1451
|
Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, Orr ME. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 2018; 17:e12840. [PMID: 30126037 PMCID: PMC6260915 DOI: 10.1111/acel.12840] [Citation(s) in RCA: 413] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
Tau protein accumulation is the most common pathology among degenerative brain diseases, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), traumatic brain injury (TBI), and over twenty others. Tau-containing neurofibrillary tangle (NFT) accumulation is the closest correlate with cognitive decline and cell loss (Arriagada, Growdon, Hedley-Whyte, & Hyman, ), yet mechanisms mediating tau toxicity are poorly understood. NFT formation does not induce apoptosis (de Calignon, Spires-Jones, Pitstick, Carlson, & Hyman, 2009), which suggests that secondary mechanisms are driving toxicity. Transcriptomic analyses of NFT-containing neurons microdissected from postmortem AD brain revealed an expression profile consistent with cellular senescence. This complex stress response induces aberrant cell cycle activity, adaptations to maintain survival, cellular remodeling, and metabolic dysfunction. Using four AD transgenic mouse models, we found that NFTs, but not Aβ plaques, display a senescence-like phenotype. Cdkn2a transcript level, a hallmark measure of senescence, directly correlated with brain atrophy and NFT burden in mice. This relationship extended to postmortem brain tissue from humans with PSP to indicate a phenomenon common to tau toxicity. Tau transgenic mice with late-stage pathology were treated with senolytics to remove senescent cells. Despite the advanced age and disease progression, MRI brain imaging and histopathological analyses indicated a reduction in total NFT density, neuron loss, and ventricular enlargement. Collectively, these findings indicate a strong association between the presence of NFTs and cellular senescence in the brain, which contributes to neurodegeneration. Given the prevalence of tau protein deposition among neurodegenerative diseases, these findings have broad implications for understanding, and potentially treating, dozens of brain diseases.
Collapse
Affiliation(s)
- Nicolas Musi
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
- San Antonio Geriatric ResearchEducation and Clinical CenterSouth Texas Veterans Health Care SystemSan AntonioTexas
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesSan AntonioTexas
| | - Joseph M. Valentine
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Kathryn R. Sickora
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Eric Baeuerle
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Cody S. Thompson
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Qiang Shen
- Research Imaging InstituteUniversity of Texas Health Science Center San AntonioSan AntonioTexas
| | - Miranda E. Orr
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
- San Antonio Geriatric ResearchEducation and Clinical CenterSouth Texas Veterans Health Care SystemSan AntonioTexas
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesSan AntonioTexas
| |
Collapse
|
1452
|
Fulop T, Witkowski JM, Olivieri F, Larbi A. The integration of inflammaging in age-related diseases. Semin Immunol 2018; 40:17-35. [PMID: 30287177 DOI: 10.1016/j.smim.2018.09.003] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
|
1453
|
Prata LGPL, Ovsyannikova IG, Tchkonia T, Kirkland JL. Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Semin Immunol 2018; 40:101275. [PMID: 31088710 PMCID: PMC7061456 DOI: 10.1016/j.smim.2019.04.003] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/01/2018] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
Senescent cells (SCs) arise from normal cells in multiple organs due to inflammatory, metabolic, DNA damage, or tissue damage signals. SCs are non-proliferating but metabolically active cells that can secrete a range of pro-inflammatory and proteolytic factors as part of the senescence-associated secretory phenotype (SASP). Senescent cell anti-apoptotic pathways (SCAPs) protect SCs from their own pro-apoptotic SASP. SCs can chemo-attract immune cells and are usually cleared by these immune cells. During aging and in multiple chronic diseases, SCs can accumulate in dysfunctional tissues. SCs can impede innate and adaptive immune responses. Whether immune system loss of capacity to clear SCs promotes immune system dysfunction, or conversely whether immune dysfunction permits SC accumulation, are important issues that are not yet fully resolved. SCs may be able to assume distinct states that interact differentially with immune cells, thereby promoting or inhibiting SC clearance, establishing a chronically pro-senescent and pro-inflammatory environment, leading to modulation of the SASP by the immune cells recruited and activated by the SASP. Therapies that enhance immune cell-mediated clearance of SCs could provide a lever for reducing SC burden. Such therapies could include vaccines, small molecule immunomodulators, or other approaches. Senolytics, drugs that selectively eliminate SCs by transiently disabling their SCAPs, may prove to alleviate immune dysfunction in older individuals and thereby accelerate immune-mediated clearance of SCs. The more that can be understood about the interplay between SCs and the immune system, the faster new interventions may be developed to delay, prevent, or treat age-related dysfunction and the multiple senescence-associated chronic diseases and disorders.
