101
|
Li X, Liu C, Li W, Qi G, Dai Y, Gu C, Sun Y, Zhou W, Ciliberto VC, Liang J, Kumar S U, Guan D, Hu Z, Zheng H, Liu Z, Chen H, Wan Y, Sun Z. Multi-omics delineate growth factor network underlying exercise effects in an Alzheimer's mouse model. Alzheimers Dement 2025; 21:e70024. [PMID: 40156268 PMCID: PMC11953571 DOI: 10.1002/alz.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION Physical exercise is a primary defense against age-related cognitive decline and Alzheimer's disease (AD). METHODS We conducted single-nucleus transcriptomic and chromatin accessibility analyses (snRNA-seq and snATAC-seq) on the hippocampus of mice carrying mutations in the amyloid precursor protein gene (APPNL-G-F) following prolonged voluntary wheel-running exercise. RESULTS Exercise mitigates amyloid-induced changes in transcriptome and chromatin accessibility through cell type-specific regulatory networks converging on growth factor signaling, particularly the epidermal growth factor receptor (EGFR) signaling. The beneficial effects of exercise on neurocognition can be blocked by pharmacological inhibition of EGFR and its downstream PI3K signaling. Exercise leads to elevated levels of heparin-binding EGF (HB-EGF), and intranasal administration of HB-EGF enhances memory function in sedentary APPNL-G-F mice. DISCUSSION These findings offer a panoramic delineation of cell type-specific hippocampal transcriptional networks activated by exercise and suggest EGFR signaling as a druggable contributor to exercise-induced memory enhancement to combat AD-related cognitive decline. HIGHLIGHTS snRNA-seq and snATAC-seq analysis of APPNL-G-F mice after prolonged wheel-running. Exercise counteracts amyloid-induced transcriptomic and accessibility changes. Networks converge on the activation of EGFR and insulin signaling. Pharmacological inhibition of EGFR and PI3K blocked cognitive benefits of exercise. Intranasal HB-EGF administration enhances memory in sedentary APPNL-G-F mice.
Collapse
Affiliation(s)
- Xin Li
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Chaozhong Liu
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
- Graduate School of Biomedical Sciences, Program in Quantitative & Computational BiosciencesBaylor College of MedicineHoustonTexasUSA
| | - Wenbo Li
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Guantong Qi
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
- Graduate School of Biomedical Sciences, Program in GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Yanwan Dai
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
| | - Chaohao Gu
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
- Graduate School of Biomedical Sciences, Program in Quantitative & Computational BiosciencesBaylor College of MedicineHoustonTexasUSA
| | - Yuxiang Sun
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Wenjun Zhou
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Veronica C. Ciliberto
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Jing Liang
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Peking University Health Science CenterBeijingChina
| | - Udhaya Kumar S
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Dongyin Guan
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Zhaoyong Hu
- Department of Medicine – NephrologyBaylor College of MedicineHoustonTexasUSA
| | - Hui Zheng
- Huffington Center on AgingBaylor College of MedicineHoustonTexasUSA
| | - Zhandong Liu
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hu Chen
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Ying‐Wooi Wan
- Department of PediatricsJan and Dan Duncan Neurological Research Institute, Baylor College of MedicineHoustonTexasUSA
- Jan and Dan Duncan Neurologic Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Zheng Sun
- Department of MedicineEndocrinology, Diabetes, and MetabolismBaylor College of MedicineHoustonTexasUSA
- Huffington Center on AgingBaylor College of MedicineHoustonTexasUSA
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
102
|
Choi M, Zimmerman SC, Jiang C, Wang J, Swinnerton K, Hoffmann TJ, Oni‐Orisan A, Ferguson EL, Meyers T, Choudhary V, Whitmer RA, Risch N, Krauss RM, Schaefer CM, Glymour MM, Gilsanz P. Sociodemographic modifiers of effects of statin initiation on dementia incidence: An emulated trial design in a large health care member population with 10+ years of follow-up. Alzheimers Dement 2025; 21:e14627. [PMID: 40156267 PMCID: PMC11953565 DOI: 10.1002/alz.14627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION Mixed evidence on how statin use affects risk of Alzheimer's disease and related dementias (ADRD) may reflect heterogeneity across sociodemographic factors. Few studies have sufficient power to evaluate effect modifiers. METHODS Kaiser Permanente Northern California (KPNC) members (n = 705,061; n = 202,937 with sociodemographic surveys) who initiated statins from 2001 to 2010 were matched on age and low-density lipoprotein cholesterol (LDL-C) with non-initiators and followed through 2020 for incident ADRD. Inverse probability-weighted Cox proportional hazards models were used to evaluate effect modification by age, gender, race/ethnicity, education, marital status, income, and immigrant generation. RESULTS Statin initiation (vs non-initiation) was not associated with ADRD incidence in any of the 32 subgroups (p > .05). Hazard ratios ranged from 0.964 (95% CI: 0.923 to 1.006) among Asian-identified participants to 1.122 (95% CI: 0.995 to 1.265) in the highest income category. DISCUSSION Sociodemographic heterogeneity appears to have little to no influence on the relationship between statin initiation and dementia. HIGHLIGHTS The study includes a large and diverse cohort from Kaiser Permanente (N = 705,061). An emulated trial design of statin initiation on dementia incidence was used. Effect modification by sociodemographic factors was assessed. There were no significant Alzheimer's disease and related dementias (ADRD) risk differences in 32 sociodemographic subgroups (p > 0.05).
Collapse
Affiliation(s)
- Minhyuk Choi
- Department of Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Scott C. Zimmerman
- Department of Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Chen Jiang
- Division of ResearchKaiser PermanenteOaklandCaliforniaUSA
| | - Jingxuan Wang
- Department of Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kaitlin Swinnerton
- Boston Cooperative Studies ProgramU.S. Department of Veterans AffairsBostonCaliforniaUSA
| | - Thomas J. Hoffmann
- Department of Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Institute for Human GeneticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Akinyemi Oni‐Orisan
- Institute for Human GeneticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Clinical PharmacyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Erin L. Ferguson
- Department of Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Travis Meyers
- Division of ResearchKaiser PermanenteOaklandCaliforniaUSA
| | | | - Rachel A. Whitmer
- Division of ResearchKaiser PermanenteOaklandCaliforniaUSA
- Department of Public Health SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Neil Risch
- Department of Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Institute for Human GeneticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ronald M. Krauss
- Departments of Pediatrics and MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - M. Maria Glymour
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
| | - Paola Gilsanz
- Department of Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Division of ResearchKaiser PermanenteOaklandCaliforniaUSA
| |
Collapse
|
103
|
McDonough A, Weinstein JR. Glial 'omics in ischemia: Acute stroke and chronic cerebral small vessel disease. Glia 2025; 73:495-518. [PMID: 39463002 PMCID: PMC11785505 DOI: 10.1002/glia.24634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Vascular injury and pathologies underlie common diseases including ischemic stroke and cerebral small vessel disease (CSVD). Prior work has identified a key role for glial cells, including microglia, in the multifaceted and temporally evolving neuroimmune response to both stroke and CSVD. Transcriptional profiling has led to important advances including identification of distinct gene expression signatures in ischemia-exposed, flow cytometrically sorted microglia and more recently single cell RNA sequencing-identified microglial subpopulations or clusters. There is a reassuring degree of overlap in the results from these two distinct methodologies with both identifying a proliferative and a separate type I interferon responsive microglial element. Similar patterns were later seen using multimodal and spatial transcriptomal profiling in ischemia-exposed microglia and astrocytes. Methodological advances including enrichment of specific neuroanatomic/functional regions (such as the neurovascular unit) prior to single cell RNA sequencing has led to identification of novel cellular subtypes and generation of new credible hypotheses as to cellular function based on the enhanced cell sub-type specific gene expression patterns. A ribosomal tagging strategy focusing on the cellular translatome analyses carried out in the acute phases post stroke has revealed distinct inflammation-regulating roles for microglia and astrocytes in this setting. Early spatial transcriptomics experiments using cerebral ischemia models have identified regionally distinct microglial cell clusters in ischemic core versus penumbra. There is great potential for combination of these methods for multi-omics approaches to further elucidate glial responses in the context of both acute ischemic stroke and chronic CSVD.
Collapse
Affiliation(s)
- Ashley McDonough
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington 98195-6465
| | - Jonathan R. Weinstein
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington 98195-6465
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, Washington 98195-6465
| |
Collapse
|
104
|
Wang Z, Veerareddy V, Tang X, Thompson KJ, Krishnan S, Kalari KR, Kandimalla KK. QSP Modeling Shows Pathological Synergism Between Insulin Resistance and Amyloid-Beta Exposure in Upregulating VCAM1 Expression at the BBB Endothelium. CPT Pharmacometrics Syst Pharmacol 2025; 14:561-571. [PMID: 39727246 PMCID: PMC11919260 DOI: 10.1002/psp4.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/24/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM), characterized by insulin resistance, is closely associated with Alzheimer's disease (AD). Cerebrovascular dysfunction is manifested in both T2DM and AD, and is often considered as a pathological link between the two diseases. Insulin signaling regulates critical functions of the blood-brain barrier (BBB), and endothelial insulin resistance could lead to BBB dysfunction, aggravating AD pathology. However, insulin signaling is intrinsically dynamic and involves interactions among numerous molecular mediators. Hence, a mechanistic systems biology model is needed to understand how insulin regulates BBB physiology and the consequences of its impairment in T2DM and AD. In this study, we investigated the pharmacodynamic effect of insulin on the expression of vascular cell adhesion molecule 1 (VCAM1), a marker of cerebrovascular inflammation. Intriguingly, normal insulin concentrations selectively activated the PI3K-AKT pathway, leading to decreased VCAM1 expression. However, exposure to supraphysiological insulin levels, which is present in insulin resistance, activated both PI3K-AKT and MEK-ERK pathways, and increased VCAM1 expression. We developed a mathematical model that adequately described the dynamics of various insulin signaling nodes and VCAM1 expression. Further, the model was integrated with in vitro proteomics and transcriptomics data from AD patients to simulate VCAM1 expression under pathological conditions. This approach allowed us to establish a quantitative systems pharmacology framework to investigate BBB dysfunction in AD and metabolic syndrome, thereby offering opportunities to identify specific disruptions in molecular networks that will enable us to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Zengtao Wang
- Department of Pharmaceutics and Brain Barriers Research Center, College of PharmacyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Vaishnavi Veerareddy
- Department of Pharmaceutics and Brain Barriers Research Center, College of PharmacyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Xiaojiao Tang
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Kevin J. Thompson
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Sunil Krishnan
- Vivian L. Smith Department of NeurosurgeryUniversity of Texas Health Sciences CenterHoustonTexasUSA
| | - Krishna R. Kalari
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Karunya K. Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, College of PharmacyUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
105
|
Chen D, Guo Y, Zhang M, Liu X, Zhang B, Kou X. Exercise alleviates cognitive decline of natural aging rats by upregulating Notch-mediated autophagy signaling. Brain Res 2025; 1850:149398. [PMID: 39667553 DOI: 10.1016/j.brainres.2024.149398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Notch signaling, a classical signaling pathway of neurogenesis, is downregulated during the aging and age-related neurodegenerative diseases. Exercise has been proposed as an effective lifestyle intervention for delaying cognitive decline. However, it remains unclear whether exercise intervention could alleviate cognitive decline by modulating neurogenesis in naturally aging rats. In this study, 21-month-old natural aging rats were used to study brain aging. The natural aging rats underwent different forms of exercise training (aerobic exercise or strength training or comprehensive exercise with aerobic exercise and strength training) for 12 consecutive weeks. The cognitive function of natural aging rats was determined by Morris Water Maze. Notch signaling, autophagy-related proteins and hippocampal neurogenesis were examined by immunofluorescence, qRT-PCR and Western blot. Results showed that natural aging rats exhibited cognitive decline, accumulation of AD pathological proteins (APP and Aβ), and decreased neurogenesis (decreased DCX, Ki67 and GFAP), compared with the young control rats. Moreover, a significant decline in Notch signaling and autophagy was found in the hippocampus of natural aging rats. However, different forms of exercise upregulated Notch signaling and its downstream target genes, as well as autophagy-related proteins, including LC3, Beclin1, and p62. In summary, our data suggest that different forms of exercise can mitigate brain aging by upregulating Notch signaling and autophagy, thereby increasing hippocampal neurogenesis and improves spatial learning and memory abilities.
