101
|
Wang Z, An Z, Richel A, Huang M, Gou X, Xu D, Zhang M, Mo H, Hu L, Zhou X. Ferrous sulfate remodels the properties of sodium alginate-based hydrogel and facilitates the healing of wound infection caused by MRSA. Carbohydr Polym 2024; 346:122554. [PMID: 39245535 DOI: 10.1016/j.carbpol.2024.122554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 09/10/2024]
Abstract
Frequent occurrence of wound infection caused by multiple-resistant bacteria (MRB) has posed a serious challenge to the current healthcare system relying on antibiotics. The development of novel antimicrobial materials with high safety and efficacy to heal wound infection is of great importance in combating this crisis. Herein, we prepared a promising antibacterial hydrogel by cross-linking ferrous ions (Fe2+) with the deprotonated carboxyl anion in sodium alginate (Na-ALG) to cure wound infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Interestingly, ferrous-modified Na-ALG (Fe-ALG) hydrogel demonstrated better properties compared to the traditional Na-ALG-based hydrogels, including injectability, self-healing, appropriate fluidity, high-water retention, potent MRSA-killing efficacy, and excellent biocompatibility. Importantly, the addition of Fe2+ enhances the antibacterial efficacy of the Na-ALG hydrogel, enabling it to effectively eliminate MRSA and accelerate the healing of antibiotic-resistant bacterial-infected wounds in a remarkably short period (10 days). This modification not only facilitates wound closure and fur generation, but also mitigates systemic inflammation, thereby effectively impeding the spread of MRSA to the lungs. Taken together, Fe-ALG hydrogel is a promising therapeutic material for treating wound infections by Staphylococcus aureus, especially by antibiotic-resistant strains like MRSA.
Collapse
Affiliation(s)
- Zhen Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China; Laboratory of Biomass and Green Technologies, University of Liege, Belgium
| | - Zinuo An
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege, Belgium
| | - Minmin Huang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Dan Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Min Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Haizhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Liangbin Hu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China.
| | - Xiaohui Zhou
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
102
|
Shu K, Huang YX, Yu JB, Yang X, Luo MD, Chen XP. A synergistic enhancement strategy for mechanical and conductive properties of hydrogels with dual ionically cross-linked κ-carrageenan/poly(sodium acrylate-co-acrylamide) network. Carbohydr Polym 2024; 346:122638. [PMID: 39245503 DOI: 10.1016/j.carbpol.2024.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
Applying conductive hydrogels in electronic skin, health monitoring, and wearable devices has aroused great research interest. Yet, it remains a significant challenge to prepare conductive hydrogels simultaneously with superior mechanical, self-recovery, and conductivity performance. Herein, a dual ionically cross-linked double network (DN) hydrogel is fabricated based on K+ and Fe3+ ion cross-linked κ-carrageenan (κ-CG) and Fe3+ ion cross-linked poly(sodium acrylate-co-acrylamide) P(AANa-co-AM). Benefiting from the abundance of hydrogen bonds and metal coordination bonds, the conductive hydrogel has excellent mechanical properties (fracture strain up to 1420 %, fracture stress up to 2.30 MPa, and toughness up to 20.63 MJ/m3) and good self-recovery performance (the recovery rate of the toughness can reach 85 % after waiting for 1 h). Meanwhile, due to the introduction of dual metal ions of K+ and Fe3+, the ionic conductivity of conductive hydrogel is up to 1.42 S/m. Furthermore, the hydrogel strain sensor has good sensitivity with a gauge factor (GF) of 2.41 (0-100 %). It can be a wearable sensor that monitors different human motions, such as sit-ups. This work offers a new synergistic strategy for designing a hydrogel strain sensor with high mechanical, self-recovery, and conductive properties.
Collapse
Affiliation(s)
- Ku Shu
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University, Chongqing 400,044, China
| | - Ye-Xiong Huang
- School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Jia-Bing Yu
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University, Chongqing 400,044, China
| | - Xuan Yang
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University, Chongqing 400,044, China
| | - Mei-Dan Luo
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University, Chongqing 400,044, China
| | - Xian-Ping Chen
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University, Chongqing 400,044, China.
| |
Collapse
|
103
|
Ospina C, Ibáñez-Ibáñez PF, Tagliaro I, Stendardo L, Tosatti S, Antonini C. Withdrawn: Low ice adhesion on soft surfaces: Elasticity or lubrication effects? J Colloid Interface Sci 2024; 676:1118. [PMID: 39111122 DOI: 10.1016/j.jcis.2024.07.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Catalina Ospina
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Pablo F Ibáñez-Ibáñez
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy; Department of Applied Physics, University of Granada, Av. de Fuente Nueva, s/n, 18071, Granada, Spain
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy.
| | - Luca Stendardo
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | | | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy.
| |
Collapse
|
104
|
Dong S, Qian Z, Liu X, Liu F, Zhan Q, Hu Q, Zhao L. Exploring gelation properties and structural features on 3D printability of compound proteins emulsion gels: Emphasizing pH-regulated non-covalent interactions with xanthan gum. Food Chem 2024; 461:141005. [PMID: 39213733 DOI: 10.1016/j.foodchem.2024.141005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Rational regulation of pH and xanthan gum (XG) concentration has the potential to modulate interactions among macromolecules and enhance 3D printability. This study investigated non-covalent interactions between XG and other components within compound proteins emulsion gel systems across varying pH values (4.0-8.0) and XG concentrations (0-1 wt%) and systematically explored impacts of gelation properties and structural features on 3D printability. The results of rheological and structural features indicated that pH-regulated non-covalent interactions were crucial for maintaining structural stability of emulsion gels with the addition of XG. The 3D printability of emulsion gels would be significantly improved through moderate depletion flocculation produced when XG concentration was 0.75 wt% at the pH 6.0. Mechanical properties like viscosity exhibited a strongly negative correlation with 3D printability, whereas structural stability showed a significantly positive correlation. Overall, this study provided theoretical insights for the development of emulsion gels for 3D printing by regulating non-covalent interactions.
Collapse
Affiliation(s)
- Sizhe Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheng Qian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feifei Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiuhui Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
105
|
Duan L, Fu H, Sun H, Sun Y, Lu Z, Liu J. Cu 2S/C@NiMnCe-layered double hydroxide with core-shell rods array structure as the cathode for high performance supercapacitors. J Colloid Interface Sci 2024; 676:331-342. [PMID: 39042960 DOI: 10.1016/j.jcis.2024.07.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
The selection of highly efficient materials and the construction of advantageous structures are essential for realizing high-performance electrode materials. In this paper, electrode material Cu2S/C@NiMnCe-LDH/CF with excellent morphology and high performance has been successfully designed and prepared by simple hydrothermal and calcination techniques. First, ZIF-67 is loaded on the outer layer of Cu2S rods to obtain core-shell structured Cu2S@ZIF-67 rods, whose ZIF-67 MOF shell is carbonized to obtain Cu2S@C rods. Then, NiMnCe-LDH are epitaxially loaded on the outer layer of Cu2S@C to obtain Cu2S/C@NiMnCe-LDH rods. At a current density of 2 mA cm-2, Cu2S/C@NiMnCe-LDH/CF exhibits an area capacitance of 5176.4 mF cm-2. The mass capacitance and the energy density of the Cu2S/C@NiMnCe-LDH/CF//AC asymmetric supercapacitor (ASC) reach 150.82F g-1 at a sweep rate of 0.8 A/g and 53.62 Wh kg-1 at a power density of 639.99 W kg-1, respectively. Meanwhile, after 8000 electrochemical cycles, the specific capacitance of Cu2S/C@NiMnCe-LDH/CF//AC still has a retention rate of 86.32 %, which proves its excellent cycling stability. These results demonstrate a new strategy for the preparation of novel core-shell structured Cu2S/C@NiMnCe-LDH/CF nanocomposite material for electrode materials of energy storage devices with superb performance.
Collapse
Affiliation(s)
- Lejiao Duan
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Hucheng Fu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Huiru Sun
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Yuesheng Sun
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Zhongqi Lu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China.
| |
Collapse
|
106
|
Huang S, Zhang Y, Wang T, Li X. Molecular weight-mediated interaction changes for enhancing structural stability, release behavior and M cells-targeting transport efficacy of starch-based nanoparticles. Carbohydr Polym 2024; 346:122639. [PMID: 39245530 DOI: 10.1016/j.carbpol.2024.122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/10/2024]
Abstract
Molecular weight (Mw) of ligand-mediated nanocarriers plays a pivotal role in their architecture and properties. In this study, self-assembled ovalbumin (OVA)-loaded nanoparticles were meticulously engineered by starch polyelectrolytes with different Mw. Results unveiled that, tailoring Mw of GRGDS pentapeptides-grafted carboxymethyl starch (G-CMS) displayed strong binding-affinity and transport efficiency through microfold cells (M cells) pathway in the simulated intestinal epithelial cell monolayer in which M cells were randomly located in the Caco-2 cells monolayer. Notably, nanoparticles assembled from G-CMS with relatively higher Mw exhibited more compact structures due to the stronger interactions between layers compared to that with relatively lower Mw, which rendered remarkably stable and only 19.01 % in vitro OVA leakage under conditions of the upper gastrointestinal tract. Subsequently, more intact nanoparticles reached M cells after in vitro digestion and exhibited higher transport efficiency through the M cells pathways (apparent permeability: 9.38 × 10-5 cm/s) than Caco-2 cells, attributing to specific- and non-specific binding affinity towards M cells. Therefore, optimal Mw tailoring of starch polyelectrolytes can mediate the molecular interactions among their assembled layers and the interactions with M cells to balance the structural compactness, release and transport efficacy of nanoparticles, holding promise for advancing M cells-targeting oral delivery technologies.
Collapse
Affiliation(s)
- Shuangxia Huang
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yiping Zhang
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Tianxing Wang
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoxi Li
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
107
|
Jin K, Lan H, Han Y, Qian J. Exosomes in cancer diagnosis based on the Latest Evidence: Where are We? Int Immunopharmacol 2024; 142:113133. [PMID: 39278058 DOI: 10.1016/j.intimp.2024.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/09/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Exosomes are small extracellular vesicles (EVs) derived from various cellular sources and have emerged as favorable biomarkers for cancer diagnosis and prognosis. These vesicles contain a variety of molecular components, including nucleic acids, proteins, and lipids, which can provide valuable information for cancer detection, classification, and monitoring. However, the clinical application of exosomes faces significant challenges, primarily related to the standardization and scalability of their use. In order to overcome these challenges, sophisticated methods such as liquid biopsy and imaging are being combined to augment the diagnostic capabilities of exosomes. Additionally, a deeper understanding of the interaction between exosomes and immune system components within the tumor microenvironment (TME) is essential. This review discusses the biogenesis and composition of exosomes, addresses the current challenges in their clinical translation, and highlights recent technological advancements and integrative approaches that support the role of exosomes in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China.