Collapse
Affiliation(s)
- Larissa G P Langhi Prata
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| |
Collapse
|
1454
|
Shetty AK, Kodali M, Upadhya R, Madhu LN. Emerging Anti-Aging Strategies - Scientific Basis and Efficacy. Aging Dis 2018; 9:1165-1184. [PMID: 30574426 PMCID: PMC6284760 DOI: 10.14336/ad.2018.1026] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
The prevalence of age-related diseases is in an upward trend due to increased life expectancy in humans. Age-related conditions are among the leading causes of morbidity and death worldwide currently. Therefore, there is an urgent need to find apt interventions that slow down aging and reduce or postpone the incidence of debilitating age-related diseases. This review discusses the efficacy of emerging anti-aging approaches for maintaining better health in old age. There are many anti-aging strategies in development, which include procedures such as augmentation of autophagy, elimination of senescent cells, transfusion of plasma from young blood, intermittent fasting, enhancement of adult neurogenesis, physical exercise, antioxidant intake, and stem cell therapy. Multiple pre-clinical studies suggest that administration of autophagy enhancers, senolytic drugs, plasma from young blood, drugs that enhance neurogenesis and BDNF are promising approaches to sustain normal health during aging and also to postpone age-related neurodegenerative diseases such as Alzheimer's disease. Stem cell therapy has also shown promise for improving regeneration and function of the aged or Alzheimer's disease brain. Several of these approaches are awaiting critical appraisal in clinical trials to determine their long-term efficacy and possible adverse effects. On the other hand, procedures such as intermittent fasting, physical exercise, intake of antioxidants such as resveratrol and curcumin have shown considerable promise for improving function in aging, some of which are ready for large-scale clinical trials, as they are non-invasive, and seem to have minimal side effects. In summary, several approaches are at the forefront of becoming mainstream therapies for combating aging and postponing age-related diseases in the coming years.
Collapse
Affiliation(s)
- Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Leelavathi N. Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
| |
Collapse
|
1455
|
Patil P, Niedernhofer LJ, Robbins PD, Lee J, Sowa G, Vo N. Cellular senescence in intervertebral disc aging and degeneration. CURRENT MOLECULAR BIOLOGY REPORTS 2018; 4:180-190. [PMID: 30473991 PMCID: PMC6248341 DOI: 10.1007/s40610-018-0108-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Age is a major risk factor for multiple disease pathologies, including chronic back pain, which stems from age-related degenerative changes to intervertebral disc tissue. Growing evidence suggest that the change in phenotype of disc cells to a senescent phenotype may be one of the major driving forces of age-associated disc degeneration. This review discusses the known stressors that promote development of senescence in disc tissue and the underlying molecular mechanisms disc cells adopt to enable their transition to a senescent phenotype. RECENT FINDINGS Increased number of senescent cells have been observed with advancing age and degeneration in disc tissue. Additionally, in vitro studies have confirmed the catabolic nature of stress-induced senescent disc cells. Several factors have been shown to establish senescence via multiple different underlying mechanisms. SUMMARY Cellular senescence can serve as a therapeutic target to combat age-associated disc degeneration. However, whether the different stressors utilizing different signaling networks establish different kinds of senescent types in disc cells is currently unknown and warrants further investigation.