Collapse
Affiliation(s)
- Dandan Chen
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China; College of Physical Education, Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Yuan Guo
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China; Wuhan Wuchang Hospital, Wuhan 430063, China
| | - Meng Zhang
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Xingran Liu
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China; College of Physical Education and Health, Guangxi Medical University, Nanning 530021, China
| | - Baowen Zhang
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Xianjuan Kou
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China; Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan 430079, China.
| |
Collapse
|
106
|
Yu L, Feng M, Shang Y, Ren Z, Xing H, Chang Y, Dong K, Xiao Y, Dai H. Reduced Functional Connectivity in Nucleus Accumbens Subregions Associates With Cognitive Changes in Alzheimer's Disease. Brain Behav 2025; 15:e70440. [PMID: 40135639 PMCID: PMC11938111 DOI: 10.1002/brb3.70440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/21/2024] [Accepted: 02/16/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND AND PURPOSE The nucleus accumbens (NAc), an important component of the reward circuit, is believed to play an indispensable role in Alzheimer's disease (AD). This study aimed to explore alterations in the functional connectivity (FC) of NAc subregions in AD patients and to explore their associations with neuropsychological profiles. METHODS Total 45 AD patients and 41 healthy controls (HCs) were recruited for this study. Four subregions of the NAc were used as regions of interest for whole-brain FC analysis. Correlation analyses were conducted to explore the relationships between the changed FC of brain regions with significant differences and neuropsychological profiles. RESULTS Compared with HCs, decreased FC was observed between NAc subregions and regions of the orbitofrontal cortex (OFC), precuneus (PCUN), insula (INS), cerebellum 8, and putamen in AD patients (Gaussian random field [GRF] corrected, voxel-level p < 0.001, cluster-level p < 0.05). Furthermore, the FC between the left core and left PCUN was correlated with the score of the auditory verbal learning test immediate recall task in AD patients (r = 0.441, p = 0.003, Bonferroni corrected). CONCLUSION Disruptions in connectivity between the NAc subregions and important cognitive-related areas may be related to the cognitive deficits observed in AD patients, especially episodic memory function.
Collapse
Affiliation(s)
- Lefan Yu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Mengmeng Feng
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yi Shang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhaohai Ren
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Hanqi Xing
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yue Chang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ke Dong
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yao Xiao
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Hui Dai
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Medical Imaging, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
107
|
Elliott T, Liu KY, Hazan J, Wilson J, Vallipuram H, Jones K, Mahmood J, Gitlin-Leigh G, Howard R. Hippocampal neurogenesis in adult primates: a systematic review. Mol Psychiatry 2025; 30:1195-1206. [PMID: 39558003 DOI: 10.1038/s41380-024-02815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024]
Abstract
It had long been considered that no new neurons are generated in the primate brain beyond birth, but recent studies have indicated that neurogenesis persists in various locations throughout the lifespan. The dentate gyrus of the hippocampus is of particular interest due to the postulated role played by neurogenesis in memory. However, studies investigating the presence of adult hippocampal neurogenesis (AHN) have reported contradictory findings, and no systematic review of the evidence has been conducted to date. We searched MEDLINE, Embase and PsycINFO on 27th June 2023 for studies on hippocampal neurogenesis in adult primates, excluding review papers. Screening, quality assessment and data extraction was done by independent co-raters. We synthesised evidence from 112 relevant papers. We found robust evidence, primarily supported by immunohistochemical examination of tissue samples and neuroimaging, for newly generated neurons, first detected in the subgranular zone of the dentate gyrus, that mature over time and migrate to the granule cell layer, where they become functionally integrated with surrounding neuronal networks. AHN has been repeatedly observed in both humans and other primates and gradually diminishes with age. Transient increases in AHN are observed following acute insults such as stroke and epileptic seizures, and following electroconvulsive therapy, and AHN is diminished in neurodegenerative conditions. Markers of AHN correlate positively with measures of learning and short-term memory, but associations with antidepressant use and mood states are weaker. Heterogeneous outcome measures limited quantitative syntheses. Further research should better characterise the neuropsychological function of neurogenesis in healthy subjects.
Collapse
Affiliation(s)
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | - Jemma Hazan
- Division of Psychiatry, University College London, London, UK
- Camden and Islington NHS Foundation Trust, London, UK
| | - Jack Wilson
- Camden and Islington NHS Foundation Trust, London, UK
| | | | | | | | | | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| |
Collapse
|
108
|
Padrela BE, Slivka M, Sneve MH, Garrido PF, Dijsselhof MBJ, Hageman T, Geier O, Grydeland H, Mahroo A, Kuijer JPA, Konstandin S, Eickel K, Barkhof F, Günther M, Walhovd KB, Fjell AM, Mutsaerts HJMM, Petr J. Blood-brain barrier water permeability across the adult lifespan: A multi-echo ASL study. Neurobiol Aging 2025; 147:176-186. [PMID: 39798256 DOI: 10.1016/j.neurobiolaging.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/28/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
An emerging biomarker of blood-brain barrier (BBB) permeability is the time of exchange (Tex) of water from the blood to tissue, as measured by multi-echo arterial spin labeling (ASL) MRI. This new non-invasive sequence, already tested in mice, has recently been adapted to humans and optimized for clinical scanning time. In this study, we studied the normal variability of Tex over age and sex, which needs to be established as a reference for studying changes in neurological disease. We evaluated Tex, cerebral blood flow (CBF) and arterial transit time (ATT) in 209 healthy adults between 26 and 87 years, over age and sex, using general linear models in gray matter, white matter, and regionally in cerebral lobes. After QC, 194 participants were included in the main analysis, and the results demonstrated that both gray matter (GM) and white matter (WM) BBB permeability was higher with higher age (Tex lower by 0.47 ms per year in GM [p < 0.05], and by 0.49 ms in WM, for females; no significant for males), with the largest Tex difference in the frontal lobes (0.64 ms decrease per year, p = 0.011, population average). CBF was lower with higher age in the GM (-0.71 mL/min/100g per year, p < 0.001, for females; -0.31 mL/min/100g per year, p < 0.05, for males). When correcting Tex models for CBF and ATT, effect of age on Tex disappears in the GM, but not in the WM (β=-0.28, p = 0.08). The CBF findings of this study are in line with previous studies, demonstrating the validity of the new sequence. The BBB water permeability variation over age and sex described in this study provides a reference for future BBB research.
Collapse
Affiliation(s)
- Beatriz E Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands.
| | - Maksim Slivka
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| | - Pablo F Garrido
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway; Department of Physics and Computational Radiology, Clinics of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Mathijs B J Dijsselhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
| | - Tamara Hageman
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands
| | - Oliver Geier
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway; Department of Physics and Computational Radiology, Clinics of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| | - Amnah Mahroo
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Joost P A Kuijer
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
| | - Simon Konstandin
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany; Bremerhaven University of Applied Sciences, Bremerhaven, Germany
| | - Klaus Eickel
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany; Bremerhaven University of Applied Sciences, Bremerhaven, Germany
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany; mediri GmbH, Heidelberg, Germany; Faculty 1 - Physics / Electrical Engineering, University Bremen, Bremen, Germany
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway; Computational Radiology and Artificial Intelligence, Clinics of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway; Computational Radiology and Artificial Intelligence, Clinics of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| |
Collapse
|
109
|
Calvo B, Schembri-Wismayer P, Durán-Alonso MB. Age-Related Neurodegenerative Diseases: A Stem Cell's Perspective. Cells 2025; 14:347. [PMID: 40072076 PMCID: PMC11898746 DOI: 10.3390/cells14050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Neurodegenerative diseases encompass a number of very heterogeneous disorders, primarily characterized by neuronal loss and a concomitant decline in neurological function. Examples of this type of clinical condition are Alzheimer's Disease, Parkinson's Disease, Huntington's Disease and Amyotrophic Lateral Sclerosis. Age has been identified as a major risk in the etiology of these disorders, which explains their increased incidence in developed countries. Unfortunately, despite continued and intensive efforts, no cure has yet been found for any of these diseases; reliable markers that allow for an early diagnosis of the disease and the identification of key molecular events leading to disease onset and progression are lacking. Altered adult neurogenesis appears to precede the appearance of severe symptoms. Given the scarcity of human samples and the considerable differences with model species, increasingly complex human stem-cell-based models are being developed. These are shedding light on the molecular alterations that contribute to disease development, facilitating the identification of new clinical targets and providing a screening platform for the testing of candidate drugs. Moreover, the secretome and other promising features of these cell types are being explored, to use them as replacement cells of high plasticity or as co-adjuvant therapy in combinatorial treatments.
Collapse
Affiliation(s)
- Belén Calvo
- Faculty of Health Sciences, Catholic University of Ávila, 05005 Ávila, Spain;
| | - Pierre Schembri-Wismayer
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - María Beatriz Durán-Alonso
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
110
|
Balmer GL, Guha S, Poll S. Engrams across diseases: Different pathologies - unifying mechanisms? Neurobiol Learn Mem 2025; 219:108036. [PMID: 40023216 DOI: 10.1016/j.nlm.2025.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Memories are our reservoir of knowledge and thus, are crucial for guiding decisions and defining our self. The physical correlate of a memory in the brain is termed an engram and since decades helps researchers to elucidate the intricate nature of our imprinted experiences and knowledge. Given the importance that memories have for our lives, their impairment can present a tremendous burden. In this review we aim to discuss engram malfunctioning across diseases, covering dementia-associated pathologies, epilepsy, chronic pain and psychiatric disorders. Current neuroscientific tools allow to witness the emergence and fate of engram cells and enable their manipulation. We further suggest that specific mechanisms of mnemonic malfunction can be derived from engram cell readouts. While depicting the way diseases act on the mnemonic component - specifically, on the cellular engram - we emphasize a differentiation between forms of amnesia and hypermnesia. Finally, we highlight commonalities and distinctions of engram impairments on the cellular level across diseases independent of their pathogenic origins and discuss prospective therapeutic measures.
Collapse
Affiliation(s)
- Greta Leonore Balmer
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany
| | - Shuvrangshu Guha
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany
| | - Stefanie Poll
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.
| |
Collapse
|
111
|
Zhu C, Liu X. Behavioral and pathological characteristics of 5xFAD female mice in the early stage. Sci Rep 2025; 15:6924. [PMID: 40011556 PMCID: PMC11865263 DOI: 10.1038/s41598-025-90335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
Alzheimer's disease (AD) is a central nervous system degenerative disease with insidious onset and gradual development caused by selective and progressive loss of neurons. The 5xFAD mouse is a relatively mature disease model of AD. However, the behavioral research on 5xFAD female mouse is more focused on the changes of late memory function, and the exploration of its early behavioral and pathological changes is still incomplete. This research aims to explore the changes in memory function, emotional function (including anxiety and depression), motor ability, amyloid plaques, glial cell response and neurogenesis in the hippocampus of female 5xFAD mice in the early stage, laying a foundation for a comprehensive exploration of the disease mechanism of AD. The results of this study found that early 4-month-old female 5xFAD mice mainly showed a decline in memory function without other dysfunction. Accompanied by a large amount of amyloid protein plaques deposited in the hippocampus, it induced the response of microglia and astrocytes, and neurogenesis decreased significantly with age, especially in early female 5xFAD mice, which resulted in a decrease in the number of new neurons. This may be an important reason for the decline in memory function of female 5xFAD mice in the early stage.
Collapse
Affiliation(s)
- Chenlu Zhu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| | - Xuejiao Liu
- Department of Hyperbaric Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
112
|
Liang Z, Li Z, Zhang D, Luo X, Liu Q, Qin D, Wang M, Xu Z, Feng J, He J, Guo W. Dual recombinase-mediated intersectional genetics defines the functional heterogeneity of neural stem cells in adult hippocampus. Mol Psychiatry 2025:10.1038/s41380-025-02937-x. [PMID: 39994425 DOI: 10.1038/s41380-025-02937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/15/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
The Cre-lox site-specific recombinase system is one of the most powerful and versatile technology platforms for studying neural stem cells (NSCs) in adult brain, which is now challenged due to the complex and dynamic nature of in vivo gene expression. In this study, we develop an inducible dual recombinase-mediated intersectional genetics by combining Dre-rox and Cre-lox recombination technologies to specifically target two subpopulations of NSCs (α- and β-NSCs). By visiting their cell lineage and functionality, we find that α- and β-NSCs display distinct self-renewal and differentiation potential, as well as differential responses to external stimuli. Notably, in contrast to α-NSCs, the number of β-NSCs is not affected in aged mice and an APP/PS1 mouse model of Alzeimer's disease. Single cell transcriptome analysis reveals divergent molecular signatures between type α- and β-NSCs and identifies PRMT1 as an important regulatory element to differentially regulate the neurogenic potential of α- and β-NSCs. Inhibition of PRMT1 specifically enhances the neurogenic capacity of β-NSCs and promotes the cognition functions in aged mice. Importantly, PRMT1 inhibition combined with increased BDNF levels pharmacologically ameliorates the cognitive impairments in APP/PS1 mice. Together, our study suggests that understanding the functional heterogeneity of NSCs might pave the way for harnessing the specific subpopulation of NSCs to treat brain disorders.