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China; Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Yuejun Han
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
108
|
Xu W, Jia A, Lei Z, Wang J, Jiang H, Wang S, Wang Q. Stimuli-responsive prodrugs with self-immolative linker for improved cancer therapy. Eur J Med Chem 2024; 279:116928. [PMID: 39362023 DOI: 10.1016/j.ejmech.2024.116928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Self-immolative prodrugs have gained significant attention as an innovative approach for targeted cancer therapy. These prodrugs are engineered to release the active anticancer agents in response to specific triggers within the tumor microenvironment, thereby improving therapeutic precision while reducing systemic toxicity. This review focuses on the molecular architecture and design principles of self-immolative prodrugs, emphasizing the role of stimuli-responsive linkers and activation mechanisms that enable controlled drug release. Recent advancements in this field include the development of prodrugs that incorporate targeting moieties for enhanced site-specificity. Moreover, the review discusses the incorporation of targeting moieties to achieve site-specific drug delivery, thereby improving the selectivity of treatment. By summarizing key research from the past five years, this review highlights the potential of self-immolative prodrugs to revolutionize cancer treatment strategies and pave the way for their integration into clinical practice.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Pediatric Intensive Care Medicine, Hainan Women and Children's Medical Center, Haikou, China
| | - Ang Jia
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhixian Lei
- Department of Pediatric Intensive Care Medicine, Hainan Women and Children's Medical Center, Haikou, China
| | - Jianing Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Hongfei Jiang
- School of Pharmacy, Qingdao University, Qingdao, 266071, China.
| | - Shuai Wang
- Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, Shandong, China.
| | - Qi Wang
- Department of Pediatric Intensive Care Medicine, Hainan Women and Children's Medical Center, Haikou, China.
| |
Collapse
|
109
|
Shao W, Ren H, Yin M, Li X, Zhang F, Wang X, Li J, Zhang S, Xu M, Che L, Zhang Y, Yang J, Pang Q, Liu J, Li Z, Xue J, Hu H, Li M. Enhanced stability and reduced irritation of 4-n-butylresorcinol via nanoemulsion formulation: Implications for skin pigmentation treatment. Eur J Med Chem 2024; 279:116867. [PMID: 39326268 DOI: 10.1016/j.ejmech.2024.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024]
Abstract
4-n-butylresorcinol (4-nBR) is a valuable ingredient to lighten skin and reduce pigmentation, contributing to an even skin tone and a more youthful appearance. However, its poor solubility, low stability, and strong irritation to the skin limit its application. In this study, 4-nBR was prepared into 4-n-butylresorcinol nanoemulsion (4-nBR-NE) for the first time, enhancing the solubility and stability of 4-nBR while greatly reducing its skin irritation. The relationship between the viscosity of nanoemulsion and the formulation process, as well as the impact of surfactant ratio on the formability of 4-nBR-NE were further studied. This led to the successful development of a nanoemulsion with adjustable viscosity (AV-NE) and with a low surfactant content. The particle size of 4-nBR-NE was 13.34 ± 0.16 nm with a PDI of 0.0853 ± 0.0191, indicating a uniform particle size distribution. The encapsulation rate of 4-nBR-NE was determined to be 80.05 ± 0.75 % via UV-Vis spectrophotometry. In addition, 4-nBR-NE demonstrated excellent stability over several months, with negligible changes in particle size. Cellular and transdermal evaluations confirmed that the preparation of 4-nBR-NE effectively reduced the original irritation cause by 4-nBR on cells and skin. Then, 4-nBR-NE was incorporated into an essence. This advancement enhances the applicability of 4-nBR in treating pigmentation disorders such as melasma and freckles, thereby increasing its applicability in pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Wanhui Shao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Hongmeng Ren
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Mengsi Yin
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xinyi Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Faxin Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xianglong Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jiaxu Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Siqi Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Mengju Xu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Linze Che
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yuxi Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jian Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Qianchan Pang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jinjun Liu
- Jining Huanju Pharma Co., Ltd, Jining, Shandong, 272000, China
| | - Zuyin Li
- Bode Intelligent Manufacturing (Guangzhou) Biotechnology Co., Ltd. Guangzhou, Guangdong, 510000, China
| | - Jianjun Xue
- Department of Pharmacology, School of Basic Medicine, Jining Medical University, Jining, Shandong, 272000, China.
| | - Haijie Hu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Mingyuan Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
110
|
Wang Q, Tao H, Wang H, Chen K, Zhu P, Chen W, Shi F, Gu Y, Xu Y, Geng D. Albiflorin inhibits osteoclastogenesis and titanium particles-induced osteolysis via inhibition of ROS accumulation and the PI3K/AKT signaling pathway. Int Immunopharmacol 2024; 142:113245. [PMID: 39340985 DOI: 10.1016/j.intimp.2024.113245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Periprosthetic osteolysis (PPO), caused by wear particles, is a significant complication of total joint replacement, leading to prosthesis failure. Previous research has highlighted the crucial role of osteoclast-induced bone destruction in PPO progression. Albiflorin (AF), a monoterpene glycoside from Paeonia lactiflora, is a key active ingredient known for its antioxidant and anti-inflammatory properties. Although AF has shown promise in treating various conditions, its impact on osteoclasts and PPO remains unexplored. Our study revealed that AF could effectively inhibit osteoclast differentiation to reduce overactivated bone resorption and effectively inhibit the accumulation of reactive oxygen species (ROS) induced by wear particles. In vitro experiments also confirmed that AF could effectively inhibit the PI3K/AKT signaling pathway and inhibit inflammation to regulate osteoclast generation. Studies in animal models have also verified the antioxidant and anti-inflammatory properties of AF. In summary, the above studies indicate that AF inhibits osteoclastogenesis via inhibiting ROS accumulation and the PI3K/AKT signaling pathway, which may be a potential therapeutic method for PPO.
Collapse
Affiliation(s)
- Qiufei Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Heng Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Hai'an People's Hospital, Zhongba Road 17, Hai'an, Jiangsu, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenxiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Feng Shi
- Department of Dermatology and Venereology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China.
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
111
|
Zhang Q, Zhang X, Qi Y, Li Y, Guo Y, Jiang H, Chen Y, Liu J. Interaction mechanism and compatibility studies of silk protein peptide (SPP) with the common surfactants SDS and DTAB. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124833. [PMID: 39033608 DOI: 10.1016/j.saa.2024.124833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
The molecular interaction of low-molecular-weight SPP with common surfactants (SDS and DTAB) is a more complicated process than has been long believed. In this work, the interaction mechanism between SDS/DTAB and SPP was proposed using multiple methods including conductivity measurements, ST, UV-vis, FT-IR, DLS, fluorescence spectroscopy, and molecular docking simulations. Moreover, the foaming properties of the mixed systems were studied, and they were evaluated as cosmetics preservatives. The effects of various surfactant and protein concentrations and ratios on compatibility and functionality were studied. Based on the results, the mechanism of complex formation was identified as a cooperative van der Waals interaction followed by hydrophobic interaction and hydrogen bonding. A simpler head group leads to easier aggregation and interaction with the SPP, the formation of smaller-sized complexes, and a weaker impact on the fluorescence intensity. Thus, SDS monomers easily aggregate on SPP chains, leading to a stronger influence on the final secondary structure of SPP. This was confirmed by multiple spectroscopy methods. Comparing its single surfactant system, the SDS-SPP solution demonstrates better foaming power and the DTAB-SPP solution shows higher bacteriostatic activity. The good compatibility between SDS/DTAB and SPP can improve the functional properties of SDS or DTAB as well as lower the optimal concentration of each component. These results provide data and theoretical support for the design of cosmetic product formulas.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Xinru Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yaxuan Qi
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yutong Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yu Guo
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hanlu Jiang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yanrong Chen
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, Shandong 250200, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| |
Collapse
|
112
|
Zhang ZH, Zhang XB, Wang P, Xu SH, Liang ZQ, Ye CQ, Wang XM. Dye-sensitized lanthanide-doped upconversion nanoprobe for enhanced sensitive detection of Fe 3+ in human serum and tap water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124834. [PMID: 39032231 DOI: 10.1016/j.saa.2024.124834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Iron ion (Fe3+) detection is crucial for human health since it plays a crucial role in many physiological activities. In this work, a novel Schiff-base functionalized cyanine derivative (CyPy) was synthesized, which was successfully assembled on the surface of upconversion nanoparticles (UCNPs) through an amphiphilic polymer encapsulation method. In the as-designed nanoprobe, CyPy, a recognizer of Fe3+, is served as energy donor and β-NaYF4:Yb,Er upconversion nanoparticles are adopted as energy acceptor. As a result, a 93-fold enhancement of upconversion luminescence is achieved. The efficient energy transfer from CyPy to β-NaYF4:Yb,Er endows the nanoprobe a high sensitivity for Fe3+ in water with a low detection limit of 0.21 μM. Moreover, the nanoprobe has been successfully applied for Fe3+ determination in human serum and tap water samples with recovery ranges of 95 %-105 % and 97 %-106 %, respectively. Moreover, their relative standard deviations are all below 3.72 %. This work provides a sensitive and efficient methodology for Fe3+ detection in clinical and environmental testing.
Collapse
Affiliation(s)
- Zi-Hang Zhang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiao-Bo Zhang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Pu Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Su-Hang Xu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zuo-Qin Liang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Chang-Qing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiao-Mei Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
113
|
Ye T, Zhong Z, Cappellesso F, Deswarte K, Chen Y, Lauwers H, De Lombaerde E, Gontsarik M, Lienenklaus S, Van Lysebetten D, Sanders NN, Lambrecht BN, De Koker S, Laoui D, De Geest BG. CO-DELIVERY of glutamic acid-extended peptide antigen and imidazoquinoline TLR7/8 agonist via ionizable lipid nanoparticles induces protective anti-tumor immunity. Biomaterials 2024; 311:122693. [PMID: 38996672 DOI: 10.1016/j.biomaterials.2024.122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Cancer vaccines aim at generating cytotoxic CD8+ T cells that kill cancer cells and confer durable tumor regression. Hereto, CD8+ peptide epitopes should be presented by antigen presenting cells to CD8+ T cells in lymphoid tissue. Unfortunately, in unformulated soluble form, peptide antigens are poorly taken up by antigen presenting cells and do not efficiently reach lymph nodes. Hence, the lack of efficient delivery remains a major limitation for successful clinical translation of cancer vaccination using peptide antigens. Here we propose a generic peptide nanoformulation strategy by extending the amino acid sequence of the peptide antigen epitope with 10 glutamic acid residues. The resulting overall anionic charge of the peptide allows encapsulation into lipid nanoparticles (peptide-LNP) by electrostatic interaction with an ionizable cationic lipid. We demonstrate that intravenous injection of peptide-LNP efficiently delivers the peptide to immune cells in the spleen. Peptide-LNP that co-encapsulate an imidazoquinoline TLR7/8 agonist (IMDQ) induce robust innate immune activation in a broad range of immune cell subsets in the spleen. Peptide-LNP containing the minimal CD8+ T cell epitope of the HPV type 16 E7 oncoprotein and IMDQ induces high levels of antigen-specific CD8+ T cells in the blood, and can confer protective immunity against E7-expressing tumors in both prophylactic and therapeutic settings.
