genetic variations must be analyzed to provide real precision- guided therapeutics with the intent to attenuate this uncontrollable fatal epidemic.
Collapse
Affiliation(s)
| | | | - Marjorie C. Gondré-Lewis
- Address correspondence to this author at the Department of Anatomy, Howard University College of Medicine, 520 W St NW, Washington DC 20059 USA; Tel/Fax: +1-202-806-5274; E-mail:
| |
Collapse
|
104
|
Nonhuman animal models of substance use disorders: Translational value and utility to basic science. Drug Alcohol Depend 2020; 206:107733. [PMID: 31790978 PMCID: PMC6980671 DOI: 10.1016/j.drugalcdep.2019.107733] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The National Institute on Drug Abuse (NIDA) recently released a Request for Information (RFI) soliciting comments on nonhuman animal models of substance use disorders (SUD). METHODS A literature review was performed to address the four topics outlined in the RFI and one topic inspired by the RFI: (1) animal models that best recapitulate SUD, (2) animal models that best balance the trade-offs between resources and ecological validity, (3) animal models whose translational value are frequently misrepresented or overrepresented by the scientific community, (4) aspects of SUD that are not currently being modeled in animals, and (5) animal models that are optimal for examining the basic mechanisms by which drugs produce their abuse-related effects. RESULTS Models that employ response-contingent drug administration, use complex schedules of reinforcement, measure behaviors that mimic the distinguishing features of SUD, and use animals that are phylogenetically similar to humans have the greatest translational value. Models that produce stable and reproducible baselines of behavior, lessen the number of uncontrolled variables, and minimize the influence of extraneous factors are best at examining basic mechanisms contributing to drug reward and reinforcement. CONCLUSIONS Nonhuman animal models of SUD have undergone significant refinements to increase their utility for basic science and translational value for SUD. The existing literature describes numerous examples of how these models may best be utilized to answer mechanistic questions of drug reward and identify potential therapeutic interventions for SUD. Progress in the field could be accelerated by further collaborations between researchers using animals versus humans.
Collapse
|
105
|
Li X, Slesinger PA. GABA B Receptors and Drug Addiction: Psychostimulants and Other Drugs of Abuse. Curr Top Behav Neurosci 2020; 52:119-155. [PMID: 33442842 DOI: 10.1007/7854_2020_187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabotropic GABAB receptors (GABABRs) mediate slow inhibition and modulate synaptic plasticity throughout the brain. Dysfunction of GABABRs has been associated with psychiatric illnesses and addiction. Drugs of abuse alter GABAB receptor (GABABR) signaling in multiple brain regions, which partly contributes to the development of drug addiction. Recently, GABABR ligands and positive allosteric modulators (PAMs) have been shown to attenuate the initial rewarding effect of addictive substances, inhibit seeking and taking of these drugs, and in some cases, ameliorate drug withdrawal symptoms. The majority of the anti-addiction effects seen with GABABR modulation can be localized to ventral tegmental area (VTA) dopamine neurons, which receive complex inhibitory and excitatory inputs that are modified by drugs of abuse. Preclinical research suggests that GABABR PAMs are emerging as promising candidates for the treatment of drug addiction. Clinical studies on drug dependence have shown positive results with GABABR ligands but more are needed, and compounds with better pharmacokinetics and fewer side effects are critically needed.
Collapse
Affiliation(s)
- Xiaofan Li
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
106
|
Patriarchi T, Cho JR, Merten K, Marley A, Broussard GJ, Liang R, Williams J, Nimmerjahn A, von Zastrow M, Gradinaru V, Tian L. Imaging neuromodulators with high spatiotemporal resolution using genetically encoded indicators. Nat Protoc 2019; 14:3471-3505. [PMID: 31732722 DOI: 10.1038/s41596-019-0239-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022]
Abstract
Multiple aspects of neural activity, from neuronal firing to neuromodulator release and signaling, underlie brain function and ultimately shape animal behavior. The recently developed and constantly growing toolbox of genetically encoded sensors for neural activity, including calcium, voltage, neurotransmitter and neuromodulator sensors, allows precise measurement of these signaling events with high spatial and temporal resolution. Here, we describe the engineering, characterization and application of our recently developed dLight1, a suite of genetically encoded dopamine (DA) sensors based on human inert DA receptors. dLight1 offers high molecular specificity, requisite affinity and kinetics and great sensitivity for measuring DA release in vivo. The detailed workflow described in this protocol can be used to systematically characterize and validate dLight1 in increasingly intact biological systems, from cultured cells to acute brain slices to behaving mice. For tool developers, we focus on characterizing five distinct properties of dLight1: dynamic range, affinity, molecular specificity, kinetics and interaction with endogenous signaling; for end users, we provide comprehensive step-by-step instructions for how to leverage fiber photometry and two-photon imaging to measure dLight1 transients in vivo. The instructions provided in this protocol are designed to help laboratory personnel with a broad range of experience (at the graduate or post-graduate level) to develop and utilize novel neuromodulator sensors in vivo, by using dLight1 as a benchmark.