Collapse
Affiliation(s)
- Prashanti Patil
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN
| | - Joon Lee
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gwendolyn Sowa
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA. Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nam Vo
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
1456
|
Abstract
Significant progress in defining the biology of aging, particularly in animal models, supports the geroscience hypothesis, which posits that by therapeutically targeting biological aging, the onset of multiple age-related diseases can be delayed "en suite". Geroscience investigators are preparing to test this hypothesis in humans for the first time. In this review, we describe development of large-scale clinical trials designed to determine if multiple age-related health conditions can be simultaneously alleviated with interventions targeting the underlying biology of aging. We describe the rationale and collaborative, consensus building approach used to design the first aging outcomes trial called Targeting Aging with Metformin (TAME). Through this case study, we outline features that could be more broadly extended to other geroscience-guided clinical trials, including a process for selecting biochemical and molecular markers of biologic age and we provide a perspective on the potential impact of clinical trials targeting aging.
Collapse
|
1457
|
Sontake V, Gajjala PR, Kasam RK, Madala SK. New therapeutics based on emerging concepts in pulmonary fibrosis. Expert Opin Ther Targets 2018; 23:69-81. [PMID: 30468628 DOI: 10.1080/14728222.2019.1552262] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Fibrosis is an irreversible pathological endpoint in many chronic diseases, including pulmonary fibrosis. Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal condition characterized by (myo)fibroblast proliferation and transformation in the lung, expansion of the extracellular matrix, and extensive remodeling of the lung parenchyma. Recent evidence indicates that IPF prevalence and mortality rates are growing in the United States and elsewhere. Despite decades of research on the pathogenic mechanisms of pulmonary fibrosis, few therapeutics have succeeded in the clinic, and they have failed to improve IPF patient survival. Areas covered: Based on a literature search and our own results, we discuss the key cellular and molecular responses that contribute to (myo)fibroblast actions and pulmonary fibrosis pathogenesis; this includes signaling pathways in various cells that aberrantly and persistently activate (myo)fibroblasts in fibrotic lesions and promote scar tissue formation in the lung. Expert opinion: Lessons learned from recent failures and successes with new therapeutics point toward approaches that can target multiple pro-fibrotic processes in IPF. Advances in preclinical modeling and single-cell genomics will also accelerate novel discoveries for effective treatment of IPF.
Collapse
Affiliation(s)
- Vishwaraj Sontake
- a Department of Pediatrics , University of Cincinnati, College of Medicine , Cincinnati , OH , USA.,b Division of Pulmonary Medicine , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - Prathibha R Gajjala
- a Department of Pediatrics , University of Cincinnati, College of Medicine , Cincinnati , OH , USA.,b Division of Pulmonary Medicine , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - Rajesh K Kasam
- a Department of Pediatrics , University of Cincinnati, College of Medicine , Cincinnati , OH , USA.,b Division of Pulmonary Medicine , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - Satish K Madala
- a Department of Pediatrics , University of Cincinnati, College of Medicine , Cincinnati , OH , USA.,b Division of Pulmonary Medicine , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| |
Collapse
|
1458
|
Inflammation-Accelerated Senescence and the Cardiovascular System: Mechanisms and Perspectives. Int J Mol Sci 2018; 19:ijms19123701. [PMID: 30469478 PMCID: PMC6321367 DOI: 10.3390/ijms19123701] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
Low-grade chronic inflammation is a common denominator in atherogenesis and related diseases. Solid evidence supports the occurrence of an impairment in the innate and adaptive immune system with senescence, favoring the development of acute and chronic age-related diseases. Cardiovascular (CV) diseases (CVD), in particular, are a leading cause of death even at older ages. Inflammation-associated mechanisms that contribute to CVD development include dysregulated redox and metabolic pathways, genetic modifications, and infections/dysbiosis. In this review, we will recapitulate the determinants and consequences of the immune system dysfunction at older age, with particular focus on the CV system. We will examine the currently available and potential future strategies to counteract accelerated CV aging, i.e., nutraceuticals, probiotics, caloric restriction, physical activity, smoking and alcohol cessation, control of low-grade inflammation sources, senolytic and senescence-modulating drugs, and DNA-targeting drugs.