Collapse
Affiliation(s)
- Tingting Ye
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Zifu Zhong
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Federica Cappellesso
- Lab of Cellular and Molecular Immunology, Brussel Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Heleen Lauwers
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | | | - Mark Gontsarik
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Ghent University, Merelbeke, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Damya Laoui
- Lab of Cellular and Molecular Immunology, Brussel Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium.
| | | |
Collapse
|
114
|
Mao X, Qiao C, Zhao Z, Huang C, Yang D, Ma H, Hu Y, Zhang H, Zhu L, Zeng H. Probing the interfacial behaviors of interfacially active and non-active asphaltenes and their impact on emulsion stability. J Colloid Interface Sci 2024; 675:731-745. [PMID: 38996703 DOI: 10.1016/j.jcis.2024.06.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
HYPOTHESIS Asphaltenes subfractions with distinct interfacial behaviors may play different roles in stabilizing oil-water emulsions. EXPERIMENTS In this work, whole asphaltenes were separated into interfacially active asphaltenes (IAA) and interfacially non-active asphaltenes (INAA). Employing advanced nanomechanical techniques, we have explored the compositions, morphologies, sizes, adsorption, and interfacial behaviors of IAA and INAA. FINDINGS IAA exhibits a high and unevenly distributed oxygen content, distinguishing it from INAA. In toluene, the diameters of IAA and INAA are about 60 nm and 6 nm, respectively. When adsorbed irreversibly on mica surfaces, the thickness of the IAA and INAA film was measured at ∼5.5 nm or 1 nm, respectively; while in a toluene solution, the film thickness reached ∼46 nm and 3.1 nm for IAA and INAA, respectively. IAA demonstrates superior interfacial activity, and elastic/viscous moduli compared to INAA at the water-toluene interface. Quantified surface force measurements reveal that IAA stabilizes water droplets in toluene at a concentration of only 10 mg/L, while INAA requires a higher concentration of 100 mg/L. This work provides the first comprehensive investigation into the adsorption and interfacial behaviors of asphaltene subfractions and provides useful insights into the asphaltenes-stabilization mechanism of emulsions.
Collapse
Affiliation(s)
- Xiaohui Mao
- College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Charley Huang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Diling Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongtao Ma
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ying Hu
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Liping Zhu
- College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
115
|
Wei Y, Cai Z, Liu Z, Liu C, Kong T, Li Z, Song Y. All-aqueous synthesis of alginate complexed with fibrillated protein microcapsules for membrane-bounded culture of tumor spheroids. Carbohydr Polym 2024; 345:122580. [PMID: 39227124 DOI: 10.1016/j.carbpol.2024.122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Water-in-water (W/W) emulsions provide bio-compatible all-aqueous compartments for artificial patterning and assembly of living cells. Successful entrapment of cells within a W/W emulsion via the formation of semipermeable capsules is a prerequisite for regulating on the size, shape, and architecture of cell aggregates. However, the high permeability and instability of the W/W interface, restricting the assembly of stable capsules, pose a fundamental challenge for cell entrapment. The current study addresses this problem by synthesizing multi-armed protein fibrils and controlling their assembly at the W/W interface. The multi-armed protein fibrils, also known as 'fibril clusters', were prepared by cross-linking lysozyme fibrils with multi-arm polyethylene glycol (PEG) via click chemistry. Compared to linear-structured fibrils, fibril clusters are strongly adsorbed at the W/W interface, forming an interconnected meshwork that better stabilizes the W/W emulsion. Moreover, when fibril clusters are complexed with alginate, the hybrid microcapsules demonstrate excellent mechanical robustness, semi-permeability, cytocompatibility and biodegradability. These advantages enable the encapsulation, entrapment and long-term culture of tumor spheroids, with great promise for applications for anti-cancer drug screening, tumor disease modeling, and tissue repair engineering.
Collapse
Affiliation(s)
- Yue Wei
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Zhixiang Cai
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, Zhejiang 314100, China.
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Tiantian Kong
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518071, China.
| | - Zhiwei Li
- Department of Orthopedic Trauma, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
116
|
Zhang Y, Sun N, Hu F, Zhang W, Gao Q, Bai Q, Zheng C, Chen Q, Han Y, Lu T. Combined release of LL37 peptide and zinc ion from a mussel-inspired coating on porous titanium for infected bone defect repairing. Colloids Surf B Biointerfaces 2024; 244:114181. [PMID: 39216443 DOI: 10.1016/j.colsurfb.2024.114181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Implant-associated infections impose great burden on patient health and public healthcare. Antimicrobial peptides and metal ions are generally incorporated onto implant surface to deter bacteria colonization. However, it is still challenging to efficiently prevent postoperative infections at non-cytotoxic dosages. Herein, a scaffold based on porous titanium coated with a mussel-inspired dual-diameter TiO2 nanotubes is developed for loading dual drugs of LL37 peptide and Zn2+ with different sizes and characteristics. Benefiting from in-situ formed polydopamine layer and dual-diameter nanotubular structure, the scaffold provides an efficient platform for controllable drugs elution: accelerated release under acidic condition and sustained release for up to 28 days under neutral/alkalescent circumstances. Such combination of dual drugs simultaneously enhanced antibacterial efficacy and osteogenesis. In antibacterial test, LL37 peptide serving as bacteria membrane puncture agent, and Zn2+ acting as ROS generator, cooperatively destroyed bacterial membrane integrity and subsequently damaged bacterial DNA, endowing dual-drug loaded scaffold with remarkable bactericidal efficiency of > 92 % in vitro and > 99 % in vivo. Noteworthily, dual-drug loaded scaffold promoted bone-implant osteointegration under infectious microenvironment, overmatching single-drug load ones. It provides a promising strategy on surface modification of implant for infected bone defect repairing.
Collapse
Affiliation(s)
- Yanni Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Na Sun
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fangfang Hu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenhui Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qian Gao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Que Bai
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Caiyun Zheng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Tingli Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
117
|
Charlton SG, Jana S, Chen J. Yielding behaviour of chemically treated Pseudomonas fluorescens biofilms. Biofilm 2024; 8:100209. [PMID: 39071175 PMCID: PMC11279707 DOI: 10.1016/j.bioflm.2024.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
The mechanics of biofilms are intrinsically shaped by their physicochemical environment. By understanding the influence of the extracellular matrix composition, pH and elevated levels of cationic species on the biofilm rheology, novel living materials with tuned properties can be formulated. In this study, we examine the role of a chaotropic agent (urea), two divalent cations and distilled deionized water on the nonlinear viscoelasticity of a model biofilm Pseudomonas fluorescens. The structural breakdown of each biofilm is quantified using tools of non-linear rheology. Our findings reveal that urea induced a softening response, and displayed strain overshoots comparable to distilled deionized water, without altering the microstructural packing fraction and macroscale morphology. The absorption of divalent ferrous and calcium cations into the biofilm matrix resulted in stiffening and a reduction in normalized elastic energy dissipation, accompanied by macroscale morphological wrinkling and moderate increases in the packing fraction. Notably, ferrous ions induced a predominance of rate dependent yielding, whereas the calcium ions resulted in equal contribution from both rate and strain dependent yielding and structural breakdown of the biofilms. Together, these results indicate that strain rate increasingly becomes an important factor controlling biofilm fluidity with cation-induced biofilm stiffening. The finding can help inform effective biofilm removal protocols and in development of bio-inks for additive manufacturing of biofilm derived materials.
Collapse
Affiliation(s)
- Samuel G.V. Charlton
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, 8093, Switzerland
- Newcastle University, School of Engineering, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Saikat Jana
- Ulster University, School of Engineering, 2-24 York Street, Belfast, BT15 1AP, United Kingdom
- Newcastle University, School of Engineering, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Jinju Chen
- Newcastle University, School of Engineering, Newcastle Upon Tyne, NE1 7RU, United Kingdom
- Loughborough University, Department of Materials, Loughborough, LE11 3TU, United Kingdom
| |
Collapse
|
118
|
Du K, Zhang D, Wu X, Shi P, Zhang S. Hierarchical electrodes with superior cycling performance using porous material based on cellulose nanofiber as flexible substrate. Carbohydr Polym 2024; 345:122590. [PMID: 39227126 DOI: 10.1016/j.carbpol.2024.122590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
The development and application of flexible electrodes with extended cycle life have long been a focal point in the field of energy research. In this study, positively charged polyethylene imine (PEI) and conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with negative charge were alternately deposited onto a cellulose nanofiber (CNF) porous material utilizing pressure gradient-assisted layer-by-layer (LbL) self-assembly technology. The flexible substrate, characterized by a three-dimensional porous structure reinforced with stiff CNF, not only facilitated high charge storage but also enhanced the electrode's cycling life by reducing the volume changes of PEDOT:PSS. Furthermore, the exceptional wettability of PEI by the electrolyte could promote efficient charge transport within the electrode. The electrode with 10 PEI/PEDOT:PSS bilayer exhibits a capacitance of 63.71 F g-1 at the scan rate of 5 mV s-1 and a remarkable capacitance retention of 128 % after 3000 charge-discharge cycles. The investigation into the nanoscale layers of the LbL multilayer structure indicated that the exceptional cyclic performance was primarily attributed to the spatial constraints imposed by the rigid porous substrate layered structure on the deformation of PEDOT:PSS. This work is expected to make a significant contribution to the development of electrodes with high charge storage capacity and ultra-long cycling life.