Collapse
Affiliation(s)
- Tommaso Patriarchi
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jounhong Ryan Cho
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Katharina Merten
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Aaron Marley
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Gerard Joey Broussard
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA.,Princeton Neuroscience Institute and Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ruqiang Liang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - John Williams
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Mark von Zastrow
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
107
|
Jing M, Zhang Y, Wang H, Li Y. G-protein-coupled receptor-based sensors for imaging neurochemicals with high sensitivity and specificity. J Neurochem 2019; 151:279-288. [PMID: 31419844 PMCID: PMC6819231 DOI: 10.1111/jnc.14855] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 01/02/2023]
Abstract
Neurotransmitters and neuromodulators are key neurochemicals that mediate cell-cell communication, maintain the body's homeostasis, and control a wide range of biological processes. Thus, dysregulation of neurochemical signaling is associated with a range of psychiatric disorders and neurological diseases. Understanding the physiological and pathophysiological functions of neurochemicals, particularly in complex biological systems in vivo, requires tools that can probe their dynamics with high sensitivity and specificity. Recently, genetically encoded fluorescent sensors for visualizing specific neurochemicals were developed by coupling neurochemical-sensing G-protein-coupled receptors (GPCRs) with a circular-permutated fluorescent protein. These GPCR-based sensors can monitor the dynamics of neurochemicals in behaving animals with high spatiotemporal resolution. Here, we review recent progress regarding the development and application of GPCR-based sensors for imaging neurochemicals, and we discuss future perspectives.
Collapse
Affiliation(s)
- Miao Jing
- Chinese Institute for Brain Research, Beijing, China
| | - Yajun Zhang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| |
Collapse
|
108
|
Robinson JE, Coughlin GM, Hori AM, Cho JR, Mackey ED, Turan Z, Patriarchi T, Tian L, Gradinaru V. Optical dopamine monitoring with dLight1 reveals mesolimbic phenotypes in a mouse model of neurofibromatosis type 1. eLife 2019; 8:e48983. [PMID: 31545171 PMCID: PMC6819083 DOI: 10.7554/elife.48983] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder whose neurodevelopmental symptoms include impaired executive function, attention, and spatial learning and could be due to perturbed mesolimbic dopaminergic circuitry. However, these circuits have never been directly assayed in vivo. We employed the genetically encoded optical dopamine sensor dLight1 to monitor dopaminergic neurotransmission in the ventral striatum of NF1 mice during motivated behavior. Additionally, we developed novel systemic AAV vectors to facilitate morphological reconstruction of dopaminergic populations in cleared tissue. We found that NF1 mice exhibit reduced spontaneous dopaminergic neurotransmission that was associated with excitation/inhibition imbalance in the ventral tegmental area and abnormal neuronal morphology. NF1 mice also had more robust dopaminergic and behavioral responses to salient visual stimuli, which were independent of learning, and rescued by optogenetic inhibition of non-dopaminergic neurons in the VTA. Overall, these studies provide a first in vivo characterization of dopaminergic circuit function in the context of NF1 and reveal novel pathophysiological mechanisms.
