101
|
Dai D, Li X, Zhuang H, Ling Y, Chen L, Long C, Zhang J, Wang Y, Li Y, Tang H, Chen B. Landscape of the Peripheral Immune Response Induced by Intraoperative Radiotherapy Combined with Surgery in Early Breast Cancer Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2308174. [PMID: 39494578 PMCID: PMC11714210 DOI: 10.1002/advs.202308174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 09/12/2024] [Indexed: 11/05/2024]
Abstract
A comprehensive analysis of the immune response triggered by intraoperative radiation therapy (IORT) remains incomplete. In this study, single-cell RNA sequencing and single-cell T cell receptor sequencing are conducted on peripheral blood mononuclear cells (PBMCs) from patient with early-stage breast cancer before and after IORT. Following IORT combined with surgery (defined as IORT+Surgery), PBMC counts remained stable, with increased proportions of T cells, mononuclear phagocytes, and plasma cells, and a reduction in neutrophil proportions. The cytotoxic score of CD8Teff_GZMK cells increased significantly post-IORT. Communication between CD8Teff_GZMK cells and other immune cells via MIF_CD74 and MIF_TNFRSF14 is decreased after IORT. cDCs showed an upregulation of the MCH II signaling pathway, while memory B cells exhibited enhanced activation of the B cell pathway. T cell clones expanded significantly after treatment. IORT+Surgery demonstrated the ability to partially suppress the anti-tumor effects of neutrophils. Flow cytometry analysis and co-culture experiments are utilized to delve deeper into the functional alterations in T cells. IORT+Surgery significantly enhanced T cell cytotoxic activity. Blockade of PD-1 of post-IORT PBMCs shows higher T-cell activity than that of pre-IORT PBMCs. This research highlights IORT's impact on immune cells, offering insights for targeting immune responses in breast cancer.
Collapse
Affiliation(s)
- Danian Dai
- Department of Plastic and Peripheral Vascular SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| | - Xuerui Li
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| | - Hongkai Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510120China
| | - Yun Ling
- Department of Breast SurgeryThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510260China
| | - Lezi Chen
- Department of Plastic and Peripheral Vascular SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| | - Cheng Long
- Department of PathologyYueyang Maternal Child Health‐Care HospitalYueyangHunan414000China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdong510060China
| | - Yunjie Wang
- School of MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yuehua Li
- Department of Oncology, The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Hailin Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdong510060China
| | - Bo Chen
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| |
Collapse
|
102
|
Yao J, Lin X, Zhang X, Xie M, Ma X, Bao X, Song J, Liang Y, Wang Q, Xue X. Predictive biomarkers for immune checkpoint inhibitors therapy in lung cancer. Hum Vaccin Immunother 2024; 20:2406063. [PMID: 39415535 PMCID: PMC11487980 DOI: 10.1080/21645515.2024.2406063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 10/18/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed the treatment mode of lung cancer, extending the survival time of patients unprecedentedly. Once patients respond to ICIs, the median duration of response is usually longer than that achieved with cytotoxic or targeted drugs. Unfortunately, there is still a large proportion of lung cancer patients do not respond to ICI. Effective biomarkers are crucial for identifying lung cancer patients who can benefit from them. The first predictive biomarker is programmed death-ligand 1 (PD-L1), but its predictive value is limited to specific populations. With the development of single-cell sequencing and spatial imaging technologies, as well as the use of deep learning and artificial intelligence, the identification of predictive biomarkers has been greatly expanded. In this review, we will dissect the biomarkers used to predict ICIs efficacy in lung cancer from the tumor-immune microenvironment and host perspectives, and describe cutting-edge technologies to further identify biomarkers.
Collapse
Affiliation(s)
- Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinyu Bao
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Jialin Song
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qiqi Wang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
103
|
Mani M, Choi SH, Kwon HN, Park JW. DRG2 as a Biomarker to Enhance the Predictive Efficacy of PD-L1 Immunohistochemistry Assays. Biomedicines 2024; 13:56. [PMID: 39857640 PMCID: PMC11762180 DOI: 10.3390/biomedicines13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
PD-L1 immunohistochemistry (IHC) assays are used as a companion diagnostic for immunotherapy with immune checkpoint inhibitors (ICIs). However, despite the association between PD-L1 expression and clinical benefit from ICIs, the PD-L1 IHC assay is not sufficiently accurate in predicting response to ICIs; some patients with high PD-L1 expression do not respond to ICIs. Recently, researchers provided insights into why some patients with high PD-L1 expression fail to respond to ICIs. They discovered that DRG2 is a critical regulator of PD-L1 endosomal trafficking in cancer cells, which is essential for the proper localization of PD-L1 on the cell surface. Although DRG2-depleted cells express high levels of PD-L1 and are PD-L1 IHC-positive, the PD-L1 sequestered in early endosomes does not respond to ICIs. Therefore, a companion diagnostic combining DRG2 expression with a PD-L1 IHC assay may improve the therapeutic response to PD-1/PD-L1 ICIs.
Collapse
Affiliation(s)
- Muralidharan Mani
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53715-1218, USA;
| | - Seong Hee Choi
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Republic of Korea;
| | - Hyuk Nam Kwon
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea;
- Basic-Clinic Convergence Research Institute, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea;
- Basic-Clinic Convergence Research Institute, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
104
|
Chatterjee A, Mondal J, Paul S, Sharma H, Goswami RK, Sen P. Deciphering the Comprehensive Structure-Activity Relationship of Sunshinamide for Breast Cancer Therapy through Dual Modulation of Apoptotic and Ferroptotic Pathways via TrxR1 and Gpx4 Inhibition. J Med Chem 2024; 67:21952-21974. [PMID: 39668144 DOI: 10.1021/acs.jmedchem.4c01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Sunshinamide, a cyclodepsipeptide, has demonstrated significant potential in inhibiting cancer cell proliferation. Our prior research established the total synthesis and anticancer properties of sunshinamide. However, a deeper understanding of the structure-activity relationship (SAR) of sunshinamide remained imperative. In this study, we aimed to elucidate the SAR and mechanistic insights underlying sunshinamide action, both in vitro and in vivo. SAR studies confirm the crucial roles of both the bicyclic-ring and disulfide moiety in the anticancer activity of sunshinamide. Our recent findings unveil that sunshinamide targets TrxR1, leading to ROS generation and ER-stress-mediated apoptosis, while also promoting lipid peroxidation by targeting Gpx4, rendering cancer cells vulnerable to ferroptosis. In vivo, experiments demonstrated the effectiveness of sunshinamide in reducing tumor growth by inducing both apoptosis and ferroptosis. The dual efficacy of sunshinamide in eliciting apoptosis and ferroptosis positions it as a promising candidate for breast cancer therapy, addressing the challenge of chemoresistance.
Collapse
Affiliation(s)
- Akash Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Joyanta Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Himangshu Sharma
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
105
|
Shang N, Zhu L, Li Y, Song C, Liu X. Targeting CDK1 and copper homeostasis in breast cancer via a nanopolymer drug delivery system. Cell Biol Toxicol 2024; 41:16. [PMID: 39724454 PMCID: PMC11671568 DOI: 10.1007/s10565-024-09958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
The prevalence of breast cancer (BRCA) is notable in the female population, being a commonly diagnosed malignancy, where the management of copper levels is crucial for treatment success. This research aims to explore the influence of copper homeostasis on BRCA therapy, with a specific focus on the role of Cyclin-Dependent Kinase 1 (CDK1) and its relationship to copper regulation. A novel thermosensitive hydrogel incorporating nanoparticles (NPs) was engineered to synergize with the chemotherapy drug vincristine (VCR) in inhibiting tumor growth and metastasis. Through a comprehensive approach involving bioinformatics analyses, in vitro experiments, and in vivo models, the study identified CDK1 as a significant factor in BRCA progression under copper homeostasis. MBVP-Gel, a novel thermosensitive hydrogel incorporating NPs, was developed to enhance the delivery of chemotherapy drugs and regulate copper homeostasis in breast cancer treatment. The MBVP-Gel, formulated with copper chelation and VCR NPs, effectively suppressed CDK1 expression, thereby restraining BRCA cell growth and metastasis while enhancing the therapeutic impact of VCR. This investigation offers fresh insights and experimental validation on the interaction between copper homeostasis and BRCA, providing a valuable foundation for refining future treatment strategies. These findings underscore the potential advantages of targeting copper homeostasis and CDK1 in enhancing BRCA therapy, setting the stage for individualized interventions and improved patient consequences.
Collapse
Affiliation(s)
- Nan Shang
- Department of Urinary Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China
| | - Lisi Zhu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China
| | - Yan Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China
| | - Chengyang Song
- Department of Thoracic and Cardiac Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China.
| | - Xiaodan Liu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China.
| |
Collapse
|
106
|
Peng C, Chen Y, Jiang M. Targeting ferroptosis: a promising strategy to overcome drug resistance in breast cancer. Front Oncol 2024; 14:1499125. [PMID: 39759144 PMCID: PMC11695291 DOI: 10.3389/fonc.2024.1499125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Breast cancer is one of the most prevalent malignancies affecting women worldwide, with its incidence increasingly observed in younger populations. In recent years, drug resistance has emerged as a significant challenge in the treatment of breast cancer, making it a central focus of contemporary research aimed at identifying strategies to overcome this issue. Growing evidence indicates that inducing ferroptosis through various mechanisms, particularly by inhibiting System Xc-, depleting glutathione (GSH), and inactivating glutathione peroxidase 4 (GPX4), holds great potential in overcoming drug resistance in breast cancer. It is anticipated that therapies targeting ferroptosis will emerge as a promising strategy to reverse tumor resistance, offering new hope for breast cancer patients. This review will explore the latest advancements in understanding ferroptosis in the context of breast cancer drug resistance, with a particular emphasis on the roles of ferroptosis inducers and inhibitors, and the impact of ferroptotic pathways on overcoming drug resistance in breast cancer.
Collapse
|
107
|
Tang R, Wan D, Leng C, Fan X, Li Y, Ma J, Huang Y, Xu C. Cross-Cultural Adaptation and Validation of the Central Sensitization Inventory Among Chinese Patients with Chronic Non-Specific Low Back Pain. J Pain Res 2024; 17:4263-4276. [PMID: 39698256 PMCID: PMC11654211 DOI: 10.2147/jpr.s499700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
Purpose This research aims to develop and validate the Chinese version of the Central Sensitization Inventory (CSI-CV) for patients suffering from chronic non-specific low back pain (CNSLBP). The study evaluates both the validity and reliability of the CSI-CV. Patients and Methods The cross-cultural adaptation of the scale strictly adhered to the principles of Bombardier and Beaton. Initially, two professors of Chinese-English translation independently translated the original CSI scale into the target language, and then collaborated with an expert in cross-cultural adaptation to merge into a single version. This version was back-translated into English by two professors whose native language is English. Following this, the scale underwent preliminary review by bilingual experts and the research team, and was preliminarily tested, ultimately culminating in the formation of the CSI-CV version. A total of 310 patients with CNSLBP completed the CSI-CV, while 50 of them repeated the survey one week later to test the stability of the scale. The CSI-CV's reliability, validity, and internal consistency were assessed through exploratory factor analysis (EFA), correlation coefficients, and Cronbach's α. Results EFA revealed five distinct factors from the 25 CSI-CV items, covering physical symptoms, emotional distress, fatigue and sleep disturbances, headaches and jaw symptoms, and urinary issues, with a total explained variance of 60.24%. The Cronbach's α was 0.910, and the intraclass correlation coefficient (ICC) was 0.924, indicating strong reliability. Moderate correlations were observed between CSI-CV scores and Five-Level EuroQol Five-Dimensional Questionnaire (r = -0.515), the Brief Pain Inventory (r = 0.586) and Oswestry Disability Index (r = 0.416), demonstrating significant associations with these measures. Conclusion The CSI-CV exhibits excellent internal consistency, factor structure, and reliability. Its successful cultural adaptation offers valuable insights for improving treatment approaches for patients with CNSLBP.
Collapse
Affiliation(s)
- Rui Tang
- Department of Knee Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shanxi Province, People’s Republic of China
- The Clinical Medical College, Chengdu University of Chinese Traditional Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Dongping Wan
- The First Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chuan Leng
- The Clinical Medical College, Chengdu University of Chinese Traditional Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Xiaohong Fan
- The Clinical Medical College, Chengdu University of Chinese Traditional Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Yang Li
- Department of Knee Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shanxi Province, People’s Republic of China
| | - Jianbing Ma
- Department of Knee Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shanxi Province, People’s Republic of China
| | - Yuanchi Huang
- Department of Knee Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shanxi Province, People’s Republic of China
| | - Chao Xu
- Department of Knee Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shanxi Province, People’s Republic of China
| |
Collapse
|
108
|
Song X, Li W, Tian C, Ma X, Yang W, Zhou J. Study on the mechanism of liver cancer immune escape mediated by MINDY1 through regulation of PD-L1 ubiquitination level. BIOMOLECULES & BIOMEDICINE 2024; 25:144-154. [PMID: 39217442 PMCID: PMC11647248 DOI: 10.17305/bb.2024.10962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
The novel deubiquitinase enzyme, motif interacting with ubiquitin-containing novel DUB family-1 (MINDY1), is highly expressed in liver cancer tissues and plays a crucial role in maintaining the stemness of liver cancer cells. Programmed death ligand-1 (PD-L1) is an immunosuppressive molecule overexpressed by tumour cells. The potential role of MINDY1 in inhibiting the stemness of liver cancer cells by deubiquitinating PD-L1 has not yet been reported. To investigate the mechanism by which MINDY1 mediates immune escape in liver cancer through the regulation of PD-L1 ubiquitination, we examined the expression levels of MINDY1 and PD-L1 in liver cancer and adjacent tissues from 50 hepatocellular carcinoma (HCC) patients using protein imprinting and immunohistochemistry. We analyzed the relationship between the expression levels of MINDY1 and PD-L1 in liver cancer tissues and their correlation with the 5-year tumor-free survival rates of patients. Subsequently, MINDY1 expression was knocked down in Huh7 cells using small interfering RNA (siRNA) interference or upregulated through transfection with a MINDY1 overexpression plasmid. The effects of MINDY1 knockdown or overexpression on the proliferation, apoptosis, migration, and invasion of HCC cells, as well as the regulation of PD-L1 binding and ubiquitination, were assessed. The 5-year tumor-free survival rates were significantly lower in both the high MINDY1 expression group and the high PD-L1 expression group (χ2 = 4.919 and 13.158, respectively). A significant difference in survival was observed between the high and low MINDY1 expression groups (χ2= 27.415). MINDY1 was found to directly interact with PD-L1, with MINDY1 gene knockdown promoting PD-L1 ubiquitination and MINDY1 overexpression inhibiting PD-L1 ubiquitination. All comparisons yielded statistically significant results (P < 0.05). In conclusion, MINDY1 inhibits the malignant progression of liver cancer by inhibiting PD-L1 ubiquitination and mediating immune escape.