Collapse
Affiliation(s)
- Ziqi Liang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, 130033, China
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhimin Li
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Dan Zhang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Liu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dezhe Qin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiheng Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Jin Feng
- Department of lmmunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, 130033, China.
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
113
|
Santos M, Moreira JAF, Santos SS, Solá S. Sustaining Brain Youth by Neural Stem Cells: Physiological and Therapeutic Perspectives. Mol Neurobiol 2025:10.1007/s12035-025-04774-z. [PMID: 39985708 DOI: 10.1007/s12035-025-04774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
In the last two decades, stem cells (SCs) have attracted considerable interest for their research value and therapeutic potential in many fields, namely in neuroscience. On the other hand, the discovery of adult neurogenesis, the process by which new neurons are generated in the adult brain, challenged the traditional view that the brain is a static structure after development. The recent findings showing that adult neurogenesis has a significant role in brain plasticity, learning and memory, and emotional behavior, together with the fact that it is strongly dependent on several external and internal factors, have sparked more interest in this area. The mechanisms of adult neural stem cell (NSC) regulation, the physiological role of NSC-mediated neuroplasticity throughout life, and the most recent NSC-based therapeutic applications will be concisely reviewed. Noteworthy, due to their multipotency, self-renewal potential, and ability to secrete growth and immunomodulatory factors, NSCs have been mainly suggested for (1) transplantation, (2) neurotoxicology tests, and (3) drug screening approaches. The clinical trials of NSC-based therapy for different neurologic conditions are, nonetheless, mostly in the early phases and have not yet demonstrated conclusive efficacy or safety. Here, we provide an outlook of the major challenges and limitations, as well as some promising directions that could help to move toward stem cell widespread use in the treatment and prevention of several neurological disorders.
Collapse
Affiliation(s)
- Matilde Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - João A Ferreira Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Sónia Sá Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| |
Collapse
|
114
|
Lohkamp KJ, Timmer N, Solé Guardia G, Shenk J, Verweij V, Geenen B, Dederen PJ, Bakker L, Egitimci C, Yoldas R, Verhaeg M, Kothuis J, Nieuwenhuis D, Wiesmann M, Kiliaan AJ. Sex-Specific Adaptations in Alzheimer's Disease and Ischemic Stroke: A Longitudinal Study in Male and Female APP swe/PS1 dE9 Mice. Life (Basel) 2025; 15:333. [PMID: 40141679 PMCID: PMC11944048 DOI: 10.3390/life15030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
The long-term impact of stroke on Alzheimer's disease (AD) progression, particularly regarding sex-specific differences, remains unknown. Using a longitudinal study design, we investigated transient middle cerebral artery occlusion in 3.5-month-old APPswe/PS1dE9 (APP/PS1) and wild-type mice. In vivo, we assessed behavior, cerebral blood flow (CBF), and structural integrity by neuroimaging, as well as post-mortem myelin integrity (polarized light imaging, PLI), neuroinflammation, and amyloid beta (Aβ) deposition. APP/PS1 mice exhibited cognitive decline, white matter degeneration (reduced fractional anisotropy (FA) via diffusion tensor imaging (DTI)), and decreased myelin density via PLI. Despite early hypertension, APP/PS1 mice showed only sporadic hypoperfusion. Cortical thickening and hippocampal hypertrophy likely resulted from Aβ accumulation and neuroinflammation. Stroke-operated mice retained cognition despite cortical thinning and hippocampal atrophy due to cerebrovascular adaptation, including increased CBF in the hippocampus and thalamus. Stroke did not worsen AD pathology, nor did AD exacerbate stroke outcomes. Sex differences were found: female APP/PS1 mice had more severe Aβ deposition, hyperactivity, lower body weight, and reduced CBF but less neuroinflammation, suggesting potential neuroprotection. These findings highlight white matter degeneration and Aβ pathology as key drivers of cognitive decline in AD, with stroke-related deficits mitigated by (cerebro)vascular adaptation. Sex-specific therapies are crucial for AD and stroke.
Collapse
Affiliation(s)
- Klara J. Lohkamp
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, The Netherlands; (K.J.L.); (N.T.); (G.S.G.); (J.S.); (V.V.); (B.G.); (P.J.D.); (L.B.); (C.E.); (R.Y.); (M.V.); (J.K.); (M.W.)
| | - Nienke Timmer
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, The Netherlands; (K.J.L.); (N.T.); (G.S.G.); (J.S.); (V.V.); (B.G.); (P.J.D.); (L.B.); (C.E.); (R.Y.); (M.V.); (J.K.); (M.W.)
| | - Gemma Solé Guardia
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, The Netherlands; (K.J.L.); (N.T.); (G.S.G.); (J.S.); (V.V.); (B.G.); (P.J.D.); (L.B.); (C.E.); (R.Y.); (M.V.); (J.K.); (M.W.)
| | - Justin Shenk
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, The Netherlands; (K.J.L.); (N.T.); (G.S.G.); (J.S.); (V.V.); (B.G.); (P.J.D.); (L.B.); (C.E.); (R.Y.); (M.V.); (J.K.); (M.W.)
| | - Vivienne Verweij
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, The Netherlands; (K.J.L.); (N.T.); (G.S.G.); (J.S.); (V.V.); (B.G.); (P.J.D.); (L.B.); (C.E.); (R.Y.); (M.V.); (J.K.); (M.W.)
| | - Bram Geenen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, The Netherlands; (K.J.L.); (N.T.); (G.S.G.); (J.S.); (V.V.); (B.G.); (P.J.D.); (L.B.); (C.E.); (R.Y.); (M.V.); (J.K.); (M.W.)
| | - Pieter J. Dederen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, The Netherlands; (K.J.L.); (N.T.); (G.S.G.); (J.S.); (V.V.); (B.G.); (P.J.D.); (L.B.); (C.E.); (R.Y.); (M.V.); (J.K.); (M.W.)
| | - Lieke Bakker
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, The Netherlands; (K.J.L.); (N.T.); (G.S.G.); (J.S.); (V.V.); (B.G.); (P.J.D.); (L.B.); (C.E.); (R.Y.); (M.V.); (J.K.); (M.W.)
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute (MHeNs), European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Cansu Egitimci
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, The Netherlands; (K.J.L.); (N.T.); (G.S.G.); (J.S.); (V.V.); (B.G.); (P.J.D.); (L.B.); (C.E.); (R.Y.); (M.V.); (J.K.); (M.W.)
| | - Rengin Yoldas
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, The Netherlands; (K.J.L.); (N.T.); (G.S.G.); (J.S.); (V.V.); (B.G.); (P.J.D.); (L.B.); (C.E.); (R.Y.); (M.V.); (J.K.); (M.W.)
| | - Minou Verhaeg
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, The Netherlands; (K.J.L.); (N.T.); (G.S.G.); (J.S.); (V.V.); (B.G.); (P.J.D.); (L.B.); (C.E.); (R.Y.); (M.V.); (J.K.); (M.W.)
| | - Josine Kothuis
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, The Netherlands; (K.J.L.); (N.T.); (G.S.G.); (J.S.); (V.V.); (B.G.); (P.J.D.); (L.B.); (C.E.); (R.Y.); (M.V.); (J.K.); (M.W.)
| | - Desirée Nieuwenhuis
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, The Netherlands; (K.J.L.); (N.T.); (G.S.G.); (J.S.); (V.V.); (B.G.); (P.J.D.); (L.B.); (C.E.); (R.Y.); (M.V.); (J.K.); (M.W.)
| | - Maximilian Wiesmann
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, The Netherlands; (K.J.L.); (N.T.); (G.S.G.); (J.S.); (V.V.); (B.G.); (P.J.D.); (L.B.); (C.E.); (R.Y.); (M.V.); (J.K.); (M.W.)
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, The Netherlands; (K.J.L.); (N.T.); (G.S.G.); (J.S.); (V.V.); (B.G.); (P.J.D.); (L.B.); (C.E.); (R.Y.); (M.V.); (J.K.); (M.W.)
| |
Collapse
|
115
|
Tang Y, Zhang Y, Chen C, Cao Y, Wang Q, Tang C. Gut microbiota: A new window for the prevention and treatment of neuropsychiatric disease. J Cent Nerv Syst Dis 2025; 17:11795735251322450. [PMID: 39989718 PMCID: PMC11846125 DOI: 10.1177/11795735251322450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Under normal physiological conditions, gut microbiota and host mutually coexist. They play key roles in maintaining intestinal barrier integrity, absorption, and metabolism, as well as promoting the development of the central nervous system (CNS) and emotional regulation. The dysregulation of gut microbiota homeostasis has attracted significant research interest, specifically in its impact on neurological and psychiatric disorders. Recent studies have highlighted the important role of the gut- brain axis in conditions including Alzheimer's Disease (AD), Parkinson's Disease (PD), and depression. This review aims to elucidate the regulatory mechanisms by which gut microbiota affect the progression of CNS disorders via the gut-brain axis. Additionally, we discuss the current research landscape, identify gaps, and propose future directions for microbial interventions against these diseases. Finally, we provide a theoretical reference for clinical treatment strategies and drug development for AD, PD, and depression.
Collapse
Affiliation(s)
- Yali Tang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yizhu Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Chen Chen
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ying Cao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Qiaona Wang
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, People’s Republic of China
| | - Chuanfeng Tang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
116
|
Liu D, Webber HC, Bian F, Xu Y, Prakash M, Feng X, Yang M, Yang H, You IJ, Li L, Liu L, Liu P, Huang H, Chang CY, Liu L, Shah SH, La Torre A, Welsbie DS, Sun Y, Duan X, Goldberg JL, Braun M, Lansky Z, Hu Y. Optineurin-facilitated axonal mitochondria delivery promotes neuroprotection and axon regeneration. Nat Commun 2025; 16:1789. [PMID: 39979261 PMCID: PMC11842812 DOI: 10.1038/s41467-025-57135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We find that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a decrease of axonal mitochondria in mice. We discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Furthermore, overexpressing OPTN/TRAK1/KIF5B prevents not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes robust ON regeneration. Therefore, in addition to generating animal models for NTG and ALS, our results establish OPTN as a facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Dong Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Hannah C Webber
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fuyun Bian
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yangfan Xu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, P.R. China
| | - Manjari Prakash
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Xue Feng
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ming Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Hang Yang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - In-Jee You
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Liang Li
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Liping Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Pingting Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Haoliang Huang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chien-Yi Chang
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Liang Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sahil H Shah
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Derek S Welsbie
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA, USA
| | - Yang Sun
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey Louis Goldberg
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA
| | - Marcus Braun
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia.
| | - Yang Hu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
117
|
Uno H, Itokazu T, Yamashita T. Inhibition of repulsive guidance molecule A ameliorates diabetes-induced cognitive decline and hippocampal neurogenesis impairment in mice. Commun Biol 2025; 8:263. [PMID: 39972167 PMCID: PMC11840113 DOI: 10.1038/s42003-025-07696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
Although diabetes mellitus is strongly associated with dementia, the mechanism underlying diabetes-induced cognitive dysfunction has not been clarified. Here, we demonstrate the vital role of repulsive guidance molecule A (RGMa) in the regulation of adult hippocampal neurogenesis and cognitive impairment under diabetic conditions. In type 2 diabetic db/db mice and streptozotocin-mediated type 1 diabetic mice, RGMa is upregulated in the granular cell layer of the dentate gyrus. Additionally, both neural stem cells (NSCs) and immature neurons express its receptor, neogenin. In vitro experiments revealed that high glucose-conditioned hippocampal neurons inhibited the differentiation of NSCs, and the application of an anti-RGMa antibody restored it. The treatment with an anti-RGMa antibody ameliorated diabetes-induced cognitive decline and impairment of hippocampal neurogenesis. These findings suggest that the RGMa negatively regulates hippocampal neurogenesis and is involved in diabetes mellitus-induced cognitive decline.