Collapse
Affiliation(s)
- J Elliott Robinson
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Gerard M Coughlin
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Acacia M Hori
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Jounhong Ryan Cho
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Elisha D Mackey
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Zeynep Turan
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Tommaso Patriarchi
- Department of Biochemistry and Molecular MedicineUniversity of California, DavisDavisUnited States
| | - Lin Tian
- Department of Biochemistry and Molecular MedicineUniversity of California, DavisDavisUnited States
| | - Viviana Gradinaru
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| |
Collapse
|
109
|
van Steenbergen H, Eikemo M, Leknes S. The role of the opioid system in decision making and cognitive control: A review. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:435-458. [PMID: 30963411 PMCID: PMC6599188 DOI: 10.3758/s13415-019-00710-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The opioid system regulates affective processing, including pain, pleasure, and reward. Restricting the role of this system to hedonic modulation may be an underestimation, however. Opioid receptors are distributed widely in the human brain, including the more "cognitive" regions in the frontal and parietal lobes. Nonhuman animal research points to opioid modulation of cognitive and decision-making processes. We review emerging evidence on whether acute opioid drug modulation in healthy humans can influence cognitive function, such as how we choose between actions of different values and how we control our behavior in the face of distracting information. Specifically, we review studies employing opioid agonists or antagonists together with experimental paradigms of reward-based decision making, impulsivity, executive functioning, attention, inhibition, and effort. Although this field is still in its infancy, the emerging picture suggests that the mu-opioid system can influence higher-level cognitive function via modulation of valuation, motivation, and control circuits dense in mu-opioid receptors, including orbitofrontal cortex, basal ganglia, amygdalae, anterior cingulate cortex, and prefrontal cortex. The framework that we put forward proposes that opioids influence decision making and cognitive control by increasing the subjective value of reward and reducing aversive arousal. We highlight potential mechanisms that might underlie the effects of mu-opioid signaling on decision making and cognitive control and provide directions for future research.
Collapse
Affiliation(s)
- Henk van Steenbergen
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Marie Eikemo
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Siri Leknes
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
110
|
Nestler EJ, Lüscher C. The Molecular Basis of Drug Addiction: Linking Epigenetic to Synaptic and Circuit Mechanisms. Neuron 2019; 102:48-59. [PMID: 30946825 PMCID: PMC6587180 DOI: 10.1016/j.neuron.2019.01.016] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/01/2019] [Accepted: 01/10/2019] [Indexed: 12/22/2022]
Abstract
Addiction is a disease in which, after a period of recreational use, a subset of individuals develops compulsive use that does not stop even in light of major negative consequences. Here, we review the evidence for underlying epigenetic remodeling in brain in two settings. First, excessive dopamine signaling during drug use may modulate gene expression, altering synaptic function and circuit activity and leading over time to maladaptive behaviors in vulnerable individuals. Second, on a longer timescale, life experience can shape the epigenetic landscape in brain and thereby may contribute to an individual's vulnerability by amplifying drug-induced changes in gene expression that drive the transition to addiction. We conclude by exploring how epigenetic mechanisms might serve as therapeutic targets for addiction treatments.
Collapse
Affiliation(s)
- Eric J Nestler
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Clinic of Neurology, Departement of Clinical Neurosiences, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
111
|
Corre J, van Zessen R, Loureiro M, Patriarchi T, Tian L, Pascoli V, Lüscher C. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. eLife 2018; 7:39945. [PMID: 30373717 PMCID: PMC6207421 DOI: 10.7554/elife.39945] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
The dopamine (DA) hypothesis posits the increase of mesolimbic dopamine levels as a defining commonality of addictive drugs, initially causing reinforcement, eventually leading to compulsive consumption. While much experimental evidence from psychostimulants supports this hypothesis, it has been challenged for opioid reinforcement. Here, we monitor genetically encoded DA and calcium indicators as well as cFos in mice to reveal that heroin activates DA neurons located in the medial part of the VTA, preferentially projecting to the medial shell of the nucleus accumbens (NAc). Chemogenetic and optogenetic manipulations of VTA DA or GABA neurons establish a causal link to heroin reinforcement. Inhibition of DA neurons blocked heroin self-administration, while heroin inhibited optogenetic self-stimulation of DA neurons. Likewise, heroin occluded the self-inhibition of VTA GABA neurons. Together, these experiments support a model of disinhibition of a subset of VTA DA neurons in opioid reinforcement.
Collapse
Affiliation(s)
- Julie Corre
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Ruud van Zessen
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Michaël Loureiro
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Tommaso Patriarchi
- School of Medicine, Department of Biochemistry and Molecular Medicine, University of California Davis, California, United States
| | - Lin Tian
- School of Medicine, Department of Biochemistry and Molecular Medicine, University of California Davis, California, United States
| | - Vincent Pascoli
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Christian Lüscher
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland.,Service of Neurology, University of Geneva Hospital, Geneva, Switzerland
| |
Collapse
|