Collapse
Affiliation(s)
- Xingchao Song
- Hepatobiliopancreatic Center, The Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Hepatobiliopancreatic Surgery, Xuzhou First People’s Hospital, Xuzhou, China
| | - Wenjin Li
- Department of Hepatobiliopancreatic Surgery, Xuzhou First People’s Hospital, Xuzhou, China
| | - Chunyan Tian
- Department of Hepatobiliopancreatic Surgery, Xuzhou First People’s Hospital, Xuzhou, China
| | - Xiao Ma
- Department of Hepatobiliopancreatic Surgery, Xuzhou First People’s Hospital, Xuzhou, China
| | - Weibin Yang
- Department of Hepatobiliopancreatic Surgery, Xuzhou First People’s Hospital, Xuzhou, China
| | - JiaHua Zhou
- Hepatobiliopancreatic Center, The Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
109
|
Cacciatore TW, Anderson DI, Cohen RG. Central mechanisms of muscle tone regulation: implications for pain and performance. Front Neurosci 2024; 18:1511783. [PMID: 39717699 PMCID: PMC11665217 DOI: 10.3389/fnins.2024.1511783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024] Open
Abstract
Muscle tone represents a foundational property of the motor system with the potential to impact musculoskeletal pain and motor performance. Muscle tone is involuntary, dynamically adaptive, interconnected across the body, sensitive to postural demands, and distinct from voluntary control. Research has historically focused on pathological tone, peripheral regulation, and contributions from passive tissues, without consideration of the neural regulation of active tone and its consequences, particularly for neurologically healthy individuals. Indeed, simplistic models based on the stretch reflex, which neglect the central regulation of tone, are still perpetuated today. Recent advances regarding tone are dispersed across different literatures, including animal physiology, pain science, motor control, neurology, and child development. This paper brings together diverse areas of research to construct a conceptual model of the neuroscience underlying active muscle tone. It highlights how multiple tonic drive networks tune the excitability of complex spinal feedback circuits in concert with various sources of sensory feedback and in relation to postural demands, gravity, and arousal levels. The paper also reveals how tonic muscle activity and excitability are disrupted in people with musculoskeletal pain and how tone disorders can lead to marked pain and motor impairment. The paper presents evidence that integrative somatic methods address the central regulation of tone and discusses potential mechanisms and implications for tone rehabilitation to improve pain and performance.
Collapse
Affiliation(s)
| | - David I. Anderson
- Department of Kinesiology, Marian Wright Edelman Institute, San Francisco State University, San Francisco, CA, United States
| | - Rajal G. Cohen
- Department of Psychology and Communication, University of Idaho, Moscow, ID, United States
| |
Collapse
|
110
|
Chen S, Li L, Xu W, Xie N, Xu H, Zhou Y, Zou Y, Yi K, Zhang Z. CircMIB1 inhibits glioma development and progression through a competing endogenous RNA interaction network. Front Mol Biosci 2024; 11:1513919. [PMID: 39698112 PMCID: PMC11652353 DOI: 10.3389/fmolb.2024.1513919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction The critical role of circular RNAs as non-coding RNAs in glioma has been extensively investigated. Therefore, we aimed to explore the role and potential molecular mechanisms of circRNA-mind bomb homolog 1 (circMIB1) in gliomas. Methods RNA sequencing was used to analyze the expression profiles of circRNAs in glioma tissues and normal brain tissues. Quantitative real-time polymerase chain reaction was implemented to examine the levels of circMIB1 in glioma cells and tissues. The circMIB1 was identified as a cyclic RNA molecule by DNA nucleic acid electrophoresis and ribonuclease R assay. The relationship between circMIB1 expression and the prognosis of glioma patients and its potential as a biomarker were analysed using Kaplan-Meier, Receiver operating characteristic curves, and Principal component analysis. Bioinformatics analysis predicted the miRNAs that bind to circMIB1 and their downstream targets, and analysed the functions of these genes. Results Firstly, a novel circRNA molecule termed circMIB1 was identified and validated by RNA sequencing. The expression of circMIB1 was significantly downregulated in glioma cells and tissues, and was closely associated with the tumor grade and survival prognosis of patients with glioma. Hence, it may be useful as a biomarker for glioma. Secondly, it was predicted that circMIB1 binds to hsa-miR-1290 based on bioinformatics analysis, which was significantly upregulated in glioma cells and tissues, and correlated with the tumor grade and overall survival of patients. Thirdly, through a series of bioinformatics analyses identified six genes downstream of hsa-miR-1290 that were significantly associated with glioma expression and prognosis, these genes are associated with cell cycle, cell necrosis and cell circadian rhythms. Discussion CircMIB1 may play a role in inhibiting glioma development through the hsa-miR-1290 competitive endogenous RNA interaction network, these findings provide new ideas and directions for the diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Simin Chen
- Department of Clinical Laboratory, Yiyang Central Hospital, Yiyang, Hunan, China
| | - Longping Li
- Department of Clinical Laboratory, Yiyang Central Hospital, Yiyang, Hunan, China
| | - Wei Xu
- Department of Clinical Laboratory, Yiyang Central Hospital, Yiyang, Hunan, China
| | - Nanjiao Xie
- Department of Clinical Laboratory, Yiyang Central Hospital, Yiyang, Hunan, China
| | - Huiting Xu
- Department of Clinical Laboratory, Yiyang Central Hospital, Yiyang, Hunan, China
| | - Yongjun Zhou
- Department of Clinical Laboratory, Yiyang Central Hospital, Yiyang, Hunan, China
| | - Ying Zou
- Department of Clinical Laboratory, Yiyang Central Hospital, Yiyang, Hunan, China
| | - Kai Yi
- Department of Clinical Laboratory, Yiyang Central Hospital, Yiyang, Hunan, China
| | - Zuping Zhang
- School of Xiangya Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
111
|
Chen R, Hu T, Lu Y, Yang S, Zhang M, Tan C, Liang R, Wang Y. PAD4 Inhibitor-Loaded Layered Double Hydroxide Nanosheets as a Multifunctional Nanoplatform for Photodynamic Therapy-Mediated Tumor Metastasis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404211. [PMID: 39358959 PMCID: PMC11636073 DOI: 10.1002/smll.202404211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Photodynamic therapy (PDT) is demonstrated to be effective in inducing antitumor immune responses for tumor metastasis treatment. However, tumor hypoxia, inferior tissue penetration of light, and low singlet oxygen (1O2) quantum yield significantly hamper the efficacy of PDT, thus weakening its immune function. Moreover, PDT-mediated neutrophil extracellular traps (NETs) formation can further reduce the therapeutic effectiveness. Herein, the use of defect-rich CoMo-layered double hydroxide (DR-CoMo-LDH) nanosheets as a carrier to load a typical peptidyl arginine deiminase 4 inhibitor, i.e., YW4-03, to construct a multifunctional nanoagent (403@DR-LDH) for PDT/immunotherapy, is reported. Specifically, 403@DR-LDH inherits excellent 1O2 generation activity under 1550 nm laser irradiation and improves the half-life of YW4-03. Meanwhile, 403@DR-LDH plus 1550 nm laser irradiation can stimulate immunogenic cell death to promote the maturation of dendric cells and activation/infiltration of T cells and significantly downregulate H3cit protein expression to inhibit NETs formation, synergistically promoting the antitumor metastasis effect. Taken together, 403@DR-LDH can kill cancer cells and inhibit tumor growth/metastasis under 1550 nm laser irradiation. Single-cell analysis indicates that 403@DR-LDH can regulate the ratio of immune cells and immune-related proteins to improve the tumor immune microenvironment, showing strong efficacy to inhibit the tumor growth, metastasis, and recurrence.
Collapse
Affiliation(s)
- Rong Chen
- Department of Medicinal ChemistryCollege of Pharmaceutical Sciences of Capital Medical UniversityBeijing100069P. R. China
| | - Tingting Hu
- Department Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong SAR999077P. R. China
| | - Yu Lu
- Department of Medicinal ChemistryCollege of Pharmaceutical Sciences of Capital Medical UniversityBeijing100069P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Min Zhang
- Department of NephrologyAffiliated Beijing Chaoyang Hospital of Capital Medical UniversityBeijing100020P. R. China
| | - Chaoliang Tan
- Department Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong SAR999077P. R. China
- Department Electrical EngineeringCity University of Hong Kong83 Tat Chee Ave, Kowloon TongHong Kong SAR999077P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- Quzhou Institute for Innovation in Resource Chemical EngineeringQuzhou324000P. R. China
| | - Yuji Wang
- Department of Medicinal ChemistryCollege of Pharmaceutical Sciences of Capital Medical UniversityBeijing100069P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular DrugsEngineering Research Center of Endogenous Prophylactic of Ministry of Education of ChinaBeijing Laboratory of Biomedical MaterialsLaboratory for Clinical MedicineBeijing Laboratory of Oral HealthCapital Medical UniversityBeijing100069P. R. China
| |
Collapse
|
112
|
He L, Lin C, Zhuang L, Sun Y, Li Y, Ye Z. Targeting Hepatocellular Carcinoma: Schisandrin A Triggers Mitochondrial Disruption and Ferroptosis. Chem Biol Drug Des 2024; 104:e70010. [PMID: 39668608 PMCID: PMC11638659 DOI: 10.1111/cbdd.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 12/14/2024]
Abstract
The main focus of this research was to examine SchA's role in the hepatocellular carcinoma (HCC) development. LO2 and Huh7 cell viability were assessed using the MTT assay. The experiments included flow cytometry, colony formation, transwell, wound healing, and immunofluorescence assays to evaluate apoptosis levels, cells colony-forming ability, ROS levels, invasion and migration ability, and mitochondrial membrane potential. Biochemical kits was utilized for checking the ATP, mitochondrial DNA, MDA, GSH, and Fe2+ levels in the Huh7 cells, and western blot for measuring the ferroptosis and AMPK/mTOR related-protein expression levels. The MTT assay demonstrated that SchA significantly reduced the vitality of Huh7 cells ranging from 10 to 50 μM, whereas it exhibited no discernible impact on LO2 cells. Additionally, SchA significantly inhibited colony-forming ability, invasion ability, and migration ability within the concentration range of 10 to 50 μM, with a reduction of 68% in colony formation at 50 μM. SchA also induced apoptosis in a dose-dependent manner. Moreover, SchA was observed to significantly elevate ROS levels dose-dependently, down-regulate mitochondrial membrane potential (JC-1) at 20 and 50 μM, and reduce the levels of ATP and mtDNA dose-dependently. Various concentrations of SchA resulted in a notable elevation in MDA and Fe2+ levels as well as ACSL4 protein expression, accompanied by a reduction in GSH level and the protein expression of GPX4 and SLC7A11. Furthermore, SchA induced the activation of the AMPK/mTOR pathway in Huh7 cells, as evidenced by the increased phosphorylation level of AMPK and decreased phosphorylation level of mTOR. SchA might inhibit the progress of HCC through mitochondrial ferroptosis and dysfunction mediated by AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Lin‐wei He
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Chang‐jie Lin
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Lin‐jun Zhuang
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Yi‐hui Sun
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Ye‐cheng Li
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Zhen‐yu Ye
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| |
Collapse
|
113
|
Hai P, Jia H, Luo Z, Fan H, He Y, Li X, Lin P, Zhang Q, Gao Y, Yang J. Meroterpenoids with anti-triple negative breast cancer and antimicrobial activities from Arnebia euchroma. Fitoterapia 2024; 179:106234. [PMID: 39332506 DOI: 10.1016/j.fitote.2024.106234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Two new meroterpenoids, arneuchrols A and B (1 and 2), together with twelve known analogs (3-14) were isolated from the root of Arnebia euchroma. The structures of 1 and 2 including their absolute configurations were elucidated by NMR, HRESIMS, and DFT calculation of their NMR and ECD data. The structure of pseudoshikonin I, firstly isolated from Lithospermi radix was revised as shikonofuran E (4). Anti-triple negative breast cancer (anti-TNBC) and antimicrobial activities of the isolated compounds were tested. Compounds 3, 4, 6, 7, 9, 10, and 13 exhibited potent inhibitory activity against TNBC (MDA-MB-231 cells) with IC50 values in the range of 0.18-4.58 μM. Compound 10 displayed antifungal activity against five plant pathogenic fungi with MIC values in the range of 6.25-25 μg/mL. Compound 9 exhibited antibacterial activity against Micrococcus lysodeikticus with MIC value of 12.5 μg/mL.