Collapse
|
1459
|
Malavolta M, Pierpaoli E, Giacconi R, Basso A, Cardelli M, Piacenza F, Provinciali M. Anti-inflammatory Activity of Tocotrienols in Age-related Pathologies: A SASPected Involvement of Cellular Senescence. Biol Proced Online 2018; 20:22. [PMID: 30479579 PMCID: PMC6247629 DOI: 10.1186/s12575-018-0087-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/11/2018] [Indexed: 12/11/2022] Open
Abstract
Tocotrienols (T3) have been shown to represent a very important part of the vitamin E family since they have opened new opportunities to prevent or treat a multitude of age-related chronic diseases. The beneficial effects of T3 include the amelioration of lipid profile, the promotion of Nrf2 mediated cytoprotective activity and the suppression of inflammation. All these effects may be the consequence of the ability of T3 to target multiple pathways. We here propose that these effects may be the result of a single target of T3, namely senescent cells. Indeed, T3 may act by a direct suppression of the senescence-associated secretory phenotype (SASP) produced by senescent cells, mediated by inhibition of NF-kB and mTOR, or may potentially remove the origin of the SASP trough senolysis (selective death of senescent cells). Further studies addressed to investigate the impact of T3 on cellular senescence “in vitro” as well as in experimental models of age-related diseases “in vivo” are clearly encouraged.
Collapse
Affiliation(s)
- Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Elisa Pierpaoli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Andrea Basso
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| |
Collapse
|
1460
|
Zhang Y, Jones KD, Achtar-Zadeh N, Green G, Kukreja J, Xu B, Wolters PJ. Histopathological and molecular analysis of idiopathic pulmonary fibrosis lungs from patients treated with pirfenidone or nintedanib. Histopathology 2018; 74:341-349. [PMID: 30152895 DOI: 10.1111/his.13745] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/24/2018] [Indexed: 01/01/2023]
Abstract
AIMS The objective of this study was to quantify the impact of pirfenidone or nintedanib treatment on lung histopathology and molecular mediators of fibrosis in patients with idiopathic pulmonary fibrosis (IPF). METHODS AND RESULTS We collected lung tissue from IPF patients at the time of lung transplantation. Histopathological changes were quantified using a blinded scoring method. Proteins associated with senescence or active TGF-β were quantified in lung tissues by immunoblot and immunostaining. Histopathological quantification showed similar amounts of dense collagen fibrosis, fibroblast foci and alveolar macrophages in untreated or pirfenidone- or nintedanib-treated IPF patients. There was less diffuse alveolar damage and organising pneumonia in pirfenidone-treated IPF patients. Lungs of nintedanib-treated patients had a trend towards less lymphocytic interstitial infiltration. There was no difference in expression of p-SMAD3, p21 or p16 in the lungs of untreated, pirfenidone- or nintedanib-treated IPF patients. Alveolar epithelial cells, but not fibroblast foci, were immunoreactive to p16. Pirfenidone or nintedanib treatment did not inhibit activation of senescence programming in cultured lung epithelial cells mediated by hydrogen peroxide. CONCLUSION Pirfenidone and nintedanib do not modulate expression of senescence markers, levels of p-SMAD3 or the amount of fibrosis in IPF lungs. Treated patients have less histopathological evidence of acute lung injury at the time of lung transplantation.