Collapse
Affiliation(s)
- Hiroki Uno
- Department of Molecular Neurosciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takahide Itokazu
- Department of Molecular Neurosciences, Graduate School of Medicine, Osaka University, Suita, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neurosciences, Graduate School of Medicine, Osaka University, Suita, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| |
Collapse
|
118
|
Zadorozny L, Du J, Supanekar N, Annamalai K, Yu Q, Wang M. Caveolin and oxidative stress in cardiac pathology. Front Physiol 2025; 16:1550647. [PMID: 40041164 PMCID: PMC11876135 DOI: 10.3389/fphys.2025.1550647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
Caveolins interact with signaling molecules within caveolae and subcellular membranes. Dysregulation of caveolin function and protein abundance contributes to cardiac pathophysiological processes, driving the development and progression of heart disease. Reactive oxygen species (ROS) play a critical role in maintaining cellular homeostasis and are key contributors to the pathophysiological mechanisms of cardiovascular disorders. Caveolins have been shown to modulate oxidative stress and regulate redox homeostasis. However, the specific roles of caveolins, particularly caveolin-1 and caveolin-3, in regulating ROS production during cardiac pathology remain unclear. This mini-review article highlights the correlation between caveolins and oxidative stress in maintaining cardiovascular health and modulating cardiac diseases, specifically in myocardial ischemia, heart failure, diabetes-induced metabolic cardiomyopathy, and septic cardiomyopathy. A deeper understanding of caveolin-mediated mechanisms may pave the way for innovative therapeutic approaches to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Lauren Zadorozny
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Division of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jiayue Du
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Division of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Neil Supanekar
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Karthik Annamalai
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qing Yu
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Division of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Meijing Wang
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Division of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
119
|
Reddi Sree R, Kalyan M, Anand N, Mani S, Gorantla VR, Sakharkar MK, Song BJ, Chidambaram SB. Newer Therapeutic Approaches in Treating Alzheimer's Disease: A Comprehensive Review. ACS OMEGA 2025; 10:5148-5171. [PMID: 39989768 PMCID: PMC11840625 DOI: 10.1021/acsomega.4c05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 02/25/2025]
Abstract
Alzheimer's disease (AD) is an aging-related irreversible neurodegenerative disease affecting mostly the elderly population. The main pathological features of AD are the extracellular Aβ plaques generated by APP cleavage through the amyloidogenic pathway, the intracellular neurofibrillary tangles (NFT) resulting from the hyperphosphorylated tau proteins, and cholinergic neurodegeneration. However, the actual causes of AD are unknown, but several studies suggest hereditary mutations in PSEN1 and -2, APOE4, APP, and the TAU genes are the major perpetrators. In order to understand the etiology and pathogenesis of AD, various hypotheses are proposed. These include the following hypotheses: amyloid accumulation, tauopathy, inflammation, oxidative stress, mitochondrial dysfunction, glutamate/excitotoxicity, cholinergic deficiency, and gut dysbiosis. Currently approved therapeutic interventions are donepezil, galantamine, and rivastigmine, which are cholinesterase inhibitors (ChEIs), and memantine, which is an N-methyl-d-aspartate (NMDA) antagonist. These treatment strategies focus on only symptomatic management of AD by attenuating symptoms but not regeneration of neurons or clearance of Aβ plaques and hyperphosphorylated Tau. This review focuses on the pathophysiology, novel therapeutic targets, and disease-altering treatments such as α-secretase modulators, active immunotherapy, passive immunotherapy, natural antioxidant products, nanomaterials, antiamyloid therapy, tau aggregation inhibitors, transplantation of fecal microbiota or stem cells, and microtubule stabilizers that are in clinical trials or still under investigation.
Collapse
Affiliation(s)
- Radhakrishna Reddi Sree
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Manjunath Kalyan
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre
for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department
of Pharmacology, American University of
Antigua College of Medicine, University Park, Jabberwock Beach Road, Coolidge, Antigua, Barbuda
| | - Sangeetha Mani
- Department
of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and
Research, Porur, Chennai 600116, India
| | - Vasavi Rakesh Gorantla
- Department
of Anatomical Sciences, St. George’s University School of Medicine, St. George’s University, Saint George, Grenada
| | - Meena Kishore Sakharkar
- College
of
Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Byoung-Joon Song
- Section
of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry
and Biophysics, National Institute on Alcohol
Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Saravana Babu Chidambaram
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre
for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
120
|
Ramnauth AD, Tippani M, Divecha HR, Papariello AR, Miller RA, Nelson ED, Thompson JR, Pattie EA, Kleinman JE, Maynard KR, Collado-Torres L, Hyde TM, Martinowich K, Hicks SC, Page SC. Spatiotemporal analysis of gene expression in the human dentate gyrus reveals age-associated changes in cellular maturation and neuroinflammation. Cell Rep 2025; 44:115300. [PMID: 40009515 DOI: 10.1016/j.celrep.2025.115300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/19/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025] Open
Abstract
The dentate gyrus of the hippocampus is important for many cognitive functions, including learning, memory, and mood. Here, we present transcriptome-wide spatial gene expression maps of the human dentate gyrus and investigate age-associated changes across the lifespan. Genes associated with neurogenesis and the extracellular matrix are enriched in infants and decline throughout development and maturation. Following infancy, inhibitory neuron markers increase, and cellular proliferation markers decrease. We also identify spatio-molecular signatures that support existing evidence for protracted maturation of granule cells during adulthood and age-associated increases in neuroinflammation-related gene expression. Our findings support the notion that the hippocampal neurogenic niche undergoes major changes following infancy and identify molecular regulators of brain aging in glial- and neuropil-enriched tissue.
Collapse
Affiliation(s)
- Anthony D Ramnauth
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Heena R Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Alexis R Papariello
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Ryan A Miller
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Erik D Nelson
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jacqueline R Thompson
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Elizabeth A Pattie
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD 21205, USA
| | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA; Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
121
|
Zhou Y, Su Y, Yang Q, Li J, Hong Y, Gao T, Zhong Y, Ma X, Jin M, Liu X, Yuan N, Kennedy BC, Wang L, Yan L, Viaene AN, Helbig I, Kessler SK, Kleinman JE, Hyde TM, Nauen DW, Liu C, Liu Z, Shen Z, Li C, Xu S, He J, Weinberger DR, Ming GL, Song H. Comparative molecular landscapes of immature neurons in the mammalian dentate gyrus across species reveal special features in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.16.638557. [PMID: 40027814 PMCID: PMC11870590 DOI: 10.1101/2025.02.16.638557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Immature dentate granule cells (imGCs) arising from adult hippocampal neurogenesis contribute to plasticity, learning and memory, but their evolutionary changes across species and specialized features in humans remain poorly understood. Here we performed machine learning-augmented analysis of published single-cell RNA-sequencing datasets and identified macaque imGCs with transcriptome-wide immature neuronal characteristics. Our cross-species comparisons among humans, monkeys, pigs, and mice showed few shared (such as DPYSL5), but mostly species-specific gene expression in imGCs that converged onto common biological processes regulating neuronal development. We further identified human-specific transcriptomic features of imGCs and demonstrated functional roles of human imGC-enriched expression of a family of proton-transporting vacuolar-type ATPase subtypes in development of imGCs derived from human pluripotent stem cells. Our study reveals divergent gene expression patterns but convergent biological processes in the molecular characteristics of imGCs across species, highlighting the importance of conducting independent molecular and functional analyses for adult neurogenesis in different species.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Yijing Su
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qian Yang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiaqi Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Hong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taosha Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yanqing Zhong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xueting Ma
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Mengmeng Jin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Xinglan Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Nini Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Benjamin C. Kennedy
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lizhou Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Longying Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sudha K. Kessler
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, The Solomon H. Snyder Department of Neuroscience, Department of Neurology, and Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, The Solomon H. Snyder Department of Neuroscience, Department of Neurology, and Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David W. Nauen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cirong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Zhiming Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shengjin Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, The Solomon H. Snyder Department of Neuroscience, Department of Neurology, and Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
122
|
Memudu AE, Olukade BA, Nwanama KE, Alex GS. Models developed to explain the effects of stress on brain and behavior. PROGRESS IN BRAIN RESEARCH 2025; 291:339-361. [PMID: 40222786 DOI: 10.1016/bs.pbr.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
There is an integral relationship between stress, brain function and behavior. Over the year's extensive research has led to the development of various models to explain the intricate intersection between brain and stress. This chapter delves into some of the theoretical frameworks that explains the neurobiological and behavioral responses to stress using key models of stress such as the allostatic load model, which is the most common model that describes how chronic stress affect brain structure and function resulting in long-term changes in regions such as the hippocampus, amygdala, and prefrontal cortex which phenotypically express as cognitive impairments, emotional dysfunction seen in various forms of neurological disorder. The neuro-endocrine model, follows the glucocorticoid cascade hypothesis, that associates prolonged stress exposure to hippocampal damage and cognitive decline via alteration in the hypothalamic-pituitary-adrenal (HPA) axis and the overproduction of stress hormones like cortisol which can induce hippocampal atrophy, impair learning and memory, and promote depressive-like behaviors. The neurobiological stress model addresses the role of the hypothalamic-pituitary-adrenal (HPA) axis and stress-related neurotransmitters in shaping behavioral responses, emphasizing alterations in neuroplasticity and synaptic function. These models demonstrate how chronic stress can alter neural plasticity, neurotransmitter systems, and synaptic connectivity, affecting behavior and cognitive function. Hence by integrating molecular, neurobiological, and behavioral perspectives, these models offer a comprehensive understanding of how stress alters brain activity and behavior. The chapter further showcase how these models direct the development of medical interventions, shedding light on potential therapies that target the underlying molecular mechanisms of stress-induced brain changes.
Collapse
Affiliation(s)
- Adejoke Elizabeth Memudu
- Anatomy Department, Neuroscience Unit, Faculty of Basic Medical Sciences Edo State University Uzairue, Iyamho-Uzairue, Edo State, Nigeria.
| | - Baliqis Adejoke Olukade
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | | | - Gideon S Alex
- University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
123
|
Gao Z, Hou R, Qian C. Functional Proteins/Peptides Targeting to Clear Amyloid-β for Alzheimer's Disease Therapy. Chembiochem 2025; 26:e202400912. [PMID: 39813167 DOI: 10.1002/cbic.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD) is a significant neurodegenerative disorder primarily affecting individuals over the age of 65. It is characterized by impairments in memory, thinking, analytical judgment, visuospatial recognition, and mood. In recent years, the development of protein and peptide drugs targeting amyloid-beta (Aβ) has gained momentum, with several therapies entering clinical trials and even receiving marketing approval. Novel functional protein and peptide drugs, as the first-generation immunotherapeutic agents for neurodegenerative diseases, have pioneered cellular immunotherapy for AD. However, the currently available drugs are associated with toxicity issues, which can lead to serious complications such as cerebral hemorrhage or edema. Consequently, this study examines the potential for a new generation of Aβ-targeting drugs to mitigate the side effects of existing treatments and offers innovative perspectives for the advancement of therapies for AD.
Collapse
Affiliation(s)
- Ziran Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Renjie Hou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Chenggen Qian
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| |
Collapse
|
124
|
Liu X, Qian Z, Li Y, Wang Y, Zhang Y, Zhang Y, Enoch IVMV. Unveiling synergies: Integrating TCM herbal medicine and acupuncture with conventional approaches in stroke management. Neuroscience 2025; 567:109-122. [PMID: 39730019 DOI: 10.1016/j.neuroscience.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
This review explores the mechanisms and treatment strategies of ischemic stroke, a leading cause of morbidity and mortality worldwide. Ischemic stroke results from the obstruction of blood flow to the brain, leading to significant neurological impairment. The paper categorizes ischemic stroke into subtypes based on etiology, including cardioembolism and large artery atherosclerosis, and discusses the challenges of current therapeutic approaches. Conventional treatments like tissue plasminogen activator (tPA) and surgical interventions are limited by narrow windows and potential complications. The review highlights the promise of acupuncture, which offers neuroprotective benefits by promoting cerebral ischemic tolerance and neural regeneration. Integrating acupuncture with conventional treatments may enhance patient outcomes. Emphasis is placed on understanding the pathophysiology to develop targeted therapies that mitigate neuronal damage and enhance recovery.
Collapse
Affiliation(s)
- Xiliang Liu
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Zhendong Qian
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Yuxuan Li
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Yanwei Wang
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Yan Zhang
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Yu Zhang
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China.