Collapse
Affiliation(s)
- Keke Du
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Dongyan Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaofeng Wu
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Pengcheng Shi
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
119
|
Raghuwanshi VS, Mendoza DJ, Mata J, Garnier G. Modulating the isotopic hydrogen-deuterium exchange in functionalized nanocellulose to optimize SANS contrast. Carbohydr Polym 2024; 345:122591. [PMID: 39227127 DOI: 10.1016/j.carbpol.2024.122591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Contrast matching by isotopic exchange in cellulose allows visualizing functional groups, biomolecules, polymers and nanoparticles embedded in cellulosic composites. This isotopic exchange varies the scattering length density of cellulose to match its contrast with the background network. Here, contrast matching of microcrystalline-cellulose (MCC) and the functionalized nanocellulose-fiber (CNF) and cellulose nanocrystals (CNC) are elucidated by small angle neutron scattering (SANS). Results show no isotopic exchange occurs for the CNF surface functionalized with carboxyl nor for the CNC-High with a high sulfate groups concentration. Both CNC-Low, with low sulfate groups, and MCC exchange 1H with 1D in D2O. This is due to the high exchange probability of the labile C6 position primary -OH group. The structure of thermo-responsive poly-N-isopropylacrylamide (PNIPAM) chains grafted onto CNF (PNIPAM-grafted-CNF) was extracted by CNF contrast matching near the lower critical solution temperature. Contrast matching eradicates the CNF scattering to retain only the scattering from the grafted-PNIPAM chains. The coil to globule thermo-transition of PNIPAM was revealed by the power law variation from q-1.3 to q-4 in SANS. Isotopic exchange in functionalized cellulosic materials reveals the nano- and micro-scale structure of its individual components. This improved visualization by contrast matching can be extended to carbohydrate polymers to engineer biopharmaceutical and food applications.
Collapse
Affiliation(s)
- Vikram Singh Raghuwanshi
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - David Joram Mendoza
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800 Australia
| | - Jitendra Mata
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Height, New South Wales 2234, Australia; School of Chemistry, University of New South Wales, NSW, Australia
| | - Gil Garnier
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
120
|
Kalaycioglu GD, Bor G, Yaghmur A. Simple-by-design approach for production of stabilizer-free cubosomes from phosphatidylglycerol and docosahexaenoic acid monoacylglycerol. J Colloid Interface Sci 2024; 675:825-835. [PMID: 39002233 DOI: 10.1016/j.jcis.2024.07.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Docosahexaenoic acid monoacylglycerol represents a promising lipid constituent in the development of drug nanocarriers owing to its amphiphilicity and the beneficial health effects of this docosahexaenoic acid precursor in various disorders including cancer and inflammatory diseases. Here, we describe the formation and characterization of simple-by-design and stabilizer-free lamellar and non-lamellar crystalline nanoparticles (vesicles and cubosomes, respectively) from binary mixtures of docosahexaenoic acid monoacylglycerol and phosphatidylglycerol, which is a ubiquitous amphiphilic component present in biological systems. At the physiological temperature of 37 °C, these single amphiphilic components tend to exhibit inverse hexagonal and lamellar liquid crystalline phases, respectively, on exposure to excess water. They can also be combined and dispersed in excess water by employing a high-energy emulsification method (by means of ultrasonication) to produce through an electrostatic stabilization mechanism colloidally stable nanodispersions. A colloidal transformation from vesicles to cubosomes was detected with increasing MAG-DHA content. Through use of synchrotron small-angle X-ray scattering, cryo-transmission electron microscopy, and nanoparticle tracking analysis, we report on the structural and morphological features, and size characteristics of these nanodispersions. Depending on the lipid composition, their internal liquid crystalline architectures were spanning from a lamellar (Lα) phase to biphasic features of coexisting inverse bicontinuous (Q2) cubic Pn3m and Im3m phases. Thus, a direct colloidal vesicle-cubosome transformation was detected by augmenting the concentration of docosahexaenoic acid monoacylglycerol. The produced cubosomes were thermally stable within the investigated temperature range of 5-60 °C. Collectively, our findings contribute to understanding of the imperative steps for production of stabilizer-free cubosomes from biocompatible lipids through a simple-by-design approach. We also discuss the potential therapeutic use and future implications for development of next-generation of multifunctional vesicles and cubosomes for co-delivery of docosahexaenoic acid and drugs in treatment of diseases.
Collapse
Affiliation(s)
- Gokce Dicle Kalaycioglu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; Department of Chemical Engineering, Hacettepe University, Beytepe 06800 Ankara, Turkey.
| | - Gizem Bor
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
121
|
Liu H, Wang S, Fu Y, Shi C, Song Y, Zhang L, Chen C, Ling Z. Dependence of the formation kinetics of carbon dioxide hydrate on clay aging for solid carbon dioxide storage. J Colloid Interface Sci 2024; 675:347-356. [PMID: 38972122 DOI: 10.1016/j.jcis.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Clay-based marine sediments have great potential for safe and effective carbon dioxide (CO2) encapsulation by storing enormous amounts of CO2 in solid gas hydrate form. However, the aging of clay with time changes the surface properties of clay and complicates the CO2 hydrate formation behaviors in sediments. Due to the long clay aging period, it is difficult to identify the role of clay aging in the formation of CO2 hydrate in marine sediments. Here, we used ultrasonication and plasma treatment to simulate the breakage and oxidation of clay nanoflakes in aging and investigated the influence of clay aging on CO2 hydrate formation kinetics. We found that the breakage and oxidation of clay nanoflakes would disrupt the siloxane rings and graft hydroxyl on the clay nanoflakes. This decreased the negative charge density of clay nanoflakes and weakened the interfacial interaction of clay nanoflakes with the surrounding water. Therefore, the small clay nanoflakes enriched in hydroxyl would disrupt the surrounding tetrahedral water structure analogous to the CO2 hydrate, resulting in the prolongation of CO2 hydrate nucleation. These results revealed the influence of the structure-function relationship of clay nanoflakes with CO2 hydrate formation and are favorable for the development of hydrate-based CO2 storage.
Collapse
Affiliation(s)
- Huiquan Liu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuai Wang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yixuan Fu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Changrui Shi
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
| | - Lunxiang Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Cong Chen
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Zheng Ling
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
| |
Collapse
|
122
|
Zhang Y, Wang Y, Dai X, Li Y, Jiang B, Li D, Liu C, Feng Z. Biointerfacial supramolecular self-assembly of whey protein isolate nanofibrils on probiotic surface to enhance survival and application to 3D printing dysphagia foods. Food Chem 2024; 460:140720. [PMID: 39106754 DOI: 10.1016/j.foodchem.2024.140720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Personalized three-dimensional (3D) printed foods rich in probiotics were investigated. Lactiplantibacillus plantarum (Lp), as a representative of probiotics, was used to investigate the 3D printing of probiotic-rich dysphagia foods. Here, whey protein isolate nanofibrils (WPNFs) were coated and anchored on bacterial surfaces via biointerfacial supramolecular self-assembly, providing protection against environmental stress and the 3D printing process. The optimized composite gels consisting of High acyl gellan gum (0.25 g), whey protein isolate (1.25 g), fructooligosaccharides (0.75 g), Lp-WPNFs-Glyceryl tributyrate emulsion (Φ = 40%, 3.75 mL) can realize 3D printing, and exhibit high resolution, and stable shape. The viable cell count is higher than 8.0 log CFU/g. They are particularly suitable for people with dysphagia and are classified as level 5-minced & moist in the international dysphagia diet standardization initiative framework. The results provide new insights into the development of WPNFs-coating on bacterial surfaces to deliver probiotics and 3D printed food rich in probiotics.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yexuan Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohan Dai
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bin Jiang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Dongmei Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Chunhong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Zhibiao Feng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
123
|
Li Y, Wang Z, Wu J, Zheng J, Liu F, Ou J, Huang C, Ou S. Catalytic elevation effect of methylglyoxal on invertase and characterization of MGO modification products. Food Chem 2024; 460:140749. [PMID: 39142204 DOI: 10.1016/j.foodchem.2024.140749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Reactive carbonyl species can modify digestive enzymes upon intake due to their electrophilic nature. This study evaluated the effects of methylglyoxal (MGO), glyoxal, acrolein, and formaldehyde on invertase, an enzyme presents in digestive tract. Unexpectedly, MGO enhanced, rather than inhibited, invertase activity. Moreover, MGO counteracted the inhibitory effects of the other three carbonyls on invertase activity. Kinetic analyses revealed that 150 mmolLexp.-1 MGO resulted in a 2-fold increase in the Km and a 3.3-fold increase in Vmax, indicating that MGO increased the turnover rate of sucrose while reducing the substrate binding affinity of invertase. Additionally, MGO induced dynamic quenching of fluorescence, reduced free amino groups, increased hydrophobicity, the content of Amadori products, fluorescent and nonfluorescent AGEs, and amyloid fibrils of invertase. The specific modifications responsible for the elevated activity of MGO on invertase require further investigation.
Collapse
Affiliation(s)
- Yixin Li
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Zitong Wang
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Jiaqi Wu
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Fu Liu
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China
| | - Caihuan Huang
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China.
| | - Shiyi Ou
- Department of Food and Engineering, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China.
| |
Collapse
|
124
|
P J, V G, A HA. Adsorption performance with field emission scanning electron microscopy of fruit peel induced Silver Nanoparticles in C 16H 18ClN 3S for waste water treatment. MethodsX 2024; 13:102951. [PMID: 39315398 PMCID: PMC11417687 DOI: 10.1016/j.mex.2024.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
There is a growing demand for cost-effective and sustainable technologies for treating wastewater as water consumption increases and conventional technologies become more expensive. Nanoparticles have a great deal of potential for use in the treatment of waste water. Their unique surface area allows them to effectively remove toxic metal ions, pathogenic microorganisms, organic and inorganic solutes from water. This study investigated the potential of orange and banana peels as renewable nano adsorbents for removing dyes and dissolved organic compounds from textile wastewater. Orange and banana peels are an optimal selection due to their favourable chemical characteristics, namely the presence of cellulose, pectic, hemicellulose, and lignin. Their capacity to adsorb diverse anionic and cationic compounds on their surface-active sites is attributed to their unique functional group compositions. Silver nanoparticles are able to adsorb heavy metals due to their exceptionally low electrical and thermal resistance and surface plasmon resonance. The samples were thoroughly characterised using field emission scanning electron microscopy (FESEM), UV-Visible spectrometry, Fourier transform infrared spectroscopy (FTIR) and XRD. The nanoparticles were prepared (10 gm,50 gm,100 gm) and subsequently introduced to the wastewater sample. The optical density values were recorded at various time points. The optical density values demonstrate a decline over the course of the experiment, with a notable decrease observed over time. The results of this study provide valuable insights into the efficacy of these natural adsorbents and their potential for sustainable water purification technologies. For the purpose of this research, high performance instrumentation methods were performed as follows:•Field emission scanning electron microscopy for surface morphology studies.•Gas chromatography-mass spectrometry (GC-MS) for analytical technique that combines gas chromatography (GC) and mass spectrometry (MS) to identify unknown substances or contaminants.•Optical density values were measured for different timings of degradation.