Collapse
Affiliation(s)
- Ping Hai
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Haiyan Jia
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China
| | - Zhiqiang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huixia Fan
- Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China
| | - Yunqing He
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China; Key Lab of Process Analysis and Control of Sichuan Universities, Yibin 644000, Sichuan, China
| | - Xianyan Li
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Peng Lin
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Qin Zhang
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China.
| | - Yuan Gao
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China.
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China.
| |
Collapse
|
114
|
Liu W, Liao N, Lei Y, Liang W, Yang X, Yuan R, Yang C, Zhuo Y. Detachable DNA Assembly Module to Dissect Tumor Cells Heterogeneity via RNA Pinpoint Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401253. [PMID: 39422178 PMCID: PMC11633503 DOI: 10.1002/advs.202401253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Differential RNA expression is becoming increasingly valuable in evaluating tumor heterogeneity for a better understanding of malignant tumors and guiding personalized therapy. However, traditional techniques for analyzing cellular RNA are mainly focused on determining the absolute level of RNA, which may lead to inaccuracies in understanding tumor heterogeneity, primarily due to i) the subtle differences in certain RNA types that have similar total concentrations and ii) the existence of variations in RNA expression across different samples. Herein, a detachable DNA assembly module is proposed that is capable not only of quantifying the expression level of target RNA but also of innovatively evaluating its proportion within its RNA family population through a sequential assembly and disassembly route. Using the let-7 family as an experimental model, a significant difference is discovered in let-7a proportion between normal mammary epithelial cells and breast cancer cells, a characteristic that is often missed in bulk analysis of traditional techniques. By combining concentration and proportion information, the detachable DNA assembly module demonstrates markedly higher efficiency in discerning among various types of cells compared to traditional techniques. This innovative assembly module is expected to offer a new perspective to highlight tumor heterogeneity and guide personalized therapy.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Ni Liao
- College of Biological and Chemical EngineeringPanzhihua UniversityPanzhihua617000P. R. China
| | - Yanmei Lei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
- Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Chaoyong Yang
- Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
- The MOE Key Laboratory of Spectrochemical Analysis and InstrumentationDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| |
Collapse
|
115
|
Lu X, Zhang C, Zhu L, Wang S, Zeng L, Zhong W, Wu X, Yuan Q, Tang H, Cui S, Tan Y, Li Y, Wei W. TBL2 Promotes Tumorigenesis via PRMT5/WDR77-Mediated AKT Activation in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400160. [PMID: 39499734 DOI: 10.1002/advs.202400160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 10/20/2024] [Indexed: 11/07/2024]
Abstract
Breast cancer (BC) is a common malignancy that affects women worldwide. Although transducing beta-like 2 (TBL2), a member of the WD40 repeat protein family, has been implicated in various intracellular signaling pathways, its precise function in BC remains unclear. The expression of TBL2 is analyzed using real-time PCR, western blotting, and immunohistochemistry in BC patient specimens. Kaplan-Meier survival analysis is employed to assess its prognostic significance. Proteomic analysis, immunoprecipitation tests, and protein immunoblotting are employed to examine the impact of TBL2 on AKT phosphorylation activation. The findings reveal selective overexpression of TBL2 in BC, correlating significantly with various clinicopathological characteristics and poor survival outcomes in patients with BC. Through in vivo and in vitro experiments, it is observed that TBL2 suppression inhibits BC cell proliferation, while TBL2 overexpression has the opposite effect. Mechanistically, TBL2 is identified as a scaffolding protein that promotes PRMT5 and WDR77 interaction. This interaction enhances the methyltransferase activity of PRMT5, leading to increased AKT phosphorylation activation and promotion of breast cancer cell proliferation. In conclusion, this study uncovers a novel function of TBL2 in the activation of AKT by PRMT5 and suggests TBL2 as a potential therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Xiuqing Lu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510000, China
- District 2, Breast Center, Zhongshan City People's Hospital, Zhongshan, 528400, China
| | - Chao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510000, China
| | - Lewei Zhu
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Sifen Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510000, China
| | - Lijun Zeng
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenjing Zhong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510000, China
| | - Xuxia Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510000, China
| | - Qi Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510000, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510000, China
| | - Shien Cui
- District 2, Breast Center, Zhongshan City People's Hospital, Zhongshan, 528400, China
| | - Yeru Tan
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuehua Li
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Weidong Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510000, China
| |
Collapse
|
116
|
He Y, Zhu M, Lai X, Zhang H, Jiang W. The roles of PD-L1 in the various stages of tumor metastasis. Cancer Metastasis Rev 2024; 43:1475-1488. [PMID: 38733457 DOI: 10.1007/s10555-024-10189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The interaction between tumor programmed death ligand 1 (PD-L1) and T-cell programmed cell death 1 (PD-1) has long been acknowledged as a mechanism for evading immune surveillance. Recent studies, however, have unveiled a more nuanced role of tumor-intrinsic PD-L1 in reprograming tumoral phenotypes. Preclinical models emphasize the synchronized effects of both intracellular and extracellular PD-L1 in promoting metastasis, with intricate interactions with the immune system. This review aims to summarize recent findings to elucidate the spatiotemporal heterogeneity of PD-L1 expression and the pro-metastatic roles of PD-L1 in the entire process of tumor metastasis. For example, PD-L1 regulates the epithelial-to-mesenchymal transition (EMT) process, facilitates the survival of circulating tumor cells, and induces the formation of immunosuppressive environments at pre-metastatic niches and metastatic sites. And the complexed and dynamic regulation process of PD-L1 for tumor metastasis is related to the spatiotemporal heterogeneity of PD-L1 expression and functions from tumor primary sites to various metastatic sites. This review extends the current understandings for the roles of PD-L1 in mediating tumor metastasis and provides new insights into therapeutic decisions in clinical practice.
Collapse
Affiliation(s)
- Yinjun He
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, 310009, China
- Department of Pathology, Zhejiang University Medical School, Hangzhou, 310058, China
| | - Ming Zhu
- Department of Pathology, Zhejiang University Medical School, Hangzhou, 310058, China
| | - Xuan Lai
- Department of Pathology, Zhejiang University Medical School, Hangzhou, 310058, China
| | - Honghe Zhang
- Department of Pathology, Zhejiang University Medical School, Hangzhou, 310058, China.
| | - Weiqin Jiang
- Department of Colorectal Surgery, First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, 310009, China.
- Department of Pathology, Zhejiang University Medical School, Hangzhou, 310058, China.
| |
Collapse
|
117
|
Lu Y, Zhu J, Zhang Y, Li W, Xiong Y, Fan Y, Wu Y, Zhao J, Shang C, Liang H, Zhang W. Lactylation-Driven IGF2BP3-Mediated Serine Metabolism Reprogramming and RNA m6A-Modification Promotes Lenvatinib Resistance in HCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401399. [PMID: 39450426 PMCID: PMC11633555 DOI: 10.1002/advs.202401399] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Acquired resistance remains a bottleneck for molecular-targeted therapy in advanced hepatocellular carcinoma (HCC). Metabolic adaptation and epigenetic remodeling are recognized as hallmarks of cancer that may contribute to acquired resistance. In various lenvatinib-resistant models, increased glycolysis leads to lactate accumulation and lysine lactylation of IGF2BP3. This lactylation is crucial for capturing PCK2 and NRF2 mRNAs, thereby enhancing their expression. This process reprograms serine metabolism and strengthens the antioxidant defense system. Additionally, altered serine metabolism increases the availability of methylated substrates, such as S-adenosylmethionine (SAM), for N6-methyladenosine (m6A) methylation of PCK2 and NRF2 mRNAs. The lactylated IGF2BP3-PCK2-SAM-m6A loop maintains elevated PCK2 and NRF2 levels, enhancing the antioxidant system and promoting lenvatinib resistance in HCC. Treatment with liposomes carrying siRNAs targeting IGF2BP3 or the glycolysis inhibitor 2-DG restored lenvatinib sensitivity in vivo. These findings highlight the connection between metabolic reprogramming and epigenetic regulation and suggest that targeting metabolic pathways may offer new strategies to overcome lenvatinib resistance in HCC.
Collapse
Affiliation(s)
- Yuanxiang Lu
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AvenueWuhanHubei430030China
- Department of Breast SurgeryZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhou450003China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubei430030China
| | - Jinghan Zhu
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AvenueWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubei430030China
| | - Yuxin Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AvenueWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubei430030China
| | - Wentao Li
- Department of Breast SurgeryZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhou450003China
| | - Yixiao Xiong
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AvenueWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubei430030China
- Department of DermatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yunhui Fan
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AvenueWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubei430030China
| | - Yang Wu
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AvenueWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubei430030China
| | - Jianping Zhao
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AvenueWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubei430030China
- Key Laboratory of Organ TransplantationMinistry of EducationNHC Key Laboratory of Organ TransplantationKey Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanHubei430030China
| | - Changzhen Shang
- Department of Hepatobiliary SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityYanjiang West RoadGuangzhou510120China
| | - Huifang Liang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AvenueWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubei430030China
- Key Laboratory of Organ TransplantationMinistry of EducationNHC Key Laboratory of Organ TransplantationKey Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanHubei430030China
| | - Wanguang Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AvenueWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubei430030China
- Key Laboratory of Organ TransplantationMinistry of EducationNHC Key Laboratory of Organ TransplantationKey Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanHubei430030China
| |
Collapse
|
118
|
Zhuang X, Yin S, Cheng J, Sun W, Fang Z, Xiang Y, Peng EY, Yao Y, Li Y, He X, Lu L, Deng Y, Huang H, Cai G, Liao Y. METTL14-mediated m 6A modification enhances USP22-ERα axis to drive breast cancer malignancy. Pharmacol Res 2024; 210:107509. [PMID: 39557350 DOI: 10.1016/j.phrs.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
The abundance and activity of estrogen receptor alpha (ERα) are tightly regulated by ubiquitin-specific peptidase 22 (USP22) during the progression of breast cancer (BCa). However, the post-transcriptional modifications on the USP22-ERα axis remain elusive. N6-methyladenosine (m6A) is critical to modulate RNA status in eukaryotic cells. Here, we find that METTL14 positively regulates the mRNA expression of USP22 and ERα. Mechanistically, METTL14 potently binds to the USP22 and ERα mRNA, and thereby enhancing their stability through m6A modification. YTHDC1 and YTHDF1 function as readers for m6A-modified USP22 and ERα, respectively. Additionally, METTL14 promotes the growth and migration of ERα+ BCa via the USP22-ERα-Cyclin D1 axis. Enforced expression of USP22/ERα significantly reverses the METTL14 depletion-induced growth and migration inhibition in BCa. Moreover, our analysis of clinical samples shows that the expression of METTL14, USP22, and ERα is upregulated and correlated in BCa tissues. Overall, our findings reveal the key role of the METTL14-USP22-ERα axis in BCa progression, which further provides a druggable target to treat BCa.
Collapse
Affiliation(s)
- Xuefen Zhuang
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Shusha Yin
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ji Cheng
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenshuang Sun
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zesen Fang
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Yujie Xiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - E-Ying Peng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yu Yao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuting Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoyue He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Li Lu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuanfei Deng
- Department of Pathology, The First People's Hospital of Foshan, Foshan 528000, China
| | - Hongbiao Huang
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Gengxi Cai
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan 528000, China.