Collapse
Affiliation(s)
- Yingwei Zhang
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA.,Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing, China
| | - Kirk D Jones
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Natalia Achtar-Zadeh
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Gary Green
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jasleen Kukreja
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Biyun Xu
- Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing, China
| | - Paul J Wolters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
1461
|
Gupta K, Burns TC. Radiation-Induced Alterations in the Recurrent Glioblastoma Microenvironment: Therapeutic Implications. Front Oncol 2018; 8:503. [PMID: 30467536 PMCID: PMC6236021 DOI: 10.3389/fonc.2018.00503] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 01/19/2023] Open
Abstract
Glioblastoma (GBM) is uniformly fatal with a median survival of just over 1 year, despite best available treatment including radiotherapy (RT). Impacts of prior brain RT on recurrent tumors are poorly understood, though increasing evidence suggests RT-induced changes in the brain microenvironment contribute to recurrent GBM aggressiveness. The tumor microenvironment impacts malignant cells directly and indirectly through stromal cells that support tumor growth. Changes in extracellular matrix (ECM), abnormal vasculature, hypoxia, and inflammation have been reported to promote tumor aggressiveness that could be exacerbated by prior RT. Prior radiation may have long-term impacts on microglia and brain-infiltrating monocytes, leading to lasting alterations in cytokine signaling and ECM. Tumor-promoting CNS injury responses are recapitulated in the tumor microenvironment and augmented following prior radiation, impacting cell phenotype, proliferation, and infiltration in the CNS. Since RT is vital to GBM management, but substantially alters the tumor microenvironment, we here review challenges, knowledge gaps, and therapeutic opportunities relevant to targeting pro-tumorigenic features of the GBM microenvironment. We suggest that insights from RT-induced changes in the tumor microenvironment may provide opportunities to target mechanisms, such as cellular senescence, that may promote GBM aggressiveness amplified in previously radiated microenvironment.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
1462
|
Fontana L, Nehme J, Demaria M. Caloric restriction and cellular senescence. Mech Ageing Dev 2018; 176:19-23. [PMID: 30395873 DOI: 10.1016/j.mad.2018.10.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of irreversible growth arrest characterized by hypertrophy and secretion of various bioactive molecules, a phenomenon defined the Senescence-Associated Secretory Phenotype (SASP). Senescent cells are implicated in a number of biological functions, from embryogenesis to aging. Significantly, excessive accumulation of senescent cells is associated to a decline of regenerative capacity and chronic inflammation. In accordance, the removal of senescent cells is sufficient to delay several pathologies and promote healthspan. Calorie restriction (CR) without malnutrition is currently the most effective non-genetic intervention to delay aging phenotypes. Recently, we have shown that CR can prevent accumulation of senescent cells in both mice and humans. Here, we summarize the current knowledge on the molecular and cellular events associated with CR, and define how these events can interfere with the induction of cellular senescence. We discuss the potential side effects of preventing senescence, and the possible alternative dietary interventions with potential senolytic properties.
Collapse
Affiliation(s)
- Luigi Fontana
- Charles Perkins Centre and Central Clinical School, The University of Sydney, Australia; Department of Medicine, Washington University School of Medicine, St. Louis, USA; Department of Clinical and Experimental Sciences, Brescia University, Brescia, Italy.
| | - Jamil Nehme
- University of Groningen, European Research Institute for the Biology of Aging, University Medical Center Groningen, Groningen, Netherlands; Lebanese University, Doctoral School of Science and Technology, Hadath, Beirut, Lebanon
| | - Marco Demaria
- University of Groningen, European Research Institute for the Biology of Aging, University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
1463
|
Sharma K, Darvas M, Keene CD, Niedernhofer LJ, Ladiges W. Modeling Alzheimer's disease in progeria mice. An age-related concept. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2018; 8:1524815. [PMID: 30319737 PMCID: PMC6179061 DOI: 10.1080/20010001.2018.1524815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The prevalence of Alzheimer’s disease (AD) is expected to dramatically increase in older people worldwide. Efforts to find disease-modifying treatments have been largely unsuccessful because of the focus on disease-specific pathogenesis, and lack of animal models to study AD in the context of aging and age-related co-morbidities. The geroscience approach to studying AD would suggest that modulation of aging per se would be a useful strategy, but a mammalian model system that combines both aging and AD is not available. One approach to study old age and AD is to utilize murine models of progeroid syndrome, which can provide a number of advantages not only for basic aging biology but also for preclinical drug testing. A progeria background, such as the Ercc1 mutant mouse (Ercc1−/Δ), provides an aging component not seen in current murine models of AD that lack age-related co-morbidities typical of AD patients. Ercc1−/Δ mice experience the same types of stochastic endogenous DNA damage as WT mice, but accumulate lesions faster due to impaired DNA repair, which accelerates the normal aging process by 6-fold. These mice do not show frank AD pathology but represent a predisposed or hypersensitive environment for AD pathology, where pathogenic elements of AD can be introduced, either by crossing with well-established AD transgenic mouse lines, or transcranial stereotaxic delivery directly into the brain. Since Ercc1−/Δ mice age five to six times faster than WT mice, very rapid characterization and testing of therapeutic interventions is possible. Studies are urgently needed to capitalize on the highly informative potential of this novel AD mouse model.