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| |
Collapse
|
125
|
Lucassen PJ, Korosi A, de Rooij SR, Smit AB, Van Dam AM, Daskalakis NP, Van Kesteren RE, Verheijen MHG, Lesuis SL, Kessels HW, Krugers HJ. How Can Early Stress Influence Later Alzheimer's Disease Risk? Possible Mediators and Underlying Mechanisms. Biol Psychiatry 2025; 97:372-381. [PMID: 39577793 DOI: 10.1016/j.biopsych.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Alzheimer's disease (AD) is a progressive, age-related neurodegenerative disorder to which genetic mutations and risk factors contribute. Evidence is increasing that environmental and lifestyle-related factors, such as exercise, nutrition, education, and exposure to (early-life) stress modify the onset, incidence, and progression of AD. Here, we discuss recent preclinical findings on putative substrates that can explain or contribute to the effects of stress early in life on the risk of developing AD. We focus in particular on stress hormones, neural networks, synapses, mitochondria, nutrient and lipid metabolism, adult neurogenesis, engram cell ensembles, and neuroinflammation. We discuss the idea that stress exposure early in life can alter these processes, either combined or in isolation, thereby reducing the capacity of the brain to resist deleterious consequences of, for example, amyloid-β accumulation, thereby accelerating cognitive decline and progression of Alzheimer-related changes in model systems of the disease. A better understanding of whether experiences early in life also modify trajectories of cognitive decline and pathology in AD and how the substrates discussed translate to humans may help develop novel preventive and/or therapeutic strategies to mitigate the consequences of stressors early in life and increase resilience to developing dementia.
Collapse
Affiliation(s)
- Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Aniko Korosi
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Susanne R de Rooij
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Anne-Marie Van Dam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Nikolaos P Daskalakis
- Neurogenomics and Translational Bioinformatics Laboratory, McLean Hospital, Harvard University, Boston, Massachusetts
| | - Ronald E Van Kesteren
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sylvie L Lesuis
- Department of Cellular & Computational Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Helmut W Kessels
- Department of Cellular & Computational Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
126
|
Bay S, Rodina A, Haut F, Roychowdhury T, Argyrousi EK, Staniszewski A, Han K, Sharma S, Chakrabarty S, Digwal CS, Stanisavljevic A, Labuza A, Alldred MJ, Panchal P, SanthaSeela A, Tuffery L, Li Z, Hashmi A, Rosiek E, Chan E, Monetti M, Sasaguri H, Saido TC, Schneider JA, Bennett DA, Fraser PE, Erdjument-Bromage H, Neubert TA, Ginsberg SD, Arancio O, Chiosis G. Systems-Level Interactome Mapping Reveals Actionable Protein Network Dysregulation Across the Alzheimer's Disease Spectrum. RESEARCH SQUARE 2025:rs.3.rs-5930673. [PMID: 39989971 PMCID: PMC11844643 DOI: 10.21203/rs.3.rs-5930673/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Alzheimer's disease (AD) progresses as a continuum, from preclinical stages to late-stage cognitive decline, yet the molecular mechanisms driving this progression remain poorly understood. Here, we provide a systems-level map of protein-protein interaction (PPI) network dysfunction across the AD spectrum and uncover epichaperomes-stable scaffolding platforms formed by chaperones and co-factors-as central drivers of this process. Using over 100 human brain specimens, mouse models, and human neurons, we show that epichaperomes emerge early, even in preclinical AD, and progressively disrupt multiple PPI networks critical for synaptic function and neuroplasticity. Glutamatergic neurons, essential for learning and memory, exhibit heightened vulnerability, with their dysfunction driven by protein sequestration into epichaperome scaffolds, independent of changes in protein expression. Notably, pharmacological disruption of epichaperomes with PU-AD restores PPI network integrity and reverses synaptic and cognitive deficits, directly linking epichaperome-driven network dysfunction to AD pathology. These findings establish epichaperomes as key mediators of molecular collapse in AD and identify network-centric intervention strategies as a promising avenue for disease-modifying therapies.
Collapse
Affiliation(s)
- Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Florence Haut
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY 10032, USA
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elentina K Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY 10032, USA
| | - Agnieszka Staniszewski
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY 10032, USA
| | - Kyung Han
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Toronto, ON M5R 0A3, Canada
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Souparna Chakrabarty
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Amanda Labuza
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anand SanthaSeela
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Laura Tuffery
- Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhuoning Li
- Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arsalan Hashmi
- Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric Rosiek
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric Chan
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mara Monetti
- Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Toronto, ON M5R 0A3, Canada
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
- NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY 10032, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
127
|
Futácsi A, Rusznák K, Szarka G, Völgyi B, Wiborg O, Czéh B. Quantification and correlation of amyloid-β plaque load, glial activation, GABAergic interneuron numbers, and cognitive decline in the young TgF344-AD rat model of Alzheimer's disease. Front Aging Neurosci 2025; 17:1542229. [PMID: 40013092 PMCID: PMC11860898 DOI: 10.3389/fnagi.2025.1542229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
Background Animal models of Alzheimer's disease (AD) are essential tools for investigating disease pathophysiology and conducting preclinical drug testing. In this study, we examined neuronal and glial alterations in the hippocampus and medial prefrontal cortex (mPFC) of young TgF344-AD rats and correlated these changes with cognitive decline and amyloid-β plaque load. Methods We compared TgF344-AD and non-transgenic littermate rats aged 7-8 months of age. We systematically quantified β-amyloid plaques, astrocytes, microglia, four different subtypes of GABAergic interneurons (calretinin-, cholecystokinin-, parvalbumin-, and somatostatin-positive neurons), and newly generated neurons in the hippocampus. Spatial learning and memory were assessed using the Barnes maze test. Results Young TgF344-AD rats had a large number of amyloid plaques in both the hippocampus and mPFC, together with a pronounced increase in microglial cell numbers. Astrocytic activation was significant in the mPFC. Cholecystokinin-positive cell numbers were decreased in the hippocampus of transgenic rats, but calretinin-, parvalbumin-, and somatostatin-positive cell numbers were not altered. Adult neurogenesis was not affected by genotype. TgF344-AD rats had spatial learning and memory impairments, but this cognitive deficit did not correlate with amyloid plaque number or cellular changes in the brain. In the hippocampus, amyloid plaque numbers were negatively correlated with cholecystokinin-positive neuron and microglial cell numbers. In the mPFC, amyloid plaque number was negatively correlated with the number of astrocytes. Conclusion Pronounced neuropathological changes were found in the hippocampus and mPFC of young TgF344-AD rats, including the loss of hippocampal cholecystokinin-positive interneurons. Some of these neuropathological changes were negatively correlated with amyloid-β plaque load, but not with cognitive impairment.
Collapse
Affiliation(s)
- Anett Futácsi
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Imaging Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kitti Rusznák
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Gergely Szarka
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Imaging Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Boldizsár Czéh
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Imaging Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
128
|
Namihira M, Inoue N, Watanabe Y, Hayashi T, Murotomi K, Hirayama K, Sato N. Combination of 3 probiotics restores attenuated adult neurogenesis in germ-free mice. Stem Cells 2025; 43:sxae077. [PMID: 39676242 PMCID: PMC11879180 DOI: 10.1093/stmcls/sxae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
Gut microbiota plays an important role in regulating brain function and adult neurogenesis. Although probiotics have recently been reported as effective against certain psychiatric disorders, the underlying mechanisms remain unclear. In particular, the combination of 3 probiotic strains, Bacillus subtilis TO-A, Enterococcus faecium T-110, and Clostridium butyricum TO-A, hereafter referred to as ProB3, has been reported to potentially alleviate psychiatric symptoms in patients with schizophrenia. Herein, we show that ProB3 promotes adult neurogenesis in mice and restores its dysregulation in germ-free (GF) mice. ProB3 colonization in GF mice enhanced the proliferation of adult neural stem cells compared to specific-pathogen-free and GF mice. Furthermore, ProB3 colonization was sufficient to ameliorate the arrest of newborn neuron maturation and the diminution of quiescent neural stem cells in GF mice. ProB3 colonization in mice increased the levels of several metabolites in the blood, including theanine and 3-hydroxybutyrate, and imidazole peptides, including anserine, which promoted proliferation, neurogenesis, and maturation of newborn neurons in cultured human fetus neural stem cells, as well as mouse adult hippocampal neural stem cells. Collectively, these results indicate that the essential role of the gut microbiota in adult hippocampal neurogenesis can be effectively complemented by the intake of a specific 3-strain probiotic, ProB3, providing novel insights into the brain-gut axis.
Collapse
Affiliation(s)
- Masakazu Namihira
- Molecular Neurophysiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Nana Inoue
- TOA Biopharma Co. Ltd., Tokyo 151-0073, Japan
| | | | | | - Kazutoshi Murotomi
- Molecular Neurophysiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoki Sato
- TOA Biopharma Co. Ltd., Tokyo 151-0073, Japan
| |
Collapse
|
129
|
Benarroch E. What Are the Functions of Caveolins and Their Role in Neurologic Disorders? Neurology 2025; 104:e213341. [PMID: 39805058 DOI: 10.1212/wnl.0000000000213341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
|
130
|
Qiu H, Zhang M, Chen C, Wang H, Yue X. Decreasing β-Catenin Leads to Altered Endothelial Morphology, Increased Barrier Permeability and Cognitive Impairment During Chronic Methamphetamine Exposure. Int J Mol Sci 2025; 26:1514. [PMID: 40003980 PMCID: PMC11854931 DOI: 10.3390/ijms26041514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Cognitive impairment induced by chronic methamphetamine (METH) exposure exhibits similarities to neurodegenerative disorders and is associated with blood-brain barrier (BBB) dysfunction. However, the potential involvement of β-catenin in maintaining BBB integrity during METH exposure remains unexplored. In this study, Y-maze and novel object recognition tests were conducted to assess cognitive impairment in mice exposed chronically to methamphetamine for 2 and 4 weeks. Gd-DTPA and Evans blue leakage tests revealed disruption of the BBB in the hippocampus, while chronic METH exposure for 2 and 4 weeks significantly decreased β-catenin levels along with its transcriptionally regulated protein, claudin5. Additionally, various neural injury-related proteins, such as APP, Aβ1-42, p-tau (Thr181) and p-tau (Ser396), as well as neuroinflammation-related proteins, such as IL-6, IL-1β, and TNF-α, exhibited increased levels following chronic METH exposure. Furthermore, plasma analysis indicated elevated levels of p-Tau (total), neurofilament light chain, and GFAP. In vitro experiments demonstrated that exposure to METH resulted in dose-dependent and time-dependent reductions in cellular activity and connectivity of bEnd.3 and hcmec/D3 cells. Furthermore, β-catenin exhibited decreased levels and altered subcellular localization, transitioning from the cell membrane to the cytoplasm and nucleus upon METH exposure. Overexpression of β-catenin was found to alleviate endothelial toxicity and attenuate junctional weakening induced by METH. The aforementioned findings underscore the crucial involvement of β-catenin in endothelial cells during chronic METH exposure-induced disruption of the BBB, thereby presenting a potential novel target for addressing METH-associated cerebrovascular dysfunction and cognitive impairment.
Collapse
Affiliation(s)
| | | | | | - Huijun Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
| |
Collapse
|
131
|
Reboussin DM, Gaussoin SA, Pajewski NM, Jaeger BC, Sachs B, Rapp SR, Supiano MA, Cleveland ML, Hunter V, Demons JL, Ogrocki PK, Lerner AJ, Chelune GJ, Wadley VG, Scales ML, Woolard NF, Perdue LH, Callahan KE, Williamson JD. Long-Term Effect of Intensive vs Standard Blood Pressure Control on Mild Cognitive Impairment and Probable Dementia in SPRINT. Neurology 2025; 104:e213334. [PMID: 39819096 PMCID: PMC11737843 DOI: 10.1212/wnl.0000000000213334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND AND OBJECTIVES The Systolic Blood Pressure Intervention Trial suggested that intensive lowering of systolic blood pressure (SBP) decreases the risk of developing dementia. However, an insufficient number of probable dementia cases stemming from the trial's early termination made results inconclusive. The goal of this study was to estimate the effect of intensive vs standard SBP lowering on the longer term incidence of cognitive impairment leveraging extended follow-up for cognitive status. METHODS This is a prespecified secondary analysis of a randomized clinical trial. Between 2010 and 2013, patients aged 50 years and older with hypertension and increased cardiovascular risk excluding those with diabetes mellitus or history of stroke were recruited from 102 clinics in the United States and Puerto Rico. Participants were randomized to a SBP goal of <120 mm Hg (intensive treatment) or <140 mm Hg (standard treatment) and received treatment for 3.3 years. In-person cognitive assessment follow-up occurred through July 2018. Continued ascertainment of cognitive status by telephone began in December 2019 for participants who had not withdrawn consent or been previously adjudicated with probable dementia, but provided consent for future research. Data were analyzed using survival analyses. RESULTS Of 9,361 randomized participants, 7,221 (77%) were eligible to be re-contacted. Cognitive status of 4,232 (59%) was ascertained (mean age 67 years, 36% female). We accrued a total of 216 new cases of probable dementia, less than our target of 326. Over a median follow-up of 7 years, 248 participants of the intensive treatment group (8.5 per 1,000 person-years) were adjudicated with probable dementia, compared with 293 participants (10.2 per 1,000 person-years) in the standard treatment group (hazard ratio [HR], 0.86; 95% CI, 0.72-1.02). Consistent with earlier results from the trial, the rate of both mild cognitive impairment (MCI; HR, 0.87 95% CI, 0.76-1.00) and a composite of MCI or probable dementia was lower with intensive treatment (HR, 0.89; 95% CI, 0.79, 0.99). DISCUSSION Among ambulatory adults with hypertension and high cardiovascular risk, intensive treatment vs standard treatment of SBP for 3.3 years resulted in a lower risk of MCI and cognitive impairment including MCI or probable dementia, but not for probable dementia alone. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that intensively reducing SBP (target <120 mm Hg) decreases the risk of cognitive impairment in individuals aged 50 years and older with hypertension. CLINICAL TRIAL INFORMATION Clinical trial number NCT01206062.