| | - Yuning Liao
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
119
|
Ge A, Xiang W, Li Y, Zhao D, Chen J, Daga P, Dai CC, Yang K, Yan Y, Hao M, Zhang B, Xiao W. Broadening horizons: the multifaceted role of ferroptosis in breast cancer. Front Immunol 2024; 15:1455741. [PMID: 39664391 PMCID: PMC11631881 DOI: 10.3389/fimmu.2024.1455741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/21/2024] [Indexed: 12/13/2024] Open
Abstract
Breast cancer poses a serious threat to women's health globally. Current radiotherapy and chemotherapy regimens can induce drug-resistance effects in cancer tissues, such as anti-apoptosis, anti-pyroptosis, and anti-necroptosis, leading to poor clinical outcomes in the treatment of breast cancer. Ferroptosis is a novel programmed cell death modality characterized by iron overload, excessive generation of reactive oxygen species, and membrane lipid peroxidation. The occurrence of ferroptosis results from the imbalance between intracellular peroxidation mechanisms (executive system) and antioxidant mechanisms (defensive system), specifically involving iron metabolism pathways, amino acid metabolism pathways, and lipid metabolism pathways. In recent years, it has been found that ferroptosis is associated with the progression of various diseases, including tumors, hypertension, diabetes, and Alzheimer's disease. Studies have confirmed that triggering ferroptosis in breast cancer cells can significantly inhibit cancer cell proliferation and invasion, and improve cancer cell sensitivity to radiotherapy and chemotherapy, making induction of ferroptosis a potential strategy for the treatment of breast cancer. This paper reviews the development of the concept of ferroptosis, the mechanisms of ferroptosis (including signaling pathways such as GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10, and GCH1-BH4) in breast cancer disease, the latest research progress, and summarizes the research on ferroptosis in breast cancer disease within the framework of metabolism, reactive oxygen biology, and iron biology. The key regulatory factors and mechanisms of ferroptosis in breast cancer disease, as well as important concepts and significant open questions in the field of ferroptosis and related natural compounds, are introduced. It is hoped that future research will make further breakthroughs in the regulatory mechanisms of ferroptosis and the use of ferroptosis in treating breast cancer cells. Meanwhile, natural compounds may also become a new direction for potential drug development targeting ferroptosis in breast cancer treatment. This provides a theoretical basis and opens up a new pathway for research and the development of drugs for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Rheumatology, The First People’s Hospital Changde City, Changde, Hunan, China
| | - Yan Li
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Da Zhao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junpeng Chen
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Pawan Daga
- Department of Internal Medicine, University of Louisville, Louisville, KY, United States
| | - Charles C. Dai
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States
| | - Kailin Yang
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yexing Yan
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | | | - Wei Xiao
- Department of Rheumatology, The First People’s Hospital Changde City, Changde, Hunan, China
| |
Collapse
|
120
|
Valenti F, Meden S, Frangež M, Vauhnik R. Intra-rater and inter-rater reliability of a handheld myotonometer measuring myofascial stiffness of lower lumbar myofascial tissue in healthy adults. PeerJ 2024; 12:e18524. [PMID: 39575173 PMCID: PMC11580663 DOI: 10.7717/peerj.18524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Background Biomechanical muscle properties, such as stiffness, can be valuable indicators of tissue health and show promise as a diagnostic and treatment measure for chronic low back pain (CLBP). The development of accessible assessment technologies, such as the MyotonPRO portable device, allows for the convenient quantification of muscle tone and stiffness changes. The aim of this study is to assess the reliability of lumbar erector spinae muscle stiffness with the MyotonPRO in healthy adults and to compare stiffness changes between prone and sitting position. Methods Thirty asymptomatic participants (N = 15 women and N = 15 men) aged between 18 and 65 years were recruited to participate in this study. Two examiners tested muscle stiffness at the palpable muscle belly, one finger away from the spinous process at the level of the L4 vertebra, first from the left and then from the right side, both in prone position and after in sitting position. For inter-rater reliability, all participants were tested by two examiners on the same day, and intra-rater reliability was calculated using the same examiner's assessment results with an exact 24-h interval. Intraclass correlation coefficients (ICC), standard error measures (SEM) and minimum detectable change (MDC) with a 95% confidence interval were calculated to assess intra-rater and inter-rater reliability. Results Statistical analysis revealed good intra-rater reliability with an ICC of 0.88 (95% CI [0.76-0.94]) for the stiffness of the left erector spinae and excellent intra-rater reliability with an ICC of 0.91 (95% CI [0.82-0.95]) for the right erector spinae, both in the prone position. Intra-rater reliability in the sitting position was excellent to very good with an ICC of 0.91 (95% CI [0.82-0.96]) for the left side and an ICC of 0.89 (95% CI [0.78-0.95]) for the right side. The results for the left-sided prone position showed good inter-rater reliability with an ICC of 0.87 (95% CI [0.73-0.94]). The prone position on the right side also showed good inter-rater reliability with an ICC of 0.84 (95% CI [0.68-0.92]). The inter-rater reliability for the left and right side in the sitting position was excellent with an ICC of 0.96 (95% CI [0.92-0.98]) for the left side and an ICC of 0.95 (95% CI [0.90-0.97]) for the right side. Conclusion This study demonstrated high reliability in measuring lumbar erector spinae muscle stiffness with the MyotonPRO in healthy adults and the ability of the device to detect even small changes in erector spinae muscle stiffness, testing both the right and left sides and measuring in both prone and sitting positions. The use of the sitting position to assess lumbar tissue tension in individuals may serve as a valuable substitute for the prone position, particularly for patients who experience discomfort in the prone position, and could have additional practical significance in clinical settings.
Collapse
Affiliation(s)
- Fabio Valenti
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Meden
- Valdoltra Orthopaedic Hospital, Ankaran, Slovenia
| | - Maja Frangež
- Institute for Medical Rehabilitation, University Medical Centre, Ljubljana, Slovenia
| | - Renata Vauhnik
- Faculty of Health Sciences, Department of Physiotherapy, University of Ljubljana, Ljubljana, Slovenia
- Institute for Joints and Sport Injuries, ARTHRON, Ljubljana, Slovenia
| |
Collapse
|
121
|
Zhu C, Liao JY, Liu YY, Chen ZY, Chang RZ, Chen XP, Zhang BX, Liang JN. Immune dynamics shaping pre-metastatic and metastatic niches in liver metastases: from molecular mechanisms to therapeutic strategies. Mol Cancer 2024; 23:254. [PMID: 39543660 PMCID: PMC11562679 DOI: 10.1186/s12943-024-02171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Liver metastases are commonly detected in the advanced stages of various malignant tumors, representing a significant clinical challenge. Throughout the process of liver metastases formation, immune cells play a pivotal role, particularly in the pre-metastatic and metastatic niches within the liver. Immune cells establish extensive and intricate interactions with tumor cells and other components in the liver, collectively promoting and sustaining the growth of liver metastases. Despite the limited efficacy of existing therapeutic modalities against some advanced liver metastases, novel immune-based treatment approaches are continuously being explored and validated. Building on the systematic elucidation of the immunosuppressive characteristics of liver metastases, we explored the potential of novel immunotherapies applicable to patients with liver metastases from multiple dimensions.
Collapse
Affiliation(s)
- Chang Zhu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jing-Yu Liao
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yi-Yang Liu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Ze-Yu Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Rui-Zhi Chang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| | - Jun-Nan Liang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| |
Collapse
|
122
|
Sugihara R, Watanabe H, Matsushima S, Katagiri Y, Saku S, Okabe M, Takao Y, Iwakuma N, Ogo E, Fujita F, Toh U. The effective duration of systemic therapy and the neutrophil-to-lymphocyte ratio predict the surgical advantage of primary tumor resection in patients with de novo stage IV breast cancer: a retrospective study. World J Surg Oncol 2024; 22:300. [PMID: 39543698 PMCID: PMC11562720 DOI: 10.1186/s12957-024-03586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND The primary tumor resection (PTR) of de novo stage IV breast cancer (DnIV BC) is controversial, and previous studies have suggested that the neutrophil-to-lymphocyte ratio (NLR) could be a poor-prognosis factor for BC. We investigated PTR's surgical advantage related to clinical outcomes, the surgery timing in responders to systemic therapy, and whether the NLR can predict the benefit of surgery for DnIV BC. PATIENTS AND METHODS We retrospectively analyzed the cases of the DnIV BC patients who received systemic therapies and/or underwent PTR at our institution between January 2004 and December 2022. Blood tests and NLR measurement were performed before and after each systematic therapy and/or surgery. RESULTS Sixty patients had undergone PTR local surgery (Surgery group); 81 patients had not undergone surgical treatment (Non-surgery group). In both groups, systemic treatment was performed as chemotherapy (95%) and/or endocrine therapy (92.5%) (p < 0.0001). The groups' respective median progression-free survival (PFS) durations were 88 and 30.3 months (p = 0.004); their overall survival (OS) durations were 100.1 and 31.8 months (p = 0.0002). The Surgery-group responders to systemic therapy lasting > 8.1-months showed significantly longer OS (p = 0.044). The PFS and OS were significantly associated with the use of postoperative systemic therapy (p = 0.0012) and the NLR (p = 0.018). A low NLR (≤ 3) was associated with significantly better prognoses (PFS and OS; p < 0.0001). CONCLUSIONS A longer effective duration of systemic therapy (> 8.1 months) and a low pre-surgery NLR (≤ 3.0) could predict PTR's surgical advantage for DnIV BC. These variables may help guide decisions regarding the timing of surgery for DnIV BC.
Collapse
Affiliation(s)
- Rie Sugihara
- Department of Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Hidetaka Watanabe
- Department of Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Shuntaro Matsushima
- Department of Breast Surgery, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama Chuo-ku, Fukuoka, Japan
| | - Yuriko Katagiri
- Department of Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Shuko Saku
- Department of Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Mina Okabe
- Department of Breast Surgery, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama Chuo-ku, Fukuoka, Japan
| | - Yuko Takao
- Department of Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Nobutaka Iwakuma
- Department of Breast Surgery, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama Chuo-ku, Fukuoka, Japan
| | - Etsuyo Ogo
- Department of Radiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Fumihiko Fujita
- Department of Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Uhi Toh
- Department of Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| |
Collapse
|
123
|
Yang Y, Zheng P, Duan B, Yang Y, Zheng X, Li W, Liu Q, Hu Y, Ma Y. A personalized vaccine combining immunogenic cell death-induced cells and nanosized antigens for enhanced antitumor immunity. J Control Release 2024; 376:1271-1287. [PMID: 39515613 DOI: 10.1016/j.jconrel.2024.10.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The tumor vaccine aims to activate the immune system, promote antitumor cellular responses, and restore immune recognition and clearance of tumor cells. However, the low immunogenicity and heterogeneity of tumor antigens, along with immunosuppressive mechanisms, severely hinder tumor vaccines from achieving an efficient and sustained antitumor effect. Herein, we developed a combined vaccine strategy that utilizes immunogenic cell death (ICD) to elicit a broad spectrum of antigen-specific responses in a whole-cell-based manner. Additionally, we introduced nanosized antigens to intensify immune responses targeting a key tumor antigen. The combination of mitoxantrone (MTX) and curcumin (Cur) optimized ICD properties in TC-1 tumor cells, as evidenced by increased release of "find me" signals, such as HMGB1 and ATP, and enhanced exposure of the "eat me" signal, CALR, compared to either MTX or Cur alone. Correspondingly, the ICD cells induced by the combination produced more significant antitumor effects in vivo. Furthermore, the ICD cells in combination with E7-HBcAg VLPs or E7-Q11 nanofibers induced more intense effector cell responses to the antigen included in the nanovaccines, as well as a broad spectrum of antigens provided by tumor cells, and significantly suppressed the growth of established tumors compared with either ICD cells, VLPs, or nanofibers alone. In conclusion, the combination of ICD cells and nanosized antigens produced synergistic antitumor effects and elicited robust and comprehensive antitumor immunity, presenting an attractive strategy for developing personalized tumor vaccines.
Collapse
Affiliation(s)
- Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China; Cell Biology & Molecular Biology Laboratory of Experimental Teaching Center, Faculty of Basic Medical Science, Kunming Medical University, Chunrong West Road, Kunming 650500, China
| | - Peng Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China
| | - Biao Duan
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China; Kunming Medical University Graduate School, Chunrong West Road, Kunming 650500, China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China
| | - Qingwen Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China; Kunming Medical University Graduate School, Chunrong West Road, Kunming 650500, China
| | - Yongmao Hu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China; School of Life Sciences, Yunnan University, No.2 Cuihu North Road, Kunming 650091, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China; State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
124
|
Liu H, Li Y, Tang L, Sun X, Xie W, Xiao T, Gu W, Yang H, Wang H, Chen P. UBR5 metabolically reprograms nasopharyngeal carcinoma cells to promote glycolysis and M2 polarization via SPLUNC1 signaling. NPJ Precis Oncol 2024; 8:252. [PMID: 39501021 PMCID: PMC11538528 DOI: 10.1038/s41698-024-00747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the most common cancer originating in nasopharynx. Metabolic reprogramming plays a critical role in tumor progression. Exploring mechanisms underlying metabolic reprogramming contributes to deeper understanding of NPC pathogenesis. Here, we found downregulation of RORA and SPLUNC1 in NPC, and RORA downregulation indicates poor prognosis. RORA binds to SPLUNC1 promoter to induce its transcription, and RORA overexpression inhibits cell proliferation and glycolysis by directly upregulating SPLUNC1. UBR5 inhibits RORA via promoting RORA ubiquitination and degradation, and UBR5 silencing represses proliferation and glycolysis in NPC. Additionally, METTL14, which is highly expressed in NPC, facilitates UBR5 mRNA stability by promoting its m6A modification through IGF2BP2. UBR5/RORA/SPLUNC1 axis facilitates M2 polarization by activating the GPR132 signaling. UBR5 silencing inhibits tumor growth, glycolysis and M2 polarization through RORA/SPLUNC1 signaling in mice. In conclusion, UBR5 promotes proliferation, glycolysis and M2 polarization by metabolically reprograming NPC cells through suppression of the RORA/SPLUNC1 signaling.
Collapse
Grants
- R01 DK002001 NIDDK NIH HHS
- R56 DK002001 NIDDK NIH HHS
- This work was supported by Grants from the National Natural Science Foundation of China (Grant No. 82173201, 82272758), the Key Research and Development Program of Hunan Province (No. 2021SK51117, 2023DK2001,2024DK2007, China), the Natural Science Foundation of Hunan Province(No.2023JJ40414, China), Scientific Research Project of Hunan Provincial Health Commission (A202302088151, B202304127661, China), Project supported by the Natural Science Foundation of Hunan Province(2023ZJ1125, China), Hunan Provincial Health High-Level Talent Scientific Research Project No.R2023057,W20243197, China), National Key Clinical Specialty Scientific Research Project (No. Z2023025, China)
Collapse
Affiliation(s)
- Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P. R. China
| | - Yanxian Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P. R. China
| | - Ling Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P. R. China
| | - Xiaowen Sun
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P. R. China
| | - Wenji Xie
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P. R. China
| | - Tengfei Xiao
- The Animal Laboratory Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P. R. China
| | - Wangning Gu
- The Animal Laboratory Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P. R. China
| | - Hongmin Yang
- The Animal Laboratory Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P. R. China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P. R. China.
| | - Pan Chen
- The Animal Laboratory Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P. R. China.
| |
Collapse
|
125
|
Liu Y, Li Q, Cao G, Wei H, Xue C, Liu J. Expression of programmed death receptor-1 ligand (PD-L1) in human cancer is of prognostic value and associated with macrophage infiltration. J Cancer 2024; 15:6798-6807. [PMID: 39668828 PMCID: PMC11632976 DOI: 10.7150/jca.99781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/30/2024] [Indexed: 12/14/2024] Open
Abstract
The tumor immune microenvironment is a crucial factor influencing tumor progression, and its molecular mechanisms have become a key topic in immunotherapy research. Programmed death receptor-1 ligand (PD-L1, CD274) is a well-known immunosuppressive molecule that can mediate the immune escape of tumor cells. The aim of this study was to evaluate the significance of PD-L1 in human cancer by integrated bioinformatics analysis. Tumor IMmune Estimation Resource (TIMER), GEPIA, Kaplan-Meier plotter, TISIDB and Tumor Immune Single Cell Hub (TISCH) were used to perform the corresponding analysis. The results showed that PD-L1 was dysregulated in various cancers and was associated with the overall survival of cancer patients, which was associated with macrophage infiltration levels. Moreover, PD-L1 expression showed a significant correlation with macrophages and was universally expressed on tumor-associated macrophages (TAMs). Notably, the expression of PD-L1 on TAMs was found to be correlated with immunotherapy response in certain cancers based on analysis of single-cell RNA sequencing data. In conclusion, PD-L1 plays a significant role in cancer, which may partly be influenced by TAMs.