Collapse
Affiliation(s)
- Jyolsna P
- School of Basic Science, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, India, 600117
| | - Gowthami V
- School of Basic Science, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, India, 600117
| | - Hajeera Aseen A
- School of Basic Science, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, India, 600117
| |
Collapse
|
125
|
He W, Yang F, Chen K, Zeng Q. Targeted gold nanoparticles for ovarian cancer (Review). Oncol Lett 2024; 28:589. [PMID: 39417039 PMCID: PMC11481100 DOI: 10.3892/ol.2024.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Among all malignant gynecological tumors, ovarian cancer (OC) has the highest mortality rate. OC is often diagnosed at advanced and incurable stages; however, early diagnosis can enable the use of optimized and personalized treatments. Intensive research into the synthesis and characterization of gold nanoparticles (AuNPs) has been performed with the aim of developing innovative materials for use in biological and photothermal therapies for OC. AuNPs can be chemically modified and functionalized by binding to a variety of organic compounds and biomolecules, such as peptides, antibodies and therapeutic agents, via simple synthetic processes. They are particularly suitable for use as carriers for drug delivery. In the present review, the synthesis and characteristics of AuNPs are summarized, and their potential in OC therapy are discussed.
Collapse
Affiliation(s)
- Wenjuan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Fuyuan Yang
- School of Basic Medicine, Yangtze University Health Science Center, Jingzhou, Hubei 434000, P.R. China
| | - Keming Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qingsong Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
126
|
Chandraker SK, Kumar R. Biogenic biocompatible silver nanoparticles: a promising antibacterial agent. Biotechnol Genet Eng Rev 2024; 40:3113-3147. [PMID: 35915981 DOI: 10.1080/02648725.2022.2106084] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) are gaining attention because they are eco-friendly, non-hazardous, economical and devoid of the drawbacks of physicochemical processes. Biogenic approaches for synthesizing nanoparticles (NPs) using plant leaves, seeds, bark, stems, fruits, roots and flowers are highly cost-effective compared to other methods. Silver (Ag) has been used since ancient times, but biogenic AgNPs have only been made in the last few decades. They have been employed primarily in the food and pharmaceutical industries as antimicrobials and antioxidants. Recent studies have confirmed that many molecules present in different bacteria, including Escherichia coli, Staphylococcus aureus, Citrobacter koseri, Bacillus cereus, Salmonella typhi, Klebsipneumoniaoniae, Vibrio parahaemolyticus, Pseudomonas Aeruginosa, are bound to the AgNPs and can be inhibited using multifaceted mechanisms like AgNPs inter inside the cells, free radicals, ROS generation and modulate transduction pathways. Recent breakthroughs in nanobiotechnology-based therapeutics have opened up new possibilities for fighting microorganisms. Thus, in particular, biogenic AgNPs as powerful antibacterial agents have gained much interest. Surface charge, colloidal state, shape, concentration and size are the most critical physicochemical characteristics that determine the antibacterial potential of AgNPs. Based on this review, it can be stated that AgNPs could be made better in terms of their potency, durability, accuracy, biosecurity and compatibility.
Collapse
Affiliation(s)
| | - Ravindra Kumar
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
127
|
Li H, Liu Z, Zhang P, Zhang D. The recent research progress in the application of the nanozyme-hydrogel composite system for drug delivery. Drug Deliv 2024; 31:2417986. [PMID: 39449633 PMCID: PMC11514404 DOI: 10.1080/10717544.2024.2417986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels, comprising 3D hydrophilic polymer networks, have emerged as promising biomaterial candidates for emulating the structure of biological tissues and delivering drugs through topical administration with good biocompatibility. Nanozymes can catalyze endogenous biomolecules, thereby initiating or inhibiting in vivo biological processes. A nanozyme-hydrogel composite inherits the biological functions of hydrogels and nanozymes, where the nanozyme serves as the catalytic core and the hydrogel forms the structural scaffold. Moreover, the composite can concentrate nanozymes in targeted lesions and catalyze the binding of a specific group of substrates, resulting in pathological microenvironment remodeling and drug-penetrating barrier impairment. The composite also shields nanozymes to prevent burst release during catalytic production and reduce related toxicity. Currently, the application of these composites has been extended to antibacterial, anti-inflammatory, anticancer, and tissue repair applications. In this review, we elucidate the preparation methods for nanozyme-hydrogel composites, provide compelling evidence of their advantages in drug delivery and provide a comprehensive overview of their biological application.
Collapse
Affiliation(s)
- Haichang Li
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhenghong Liu
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Pu Zhang
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Dahong Zhang
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
128
|
Jeong YG, Yoo JJ, Lee SJ, Kim MS. 3D digital light process bioprinting: Cutting-edge platforms for resolution of organ fabrication. Mater Today Bio 2024; 29:101284. [PMID: 39430572 PMCID: PMC11490710 DOI: 10.1016/j.mtbio.2024.101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Research in the field of regenerative medicine, which replaces or restores the function of human damaged organs is advancing rapidly. These advances are fostering important innovations in the development of artificial organs. In recent years, three-dimensional (3D) bioprinting has emerged as a promising technology for regenerative medicine applications. Among various techniques, digital light process (DLP) 3D bioprinting stands out for its ability to precisely create high-resolution, structurally complex artificial organs. This review explores the types and usage trends of DLP printing equipment, bioinks, and photoinitiators. Building on this foundation, the applications of DLP bioprinting for creating precise microstructures of human organs and for regenerating tissue and organ models in regenerative medicine are examined. Finally, challenges and future perspectives regarding DLP-based bioprinting, particularly for precision printing applications in regenerative medicine, are discussed.
Collapse
Affiliation(s)
- Yun Geun Jeong
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-Gu, Suwon, 16499, South Korea
| |
Collapse
|
129
|
Said M, Ali KM, Alfadhel MM, Afzal O, Aldosari BN, Alsunbul M, Bafail R, Zaki RM. Ocular mucoadhesive and biodegradable spanlastics loaded cationic spongy insert for enhancing and sustaining the anti-inflammatory effect of prednisolone Na phosphate; Preparation, I-optimal optimization, and In-vivo evaluation. Int J Pharm X 2024; 8:100293. [PMID: 39498272 PMCID: PMC11533070 DOI: 10.1016/j.ijpx.2024.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
This study aimed to formulate and statistically optimize spanlastics loaded spongy insert (SPLs-SI) of prednisolone Na phosphate (PRED) to enhance and sustain its anti-inflammatory effect in a controlled manner. An I-optimal optimization was employed using Design-Expert® software. The formulation variables were sonication time, the Span 60: EA ratio and type of edge activator (Tween 80 or PVA) while Entrapment efficiency (EE%), Vesicles' size (VS) and Zeta potential (ZP) were set as the dependent responses. This resulted in an optimum spanlastics (SPLs) formulation with a desirability of 0.919. It had a Span60:Tween80 ratio of 6:1 with a sonication time of 9.5 min. It was evaluated in terms of its EE%, VS, ZP, release behavior in comparison to drug solution in addition to the effect of aging on its characteristics. It had EE% of 87.56, VS of 152.2 nm and ZP of -37.38 Mv. It showed sustained release behavior of PRED in comparison to drug solution with good stability for thirty days. TEM images of the optimized PRED SPLs formulation showed spherical non-aggregated nanovesicles. Then it was loaded into chitosan spongy insert and evaluated in terms of its visual appearance, pH and mucoadhesion properties. It showed good mucoadhesive properties and pH in the safe ocular region. The FTIR, DSC and XRD spectra showed that PRED was successfully entrapped inside the SPLs vesicles. It was then exposed to an in-vivo studies where it was capable of enhancing the anti-inflammatory effect of PRED in a sustained manner with once daily application compared to commercial PRED solution. The spongy insert has the potential to be a promising carrier for the ocular delivery of PRED.
Collapse
Affiliation(s)
- Mayada Said
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, P.O. Box 11562, Cairo, Egypt
| | - Khaled M. Ali
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Munerah M. Alfadhel
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Basmah Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Maha Alsunbul
- Department of Pharmaceutical Sciences., College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rawan Bafail
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, P.O. Box 30039, Al-Madinah, Al-munawarah 41477, Saudi Arabia
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
130
|
Sun R, Lv Z, Wang Y, Li M, Qi J, Wang K, Yang H, Yue T, Yuan Y. Different polysaccharide-enhanced probiotic and polyphenol dual-functional factor co-encapsulated microcapsules demonstrate acute colitis alleviation efficacy and food fortification. Carbohydr Polym 2024; 345:122572. [PMID: 39227107 DOI: 10.1016/j.carbpol.2024.122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024]
Abstract
Probiotics and polyphenols have multiple bioactivities, and developing co-encapsulated microcapsules (CM) is a novel strategy to enhance their nutritional diversity. However, the development of CMs is challenged by complicated processing, single types, and unclear in vivo effects and applications. In this study, the co-microencapsulations of polyphenol and probiotic were constructed using pectin, alginate (WGCA@LK), and Fu brick tea polysaccharides (WGCF@LK), respectively, with chitosan-whey isolate proteins by layer-by-layer coacervation reaction, and their protective effects, in vivo effectiveness, and application potential were evaluated. WGCA@LK improved the encapsulation rate of polyphenols (42.41 %), and remained high viability of probiotics after passing through gastric acidic environment (8.79 ± 0.04 log CFU/g) and storage for 4 weeks (4.59 ± 0.06 log CFU/g). WGCF@LK exhibited the highest total antioxidant activity (19.40 ± 0.25 μmol/mL) and its prebiotic activity removed the restriction on probiotic growth. WGCA@LK showed strong in vitro colonic adhesion, but WGCF@LK promoted in vivo retention of probiotics at 48 h. WGCF@LK showed excellent anti-inflammatory effects and alleviated symptoms of acute colitis in mice. These findings provide unique insights into the fortification of probiotic-polyphenol CMs by different polysaccharides and the development of novel health foods with rich functional hierarchies and superior therapeutic effects.
Collapse
Affiliation(s)
- Rui Sun
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China; College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Zhongyi Lv
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China; College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Ying Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Jianrui Qi
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Haihua Yang
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China; College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China; Selenium-rich Tea Research and Development Center, Northwest University, Xi'an, 710069, China.
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China; College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China; Selenium-rich Tea Research and Development Center, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
131
|
Wang S, Wang T, Wang Z, Liu G, Ji R, Zang Y, Lin S, Lu J, Zhou H, Wang Q. An integrated bipolar electrode with shared cathode for dual-mode detection and imaging of CEA. Biosens Bioelectron 2024; 265:116704. [PMID: 39182411 DOI: 10.1016/j.bios.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
In this paper, we designed a novel shared cathode bipolar electrode chip based on Ohm 's law and successfully constructed a dual-mode dual-signal biosensor platform (DD-cBPE). The device integrates ELISA, ECL, and ECL imaging to achieve highly sensitive detection and visual imaging of carcinoembryonic antigen (CEA). The unique circuit structure of the device not only realizes the dual signal detection of the target, but also breaks the traditional signal amplification concept. The total resistance of the system is reduced by series-parallel connection of BPE, and the total current in the circuit is increased. In addition, Au@NiCo2O4@MnO2 nanozyme activity probe was introduced into the common cathode to enhance the conductivity of the material. At the same time, due to the excellent peroxidase (POD) activity of NiCo2O4@MnO2, the decomposition of H2O2 was accelerated, so that more electrons flowed to the BPE anode, and finally the dual amplification of the ECL signal was realized. The device affects the current in the circuit by regulating the concentration of the co-reactant TPrA, thereby affecting the resistance of the system. Finally, different luminescent reagents emit light at the same potential and the luminous efficiency is similar. In addition, the chip does not need external resistance regulation, which improves the sensitivity of the immunosensor and meets the needs of timely detection. It provides a new idea for the deviceization of bipolar electrodes and has broad application prospects in biosensors, clinical detection, and environmental monitoring.