Collapse
Affiliation(s)
- Kavita Sharma
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Martin Darvas
- Department of Pathology, Division of Neuropathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Department of Pathology, Division of Neuropathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
1464
|
Breitenbach M, Hoffmann J. Editorial: Cancer Models. Front Oncol 2018; 8:401. [PMID: 30338241 PMCID: PMC6178941 DOI: 10.3389/fonc.2018.00401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/03/2018] [Indexed: 01/15/2023] Open
Affiliation(s)
- Michael Breitenbach
- Department of Biosciences, University of Salzburg, Salzburg, Salzburg, Austria
| | - Jens Hoffmann
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany
| |
Collapse
|
1465
|
Mikawa R, Suzuki Y, Baskoro H, Kanayama K, Sugimoto K, Sato T, Sugimoto M. Elimination of p19 ARF -expressing cells protects against pulmonary emphysema in mice. Aging Cell 2018; 17:e12827. [PMID: 30058137 PMCID: PMC6156494 DOI: 10.1111/acel.12827] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/23/2018] [Indexed: 11/29/2022] Open
Abstract
Senescent cells accumulate in tissues during aging and are considered to underlie several aging‐associated phenotypes and diseases. We recently reported that the elimination of p19ARF‐expressing senescent cells from lung tissue restored tissue function and gene expression in middle‐aged (12‐month‐old) mice. The aging of lung tissue increases the risk of pulmonary diseases such as emphysema, and cellular senescence is accelerated in emphysema patients. However, there is currently no direct evidence to show that cellular senescence promotes the pathology of emphysema, and the involvement of senescence in the development of this disease has yet to be clarified. We herein demonstrated that p19ARF facilitated the development of pulmonary emphysema in mice. The elimination of p19ARF‐expressing cells prevented lung tissue from elastase‐induced lung dysfunction. These effects appeared to depend on reduced pulmonary inflammation, which is enhanced after elastase stimulation. Furthermore, the administration of a senolytic drug that selectively kills senescent cells attenuated emphysema‐associated pathologies. These results strongly suggest the potential of senescent cells as therapeutic/preventive targets for pulmonary emphysema.
Collapse
Affiliation(s)
- Ryuta Mikawa
- Research Institute; National Center for Geriatrics and Gerontology; Obu Japan
| | - Yohei Suzuki
- Department of Respiratory Medicine; Juntendo University School of Medicine; Tokyo Japan
| | - Hario Baskoro
- Department of Respiratory Medicine; Juntendo University School of Medicine; Tokyo Japan
| | - Kazuki Kanayama
- Department of Clinical Nutrition; Suzuka University of Medical Science; Suzuka Japan
| | - Kazushi Sugimoto
- Department of Molecular and Laboratory Medicine, Department of Gastroenterology; Mie University Graduate School of Medicine; Tsu Japan
| | - Tadashi Sato
- Department of Respiratory Medicine; Juntendo University School of Medicine; Tokyo Japan
| | - Masataka Sugimoto
- Research Institute; National Center for Geriatrics and Gerontology; Obu Japan
- Department of Aging Research; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
1466
|
Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, Ling YY, Melos KI, Pirtskhalava T, Inman CL, McGuckian C, Wade EA, Kato JI, Grassi D, Wentworth M, Burd CE, Arriaga EA, Ladiges WL, Tchkonia T, Kirkland JL, Robbins PD, Niedernhofer LJ. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 2018; 36:18-28. [PMID: 30279143 PMCID: PMC6197652 DOI: 10.1016/j.ebiom.2018.09.015] [Citation(s) in RCA: 621] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Senescence is a tumor suppressor mechanism activated in stressed cells to prevent replication of damaged DNA. Senescent cells have been demonstrated to play a causal role in driving aging and age-related diseases using genetic and pharmacologic approaches. We previously demonstrated that the combination of dasatinib and the flavonoid quercetin is a potent senolytic improving numerous age-related conditions including frailty, osteoporosis and cardiovascular disease. The goal of this study was to identify flavonoids with more potent senolytic activity. METHODS A panel of flavonoid polyphenols was screened for senolytic activity using senescent murine and