Collapse
Affiliation(s)
- Yu Liu
- Sanya Hospital of Traditional Chinese Medicine, Hannan, China
- Department of Medical Oncology, Hangzhou Cancer Hospital, Hangzhou, China
| | - Qian Li
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Gangchi Cao
- Department of Clinical Medicine, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Huijuan Wei
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuansong Xue
- Sanya Hospital of Traditional Chinese Medicine, Hannan, China
| | - Jianhao Liu
- Sanya Hospital of Traditional Chinese Medicine, Hannan, China
| |
Collapse
|
126
|
Liu YT, Chen L, Li SJ, Wang WY, Wang YY, Yang QC, Song A, Zhang MJ, Mo WT, Li H, Hu CY, Sun ZJ. Dysregulated Wnt/β-catenin signaling confers resistance to cuproptosis in cancer cells. Cell Death Differ 2024; 31:1452-1466. [PMID: 38987382 PMCID: PMC11520902 DOI: 10.1038/s41418-024-01341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Cuproptosis is characterized by the aggregation of lipoylated enzymes of the tricarboxylic acid cycle and subsequent loss of iron-sulfur cluster proteins as a unique copper-dependent form of regulated cell death. As dysregulation of copper homeostasis can induce cuproptosis, there is emerging interest in exploiting cuproptosis for cancer therapy. However, the molecular drivers of cancer cell evasion of cuproptosis were previously undefined. Here, we found that cuproptosis activates the Wnt/β-catenin pathway. Mechanistically, copper binds PDK1 and promotes its interaction with AKT, resulting in activation of the Wnt/β-catenin pathway and cancer stem cell (CSC) properties. Notably, aberrant activation of Wnt/β-catenin signaling conferred resistance of CSCs to cuproptosis. Further studies showed the β-catenin/TCF4 transcriptional complex directly binds the ATP7B promoter, inducing its expression. ATP7B effluxes copper ions, reducing intracellular copper and inhibiting cuproptosis. Knockdown of TCF4 or pharmacological Wnt/β-catenin blockade increased the sensitivity of CSCs to elesclomol-Cu-induced cuproptosis. These findings reveal a link between copper homeostasis regulated by the Wnt/β-catenin pathway and cuproptosis sensitivity, and suggest a precision medicine strategy for cancer treatment through selective cuproptosis induction.
Collapse
Affiliation(s)
- Yuan-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shu-Jin Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wu-Yin Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan-Yuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - An Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Tao Mo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chuan-Yu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
127
|
Kravtsova E, Tsyganov M, Tsydenova I, Dolgasheva D, Gaptulbarova K, Litviakov N, Ibragimova M. Markers of Predicting Response to Neoadjuvant Chemotherapy in Breast Cancer: New in Molecular Oncology. Asian Pac J Cancer Prev 2024; 25:3761-3769. [PMID: 39611898 PMCID: PMC11996091 DOI: 10.31557/apjcp.2024.25.11.3761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
It is known that complete pathomorphological response (pCR) after neoadjuvant therapy (NAC) in patients with breast cancer (BC) correlates with higher rates of recurrence-free and overall survival. In turn, the widespread use of neoadjuvant therapy for the treatment of breast cancer defines the clinical need for prognostic markers of response to ongoing therapy. Currently, some clinicopathological prognostic factors are used to assess the potential benefit of neoadjuvant systemic therapy for female patients, but they have limited applicability. In the era of precision medicine and personalised treatment, a search for new prognostic markers is needed to better tailor patient-specific therapy. To date, novel factors have been proposed to predict response to preoperative treatment in breast cancer patients, but they are either not yet used in routine clinical practice or have limited application. Thus, this review summarises data on both established and proven biomarkers and the latest prognostic factors for response to neoadjuvant treatment in breast cancer patients.
Collapse
Affiliation(s)
- Ekaterina Kravtsova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.
- National Research Tomsk State University, Tomsk, Russian Federation.
| | - Matvey Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.
- Siberian State Medical University, Tomsk, Russian Federation.
| | - Irina Tsydenova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.
- National Research Tomsk State University, Tomsk, Russian Federation.
| | - Daria Dolgasheva
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.
- National Research Tomsk State University, Tomsk, Russian Federation.
| | - Ksenia Gaptulbarova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.
- National Research Tomsk State University, Tomsk, Russian Federation.
| | - Nikolai Litviakov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.
- National Research Tomsk State University, Tomsk, Russian Federation.
| | - Marina Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.
- National Research Tomsk State University, Tomsk, Russian Federation.
- Siberian State Medical University, Tomsk, Russian Federation.
| |
Collapse
|
128
|
Wu A, Yang H, Xiao T, Gu W, Li H, Chen P. COPZ1 regulates ferroptosis through NCOA4-mediated ferritinophagy in lung adenocarcinoma. Biochim Biophys Acta Gen Subj 2024; 1868:130706. [PMID: 39181476 DOI: 10.1016/j.bbagen.2024.130706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Ferroptosis, a type of autophagy-dependent cell death, has been implicated in the pathogenesis of lung adenocarcinoma (LUAD). This study aimed to investigate the involvement of coatomer protein complex I subunit zeta 1 (COPZ1) in ferroptosis and ferritinophagy in LUAD. METHODS Publicly available human LUAD sample data were obtained from the TCGA database to analyze the association of COPZ1 expression with LUAD grade and patient survival. Clinical samples of LUAD and para-carcinoma tissues were collected. COPZ1-deficient LUAD cell model and xenograft model were established. These models were analyzed to evaluate tumor growth, lipid peroxidation levels, mitochondrial structure, autophagy activation, and iron metabolism. RESULTS High expression of COPZ1 was indicative of malignancy and poor overall survival. Clinical LUAD tissues showed increased COPZ1 expression and decreased nuclear receptor coactivator 4 (NCOA4) expression. COPZ1 knockdown inhibited xenograft tumor growth and induced apoptosis. COPZ1 knockdown elevated the levels of ROS, Fe2+ and lipid peroxidation. COPZ1 knockdown also caused mitochondrial shrinkage. Liproxstatin-1, deferoxamine, and z-VAD-FMK reversed the effects of COPZ1 knockdown on LUAD cell proliferation and ferroptosis. Furthermore, COPZ1 was directly bound to NCOA4. COPZ1 knockdown restricted FTH1 expression and promoted NCOA4 and LC3 expression. NCOA4 knockdown reversed the regulation of iron metabolism, lipid peroxidation, and mitochondrial structure induced by COPZ1 knockdown. COPZ1 knockdown induced the translocation of ferritin to lysosomes for degradation, whereas NCOA4 knockdown disrupted this process. CONCLUSION This study provides novel evidence that COPZ1 regulates NCOA4-mediated ferritinophagy and ferroptosis. These findings provide new insights into the pathogenesis and potential treatment of LUAD.
Collapse
Affiliation(s)
- Anbang Wu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongmin Yang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Tengfei Xiao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wangnin Gu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - He Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; College of pharmacy, Changsha Medical University, Changsha 410219, China.
| | - Pan Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
129
|
Zou Y, Yang A, Chen B, Deng X, Xie J, Dai D, Zhang J, Tang H, Wu T, Zhou Z, Xie X, Wang J. crVDAC3 alleviates ferroptosis by impeding HSPB1 ubiquitination and confers trastuzumab deruxtecan resistance in HER2-low breast cancer. Drug Resist Updat 2024; 77:101126. [PMID: 39243601 DOI: 10.1016/j.drup.2024.101126] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/09/2024]
Abstract
AIMS With the wide application of trastuzumab deruxtecan (T-DXd), the survival of HER2-low breast cancer patients is dramatically improved. However, resistance to T-DXd still exists in a subset of patients, and the molecular mechanism remains unclear. METHODS An in vivo shRNA lentiviral library functional screening was performed to identify potential circular RNA (crRNA) that mediates T-DXd resistance. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and co-immunoprecipitation assays were conducted to investigate the molecular mechanism. Ferroptosis was detected using C11-BODIPY, Liperfluo, FerroOrange staining, glutathione quantification, malondialdehyde quantification, and transmission electron microscopy. Molecular docking, virtual screening, and patient-derived xenograft (PDX) models were used to validate therapeutic agents. RESULTS VDAC3-derived crRNA (crVDAC3) ranked first in functional shRNA library screening. Knockdown of crVDAC3 increased the sensitivity of HER2-low breast cancer cells to T-DXd treatment. Further mechanistic research revealed that crVDAC3 specifically binds to HSPB1 protein and inhibits its ubiquitination degradation, leading to intracellular accumulation and increased levels of HSPB1 protein. Notably, suppression of crVDAC3 dramatically increases excessive ROS levels and labile iron pool accumulation. Inhibition of crVDAC3 induces ferroptosis in breast cancer cells by reducing HSPB1 expression, thereby mediating T-DXd resistance. Through virtual screening and experimental validation, we identified that paritaprevir could effectively bind to crVDAC3 and prevent its interaction with HSPB1 protein, thereby increasing ubiquitination degradation of HSPB1 protein to overcome T-DXd resistance. Finally, we validated the enhanced therapeutic efficacy of T-DXd by paritaprevir in a HER2-low PDX model. CONCLUSION This finding reveals the molecular mechanisms underlying T-DXd resistance in HER2-low breast cancer. Our study provides a new strategy to overcome T-DXd resistance by inhibiting the interaction between crVDAC3 and HSPB1 protein.
Collapse
Affiliation(s)
- Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Anli Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Bo Chen
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Danian Dai
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tao Wu
- Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde, China.
| | - Zhigang Zhou
- Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde, China.
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Jin Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
130
|
Youssef A, Sahgal A, Das S. Radioresistance and brain metastases: a review of the literature and applied perspective. Front Oncol 2024; 14:1477448. [PMID: 39540151 PMCID: PMC11557554 DOI: 10.3389/fonc.2024.1477448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Intracranial metastatic disease is a serious complication of cancer, treated through surgery, radiation, and targeted therapies. The central role of radiation therapy makes understanding the radioresistance of metastases a priori a key interest for prognostication and therapeutic development. Although historically defined clinic-radiographically according to tumour response, developments in new techniques for delivering radiation treatment and understanding of radioprotective mechanisms led to a need to revisit the definition of radioresistance in the modern era. Factors influencing radioresistance include tumour-related factors (hypoxia, cancer stem cells, tumour kinetics, tumour microenvironment, metabolic alterations, tumour heterogeneity DNA damage repair, non-coding RNA, exosomes, methylomes, and autophagy), host-related factors (volume effect & dose-limiting non-cancerous tissue, pathophysiology, and exosomes), technical factors, and probabilistic factors (cell cycle and random gravity of DNA damage). Influences on radioresistance are introduced and discussed in the context of brain metastases.