Collapse
Affiliation(s)
- Shumin Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China; Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan, Shandong, 250012, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Tengkai Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China; Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan, Shandong, 250012, China
| | - Zehua Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), 758 Hefei Road, Qingdao, Shandong, 266035, China
| | - Gengjun Liu
- Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan, Shandong, 250012, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Rui Ji
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Yufei Zang
- Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan, Shandong, 250012, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Shengxiang Lin
- CHU de Québec Research Center and Department of Molecular Medicine, Laval University, Québec, QC, Canada
| | - Jiaoyang Lu
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qian Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), 758 Hefei Road, Qingdao, Shandong, 266035, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
132
|
Yan X, Peng X, McClements DJ, Ma C, Liu X, Liu F. Interfacial engineering of Pickering emulsions stabilized by pea protein-alginate microgels for encapsulation of hydrophobic bioactives. Food Chem 2024; 460:140761. [PMID: 39137575 DOI: 10.1016/j.foodchem.2024.140761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
This study aims to investigate the effects of interfacial layer composition and structure on the formation, physicochemical properties and stability of Pickering emulsions. Interfacial layers were formed using pea protein isolate (PPI), PPI microgel particles (PPIMP), a mixture of PPIMP and sodium alginate (PPIMP-SA), or PPIMP-SA conjugate. The encapsulation and protective effects on different hydrophobic bioactives were then evaluated within these Pickering emulsions. The results demonstrated that the PPIMP-SA conjugate formed thick and robust interfacial layers around the oil droplet surfaces, which increased the resistance of the emulsion to coalescence, creaming, and environmental stresses, including heating, light exposure, and freezing-thawing cycle. Additionally, the emulsion stabilized by the PPIMP-SA conjugate significantly improved the photothermal stability of hydrophobic bioactives, retaining a higher percentage of their original content compared to those in non-encapsulated forms. Overall, the novel protein microgels and the conjugate developed in this study have great potential for improving the physicochemical stability of emulsified foods.
Collapse
Affiliation(s)
- Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoke Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
133
|
Luo G, Li J, Qin X, Wang Q, Zhong J. Improved moisture barrier and mechanical properties of rice protein/sodium alginate films for banana and oil preservation: Effect of the type and addition form of fatty acid. Food Chem 2024; 460:140764. [PMID: 39121763 DOI: 10.1016/j.foodchem.2024.140764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Attenuating the moisture sensitivity of hydrophilic protein/polysaccharide-based films without impairing other properties remains a challenge. Fatty acid dispersed in Pickering emulsion was proposed to overcome such issue. An increase in fatty acid chain length slightly reduced the water vapor permeability (WVP) of emulsion films. As the number of fatty acid double bonds increased from 0 to 1, the WVP of emulsion films was significantly decreased by 14.02% while mechanical properties were significantly enhanced. More hydrogen bonds and stronger electrostatic interactions in the presence of fatty acids were observed by molecular dynamics simulation. The weight loss of bananas coated with oleic acid-incorporated film-forming emulsion was 6.81% lower than that of uncoated group after 4 days, and the corresponding film was more effective to delay oil oxidation than the commercial polypropylene film, indicating that the film is a promising alternative to food coating and packaging material.
Collapse
Affiliation(s)
- Guoliu Luo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jinsong Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Qiang Wang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Jinfeng Zhong
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
134
|
Hekmat A, Kostova I, Saboury AA. Application of metallic nanoparticles-amyloid protein supramolecular materials in tissue engineering and drug delivery: Recent progress and perspectives. Colloids Surf B Biointerfaces 2024; 244:114185. [PMID: 39226848 DOI: 10.1016/j.colsurfb.2024.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Supramolecular medicine refers to the formulation of therapeutic and diagnostic agents through supramolecular techniques, amid treating, diagnosing, and preventing disease. Recently, there has been growing interest in developing metal nanoparticles (MNPs)-amyloid hybrid materials, which have the potential to revolutionize medical applications. Furthermore, the development of MNPs-amyloid hydrogel/scaffold supramolecules represents a promising new direction in amyloid nanotechnology, with potential applications in tissue engineering and biomedicine. This review first provides a brief introduction to the formation process of protein amyloid aggregates and their unique nanostructures. Subsequently, we focused on recent investigations into the use of MNPs-amyloid hybrid materials in tissue engineering and biomedicine. We anticipate that MNPs-amyloid supramolecular materials will pave the way for new functional materials in medical science, particularly in the field of tissue engineering.
Collapse
Affiliation(s)
- Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Irena Kostova
- Faculty of Pharmacy, Medical University Sofia, Bulgaria
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
135
|
Velázquez-Herrera FD, Zarazua-Aguilar Y, Garzón-Pérez AS, Álvarez-Gómez KM, Fetter G. Composites formed by layered double hydroxides with inorganic compounds: An overview of the synthesis methods and characteristics. MethodsX 2024; 13:102912. [PMID: 39280761 PMCID: PMC11402166 DOI: 10.1016/j.mex.2024.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Nowadays, layered double hydroxides (LDH), sometimes referred as hydrotalcite-like compounds, have gained great attention since their composition and structure can be easily modified, so that they can be implemented in multiple fields. LDH-based composite materials based on LDH exhibit tremendously improved properties such as high specific surface area, which promotes the accessibility to a greater number of LDH active sites, considerably improving their catalytic, adsorbent and biological activities. Therefore, this review summarizes and discusses the synthesis methods of composites constituted by LDH with other inorganic compounds such as zeolites, cationic clays, hydroxyapatites, among many others, and describe the resulting characteristics of the resulting composites, emphasizing the morphology. Brief descriptions of their properties and applications are also included.
Collapse
Affiliation(s)
| | - Yohuali Zarazua-Aguilar
- Unidad Académica Profesional Acolman, Universidad Autónoma del Estado de México, Acolman, Edo Mex, Mexico
| | - Amanda S Garzón-Pérez
- Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Karin Monserrat Álvarez-Gómez
- Instituto de Ciencias-Zeolitas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, PUE, Mexico
| | - Geolar Fetter
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, Puebla, PUE, Mexico
| |
Collapse
|
136
|
Aminzai MT, Yildirim M, Yabalak E. Metallic nanoparticles unveiled: Synthesis, characterization, and their environmental, medicinal, and agricultural applications. Talanta 2024; 280:126790. [PMID: 39217711 DOI: 10.1016/j.talanta.2024.126790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Metallic nanoparticles (MNPs) have attracted great interest among scientists and researchers for years due to their unique optical, physiochemical, biological, and magnetic properties. As a result, MNPs have been widely utilized across a variety of scientific fields, including biomedicine, agriculture, electronics, food, cosmetics, and the environment. In this regard, the current review article offers a comprehensive overview of recent studies on the synthesis of MNPs (metal and metal oxide nanoparticles), outlining the benefits and drawbacks of chemical, physical, and biological methods. However, the biological synthesis of MNPs is of great importance considering the biocompatibility and biological activity of certain MNPs. A variety of characterization techniques, including X-ray diffraction, transmission electron microscopy, UV-visible spectroscopy, scanning electron microscopy, dynamic light scattering, atomic force microscopy, Fourier transform infrared spectroscopy, and others, have been discussed in depth to gain deeper insights into the unique structural and spectroscopic properties of MNPs. Furthermore, their unique properties and applications in the fields of medicine, agriculture, and the environment are summarized and deeply discussed. Finally, the main challenges and limitations of MNPs synthesis and applications, as well as their future prospects have also been discussed.
Collapse
Affiliation(s)
- Mohammad Tahir Aminzai
- Department of Organic Chemistry, Faculty of Chemistry, Kabul University, Kabul, Afghanistan
| | - Metin Yildirim
- Harran University, Faculty of Pharmacy, Department of Biochemistry, Şanlıurfa, Turkey
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, 33343, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
137
|
Zhang Z, Sun L, Chen F, Liu X, Huo X, Pan X, Feng C. Host-guest strategy improves rheological properties, conformational stability and oil displacement efficiency of xanthan gum. Carbohydr Polym 2024; 345:122598. [PMID: 39227088 DOI: 10.1016/j.carbpol.2024.122598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
The low cost and environmental advantages of Xanthan gum make its production and application scale exceed that of other polysaccharides. However, the temperature resistance of Xanthan gum limits its application. In this study, polysaccharide supramolecular Xanthan gum network (XG-β-CD/AD) based on β-cyclodextrin and adamantane was prepared for enhanced oil recovery. The structure of Xanthan gum was characterized by Fourier infrared spectroscopy, nuclear magnetic resonance spectroscopy and thermogravimetric analysis. The rheological properties of the modified polysaccharide network in aqueous solution were systematically studied. The results showed that physical cross-linking of host-guest interacion enhanced the thickening ability of the polymer. Shear rheology, extensional rheology and dynamic modulus test proved that XG-β-CD/AD had excellent rheological properties. The micromorphology, dynamic light scattering and circular dichroism clarified the molecular conformation, the host-guest interaction can improve conformational transition temperature (Tm) and inorganic salt tolerance of Xanthan gum. Under harsh environment (90 °C, 30000 mg/L brine), the oil recovery of XG-β-CD/AD is 6 %-11 % higher than that of XG at the same conditions, showing a better ability to improve the recovery rate. This study provides a research idea for the selection, development and application of biomacromolecular materials.