Collapse
Affiliation(s)
- David M Reboussin
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Sarah A Gaussoin
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Nicholas M Pajewski
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Byron C Jaeger
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Bonnie Sachs
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Stephen R Rapp
- Department of Psychiatry and Behavioral Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Mark A Supiano
- Division of Geriatrics, Center on Aging and Department of Internal Medicine, University of Utah, Salt Lake City
| | - Maryjo L Cleveland
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine and the Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Valerie Hunter
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine and the Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Jamehl L Demons
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine and the Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Paula K Ogrocki
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Alan Jay Lerner
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Gordon J Chelune
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | | | - Margaret L Scales
- Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Nancy F Woolard
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine and the Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Letitia H Perdue
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Kathryn E Callahan
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine and the Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Jeff D Williamson
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine and the Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
132
|
Otaegui L, Urgin T, Zaiter T, Zussy C, Vitalis M, Pellequer Y, Acar N, Vigor C, Galano JM, Durand T, Givalois L, Béduneau A, Desrumaux C. Nose-to-brain delivery of DHA-loaded nanoemulsions: A promising approach against Alzheimer's disease. Int J Pharm 2025; 670:125125. [PMID: 39788398 DOI: 10.1016/j.ijpharm.2024.125125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
Reduced docosahexaenoic acid (DHA) concentrations seem to be associated with an increased risk of Alzheimer's disease (AD), and DHA accretion to the brain across the blood-brain-barrier (BBB) can be modulated by various factors. Therefore, there is an urgent need to identify an efficient and non-invasive method to ensure brain DHA enrichment. In the present study, a safe and stable DHA-enriched nanoemulsion, designed to protect DHA against oxidation, was designed and administered intranasally in a transgenic mouse model of AD, the J20 mice. Intranasal treatment with nanoformulated DHA significantly improved well-being and working spatial memory in six-months-old J20 mice. These behavioral effects were associated with a reduction of amyloid deposition, oxidative stress, and neuroinflammation in brain tissues, which may be partially due to DHA-induced inactivation of the pleiotropic kinase GSK3β. In conclusion, intranasal DHA administration exhibited strong therapeutic effects and disease-modifying benefits in the J20 AD model. Given that DHA has already shown safety and tolerability in healthy human subjects, our results further support the need for clinical trials to assess the potential of this approach in Alzheimer's patients.
Collapse
Affiliation(s)
- Léa Otaegui
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Théo Urgin
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Taghrid Zaiter
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France
| | - Charleine Zussy
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Mathieu Vitalis
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Yann Pellequer
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, F-21000 Dijon, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Claire Vigor
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jean-Marie Galano
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Thierry Durand
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Laurent Givalois
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; Laval University, Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Québec City (QC), Canada
| | - Arnaud Béduneau
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Catherine Desrumaux
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France.
| |
Collapse
|
133
|
Kaloss AM, Browning JL, Li J, Pan Y, Watsen S, Sontheimer H, Theus MH, Olsen ML. Vascular amyloidβ load in the meningeal arterial network correlates with loss of cerebral blood flow and pial collateral vessel enlargement in the J20 murine model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.635937. [PMID: 40161825 PMCID: PMC11952299 DOI: 10.1101/2025.02.05.635937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Global reduction in cerebral blood flow (CBF) is an early pathology in Alzheimer's disease, preceding significant plaque accumulation and neurological decline. Chronic reduced CBF and subsequent reduction in tissue oxygenation and glucose may drive neurodegeneration, yet the underlying cause of globally reduced CBF remains unclear. METHODS Using premortem delivery of Methoxy-XO4 to label Aβ, and arterial vascular labeling, we assessed Aβ burden on the pial artery/arteriole network and cerebral blood flow in aged male and female WT and J20 AD mice. RESULTS The pial artery/arteriole vascular network selectively displayed extensive vascular Aβ burden. Pial collateral arteriole vessels, the by-pass system that reroutes blood flow during occlusion, displayed significant enlargement in J20 mice. Despite this, CBF was decreased by approximately 15% in 12-month J20 mice when compared to WT littermates. DISCUSSION Significant Aβ burden on the meningeal arterial network may contribute to the restriction of CBF. Redistribution of CBF through enlarged pial collateral vessels may serve as a compensatory mechanism to alter CBF during disease progression in cases of CAA.
Collapse
|
134
|
Ammothumkandy A, Corona L, Ravina K, Wolseley V, Nelson J, Atai N, Abedi A, Jimenez N, Armacost M, D'Orazio LM, Zuverza-Chavarria V, Cayce A, McCleary C, Nune G, Kalayjian L, Lee DJ, Lee B, Chow RH, Heck C, Russin JJ, Liu CY, Smith JAD, Bonaguidi MA. Human adult neurogenesis loss corresponds with cognitive decline during epilepsy progression. Cell Stem Cell 2025; 32:293-301.e3. [PMID: 39642885 DOI: 10.1016/j.stem.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/16/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
Mesial temporal lobe epilepsy (MTLE) is a syndromic disorder presenting with seizures and cognitive comorbidities. Although seizure etiology is increasingly understood, the pathophysiological mechanisms contributing to cognitive decline and epilepsy progression remain less recognized. We have previously shown that adult hippocampal neurogenesis dramatically declines in MTLE patients with increased disease duration. Here, we investigate when multiple cognitive domains become affected during epilepsy progression and how human neurogenesis levels contribute to it. We find that intelligence, verbal learning, and memory decline at a critical period of 20 years disease duration. In contrast to rodents, the number of human immature neurons positively associates with auditory verbal, rather than visuospatial, learning and memory. Moreover, this association does not apply to mature granule neurons. Our study provides cellular evidence of how adult neurogenesis corresponds with human cognition and signifies an opportunity to advance regenerative medicine for patients with MTLE and other cognitive disorders.
Collapse
Affiliation(s)
- Aswathy Ammothumkandy
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Luis Corona
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kristine Ravina
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Victoria Wolseley
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jeremy Nelson
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nadiya Atai
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aidin Abedi
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nora Jimenez
- Los Angeles General Medical Center, Los Angeles, CA 90033, USA
| | - Michelle Armacost
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurology, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Lina M D'Orazio
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | - Alisha Cayce
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Carol McCleary
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - George Nune
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Laura Kalayjian
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Darrin J Lee
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brian Lee
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert H Chow
- Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Christianne Heck
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jonathan J Russin
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles Y Liu
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Jason A D Smith
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Michael A Bonaguidi
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
135
|
Aguilar-Arredondo A, Zepeda A. A critical opinion on adult endogenous neurogenesis as a brain repair mechanism after traumatic brain injury. Front Behav Neurosci 2025; 19:1543122. [PMID: 39980887 PMCID: PMC11841385 DOI: 10.3389/fnbeh.2025.1543122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Affiliation(s)
| | - Angélica Zepeda
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de México, Mexico City, Mexico
| |
Collapse
|
136
|
Pappas C, Bauer CE, Zachariou V, Libecap TJ, Rodolpho B, Sudduth TL, Nelson PT, Jicha GA, Hartz AM, Shao X, Wang DJJ, Gold BT. Synergistic effects of plasma S100B and MRI measures of cerebrovascular disease on cognition in older adults. GeroScience 2025:10.1007/s11357-024-01498-1. [PMID: 39907937 DOI: 10.1007/s11357-024-01498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
There is growing interest in studying vascular contributions to cognitive impairment and dementia (VCID) and developing biomarkers to identify at-risk individuals. A combination of biofluid and neuroimaging markers may better profile early stage VCID than individual measures. Here, we tested this possibility focusing on plasma levels of S100 calcium-binding protein B (S100B), which has been linked with blood-brain-barrier (BBB) integrity, and neuroimaging measures assessing BBB function (water exchange rate across the BBB (kw)) and cerebral small vessel disease (white matter hyperintensities (WMHs)). A total of 74 older adults without dementia had plasma samples collected and underwent cognitive assessment. A subsample had neuroimaging data including diffusion prepared pseudo-continuous arterial spin labeling (DP-pCASL) for assessment of BBB kw and T2-weighted fluid-attenuated inversion recovery (FLAIR) for quantification of WMHs. Results indicated that higher plasma S100B levels were associated with poorer episodic memory performance (β = - .031, SE = .008, p < .001). Moreover, significant interactions were observed between plasma S100B levels and parietal lobe BBB kw (interaction β = .095, SE = .042, p = .028) and between plasma S100B levels and deep WMH volume (interaction β = - .025, SE = .009, p = .007) for episodic memory. Individuals with the poorest memory performance showed both high plasma S100B and either low BBB kw in the parietal lobe or increased deep WMH burden. Taken together, our results provide support for the combined use of biofluid and neuroimaging markers in the study of VCID.
Collapse
Affiliation(s)
- Colleen Pappas
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Christopher E Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Valentinos Zachariou
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - T J Libecap
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Beatriz Rodolpho
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Tiffany L Sudduth
- Sanders Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Gregory A Jicha
- Sanders Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA
| | - Anika Ms Hartz
- Sanders Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - Xingfeng Shao
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Danny J J Wang
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Brian T Gold
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA.
- Sanders Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA.
- Department of Radiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA.
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
137
|
Lee BH, Cevizci M, Lieblich SE, Galea LAM. Sex-specific influences of APOEε4 genotype on hippocampal neurogenesis and progenitor cells in middle-aged rats. Biol Sex Differ 2025; 16:10. [PMID: 39910616 PMCID: PMC11796140 DOI: 10.1186/s13293-025-00694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) disproportionately and uniquely affects females, and these sex differences are further exacerbated by the presence of Apolipoprotein (APOE) ε4 alleles, the top genetic risk factor for late-onset AD. To expand our understanding about how late-onset AD risk might differentially influence males and females, this study explores how APOEε4 affects hippocampal neurogenesis and microglia, key neuroplastic markers involved in AD pathogenesis, differently by sex in middle-aged rats. METHODS A rat model expressing the humanized (h) APOEε4 allele was characterized to examine markers of adult neurogenesis (neural progenitor cells and new-born neurons) and immune cells (microglia) in the dentate gyrus of the hippocampus in 13 month-old male and female rats. RESULTS We observed basal sex differences in neurogenesis at middle age, as wildtype male rats had greater densities of neural progenitor cells and new-born neurons in the dentate gyrus than wildtype female rats. Male hAPOEε4 rats exhibited fewer neural progenitor cells, fewer new-born neurons, and more microglia than male wildtype rats. On the other hand, female hAPOEε4 rats exhibited more new-born neurons than female wildtype rats. Interestingly, females had more microglia than males regardless of genotype. Correlations were conducted to further elucidate any sex differences in the relationships between these biomarkers. Notably, there was a significant positive correlation between neural progenitor cells and new-born neurons, and a significant negative correlation between new-born neurons and microglia, but only in male rats. CONCLUSION In contrast to the clear pattern of effects of the hAPOEε4 risk factor on hippocampal neurogenesis in males, females had unaltered levels of neural progenitor cells and increased density of new-born neurons. Furthermore, relationships between neurogenesis and microglia were significantly correlated within males, and not females. This suggests that females may be presenting a compensatory response to the hAPOEε4 genotype at middle age. Collectively, these results exemplify the importance of thoroughly examining influences of sex on AD endophenotypes, as it may reveal sex-specific pathways and protective mechanisms relevant to AD.