Collapse
Affiliation(s)
- Andrew Youssef
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, Toronto, ON, Canada
| | - Sunit Das
- Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
131
|
Chen X, Su W, Chen J, Ouyang P, Gong J. ST3GAL4 promotes tumorigenesis in breast cancer by enhancing aerobic glycolysis. Hum Cell 2024; 38:1. [PMID: 39422756 DOI: 10.1007/s13577-024-01137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Sialyltransferases are enzymes that play a crucial role in regulating cancer progression by modifying glycoproteins through sialylation. In particular, the ST3 beta-galactoside alpha-2,3-sialyltransferase 4 (ST3GAL4) enzyme is known to be upregulated in breast cancer, but its specific biological functions have not been fully understood. This study aimed to investigate the impact and mechanisms of ST3GAL4 on aerobic glycolysis in breast cancer. We examined ST3GAL4 expression in tumor tissue samples and breast cancer cell lines and also manipulated ST3GAL4 expression in breast cancer cells using lentivirus transduction. The study evaluated cellular processes such as cell viability, cell cycle progression, and aerobic glycolysis by measuring parameters like extracellular acidification rate, glucose uptake, lactate production, and lactate dehydrogenase A (LDHA) expression. We found that ST3GAL4 expression was consistently increased in tumor tissues and breast cancer cell lines. High ST3GAL4 expression was associated with a poor prognosis for patients with breast cancer. Inhibiting ST3GAL4 expression decreased cell viability, disrupted cell cycle progression, and reduced aerobic glycolysis and LDHA expression. Furthermore, suppressing ST3GAL4 expression in animal models reduced tumor growth and cell proliferation. Conversely, overexpressing ST3GAL4 promoted cell viability and cell cycle progression, but these effects were reversed when an inhibitor of aerobic glycolysis was used. The study provided evidence in cells and animal models that ST3GAL4 promotes tumorigenesis in breast cancer by enhancing aerobic glycolysis. These findings suggest that targeting ST3GAL4 may be a potential strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, 613 West of Huangpu Avenue, Guangzhou, 510630, China
- Department of Breast Medicine, Foshan Women and Children Hospital, Foshan, 528000, China
| | - Weijie Su
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Jiewen Chen
- Department of Breast Medicine, Foshan Women and Children Hospital, Foshan, 528000, China
| | - Peng Ouyang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, 613 West of Huangpu Avenue, Guangzhou, 510630, China
| | - Jin Gong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, 613 West of Huangpu Avenue, Guangzhou, 510630, China.
| |
Collapse
|
132
|
Tao X, Kang N, Zheng Z, Zhu Z, Ma J, He W. The regulatory mechanisms of N6-methyladenosine modification in ferroptosis and its implications in disease pathogenesis. Life Sci 2024; 355:123011. [PMID: 39181316 DOI: 10.1016/j.lfs.2024.123011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
HEADING AIMS Based on the current knowledge of the molecular mechanisms by which m6A influences ferroptosis, our objective is to underscore the intricate and interdependent relationships between m6A and the principal regulatory pathways of ferroptosis, as well as other molecules, emphasizing its relevance to diseases associated with this cell death mode. MATERIALS AND METHODS We conducted a literature search using the keywords "m6A and ferroptosis" across PubMed, Web of Science, and Medline. The search was limited to English-language publications from 2017 to 2024. Retrieved articles were managed using Endnote software. Two authors independently screened the search results and reviewed the full texts of selected articles. KEY FINDINGS Abnormal m6A levels are often identified as critical regulators of ferroptosis. Specifically, "writers", "readers" and "erasers" that dynamically modulate m6A function regulate various pathways in ferroptosis including iron metabolism, lipid metabolism and antioxidant system. Additionally, we provide an overview of the role of m6A-mediated ferroptosis in multiple diseases and summarize the potential applications of m6A-mediated ferroptosis, including its use as a therapeutic target for diseases and as diagnostic as well as prognostic biomarkers. SIGNIFICANCE N6-methyladenosine (m6A) modification, a prevalent RNA modification in eukaryotic cells, is crucial in regulating various aspects of RNA metabolism. Notably, accumulating evidence has implicated m6A modification in ferroptosis, a form of iron-dependent cell death characterized by elevated iron levels and lipid peroxide accumulation. Overall, this review sheds light on the potential diagnostic and therapeutic applications of m6A regulators in addressing conditions associated with ferroptosis.
Collapse
Affiliation(s)
- Xiao Tao
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Ningning Kang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, PR China
| | - Zongqin Zheng
- Department of Anesthesiology, The Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Ziyi Zhu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Junting Ma
- Department of Immunology and Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China.
| | - Wei He
- Department of Immunology and Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China.
| |
Collapse
|
133
|
Shen W, Liang Y, Lv D, Xie N. Novel insights into the heterogeneity of FOXP3 + Treg cells in drug-induced allergic reactions through single-cell transcriptomics. Immunol Res 2024; 72:1071-1085. [PMID: 39073709 DOI: 10.1007/s12026-024-09509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/16/2024] [Indexed: 07/30/2024]
Abstract
This study uncovers the novel heterogeneity of FOXP3 + regulatory T (Treg) cells and their pivotal role in modulating immune responses during drug-induced allergic reactions, employing cutting-edge single-cell transcriptomics. We established a mouse model for drug-induced allergic reactions and utilized single-cell RNA sequencing (scRNA-seq) to analyze the transcriptomic landscapes of FOXP3 + Treg cells isolated from affected tissues. The study involved both in vitro and in vivo approaches to evaluate the impact of FOXP3 expression levels on the immunoregulatory functions of Treg cells during allergic responses. Techniques included flow cytometry, cluster analysis, principal component analysis (PCA), CCK8 and CSFE assays for cell proliferation, LDH release assays for toxicity, ELISA for cytokine profiling, and CRISPR/Cas9 technology for gene editing. Our findings revealed significant transcriptomic heterogeneity among FOXP3 + Treg cells in the context of drug-induced allergic reactions, with distinct subpopulations exhibiting unique gene expression profiles. This heterogeneity suggests specialized roles in immune regulation. We observed a decrease in the proliferative capacity and cytokine secretion of FOXP3 + Treg cells following allergic stimulation, alongside an increase in reaction toxicity. Manipulating FOXP3 expression levels directly influenced these outcomes, where FOXP3 deletion exacerbated allergic responses, whereas its overexpression mitigated them. Notably, in vivo experiments demonstrated that FOXP3 overexpression significantly reduced the severity of allergic skin reactions in mice. Our study presents novel insights into the heterogeneity and crucial immunoregulatory role of FOXP3 + Treg cells during drug-induced allergic reactions. Overexpression of FOXP3 emerges as a potential therapeutic strategy to alleviate such allergic responses. These findings contribute significantly to our understanding of immune regulation and the development of targeted treatments for drug-induced allergies.
Collapse
Affiliation(s)
- Wei Shen
- Gansu Institute for Drug Control, No.7 Yin'an Road, Anning District, Lanzhou, 730000, Gansu Province, China
| | - Yibo Liang
- Gansu Institute for Drug Control, No.7 Yin'an Road, Anning District, Lanzhou, 730000, Gansu Province, China
| | - Dong Lv
- Gansu Institute for Drug Control, No.7 Yin'an Road, Anning District, Lanzhou, 730000, Gansu Province, China
| | - Nan Xie
- Gansu Institute for Drug Control, No.7 Yin'an Road, Anning District, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
134
|
Zhang W, Xiao Y, Zhou Q, Zhu X, Zhang Y, Xiang Q, Wu S, Song X, Zhao J, Yuan R, Xiao B, Li L. KNSTRN Is a Prognostic Biomarker That Is Correlated with Immune Infiltration in Breast Cancer and Promotes Cell Cycle and Proliferation. Biochem Genet 2024; 62:3709-3739. [PMID: 38198023 PMCID: PMC11427568 DOI: 10.1007/s10528-023-10615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Kinetochore-localized astrin/SPAG5-binding protein (KNSTRN) promotes the progression of bladder cancer and lung adenocarcinoma. However, its expression and biological function in breast cancer remain largely unknown. Therefore, this study aimed to analyze KNSTRN expression, prognoses, correlation with immune infiltration, expression-associated genes, and regulated signaling pathways to characterize its role in regulating the cell cycle using both bioinformatics and in vitro functional experiments. Analyses of The Cancer Genome Atlas, Gene Expression Omnibus, TIMER, and The Human Protein Atlas databases revealed a significant upregulation of KNSTRN transcript and protein levels in breast cancer. Kaplan-Meier survival analyses demonstrated a significant association between high expression of KNSTRN and poor overall survival, relapse-free survival, post-progression survival, and distant metastases-free survival in patients with breast cancer. Furthermore, multivariate Cox regression analyses confirmed that KNSTRN is an independent prognostic factor for breast cancer. Immune infiltration analysis indicated a positive correlation between KNSTRN expression and T regulatory cell infiltration while showing a negative correlation with Tgd and natural killer cell infiltration. Gene set enrichment analysis along with single-cell transcriptome data analysis suggested that KNSTRN promoted cell cycle progression by regulating the expression of key cell cycle proteins. The overexpression and silencing of KNSTRN in vitro, respectively, promoted and inhibited the proliferation of breast cancer cells. The overexpression of KNSTRN enhanced the expression of key cell cycle regulators, including CDK4, CDK6, and cyclin D3, thereby accelerating the G1/S phase transition and leading to aberrant proliferation of breast cancer cells. In conclusion, our study demonstrates that KNSTRN functions as an oncogene in breast cancer by regulating immune response, promoting G1/S transition, and facilitating breast cancer cell proliferation. Moreover, KNSTRN has potential as a molecular biomarker for diagnostic and prognostic prediction in breast cancer.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, China
| | - Yuhan Xiao
- School of Public Health, Dali University, Dali, 671000, China
| | - Quan Zhou
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, 510010, China
| | - Xin Zhu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yanxia Zhang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Xiaoyu Song
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Junxiu Zhao
- School of Public Health, Dali University, Dali, 671000, China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, China.
| |
Collapse
|
135
|
Wang R, Lu J, Chow KM. Effectiveness of mind-body interventions in labour pain management during normal delivery: A systematic review and meta-analysis. Int J Nurs Stud 2024; 158:104858. [PMID: 39043113 DOI: 10.1016/j.ijnurstu.2024.104858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 07/04/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Labour pain is a common experience among women and poses risks to both the mother and neonate. Mind-body interventions have demonstrated effectiveness in diverse contexts, but their effectiveness in labour pain management remains controversial. OBJECTIVE To identify the effects of each category of mind-body interventions on labour pain management, particularly pain intensity; the use of pharmacological pain relief medications; and the consequent outcomes, including the rate of caesarean section, duration of labour, and fear of childbirth. DESIGN Systematic review and meta-analysis. METHODS A systematic search for related articles was conducted in 10 databases. Randomised controlled trials focusing on the effectiveness of mind-body interventions in labour pain management were included. Two researchers independently conducted methodological quality assessments, data extraction and grading the evidence. Meta-analyses were conducted when studies measured the same outcomes. Standardised mean differences were calculated for continuous variables, whilst risk ratios were calculated for dichotomous variables. All analyses were performed using RevMan version 5.3. RESULTS A total of 25 studies from 24 trials were included, and six categories of mind-body interventions, namely hypnosis, mindfulness, breathing skills, muscle relaxation techniques, guided imagery, and therapeutic touch, were identified. Specifically, hypnosis and mindfulness might be effective in relieving labour pain intensity, with large effect sizes (SMD: -1.45, 95 % confidence interval [CI] -2.34, -0.55, I2 = 91 %; SMD: -1.22, 95 % CI -2.07, -0.37, I2 = 93 %, respectively), but could not reduce the use of epidural analgesia. Mindfulness, in particular, yielded statistically significant reductions in the rate of caesarean section, with a small effect size (RR: 0.46, 95 % CI 0.21, 0.97, I2 = 49 %), and in fear of childbirth, with a medium effect size (SMD: -0.63, 95 % CI -1.09, -0.17, I2 = 65 %). Additionally, all categories of mind-body interventions were associated with a significantly decreased duration of labour compared with the control conditions. CONCLUSIONS Mind-body interventions may have potential benefits in terms of decreasing labour pain intensity, the rate of caesarean section, the duration of labour, and fear of childbirth, with small-to-large effect sizes. Particularly, hypnosis and mindfulness exhibited significant positive effects in terms of relieving labour pain intensity, with large effect sizes. These interventions could serve as complementary or alternative methods for labour pain management in clinical practice. Nevertheless, further rigorous randomised controlled trials are warranted to confirm our results. REGISTRATION CRD42024498600 (PROSPERO, January 15, 2024).
Collapse
Affiliation(s)
- Ruohan Wang
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jinling Lu
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ka Ming Chow
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
136
|
Zhong S, Wang Z, Yang J, Jiang D, Wang K. Ferroptosis-related oxaliplatin resistance in multiple cancers: Potential roles and therapeutic Implications. Heliyon 2024; 10:e37613. [PMID: 39309838 PMCID: PMC11414570 DOI: 10.1016/j.heliyon.2024.e37613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Oxaliplatin (OXA)-based therapy is effective in the treatment of multiple cancers. However, primary or acquired OXA resistance remains an emerging challenge for its clinical application. Ferroptosis is an iron-dependent mode of cell death that has been demonstrated to play an essential role in the chemoresistance of many drugs, including OXA. In particular, dysregulation of SLC7A11-GPX4, one of the major antioxidant systems of ferroptosis, was found in the OXA resistance of colorectal cancer (CRC) and hepatocellular carcinoma (HCC). In addition, Nrf2, the upstream regulator of GPX4 and many other antioxidant factors, is also involved in the OXA resistance of CRC and HCC. Inhibition of SLC7A11-GPX4 or Nrf2 by genetic deletion of pharmaceutical inhibition could significantly reverse OXA resistance. Long noncoding RNA (lncRNA) also participates in chemoresistance and ferroptosis of cancer cells. Specifically, LINC01134 promotes the recruitment of Nrf2 to the promoter of GPX4, thereby exerting transcriptional regulation of GPX4, which eventually increases the OXA sensitivity of HCC through upregulation of ferroptosis. On the other hand, a novel lncRNA DACT3-AS1 sensitizes gastric cancer cells to OXA through miR-181a-5p/sirtuin 1(SIRT1)-mediated ferroptosis. Therapies based on ferroptosis or a combination of OXA and ferroptosis enhancers could provide new therapeutic insights to overcome OXA resistance. In the present review, we present the current understanding of ferroptosis-related OXA resistance, highlight ferroptosis pathogenesis in OXA chemoresistance, and summarize available therapies that target OXA resistance by enhancing ferroptosis.