Collapse
Affiliation(s)
- Zhirong Zhang
- Chinese Academy of Sciences University, Beijing 101408, China; State Key Laboratory of Enhanced Oil Recovery, China Petroleum Exploration and Development Research Institute, Beijing 100083, China
| | - Linghui Sun
- Chinese Academy of Sciences University, Beijing 101408, China; State Key Laboratory of Enhanced Oil Recovery, China Petroleum Exploration and Development Research Institute, Beijing 100083, China.
| | - Feiyu Chen
- Chinese Academy of Sciences University, Beijing 101408, China; State Key Laboratory of Enhanced Oil Recovery, China Petroleum Exploration and Development Research Institute, Beijing 100083, China
| | - Xiangui Liu
- Chinese Academy of Sciences University, Beijing 101408, China; State Key Laboratory of Enhanced Oil Recovery, China Petroleum Exploration and Development Research Institute, Beijing 100083, China
| | - Xu Huo
- Chinese Academy of Sciences University, Beijing 101408, China; State Key Laboratory of Enhanced Oil Recovery, China Petroleum Exploration and Development Research Institute, Beijing 100083, China
| | - Xiuxiu Pan
- Chinese Academy of Sciences University, Beijing 101408, China; State Key Laboratory of Enhanced Oil Recovery, China Petroleum Exploration and Development Research Institute, Beijing 100083, China
| | - Chun Feng
- State Key Laboratory of Enhanced Oil Recovery, China Petroleum Exploration and Development Research Institute, Beijing 100083, China
| |
Collapse
|
138
|
Guo D, Zhang Z, Sun J, Hou W, Du N. A primitive cell model involving Vesicles, microtubules and asters. J Colloid Interface Sci 2024; 675:700-711. [PMID: 38996700 DOI: 10.1016/j.jcis.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
HYPOTHESIS Simple single-chain amphiphiles (sodium monododecyl phosphate, SDP) and organic small molecules (isopentenol, IPN), both of primitive relevance, are proved to have been the building blocks of protocells on the early Earth. How do SDP-based membrane and coexisting IPN come together in specific ways to produce more complex chemical entities? What kind of cell-like behavior can be endowed with this protocell model? These are important questions in the pre-life chemical origin scenario that have not been answered to date. EXPERIMENTS The phase behavior and formation mechanism of the aggregates for SDP/IPN/H2O ternary system were characterized and studied by different electron microscopy, fluorescent probe technology, DLS, IR, ESI-MS, SAXS, etc. The stability (freeze-thaw and wet-dry treatments) and cell-like behavior (chemical signaling communication) were tested via simulating particular scenarios. FINDINGS Vesicles, microtubules and asters phases resembling the morphology and structure of modern cells/organelles were obtained. The intermolecular hydrogen bonding is the main driving force for the emergence of the aggregates. The protocell models not only display remarkable stabilities by simulating the primordial Earth's diurnal temperature differences and ocean tides but also are able to exhibit cell-like behavior of chemical signaling transition.
Collapse
Affiliation(s)
- Dong Guo
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Ziyue Zhang
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Jichao Sun
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Wanguo Hou
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China; National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100, PR China
| | - Na Du
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
139
|
Dong C, Zhao J, Wang L, Wang X, Jiang J, Bi J. Understanding the textural enhancement of low-salt myofibrillar protein gels filled with pea protein pre-emulsions through interfacial behavior: Effects of structural modification and oil phase polarity. Food Chem 2024; 460:140632. [PMID: 39126944 DOI: 10.1016/j.foodchem.2024.140632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
This study investigated the effects of pea protein pre-emulsions containing triglyceride- or diglyceride-oil on the emulsifying and gelling properties of low-salt myofibrillar protein (MP). Pea protein isolates treated with pH12-shifting (PPIpH) or ultrasonication (PPIU) demonstrated superior initial interfacial adsorption and higher final interfacial pressure than native pea protein. Within MP/PPI blends, an increased ratio of MP led to a decrease in interfacial pressure, while simultaneously enhancing film elasticity at both polar and non-polar interfaces. Polar diglyceride promoted protein adsorption and fostered interfacial interactions between modified pea proteins and MP, enhancing the cross-linking of transglutaminase (TG) in the composite emulsion gels. Combining diglyceride-type PPIU and PPIpH emulsions with TG increased gel strength to 0.58 N and 0.63 N, respectively, from an initial 0.33 N, yielding a denser protein network with uniformly dispersed oil droplets. Therefore, the utilization of diglyceride and modified PPI can serve as structural enhancers in comminuted meat products.
Collapse
Affiliation(s)
- Chunhui Dong
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jing Zhao
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, United States
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaowen Wang
- Xinjiang Zeacen Nutrition Institute, Changji Agricultural Science and Technology Park, Changji, Xinjiang 831100, People's Republic of China
| | - Jiang Jiang
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, People's Republic of China.
| |
Collapse
|
140
|
Hui H, Song Y, Liu H, Fan J, Sha Z, Li H, Lu J, Zhang Q, Fei X, Zhu M. Integrating molecular-caged nano-hydroxyapatite into post-crosslinked PVA nanofibers for artificial periosteum. BIOMATERIALS ADVANCES 2024; 165:214001. [PMID: 39216317 DOI: 10.1016/j.bioadv.2024.214001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Artificial periosteum is deemed a novel strategy for inducing endogenous bone regeneration, but ideal periosteum substitutes achieved by orchestrating a biomimetic microenvironment for bone regeneration remain a significant challenge. Here, we design and fabricate a hybridized nanofiber-based artificial periosteum with boosted osteoinduction properties. Via a "molecular cage" biomineralization strategy, nano-hydroxyapatite (nano-HAp) with a controllable size (∼22 nm) and excellent dispersion serves as unique nano-additives for water-soluble polyvinyl-alcohol (PVA)-based artificial periosteum. The PVA/HAp composite is electrospun into nanofibers to replicate the extracellular-matrix-inspired nanostructure for inducing cell adhesion, proliferation, and fate manipulation. A simple post-crosslinking treatment is subsequently applied to further booster its mechanical strength (6.6 MPa) and swelling stability. The optimized sample of C-PVA/HAp (10 wt% nano-HAp) artificial periosteum features excellent biocompatibility and remarkable in vitro mineralization. Cell experiments demonstrate that its effectively boasted cell modulation for enhanced osteogenesis without the aid of growth factors, showing a possible activation of the ERK/MAPK signaling pathway. This work provides an effective strategy for designing novel HAp nano-additives and expands the possibility of biomimetic fabrication for more advanced nanofiber-based artificial periosteum.
Collapse
Affiliation(s)
- Hu Hui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yuheng Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongmei Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiahui Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhou Sha
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongchuang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jian Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qian Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
141
|
Li R, Wan C, Li Y, Jiao X, Liu T, Gu Y, Gao R, Liu J, Li B. Nanocarrier-based drug delivery system with dual targeting and NIR/pH response for synergistic treatment of oral squamous cell carcinoma. Colloids Surf B Biointerfaces 2024; 244:114179. [PMID: 39217727 DOI: 10.1016/j.colsurfb.2024.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is highly heterogeneous and aggressive, but therapies based on single-targeted nanoparticles frequently address these tumors as a single illness. To achieve more efficient drug transport, it is crucial to develop nanodrug-carrying systems that simultaneously target two or more cancer biomarkers. In addition, combining chemotherapy with near-infrared (NIR) light-mediated thermotherapy allows the thermal ablation of local malignancies via photothermal therapy (PTT), and triggers drug release to improve chemosensitivity. Thus, a novel dual-targeted nano-loading system, DOX@GO-HA-HN-1 (GHHD), was created for synergistic chemotherapy and PTT by the co-modification of carboxylated graphene oxide (GO) with hyaluronic acid (HA) and HN-1 peptide and loading with the anticancer drug doxorubicin (DOX). Targeted delivery using GHHD was shown to be superior to single-targeted nanoparticle delivery. NIR radiation will encourage the absorption of GHHD by tumor cells and cause the site-specific release of DOX in conjunction with the acidic microenvironment of the tumor. In addition, chemo-photothermal combination therapy for cancer treatment was realized by causing cell apoptosis under the irradiation of 808-nm laser. In summary, the application of GHHD to chemotherapy combined with photothermal therapy for OSCC is shown to have important potential as a means of combatting the low accumulation of single chemotherapeutic agents in tumors and drug resistance generated by single therapeutic means, enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China.
| | - Chaoqiong Wan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Yanwei Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Xiaofeng Jiao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Tiantian Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Yixuan Gu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Ruifang Gao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Jun Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China.
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China.
| |
Collapse
|
142
|
Bera S, Mitra R, Singh J. Recent advancement in protected delivery methods for carotenoid: a smart choice in modern nutraceutical formulation concept. Biotechnol Genet Eng Rev 2024; 40:4532-4588. [PMID: 37198919 DOI: 10.1080/02648725.2023.2213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Carotenoids are fat-soluble bio pigments often responsible for red, orange, pink and yellow coloration of fruits and vegetables. They are commonly referred as nutraceutical which is an alternative to pharmaceutical drugs claiming to have numerous physiological benefits. However their activity often get disoriented by photonic exposure, temperature and aeration rate thus leading to low bioavailability and bio accessibility. Most of the market value for carotenoids revolves around food and cosmetic industries as supplement where they have been continuously exposed to rigorous physico-chemical treatment. Though several encapsulation techniques are now in practice to improve stability of carotenoids, the factors like shelf life during storage and controlled release from the delivery vehicle always appeared to be a bottleneck in this field. In this situation, different technologies in nanoscale is showing promising result for carotenoid encapsulation and delivery as they provide greater mass per surface area and protects most of their bioactivities. However, safety concerns related to carrier material and process must be evaluated crucially. Thus, the aim of this review was to collect and correlate technical information concerning the parameters playing pivotal role in characterization and stabilization of designed vehicles for carotenoids delivery. This comprehensive study predominantly focused on experiments carried out in past decade explaining how researchers have fabricated bioprocess engineering in amalgamation with nano techniques to improve the bioavailability for carotenoids. Furthermore, it will help the readers to understand the cognisance of carotenoids in nutraceutical market for their trendy application in food, feed and cosmeceutical industries in contemporary era.
Collapse
Affiliation(s)
- Surojit Bera
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ruchira Mitra
- International College, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Joginder Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
143
|
Huang Y, Peng S, Zeng R, Yao H, Feng G, Fang J. From probiotic chassis to modification strategies, control and improvement of genetically engineered probiotics for inflammatory bowel disease. Microbiol Res 2024; 289:127928. [PMID: 39405668 DOI: 10.1016/j.micres.2024.127928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 11/02/2024]
Abstract
With the rising morbidity of inflammatory bowel disease (IBD) year by year, conventional therapeutic drugs with systemic side effects are no longer able to meet the requirements of patients. Probiotics can improve gut microbiota, enhance intestinal barrier function, and regulate mucosal immunity, making them a potential complementary or alternative therapy for IBD. To compensate for the low potency of probiotics, genetic engineering technology has been widely used to improve their therapeutic function. In this review, we systematically summarize the genetically engineered probiotics used for IBD treatment, including probiotic chassis, genetic modification strategies, methods for controlling probiotics, and means of improving efficacy. Finally, we provide prospects on how genetically engineered probiotics can be extended to clinical applications.