Collapse
Affiliation(s)
- Bonnie H Lee
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Melike Cevizci
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie E Lieblich
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
138
|
Han X, Zhang Y, Zhang L, Zhuang Y, Wang Y. Efficacy and molecular mechanisms of hesperidin in mitigating Alzheimer's disease: A systematic review. Eur J Med Chem 2025; 283:117144. [PMID: 39647419 DOI: 10.1016/j.ejmech.2024.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Hesperidin, a flavonoid glycoside, is a natural phenolic compound that has broad biological effects. Increasing evidence suggests that hesperidin inhibits the occurrence and development of neurodegenerative diseases, including Alzheimer's disease (AD). This article reviews the neuropharmacological mechanisms of hesperidin in the prevention and treatment of AD through in vitro and in vivo studies. A systematic review of preclinical studies was conducted using PubMed, Web of Science, Scopus, and Google Scholar (up to July 1, 2024). The neuroprotective potential of hesperidin was mediated through mechanisms such as inhibition of β-amyloid (Aβ) aggregation, enhancement of endogenous antioxidant defense functions, reduction of neuroinflammation and apoptosis, improvement of mitochondrial dysfunction, regulation of autophagy, and promotion of neurogenesis. Despite various preclinical studies on the role of hesperidin in AD, its exact effects on humans remain unclear. Few clinical trials have indicated that dietary supplements rich in hesperidin can improve cerebral blood flow, cognition, and memory performance. The neuroprotective effect of hesperidin may be exerted via regulating different molecular pathways, including the RAGE/NF-κB, Akt/Nrf2, and AMPK/BDNF/CREB pathways. However, further clinical trials are needed to confirm the neuroprotective effects of this natural flavonoid compound and to assess its safety.
Collapse
Affiliation(s)
- Xu Han
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, PR China.
| | - Yuting Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, PR China.
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, PR China.
| | - Yanyan Zhuang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, PR China.
| | - Yu Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, PR China.
| |
Collapse
|
139
|
Cai H, Huang J, Wang W, Lin W, Ahmed W, Lu D, Quan J, Chen L. Characteristics of Parthenogenetic Stem Cells and Their Potential Treatment Strategy for Central Nervous System Diseases. Neuropsychiatr Dis Treat 2025; 21:213-227. [PMID: 39926116 PMCID: PMC11804250 DOI: 10.2147/ndt.s497758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
Stem cells hold significant promise in treating neurological illnesses, such as stroke, spinal cord injury and neurodegenerative diseases. The origins and characteristics of human parthenogenetic stem cells might lead to a new research area in treating nervous system diseases. The current clinical studies in the field of traumatic brain injury and neurodegenerative diseases are reviewed. Some variables that influence common stem cells' survival, proliferation, and therapeutic efficacy will be mentioned in this paper because they may play an important role in studying parthenogenetic stem cells.
Collapse
Affiliation(s)
- Hengsen Cai
- Department of Neurosurgery, The second People’s Hospital of Pingnan, Pingnan, Guangxi, People’s Republic of China
| | - Jiajun Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510310, People’s Republic of China
| | - Wei Wang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510310, People’s Republic of China
| | - Wentong Lin
- Department of Orthopaedics, Chaozhou Hospital of Traditional Chinese Medicine, Chaozhou, Guangdong, People’s Republic of China
| | - Waqas Ahmed
- Department of Neurology, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| | - Deng Lu
- Department of Neurosurgery, The second People’s Hospital of Pingnan, Pingnan, Guangxi, People’s Republic of China
| | - Jiewei Quan
- Department of Neurosurgery, The second People’s Hospital of Pingnan, Pingnan, Guangxi, People’s Republic of China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510310, People’s Republic of China
| |
Collapse
|
140
|
Yang X, Li Y, Peng Y, Chang Y, He B, Zhang T, Zhang S, Geng C, Liu Y, Li X, Hao J, Ma L. An integrative analysis of ASCL1 in breast cancer and inhibition of ASCL1 increases paclitaxel sensitivity by activating ferroptosis via the CREB1/GPX4 axis. Front Immunol 2025; 16:1546794. [PMID: 39963143 PMCID: PMC11830715 DOI: 10.3389/fimmu.2025.1546794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Objective Our previous study found that Achaete-scute complex homolog 1 (ASCL1) is involved in classifying BC subtypes with different prognostic and pathological characteristics. However, the biological role of ASCL1 in BC still remains largely unexplored. This study aims to elucidate the function of ASCL1 in BC using bioinformatics analyses, as well as in vitro and in vivo experimental approaches. Methods Data from the TCGA, GEO, and Human Protein Atlas databases were utilized to evaluate ASCL1 expression in BC and its association with patient prognosis. Genetic alterations in ASCL1 were assessed through the COSMIC and cBioPortal databases, while the TIMER2.0 database provided insights into the relationship between ASCL1 expression and key gene mutations in BC. The GDSC database was used to examine correlations between ASCL1 levels and sensitivity to standard chemotherapeutic agents. Associations between ASCL1 expression and cytokines, immunomodulatory factors, MHC molecules, and receptors were analyzed using Pearson and Spearman correlation methods. The TIP database was employed to investigate the connection between ASCL1 expression and immunoreactivity scores, and six computational approaches were applied to evaluate immune cell infiltration. Functional assays were conducted on BC cell lines MCF-7 and MDA-MB-231, and nude mouse models were used for in vivo studies. Results ASCL1 was found to be upregulated in BC and correlated with unfavorable prognosis and mutations in key oncogenes. Its expression was linked to immunomodulatory factors, immune cell infiltration, and immunoreactivity scores in the tumor microenvironment. Additionally, ASCL1 influenced tumor immune dynamics and chemosensitivity in BC. Overexpression of ASCL1 enhanced BC cell proliferation, migration and invasion, while its knockdown had the opposite effect. Notably, inhibition of ASCL1 increased BC cell sensitivity to paclitaxel both in vitro and in vivo. In addition, inhibition of ASCL1 activated ferroptosis in BC, including altered mitochondrial morphology, increased MDA and ROS levels, decreased GSH levels and reduced GSH/GSSG ratio. Mechanistically, inhibition of ASCL1 decreases the phosphorylation of CREB1, thus reducing the expression of GPX4. In summary, inhibition of ASCL1 increases paclitaxel sensitivity by activating ferroptosis via the CREB1/GPX4 axis. Conclusions ASCL1 exerts oncogenic effects in BC and represents a potential therapeutic target for intervention.
Collapse
Affiliation(s)
- Xiaolu Yang
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yilun Li
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yaqi Peng
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yuan Chang
- Department of Breast Disease Center, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Binglu He
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Tianqi Zhang
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Shiyu Zhang
- Department of Breast Disease Center, Xingtai Renmin Hospital, Xingtai, China
| | - Cuizhi Geng
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunjiang Liu
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolong Li
- Department of Breast Disease Center, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Li Ma
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
141
|
Xiong LL, Niu RZ, Chen L, Huangfu LR, Li J, Xue LL, Sun YF, Wang LM, Li YP, Liu J, Wang TH. Cross-Species Insights from Single-Nucleus Sequencing Highlight Aging-Related Hippocampal Features in Tree Shrew. Mol Biol Evol 2025; 42:msaf020. [PMID: 40036868 PMCID: PMC11879083 DOI: 10.1093/molbev/msaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 03/06/2025] Open
Abstract
The tree shrew brain has garnered considerable attention due to its remarkable similarities to human brain. However, the cellular composition and genetic signatures of tree shrew hippocampus across postnatal life remain poorly characterized. Here, we establish the first single-nucleus transcriptomic atlas of tree shrew hippocampus spanning postnatal life, detailing the dynamics and diversity of the neurogenic lineage, oligodendrocytes, microglia, and endothelial cells. Notably, cross-species transcriptomic comparison among humans, macaques, tree shrews, and mice reveals that the tree shrew transcriptome resembles that of macaques, making it a promising model for simulating human neurological diseases. More interestingly, we identified a unique class of tree shrew-specific neural stem cells and established SOX6, ADAMTS19, and MAP2 as their markers. Furthermore, aberrant gene expression and cellular dysfunction in the tree shrew hippocampus are linked to neuroinflammation and cognitive impairment during tree shrew aging. Our study provides extensive resources on cell composition and transcriptomic profiles, serving as a foundation for future research on neurodevelopmental and neurological disorders in tree shrews.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Department of Neurosurgery, Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Anesthesiology, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi 563000, Guizhou, China
- Translational Neuromedicine Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Rui-Ze Niu
- Science and Education Department, Mental Health Center of Kunming Medical University, Kunming 650034, Yunnan, China
| | - Li Chen
- Department of Neurosurgery, Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li-Ren Huangfu
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jing Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Lu-Lu Xue
- State Key Lab of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yi-Fei Sun
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Li-Mei Wang
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yong-Ping Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ting-Hua Wang
- Department of Neurosurgery, Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
142
|
Mataram MBA, Kustiati U, Wihadmadyatami H, Nugrahaningsih DAA, Salasia SIO, Kusindarta DL. Analysis of CA1, CA3, and DG areas of the hippocampus, substance-P, and brain-derived neurotrophic factors expression in the presence of Ocimum sanctum Linn on the brain of the rat model Alzheimer's disease. Open Vet J 2025; 15:630-639. [PMID: 40201802 PMCID: PMC11974313 DOI: 10.5455/ovj.2025.v15.i2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/12/2025] [Indexed: 04/10/2025] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurological condition characterized by impaired cognitive dysfunction and abnormal behavior. Thirty-five million individuals worldwide suffer from dementia, making it the most frequent cause of dementia. Canine cognitive dysfunction (CCD) affects 28% of dogs aged 11-12 years. It is a prevalent disease in canines. Amyloid-β peptides accumulate neurotoxicity, resulting in problems in the central nervous system and neurotransmitters. Treatments for both AD and CCD have not yet shown acceptable outcomes. It is crucial to comprehend disease mechanisms and identify novel therapeutics using animal models. Aim Using a rat model of AD, this study attempted to determine the effects of an ethanolic extract from Ocimum sanctum on the number and shape of neurons in the CA1, CA3, and DG sections of the hippocampus along with the expression of neurotrophic factors. Methods The animal model will be split into five treatment groups, one of which will be a control group. The treatments will be administered for 14, 21, and 28 days, and samples will be analyzed by BDNF by ELISA, SP expression by immunohistochemical staining, and the number of neurons in CA1, CA3, and DG using cresyl violet staining. Results Results of the study revealed increased neuronal density in the CA1, CA3, and DG regions, and these neurons were more highly expressed in the neurotrophic factor BDNF and neuropeptide SP. Conclusion By upregulating the expression of SP and BDNF, the ethanolic extract of O. sanctum increased the neuronal counts (pyramidal and granular cells) in the hippocampal CA1, CA3, and DG regions.
Collapse
Affiliation(s)
- Made Bagus Auriva Mataram
- Post-graduate School of Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Laboratory of Clinical Pathology, Faculty of Veterinary Medicine, Brawijaya University, Malang, Indonesia
| | - Ulayatul Kustiati
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Aris Agung Nugrahaningsih
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Siti Isrina Oktavia Salasia
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
143
|
Feng Y, Wang S, Yang D, Zheng W, Xia H, Zhu Q, Wang Z, Hu B, Jiang X, Qin X, Ni C, Pan W, Zhao Y, Pan S, Zhang Y, Song W. Inhibition of IFITM3 in cerebrovascular endothelium alleviates Alzheimer's-related phenotypes. Alzheimers Dement 2025; 21:e14543. [PMID: 39807629 PMCID: PMC11851164 DOI: 10.1002/alz.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Interferon-induced transmembrane protein 3 (IFITM3) modulates γ-secretase in Alzheimer's Disease (AD). Although IFITM3 knockout reduces amyloid β protein (Aβ) production, its cell-specific effect on AD remains unclear. METHODS Single nucleus RNA sequencing (snRNA-seq) was used to assess IFITM3 expression. Adeno-associated virus-BI30 (AAV-BI30) was injected to reduce IFITM3 expression in the cerebrovascular endothelial cells (CVECs). The effects on AD phenotypes in cells and AD mice were examined through behavioral tests, two-photon imaging, flow cytometry, Western blot, immunohistochemistry, and quantitative polymerase chain reaction assay (qPCR). RESULTS IFITM3 expression was increased in the CVECs of patients with AD. Overexpression of IFITM3 in primary endothelial cells enhanced Aβ generation through regulating beta-site APP cleaving enzyme 1 (BACE1) and γ-secretase. Aβ further increased IFITM3 expression, creating a vicious cycle. Knockdown of IFITM3 in CVECs decreased Aβ accumulation within cerebrovascular walls, reduced Alzheimer's-related pathology, and improved cognitive performance in AD transgenic mice. DISCUSSION Knockdown of IFITM3 in CVECs alleviates AD pathology and cognitive impairment. Targeting cerebrovascular endothelial IFITM3 holds promise for AD treatment. HIGHLIGHTS Interferon-induced transmembrane protein 3 (IFITM3) expression was increased in the cerebrovascular endothelial cells (CVECs) of patients with Alzheimer's Disease (AD). Cerebrovascular endothelial IFITM3 regulates amyloid β protein (Aβ) generation through regulating beta-site APP cleaving enzyme 1 (BACE1) and γ-secretase. Knockdown of IFITM3 in CVECs reduces Aβ deposits and improves cognitive impairments in AD transgenic mice. Cerebrovascular endothelial IFITM3 could be a potential target for the treatment of AD.