Collapse
Affiliation(s)
- Sijia Zhong
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Zihan Wang
- Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, 110122, China
| | - Jiaxi Yang
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Di Jiang
- China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Kewei Wang
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| |
Collapse
|
137
|
Shi JX, Zhang ZC, Yin HZ, Piao XJ, Liu CH, Liu QJ, Zhang JC, Zhou WX, Liu FC, Yang F, Wang YF, Liu H. RNA m6A modification in ferroptosis: implications for advancing tumor immunotherapy. Mol Cancer 2024; 23:213. [PMID: 39342168 PMCID: PMC11437708 DOI: 10.1186/s12943-024-02132-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
The pursuit of innovative therapeutic strategies in oncology remains imperative, given the persistent global impact of cancer as a leading cause of mortality. Immunotherapy is regarded as one of the most promising techniques for systemic cancer therapies among the several therapeutic options available. Nevertheless, limited immune response rates and immune resistance urge us on an augmentation for therapeutic efficacy rather than sticking to conventional approaches. Ferroptosis, a novel reprogrammed cell death, is tightly correlated with the tumor immune environment and interferes with cancer progression. Highly mutant or metastasis-prone tumor cells are more susceptible to iron-dependent nonapoptotic cell death. Consequently, ferroptosis-induction therapies hold the promise of overcoming resistance to conventional treatments. The most prevalent post-transcriptional modification, RNA m6A modification, regulates the metabolic processes of targeted RNAs and is involved in numerous physiological and pathological processes. Aberrant m6A modification influences cell susceptibility to ferroptosis, as well as the expression of immune checkpoints. Clarifying the regulation of m6A modification on ferroptosis and its significance in tumor cell response will provide a distinct method for finding potential targets to enhance the effectiveness of immunotherapy. In this review, we comprehensively summarized regulatory characteristics of RNA m6A modification on ferroptosis and discussed the role of RNA m6A-mediated ferroptosis on immunotherapy, aiming to enhance the effectiveness of ferroptosis-sensitive immunotherapy as a treatment for immune-resistant malignancies.
Collapse
Affiliation(s)
- Jun-Xiao Shi
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Zhi-Chao Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Hao-Zan Yin
- The Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Xian-Jie Piao
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Cheng-Hu Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Qian-Jia Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Jia-Cheng Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Wen-Xuan Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Fu-Chen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Fu Yang
- The Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
- Key Laboratory of Biosafety Defense, Ministry of Education, Shanghai, 200433, China.
- Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China.
| | - Yue-Fan Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China.
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
138
|
Jiang J, Xu C, Han D, Lu Y, Yang F, Wang J, Yan X, Mu X, Zhang J, Jia C, Xu X, Liu K, Liu Z, Gong L, Wan Y, Lu Q. Functional heterogeneity of cancer-associated fibroblasts with distinct neoadjuvant immunotherapy plus chemotherapy response in esophageal squamous cell carcinoma. Biomark Res 2024; 12:113. [PMID: 39334513 PMCID: PMC11437904 DOI: 10.1186/s40364-024-00656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Novel neoadjuvant immunotherapy combined with chemotherapy (neoICT) has improved outcomes for patients with esophageal squamous-cell carcinoma (ESCC), but challenges persist in low response rates and therapy resistance. Little is known about the intra-tumoral heterogeneity in the ESCC tumor microenvironment (TME) that underlies differential responses to neoadjuvant therapy. We applied single-cell RNA sequencing (scRNA-seq) profiling and multiplexed immunofluorescence staining to thoroughly decipher the TME in ESCC specimens from a neoadjuvant anti-PD1 combination therapy clinical trial. The cancer-associated fibroblasts (CAFs) population showed the significant alteration in abundance following neoadjuvant therapy. Specifically, IL6 + CCL2 + immunomodulatory CAFs and a novel CD248 + mechanoresponsive CAFs subset exhibited increasing infiltration. Mechanistically, CD248 + mechanoresponsive CAFs approached and lined the tumor nest to physically block the infiltration of CD8 + T cells and drug delivery, while IL6 + CCL2 + immunomodulatory CAFs induced therapeutic resistance with distinct IL-6 expression. Among patients treated with neoICT, we observed prominent CAF-T cell interactions. In particular, the NECTIN2-TIGIT ligand-receptor pair was enriched in treated samples, and TIGIT was identified as the major inhibitory checkpoint of T cells. Our findings demonstrate distinct alterations in TME constituent responses to neoadjuvant immunotherapy and identify functional phenotypes of CAFs associated with unfavorable therapeutic responses in patients. This provides potential targets to enhance responses to neoadjuvant therapy in ESCC.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Health Service, Base of Health Service, Air Force Medical University, Xi'an, China
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Chao Xu
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yuan Lu
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jiawei Wang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, and National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, NO. 569 Xinsi Road, Xi'an, 710038, China
| | - Xiaorong Mu
- Department of Pathology, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, NO. 569 Xinsi Road, Xi'an, 710038, China
| | - Jipeng Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, NO. 569 Xinsi Road, Xi'an, 710038, China
| | - Chenghui Jia
- Department of Thoracic Surgery, The First Affiliated Hospital, Xi'an Medical College, Xian, China
| | - Xinyao Xu
- College of Life Sciences, Northwest University, Xian, China
| | - Kui Liu
- Department of Health Service, Base of Health Service, Air Force Medical University, Xi'an, China
| | - Zhenhua Liu
- Department of Health Service, Base of Health Service, Air Force Medical University, Xi'an, China
| | - Li Gong
- Department of Pathology, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, NO. 569 Xinsi Road, Xi'an, 710038, China.
| | - Yi Wan
- Department of Health Service, Base of Health Service, Air Force Medical University, Xi'an, China.
| | - Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, NO. 569 Xinsi Road, Xi'an, 710038, China.
| |
Collapse
|
139
|
He C, Li Q, Wu W, Liu K, Li X, Zheng H, Lai Y. Ferroptosis-associated genes and compounds in renal cell carcinoma. Front Immunol 2024; 15:1473203. [PMID: 39399506 PMCID: PMC11466770 DOI: 10.3389/fimmu.2024.1473203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
As the main type of renal cell carcinoma (RCC), clear cell RCC (ccRCC) is often associated with the deletion or mutation of the von Hippel Lindau (VHL) gene, enhancement of glucose and lipid metabolism, and heterogeneity of the tumor microenvironment. VHL alterations in RCC cells lead to the activation of hypoxia-inducible factors and their downstream target vascular endothelial growth factor, and to the reprogramming of multiple cell death pathways and metabolic weakness, including ferroptosis, which are associated with targeted therapy or immunotherapy. The changes in biological metabolites (e.g., iron and lipids) support ferroptosis as a potential therapeutic strategy for RCC, while iron metabolism and ferroptosis regulation have been examined as anti-RCC agents in numerous studies, and various ferroptosis-related molecules have been shown to be related to the metastasis and prognosis of ccRCC. For example, glutathione peroxidase 4 and glutaminase inhibitors can inhibit pyrimidine synthesis and increase reactive oxygen species levels in VHL-deficient RCC cells. In addition, the release of damage-associated molecular patterns by tumor cells undergoing ferroptosis also mediates antitumor immunity, and immune therapy can synergize with targeted therapy or radiotherapy through ferroptosis. However, Inducing ferroptosis not only suppresses cancer, but also promotes cancer development due to its potential negative effects on anti-cancer immunity. Therefore, ferroptosis and various tumor microenviroment-related molecules may co-occur during the development and treatment of RCC, and further understanding of the interactions, core targets, and related drugs of ferroptosis may provide new combination drug strategies for RCC treatment. Here we summarize the key genes and compounds on ferroptosis and RCC in order to envision future treatment strategies and to provide sufficient information for overcoming RCC resistance through ferroptosis.
Collapse
Affiliation(s)
- Chengwu He
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qingyi Li
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Weijia Wu
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ke Liu
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xingwen Li
- Tibet Future Biomedicine Company Limited, Golmud, Qinghai, China
| | - Hanxiong Zheng
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yongchang Lai
- Department of Pharmaceutical Management, School of Medical Business, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
140
|
Zou Y, Bao X, Li D, Ye Z, Xiang R, Yang Y, Zhu Z, Chen Z, Zeng L, Xue C, Zhao H, Yao B, Zhang Q, Yan Z, Deng Z, Cheng J, Yue G, Hu W, Zhao J, Bai R, Zhang Z, Liu A, Zhang J, Zuo Z, Jiang X. FTO-mediated DSP m 6A demethylation promotes an aggressive subtype of growth hormone-secreting pituitary neuroendocrine tumors. Mol Cancer 2024; 23:205. [PMID: 39304899 DOI: 10.1186/s12943-024-02117-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Growth hormone-secreting pituitary neuroendocrine tumors can be pathologically classified into densely granulated (DGGH) and sparsely granulated types (SGGH). SGGH is more aggressive and associated with a poorer prognosis. While epigenetic regulation is vital in tumorigenesis and progression, the role of N6-methyladenosine (m6A) in aggressive behavior has yet to be elucidated. METHODS We performed m6A-sequencing on tumor samples from 8 DGGH and 8 SGGH patients, complemented by a suite of assays including ELISA, immuno-histochemistry, -blotting and -fluorescence, qPCR, MeRIP, RIP, and RNA stability experiments, aiming to delineate the influence of m6A on tumor behavior. We further assessed the therapeutic potential of targeted drugs using cell cultures, organoid models, and animal studies. RESULTS We discovered a significant reduction of m6A levels in SGGH compared to DGGH, with an elevated expression of fat mass and obesity-associated protein (FTO), an m6A demethylase, in SGGH subtype. Series of in vivo and in vitro experiments demonstrated that FTO inhibition in tumor cells robustly diminishes hypoxia resistance, attenuates growth hormone secretion, and augments responsiveness to octreotide. Mechanically, FTO-mediated m6A demethylation destabilizes desmoplakin (DSP) mRNA, mediated by the m6A reader FMR1, leading to prohibited desmosome integrity and enhanced tumor hypoxia tolerance. Targeting the FTO-DSP-SSTR2 axis curtailed growth hormone secretion, therefor sensitizing tumors to octreotide therapy. CONCLUSION Our study reveals the critical role of FTO in the aggressive growth hormone-secreting pituitary neuroendocrine tumors subtype and suggests FTO may represent a new therapeutic target for refractory/persistent SGGH.
Collapse
Affiliation(s)
- Yunzhi Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xiaoqiong Bao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Depei Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhen Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Rong Xiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yuanzhong Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhe Zhu
- Department of Pathology and Cell Biology, New York-Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY, USA
| | - Ziming Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Lingxing Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chunling Xue
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hongzhe Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Boyuan Yao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Qilin Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zeming Yan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zekun Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Jintong Cheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Guanghao Yue
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Wanming Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Jixiang Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ruihong Bai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhenhua Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Aiqun Liu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| | - Jialiang Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Xiaobing Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
141
|
Xiong X, Wang X, Liu CC, Shao ZM, Yu KD. Deciphering breast cancer dynamics: insights from single-cell and spatial profiling in the multi-omics era. Biomark Res 2024; 12:107. [PMID: 39294728 PMCID: PMC11411917 DOI: 10.1186/s40364-024-00654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
As one of the most common tumors in women, the pathogenesis and tumor heterogeneity of breast cancer have long been the focal point of research, with the emergence of tumor metastasis and drug resistance posing persistent clinical challenges. The emergence of single-cell sequencing (SCS) technology has introduced novel approaches for gaining comprehensive insights into the biological behavior of malignant tumors. SCS is a high-throughput technology that has rapidly developed in the past decade, providing high-throughput molecular insights at the individual cell level. Furthermore, the advent of multitemporal point sampling and spatial omics also greatly enhances our understanding of cellular dynamics at both temporal and spatial levels. The paper provides a comprehensive overview of the historical development of SCS, and highlights the most recent advancements in utilizing SCS and spatial omics for breast cancer research. The findings from these studies will serve as valuable references for future advancements in basic research, clinical diagnosis, and treatment of breast cancer.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cui-Cui Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
142
|
Hawsawi YM, Khoja B, Aljaylani AO, Jaha R, AlDerbi RM, Alnuman H, Khan MI. Recent progress and applications of single-cell sequencing technology in breast cancer. Front Genet 2024; 15:1417415. [PMID: 39359479 PMCID: PMC11445024 DOI: 10.3389/fgene.2024.1417415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technology enables the precise analysis of individual cell transcripts with high sensitivity and throughput. When integrated with multiomics technologies, scRNA-seq significantly enhances the understanding of cellular diversity, particularly within the tumor microenvironment. Similarly, single-cell DNA sequencing has emerged as a powerful tool in cancer research, offering unparalleled insights into the genetic heterogeneity and evolution of tumors. In the context of breast cancer, this technology holds substantial promise for decoding the intricate genomic landscape that drives disease progression, treatment resistance, and metastasis. By unraveling the complexities of tumor biology at a granular level, single-cell DNA sequencing provides a pathway to advancing our comprehension of breast cancer and improving patient outcomes through personalized therapeutic interventions. As single-cell sequencing technology continues to evolve and integrate into clinical practice, its application is poised to revolutionize the diagnosis, prognosis, and treatment strategies for breast cancer. This review explores the potential of single-cell sequencing technology to deepen our understanding of breast cancer, highlighting key approaches, recent advancements, and the role of the tumor microenvironment in disease plasticity. Additionally, the review discusses the impact of single-cell sequencing in paving the way for the development of personalized therapies.
Collapse
Affiliation(s)
- Yousef M Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Basmah Khoja
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | | | - Raniah Jaha
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Rasha Mohammed AlDerbi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Huda Alnuman
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mohammed I Khan
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
143
|
Qian J, Zhao L, Xu L, Zhao J, Tang Y, Yu M, Lin J, Ding L, Cui Q. Cell Death: Mechanisms and Potential Targets in Breast Cancer Therapy. Int J Mol Sci 2024; 25:9703. [PMID: 39273650 PMCID: PMC11395276 DOI: 10.3390/ijms25179703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer (BC) has become the most life-threatening cancer to women worldwide, with multiple subtypes, poor prognosis, and rising mortality. The molecular heterogeneity of BC limits the efficacy and represents challenges for existing therapies, mainly due to the unpredictable clinical response, the reason for which probably lies in the interactions and alterations of diverse cell death pathways. However, most studies and drugs have focused on a single type of cell death, while the therapeutic opportunities related to other cell death pathways are often neglected. Therefore, it is critical to identify the predominant type of cell death, the transition to different cell death patterns during treatment, and the underlying regulatory mechanisms in BC. In this review, we summarize the characteristics of various forms of cell death, including PANoptosis (pyroptosis, apoptosis, necroptosis), autophagy, ferroptosis, and cuproptosis, and discuss their triggers and signaling cascades in BC, which may provide a reference for future pathogenesis research and allow for the development of novel targeted therapeutics in BC.