Collapse
Affiliation(s)
- Yuewen Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shan Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rong Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Co., LTD, Changsha 410081, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
144
|
Nemakhavhani L, Abrahamse H, Kumar SSD. A review on dendrimer-based nanoconjugates and their intracellular trafficking in cancer photodynamic therapy. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:384-398. [PMID: 39101753 DOI: 10.1080/21691401.2024.2368033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024]
Abstract
Nanotechnology-based cancer treatment has received considerable attention, and these treatments generally use drug-loaded nanoparticles (NPs) to target and destroy cancer cells. Nanotechnology combined with photodynamic therapy (PDT) has demonstrated positive outcomes in cancer therapy. Combining nanotechnology and PDT is effective in targeting metastatic cancer cells. Nanotechnology can also increase the effectiveness of PDT by targeting cells at a molecular level. Dendrimer-based nanoconjugates (DBNs) are highly stable and biocompatible, making them suitable for drug delivery applications. Moreover, the hyperbranched structures in DBNs have the capacity to load hydrophobic compounds, such as photosensitizers (PSs) and chemotherapy drugs, and deliver them efficiently to tumour cells. This review primarily focuses on DBNs and their potential applications in cancer treatment. We discuss the chemical design, mechanism of action, and targeting efficiency of DBNs in tumour metastasis, intracellular trafficking in cancer treatment, and DBNs' biocompatibility, biodegradability and clearance properties. Overall, this study will provide the most recent insights into the application of DBNs and PDT in cancer therapy.
Collapse
Affiliation(s)
- Lufuno Nemakhavhani
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
145
|
Moreira FA, Escobar JFB, Giordani C, Caseli L. Langmuir monolayers provide an effective strategy for studying molecular recognition of nucleobases using alkylated nucleotides. Colloids Surf B Biointerfaces 2024; 244:114129. [PMID: 39121572 DOI: 10.1016/j.colsurfb.2024.114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Molecular Recognition in nucleotides is crucial for medicine, underpinning precise interactions in genetic replication and therapy. Alkylated nucleotides, in particular, play a key role in modifying DNA to inhibit cancer cell growth. In this study, we focused on an alkylated nucleotide, PNM2 (3',4',6'-O-tristearoyl uridine or uridine tri-stearate), to investigate the interaction between adenine molecules in the aqueous subphase and PNM2 Langmuir monolayers. Utilizing techniques such as tensiometry, Brewster angle microscopy, infrared spectroscopy, surface potential measurements, and dilatational surface rheology, we found compelling evidence of molecular Recognition between the polar head of the insoluble amphiphile (uridine) in the monolayer and adenine in the aqueous subphase, attributed to hydrogen bonding. These interactions significantly influenced the physicochemical properties of the air-water interface, including monolayer expansion upon molecular recognition, decreased dilatational modulus, increased tensiometric stability of the monolayer when compressed to relevant surface pressures, and decreased surface potential. These findings are noteworthy for drug development, providing crucial insights into the mechanisms of nucleotide interactions.
Collapse
Affiliation(s)
- Felipe Almeida Moreira
- Department of Chemistry, Federal University of Sao Paulo, Rua São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - Jhon Fernando Berrio Escobar
- Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellìn 050010, Colombia
| | - Cristiano Giordani
- Instituto de Física, Universidad de Antioquia, Calle 70 No. 52-21, Medellìn 050010, Colombia; Grupo Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia.
| | - Luciano Caseli
- Department of Chemistry, Federal University of Sao Paulo, Rua São Nicolau, 210, Diadema, SP 09913-030, Brazil.
| |
Collapse
|
146
|
Čolić M, Kraljević Pavelić S, Peršurić Ž, Agaj A, Bulog A, Pavelić K. Enhancing the bioavailability and activity of natural antioxidants with nanobubbles and nanoparticles. Redox Rep 2024; 29:2333619. [PMID: 38577911 PMCID: PMC11000614 DOI: 10.1080/13510002.2024.2333619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
KEY POLICY HIGHLIGHTSNanobubbles and nanoparticles may enhance the polyphenols' bioavailabilityNanobubbles may stimulate the activation of Nrf2 and detox enzymesArmoured oxygen nanobubbles may enhance radiotherapy or chemotherapy effects.
Collapse
Affiliation(s)
| | | | - Željka Peršurić
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| | - Andrea Agaj
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| | - Aleksandar Bulog
- Teaching Institute for Public Health of Primorsko-Goranska County, Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| |
Collapse
|
147
|
Elmizadeh A, Goli SAH, Mohammadifar MA. Characterization of pectin-zein nanoparticles encapsulating tanshinone: Antioxidant activity, controlled release properties, physicochemical stability to environmental stresses. Food Chem 2024; 460:140613. [PMID: 39067391 DOI: 10.1016/j.foodchem.2024.140613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Tanshinone compounds, natural antioxidants found in the roots of Salvia subg Perovskia plants, offer various health benefits and can serve as natural food additives, replacing synthetic antioxidants. In this study, the nanoparticles were created using the antisolvent method, which were then evaluated for their antioxidant and antibacterial properties, as well as their ability to release tanshinone and withstand environmental stress. The results of the study demonstrated a significant improvement in the antioxidant capabilities of tanshinone with the nanoparticle coating. The T/Z/P NPs exhibited enhanced tanshinone release under simulated gastrointestinal conditions compared to T/Z nanoparticles. These nanoparticles displayed remarkable stability against fluctuations in environmental pH and thermal conditions. The study also revealed that the critical flocculation concentration of the system was 0.5 M of salt. Furthermore, the T/Z/P NPs showed good stability during storage at 4°C for 30 days, making them an excellent candidate for use in various food products.
Collapse
Affiliation(s)
- Ameneh Elmizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Sayed Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran.
| | - Mohammad Amin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
148
|
An B, Xu M, Sun W, Ma C, Luo S, Li J, Liu S, Li W. Butterfly wing-inspired superhydrophobic photonic cellulose nanocrystal films for vapor sensors and asymmetric actuators. Carbohydr Polym 2024; 345:122595. [PMID: 39227114 DOI: 10.1016/j.carbpol.2024.122595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Cellulose nanocrystals (CNCs)-based stimuli responsive photonic materials demonstrate great application potential in mechanical and chemical sensors. However, due to the hydrophilic property of cellulose molecular, a significant challenge is to build a water-resistant photonic CNCs material. Here, inspired by butterfly wings with vivid structural color and superhydrophobic property, we have designed a CNCs based superhydrophobic iridescent film with hierarchical structures. The iridescent colored layer is ascribed to the chiral nematic alignment of CNCs, the superhydrophobic layer is ascribed to the micro-nano structures of polymer microspheres. Specially, superhydrophobic iridescent CNCs film could be used as an efficient colorimetric humidity sensor due to the existence of 'stomates' on superhydrophobic layer, which allowed the humid gas to enter into and out from the humidity responsive chiral nematic layers. Meanwhile, superhydrophobic iridescent films show out-standing self-cleaning and anti-fouling performance. Moreover, when the one side of the CNCs film was covered with superhydrophobic layer, the Janus film displays asymmetric expansion and bending behaviors as well as responsive structural colors in hydrous ethanol. This CNCs based hierarchical photonic materials have promising applications including photonic sensors suitable for extreme environment and smart photonic actuators.
Collapse
Affiliation(s)
- Bang An
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Mingcong Xu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Wenye Sun
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chunhui Ma
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Sha Luo
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jian Li
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Wei Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
149
|
Calhoun SGK, Chandran Suja V, Fowler R, Agiral A, Salem K, Fuller GG. Antifoams in non-aqueous diesel fuels: Thin liquid film dynamics and antifoam mechanisms. J Colloid Interface Sci 2024; 675:1059-1068. [PMID: 39013302 DOI: 10.1016/j.jcis.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
HypothesisFoaming in diesel fuels is not well understood and leads to operational challenges. To combat deleterious effects of foaming, diesel formulations can include additives called antifoams. Existing antifoams, unfortunately, are inherently ash-generating when combusted, with unknown environmental impacts. They are prohibited in certain countries, so identifying effective alternative ash-free antifoam chemistries is needed. ExperimentsWe conduct systematic characterization of foam stabilization and antifoaming mechanisms in diesel for two different antifoams (silicone-containing & ashless chemistries). Employing a custom technique combining single-bubble/single-antifoam-droplet manipulation with white light interferometry, we also obtain mechanistic insights into foam stability and antifoam dynamics. ResultsCoalescence times from both bulk foam and single bubble experiments confirm ashless antifoams are effective at reducing foaming, demonstrating the potential of ashless antifoams. Further, we perform single-antifoam-droplet experiments and obtain direct experimental evidence revealing the elusive antifoaming mechanisms. Interestingly, the silicone-containing and ashless antifoams seemingly function via two different mechanisms: spreading and dewetting respectively. This surprising finding refutes conventional wisdom that spreading is likely the only antifoam mechanism in diesels. These results and the reported experimental framework significantly enhance the scientific understanding of non-aqueous foams and will accelerate the engineering of alternative antifoam chemistries for non-aqueous systems.
Collapse
Affiliation(s)
- S G K Calhoun
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - V Chandran Suja
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; School of Engineering and Applied Sciences, Harvard University, MA - 02134, USA.
| | - R Fowler
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - A Agiral
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - K Salem
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - G G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
150
|
Zhou Z, He X, Xiao J, Pan J, Li M, Xu T, Zhang X. Machine learning-powered wearable interface for distinguishable and predictable sweat sensing. Biosens Bioelectron 2024; 265:116712. [PMID: 39208509 DOI: 10.1016/j.bios.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/29/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The constrained resources on wearable devices pose a challenge in meeting the demands for comprehensive sensing information, and current wearable non-enzymatic sensors face difficulties in achieving specific detection in biofluids. To address this issue, we have developed a highly selective non-enzymatic sweat sensor that seamlessly integrates with machine learning, ensuring reliable sensing and physiological monitoring of sweat biomarkers during exercise. The sensor consists of two electrodes supported by a microsystem that incorporates signal processing and wireless communication. The device generates four explainable features that can be used to accurately predict tyrosine and tryptophan concentrations, as well as sweat pH. The reliability of this device has been validated through rigorous statistical analysis, and its performance has been tested in subjects with and without supplemental amino acid intake during cycling trials. Notably, a robust linear relationship has been identified between tryptophan and tyrosine concentrations in the collected samples, irrespective of the pH dimension. This innovative sensing platform is highly portable and has significant potential to advance the biomedical applications of non-enzymatic sensors. It can markedly improve accuracy while decreasing costs.
Collapse
Affiliation(s)
- Zhongzeng Zhou
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering of Health Science Center, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xuecheng He
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering of Health Science Center, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jingyu Xiao
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering of Health Science Center, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jiuxiang Pan
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Mengmeng Li
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering of Health Science Center, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Tailin Xu
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering of Health Science Center, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering of Health Science Center, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|