Collapse
Affiliation(s)
- Yijia Feng
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Shengya Wang
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Danlu Yang
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wu Zheng
- Neuroscience Medical CenterNingbo Medical Center Lihuili HospitalNingbo UniversityNingboZhejiangChina
| | - Huwei Xia
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Qinxin Zhu
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhipeng Wang
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Bolang Hu
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Xinyi Jiang
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Xuemei Qin
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Chenkang Ni
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wenhao Pan
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yifan Zhao
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Sipei Pan
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Yun Zhang
- Department of NeurologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Weihong Song
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| |
Collapse
|
144
|
Moseholm KF, Meineche JT, Jensen MK. The potential of circulating nonesterified fatty acids and sphingolipids in the biological understanding of cognitive decline and dementia. Curr Opin Lipidol 2025; 36:27-37. [PMID: 39641159 DOI: 10.1097/mol.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Cognitive decline and late-onset dementia pose significant challenges in aging societies, and many dementia cases could be prevented or delayed through modification of associated risk factors, many of which are tied to cardiovascular and metabolic dysfunction. As individuals age, the blood-brain barrier becomes more permeable, easing the exchange of molecules between the bloodstream and the brain. Consequently, blood-based biological markers (so-called biomarkers) provide a minimally invasive and accessible means of accessing molecular changes associated with aging and neurodegeneration. RECENT FINDINGS Circulating free fatty acids, also called nonesterified fatty acids (NEFAs), and sphingolipids are associated with cardiovascular disease, insulin resistance, and diabetes; thus, could be promising candidates as biomarkers for cognitive decline and dementia. SUMMARY The opportunity to study such minimally invasive biomarkers further opens up potential new avenues for improved understanding of the underlying biology of diseases of the brain.
Collapse
Affiliation(s)
- Kristine F Moseholm
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Josefine T Meineche
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Majken K Jensen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
145
|
Kuriakose D, Zhu HM, Zhao YL, Iraqi FA, Morahan G, Xiao ZC. Upstream regulation of microRNA-9 through a complex cellular machinery during neurogenesis. Brain Res 2025; 1848:149328. [PMID: 39547498 DOI: 10.1016/j.brainres.2024.149328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
While microRNAs (miRs) like miR-9 are crucial for neurogenesis and neuronal differentiation, their regulatory mechanisms are not well understood. miR-9 is highly expressed in the brain and plays a significant role in neurogenesis. Using the Collaborative Cross resource, we identified significant quantitative trait loci (QTL) through genetic analyses. We then characterized over 130 candidate genes within these QTL regions using RNA interference, qPCR, and neuronal differentiation assays, narrowing them down to 13 promising candidates. Among these, Panx2, Polr1c, and Mgea5 were found to colocalize in the neurogenic niches of the SVZ and DG regions, as shown by immunofluorescence. Further ChIP-seq and Co-IP analyses revealed their interaction and binding to the miR-9 locus, forming a DNA-protein regulatory complex we termed 'miRSome-9.' A 3C/ChIP-loop assay confirmed the chromatin organization of miRSome-9 at the miR-9 locus, shedding light on the upstream mechanisms regulating miR-9 expression during neurogenesis.
Collapse
Affiliation(s)
- Diji Kuriakose
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic 3800, Australia.
| | - Hong-Mei Zhu
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Yi-Ling Zhao
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Fuad A Iraqi
- Department of Human Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Grant Morahan
- Harry Perkins Institute of Medical Research, University of Western Australia of Medical Research, Perth, Australia
| | - Zhi-Cheng Xiao
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic 3800, Australia; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China.
| |
Collapse
|
146
|
Zhang Y, Li T, Miao J, Zhang Z, Yang M, Wang Z, Yang B, Zhang J, Li H, Su Q, Guo J. Gamma-glutamyl transferase 5 overexpression in cerebrovascular endothelial cells improves brain pathology, cognition, and behavior in APP/PS1 mice. Neural Regen Res 2025; 20:533-547. [PMID: 38819065 PMCID: PMC11317949 DOI: 10.4103/nrr.nrr-d-23-01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00030/figure1/v/2024-05-28T214302Z/r/image-tiff In patients with Alzheimer's disease, gamma-glutamyl transferase 5 (GGT5) expression has been observed to be downregulated in cerebrovascular endothelial cells. However, the functional role of GGT5 in the development of Alzheimer's disease remains unclear. This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer's disease, as well as the underlying mechanism. We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer's disease (Aβ1-42-treated hCMEC/D3 and bEnd.3 cells), as well as in the APP/PS1 mouse model. Additionally, injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits. Interestingly, increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-β in the brains of APP/PS1 mice. This effect may be attributable to inhibition of the expression of β-site APP cleaving enzyme 1, which is mediated by nuclear factor-kappa B. Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer's disease pathogenesis, and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice. These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer's disease.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, Shanxi Province, China
| | - Tian Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Zhina Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Mingxuan Yang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Zhuoran Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Bo Yang
- Department of Hernia and Abdominal Wall Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jiawei Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Haiting Li
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qiang Su
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Fenyang, Shanxi Province, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
147
|
Azargoonjahromi A, Abutalebian F, Hoseinpour F. The role of resveratrol in neurogenesis: a systematic review. Nutr Rev 2025; 83:e257-e272. [PMID: 38511504 DOI: 10.1093/nutrit/nuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
CONTEXT Resveratrol (RV) is a natural compound found in grapes, wine, berries, and peanuts and has potential health benefits-namely, neurogenesis improvement. Neurogenesis, which is the process through which new neurons or nerve cells are generated in the brain, occurs in the subventricular zone and hippocampus and is influenced by various factors. RV has been shown to increase neural stem cell proliferation and survival, improving cognitive function in hippocampus-dependent tasks. Thus, to provide a convergent and unbiased conclusion of the available evidence on the correlation between the RV and neurogenesis, a systematic review needs to be undertaken meticulously and with appropriate attention. OBJECTIVE This study aimed to systematically review any potential connection between the RV and neurogenesis in animal models. DATA SOURCES AND EXTRACTION Based on the particular selection criteria, 8 original animal studies that investigated the relationship between RV and neurogenesis were included. Studies written in English and published in peer-reviewed journals with no restrictions on the starting date of publication on August 17, 2023, were searched in the Google Scholar and PubMed databases. Furthermore, data were extracted and analyzed independently by 2 researchers and then reviewed by a third researcher, and discrepancies were resolved by consensus. This project followed PRISMA reporting standards. DATA ANALYSIS In the studies analyzed in this review, there is a definite correlation between RV and neurogenesis, meaning that RV intake, irrespective of the mechanisms thereof, can boost neurogenesis in both the subventricular zone and hippocampus. CONCLUSION This finding, albeit with some limitations, provides a plausible indication of RV's beneficial function in neurogenesis. Indeed, RV intake may result in neurogenesis benefits-namely, cognitive function, mood regulation, stress resilience, and neuroprotection, potentially preventing cognitive decline.
Collapse
Affiliation(s)
| | - Fatemeh Abutalebian
- Department of Biotechnology and Medicine, Islamic Azad University of Tehran Central Branch, Tehran, Iran
| | - Fatemeh Hoseinpour
- Department of Occupational Therapy, Semnan University of Medical Sciences and Health Services, Semnan, Iran
| |
Collapse
|
148
|
Tan Q. The Beneficial Effects of Combined Exercise and Polyphenols in Alzheimer's Disease. Phytother Res 2025; 39:1020-1034. [PMID: 39716920 DOI: 10.1002/ptr.8422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/16/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Regular exercise enhances life quality, lowers the risk of cognitive damage, and slows the advancement of Alzheimer's disease (AD). Natural compounds rich in polyphenols have garnered attention as a non-pharmacological means of treating and preventing AD. The primary component of wine, grape seeds, and nuts is polyphenols. Research suggests that polyphenols slow down the rate of neurodegeneration in AD and lessen learning impairment. Furthermore, polyphenols lessen brain impairments related to cognition. Additionally, polyphenols can specifically restructure amyloid-β (Aβ) structures and soluble oligomers into non-toxic alternative species. They have also been revealed to increase brain-derived neurotrophic factors expression, suggesting that they have a positive impact on the creation of neurotrophins. The benefits of polyphenol supplementation and exercise, which can both provide neuroprotection, have not been well studied in AD patients. This review aimed to investigate the effects of combined exercise polyphenols on inflammation, neuroprotection, several conformational toxic species of Aβ, and Aβ-induced apoptosis in AD.
Collapse
Affiliation(s)
- Qinghua Tan
- Graduate School of Education in Physical Education, Sangmyung University, Seoul, Korea
| |
Collapse
|
149
|
Wang J, Jiang N, Liu F, Wang C, Zhou W. Uncovering the intricacies of O-GlcNAc modification in cognitive impairment: New insights from regulation to therapeutic targeting. Pharmacol Ther 2025; 266:108761. [PMID: 39603350 DOI: 10.1016/j.pharmthera.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) represents a post-translational modification that occurs on serine or threonine residues on various proteins. This conserved modification interacts with vital cellular pathways. Although O-GlcNAc is widely distributed throughout the body, it is particularly enriched in the brain, where most proteins are O-GlcNAcylated. Recent studies have established a causal link between O-GlcNAc regulation in the brain and alterations in neurophysiological function. Alterations in O-GlcNAc levels in the brain are associated with the pathogenesis of several neurogenic diseases that can lead to cognitive impairment. Remarkably, manipulation of O-GlcNAc levels demonstrated a protective effect on cognitive function. Although the precise molecular mechanism of O-GlcNAc modification in the nervous system remains elusive, its regulation is fundamental to multiple neural and cognitive functions, fluctuating levels during normal and pathological cognitive processes. In this review, we highlight the significant functional importance of O-GlcNAc modification in pathological cognitive impairments and the potential application of O-GlcNAc as a promising target for the intervention or amelioration of cognitive impairments.
Collapse
Affiliation(s)
- Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China.
| |
Collapse
|
150
|
Sewell M, Fialova N, Montagne A. Unraveling the transcriptomic landscape of brain vascular cells in dementia: A systematic review. Alzheimers Dement 2025; 21:e14512. [PMID: 39807599 PMCID: PMC11851133 DOI: 10.1002/alz.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear. METHODS We conducted a comparative analysis of gene expression in ECs and PCs across neurodegenerative conditions, including Alzheimer's disease (AD), Huntington's disease, and arteriovenous malformation, utilizing transcriptomic data from published postmortem human tissue studies. RESULTS We identified differentially expressed genes (DEGs) consistently dysregulated in ECs and PCs across these pathologies. Notably, several DEGs are linked to vascular cell zonation and genetic risks for AD and cerebral small vessel disease. DISCUSSION Our findings provide insights into the cellular and molecular mechanisms underlying vascular dysfunction in dementia, highlight the knowledge gaps, and suggest potential novel vascular therapeutic targets, including genes not previously investigated in this context. HIGHLIGHTS Systematic review of differentially expressed genes (DEGs) in vascular cells from neurodegenerative single-nuclear RNA-sequencing (snRNA-seq) studies. Identify overlapping DEGs in multiple vascular cell types across studies. Examine functional relevance and associations with genetic risk for common DEGs. Outline future directions for the vascular omics field.
Collapse
Affiliation(s)
- Michael Sewell
- UK Dementia Research Institute at the University of EdinburghEdinburghUK
- British Heart Foundation ‐ UK Dementia Research Institute Centre for Vascular Dementia Research at the University of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Nela Fialova
- UK Dementia Research Institute at the University of EdinburghEdinburghUK
- British Heart Foundation ‐ UK Dementia Research Institute Centre for Vascular Dementia Research at the University of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Axel Montagne
- UK Dementia Research Institute at the University of EdinburghEdinburghUK
- British Heart Foundation ‐ UK Dementia Research Institute Centre for Vascular Dementia Research at the University of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|