Collapse
Affiliation(s)
- Jiangying Qian
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Linna Zhao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ling Xu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jin Zhao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yongxu Tang
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
144
|
Liu Y, Yang H, Li T, Zhang N. Immunotherapy in liver cancer: overcoming the tolerogenic liver microenvironment. Front Immunol 2024; 15:1460282. [PMID: 39295859 PMCID: PMC11409253 DOI: 10.3389/fimmu.2024.1460282] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Liver cancer is a major global health concern, ranking among the top causes of cancer-related deaths worldwide. Despite advances in medical research, the prognosis for liver cancer remains poor, largely due to the inherent limitations of current therapies. Traditional treatments like surgery, radiation, and chemotherapy often fail to provide long-term remission and are associated with significant side effects. Immunotherapy has emerged as a promising avenue for cancer treatment, leveraging the body's immune system to target and destroy cancer cells. However, its application in liver cancer has been limited. One of the primary challenges is the liver's unique immune microenvironment, which can inhibit the effectiveness of immunotherapeutic agents. This immune microenvironment creates a barrier, leading to drug resistance and reducing the overall efficacy of treatment. Recent studies have focused on understanding the immunological landscape of liver cancer to develop strategies that can overcome these obstacles. By identifying the specific factors within the liver that contribute to immune suppression and drug resistance, researchers aim to enhance the effectiveness of immunotherapy. Prospective strategies include combining immunotherapy with other treatments, using targeted therapies to modulate the immune microenvironment, and developing new agents that can bypass or counteract the inhibitory mechanisms in the liver. These advancements hold promise for improving outcomes in liver cancer treatment.
Collapse
Affiliation(s)
- Yanju Liu
- Department of Infectious Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Hongyuan Yang
- Department of Infectious Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Na Zhang
- Department of Infectious Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
145
|
Wang L, Lin Y, Yao Z, Babu N, Lin W, Chen C, Du L, Cai S, Pan Y, Xiong X, Ye Q, Ren H, Zhang D, Chen Y, Yeung SCJ, Bremer E, Zhang H. Targeting undruggable phosphatase overcomes trastuzumab resistance by inhibiting multi-oncogenic kinases. Drug Resist Updat 2024; 76:101118. [PMID: 39094301 DOI: 10.1016/j.drup.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
AIMS Resistance to targeted therapy is one of the critical obstacles in cancer management. Resistance to trastuzumab frequently develops in the treatment for HER2+ cancers. The role of protein tyrosine phosphatases (PTPs) in trastuzumab resistance is not well understood. In this study, we aim to identify pivotal PTPs affecting trastuzumab resistance and devise a novel counteracting strategy. METHODS Four public datasets were used to screen PTP candidates in relation to trastuzumab responsiveness in HER2+ breast cancer. Tyrosine kinase (TK) arrays were used to identify kinases that linked to protein tyrosine phosphate receptor type O (PTPRO)-enhanced trastuzumab sensitivity. The efficacy of small activating RNA (saRNA) in trastuzumab-conjugated silica nanoparticles was tested for PTPRO upregulation and resistance mitigation in cell models, a transgenic mouse model, and human cancer cell line-derived xenograft models. RESULTS PTPRO was identified as the key PTP which influences trastuzumab responsiveness and patient survival. PTPRO de-phosphorated several TKs, including the previously overlooked substrate ERBB3, thereby inhibiting multiple oncogenic pathways associated with drug resistance. Notably, PTPRO, previously deemed "undruggable," was effectively upregulated by saRNA-loaded nanoparticles. The upregulated PTPRO simultaneously inhibited ERBB3, ERBB2, and downstream SRC signaling pathways, thereby counteracting trastuzumab resistance. CONCLUSIONS Antibody-conjugated saRNA represents an innovative approach for targeting "undruggable" PTPs.
Collapse
Affiliation(s)
- Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China; Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Hematology, University of Groningen, University Medical Center Groningen, the Netherlands; Shantou University Medical College, Shantou, China
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China; Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Nipun Babu
- Shantou University Medical College, Shantou, China
| | - Wan Lin
- Shantou University Medical College, Shantou, China
| | | | - Liang Du
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Songwang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao Xiong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Qiantao Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Hongzheng Ren
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China; Department of Pathology, Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Dianzheng Zhang
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Yexi Chen
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin Bremer
- Department of Hematology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Hao Zhang
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
146
|
Ganesan K, Xu C, Wu J, Du B, Liu Q, Sui Y, Song C, Zhang J, Tang H, Chen J. Ononin inhibits triple-negative breast cancer lung metastasis by targeting the EGFR-mediated PI3K/Akt/mTOR pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1849-1866. [PMID: 38900236 DOI: 10.1007/s11427-023-2499-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 06/21/2024]
Abstract
The spreading of cancer cells from the primary tumor site to other parts of the body, known as metastasis, is the leading cause of cancer recurrence and mortality in patients with triple-negative breast cancer (TNBC). Overexpression of epidermal growth factor receptor (EGFR) is observed in approximately 70% of TNBC patients. EGFR is crucial for promoting tumor metastasis and associated with poor prognosis. Therefore, it is vital to identify effective therapeutic strategies targeting EGFR inhibition. Ononin, an isoflavonoid found in various plants, such as clover and soybeans, has been shown to have anticancer properties in several cancers. In the present study, we aimed to investigate the effects of ononin on TNBC lung metastasis and the associated molecular pathways. We used various assays, including cell viability, colony formation, Transwell, wound healing, ELISA, Western blotting, and staining techniques, to achieve this objective. The results demonstrated that ononin effectively suppressed cellular proliferation and induced apoptosis, as evidenced by the cell viability assay, colony formation assay, and expression of apoptosis markers, and reduced the metastatic capabilities of TNBC cells. These effects were achieved through the direct suppression of cell adhesion, invasiveness and motility. Furthermore, in TNBC xenograft lung metastatic models, ononin treatment significantly reduced tumor growth and lung metastasis. Additionally, ononin reversed the epithelial-mesenchymal transition (EMT) by downregulating the expression of EMT markers and matrix metalloproteinases, as confirmed by Western blot analysis. Furthermore, ononin treatment reduced EGFR phosphorylation and suppressed the PI3K, Akt, and mTOR signaling pathways, which was further confirmed using EGFR agonists or inhibitors. Importantly, ononin treatment did not exert any toxic effects on liver or kidney function. In conclusion, our findings suggest that ononin is a safe and potentially therapeutic treatment for TNBC metastasis that targets the EGFR-mediated PI3K/Akt/mTOR pathway. Further studies are warranted to validate its efficacy and explore its potential clinical applications.
Collapse
Affiliation(s)
- Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Cong Xu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingqing Liu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Yue Sui
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510080, China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510080, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510080, China.
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China.
| |
Collapse
|
147
|
Qu Y, Gao N, Zhang S, Gao L, He B, Wang C, Gong C, Shi Q, Li Z, Yang S, Xiao Y. Role of N6-methyladenosine RNA modification in cancer. MedComm (Beijing) 2024; 5:e715. [PMID: 39252821 PMCID: PMC11381670 DOI: 10.1002/mco2.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant modification of RNA in eukaryotic cells. Previous studies have shown that m6A is pivotal in diverse diseases especially cancer. m6A corelates with the initiation, progression, resistance, invasion, and metastasis of cancer. However, despite these insights, a comprehensive understanding of its specific roles and mechanisms within the complex landscape of cancer is still elusive. This review begins by outlining the key regulatory proteins of m6A modification and their posttranslational modifications (PTMs), as well as the role in chromatin accessibility and transcriptional activity within cancer cells. Additionally, it highlights that m6A modifications impact cancer progression by modulating programmed cell death mechanisms and affecting the tumor microenvironment through various cancer-associated immune cells. Furthermore, the review discusses how microorganisms can induce enduring epigenetic changes and oncogenic effect in microorganism-associated cancers by altering m6A modifications. Last, it delves into the role of m6A modification in cancer immunotherapy, encompassing RNA therapy, immune checkpoint blockade, cytokine therapy, adoptive cell transfer therapy, and direct targeting of m6A regulators. Overall, this review clarifies the multifaceted role of m6A modification in cancer and explores targeted therapies aimed at manipulating m6A modification, aiming to advance cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Yi Qu
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Nannan Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shengwei Zhang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Limin Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Bing He
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chao Wang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chunli Gong
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Qiuyue Shi
- Department of Gastroenterology the First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Zhibin Li
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shiming Yang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Yufeng Xiao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| |
Collapse
|
148
|
Li W, Liu Y, Xu R, Zong Y, He L, Hu J, Li G. M 6A modification in cardiovascular disease: With a focus on programmed cell death. Genes Dis 2024; 11:101039. [PMID: 38988324 PMCID: PMC11233881 DOI: 10.1016/j.gendis.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2024] Open
Abstract
N6-methyladenosine (m6A) methylation is one of the most predominant internal RNA modifications in eukaryotes and has become a hot spot in the field of epigenetics in recent years. Cardiovascular diseases (CVDs) are a leading cause of death globally. Emerging evidence demonstrates that RNA modifications, such as the m6A modification, are associated with the development and progression of many diseases, including CVDs. An increasing body of studies has indicated that programmed cell death (PCD) plays a vital role in CVDs. However, the molecular mechanisms underlying m6A modification and PCD in CVDs remain poorly understood. Herein, elaborating on the highly complex connections between the m6A mechanisms and different PCD signaling pathways and clarifying the exact molecular mechanism of m6A modification mediating PCD have significant meaning in developing new strategies for the prevention and therapy of CVDs. There is great potential for clinical application.
Collapse
Affiliation(s)
- Wen Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yao Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ruiyan Xu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuan Zong
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lu He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jun Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guohua Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
149
|
Bos DPA, Keesman M, Roggeveen A, Vase L, Evers AWM, Peerdeman KJ. Mindfulness Effects on Anxiety: Disentangling the Role of Decentering and Treatment Expectations. Behav Ther 2024; 55:1059-1070. [PMID: 39174265 DOI: 10.1016/j.beth.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 08/24/2024]
Abstract
Mindfulness interventions have been found to lower anxiety. However, the current literature has not adequately considered the role of its individual components and of placebo effects. In an online experiment using a balanced placebo design, we aimed to disentangle effects of decentering, a key component of mindfulness, and expectations, a key component of placebo effects, on anxiety related to the COVID-19 pandemic. One hundred twenty-eight adults were randomly assigned to one of four groups: placebo/mindful decentering, placebo/sham decentering, sham/mindful decentering, and sham/sham decentering. Instructions were provided using standardized audio instructions. Current anxiety was assessed pre- and postintervention with the Short State version of the State-Trait Anxiety Inventory. Mindful decentering was found to reduce anxiety postintervention, as compared to sham decentering, regardless of induced expectations regarding its effectiveness. Participants in the mindful decentering group also mentioned more decentering-related words than those in the sham decentering group. These findings indicate that a short, standardized, and online mindful decentering intervention can effectively decrease pandemic-related anxiety independently of one's expectations. These findings provide insights into the efficacy of the individual elements of mindfulness, highlighting decentering as an effective active component for anxiety relief. Moreover, these findings suggest that, in a nonclinical sample, individuals can apply mindful decentering with minimal training.
Collapse
|
150
|
Tian W, Zhu L, Luo Y, Tang Y, Tan Q, Zou Y, Chen K, Deng X, Tang H, Li H, Cai M, Xie X, Ye F. Autophagy Deficiency Induced by SAT1 Potentiates Tumor Progression in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309903. [PMID: 39073262 PMCID: PMC11423137 DOI: 10.1002/advs.202309903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/18/2024] [Indexed: 07/30/2024]
Abstract
Aggressive triple-negative breast cancer (TNBC) still lacks approved targeted therapies, requiring more exploration of its underlying mechanisms. Previous studies have suggested a potential role of SAT1 (Spermidine/Spermine N1-acetyltransferase 1) in cancer, which needs to be further elucidated in breast cancer. In this study, highly expressed SAT1 in TNBC signified worse patient prognoses. And SAT1 knockdown effectively inhibited the proliferation and migration abilities of TNBC cells in vitro and in vivo. In terms of mechanism, the transcription factor JUN enhanced SAT1 transcriptional activity by binding to its promoter region. Then, SAT1 protein in the cytoplasm engaged in directly binding with YBX1 for sustaining YBX1 protein stability via deubiquitylation mediated by the E3 ligase HERC5. Further, SAT1 was found to suppress autophagy remarkably via stabilization of mTOR mRNA with the accumulation of YBX1-mediated methyl-5-cytosine (m5C) modification. These findings proved that SAT1 drives TNBC progression through the SAT1/YBX1/mTOR axis, which may provide a potential candidate for targeted therapy in advanced TNBC.
Collapse
Affiliation(s)
- Wenwen Tian
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Lewei Zhu
- The First People's Hospital of Foshan, Foshan, 528000, P. R. China
| | - Yongzhou Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Qingjian Tan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kun Chen
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hongsheng Li
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Manbo Cai
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Feng Ye
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| |
Collapse
|