human fibroblasts, driven by oxidative and genotoxic stress, respectively. The top senotherapeutic flavonoid was tested in mice modeling a progeroid syndrome carrying a p16INK4a-luciferase reporter and aged wild-type mice to determine the effects of fisetin on senescence markers, age-related histopathology, disease markers, health span and lifespan. Human adipose tissue explants were used to determine if results translated. FINDINGS Of the 10 flavonoids tested, fisetin was the most potent senolytic. Acute or intermittent treatment of progeroid and old mice with fisetin reduced senescence markers in multiple tissues, consistent with a hit-and-run senolytic mechanism. Fisetin reduced senescence in a subset of cells in murine and human adipose tissue, demonstrating cell-type specificity. Administration of fisetin to wild-type mice late in life restored tissue homeostasis, reduced age-related pathology, and extended median and maximum lifespan. INTERPRETATION The natural product fisetin has senotherapeutic activity in mice and in human tissues. Late life intervention was sufficient to yield a potent health benefit. These characteristics suggest the feasibility to translation to human clinical studies. FUND: NIH grants P01 AG043376 (PDR, LJN), U19 AG056278 (PDR, LJN, WLL), R24 AG047115 (WLL), R37 AG013925 (JLK), R21 AG047984 (JLK), P30 DK050456 (Adipocyte Subcore, JLK), a Glenn Foundation/American Federation for Aging Research (AFAR) BIG Award (JLK), Glenn/AFAR (LJN, CEB), the Ted Nash Long Life and Noaber Foundations (JLK), the Connor Group (JLK), Robert J. and Theresa W. Ryan (JLK), and a Minnesota Partnership Grant (AMAY-UMN#99)-P004610401-1 (JLK, EAA).
Collapse
Affiliation(s)
- Matthew J Yousefzadeh
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, United States
| | - Sara J McGowan
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Luise Angelini
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Heike Fuhrmann-Stroissnigg
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Ming Xu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, United States
| | - Yuan Yuan Ling
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Kendra I Melos
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, United States
| | - Christina L Inman
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, United States
| | - Collin McGuckian
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Erin A Wade
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Jonathon I Kato
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Diego Grassi
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Mark Wentworth
- Office of Research Regulatory Support, Mayo Clinic, Rochester, MN 55905, United States
| | - Christin E Burd
- Department of Molecular Genetics and Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Edgar A Arriaga
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, United States
| | - Warren L Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, United States
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, United States
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, United States
| | - Paul D Robbins
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States.
| | - Laura J Niedernhofer
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
1467
|
Nguyen TT, Jeong J. Development of a single-jet electrospray method for producing quercetin-loaded poly (lactic-co-glycolic acid) microspheres with prolonged-release patterns. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
1468
|
Liu XL, Ding J, Meng LH. Oncogene-induced senescence: a double edged sword in cancer. Acta Pharmacol Sin 2018; 39:1553-1558. [PMID: 29620049 DOI: 10.1038/aps.2017.198] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022]
Abstract
Oncogene-induced cellular senescence (OIS) is a complex program that is triggered in response to aberrant activation of oncogenic signaling. Initially, OIS was thought to be a barrier to malignant transformation because of its suppression on cell proliferation. Later studies showed that senescence induced by oncogenes can also promote the initiation and development of cancer. The opposing effects of OIS occur through different combinations of downstream effectors as well as the interplay of senescent cells and the microenvironment, such as senescence-associated inflammation. Here, we review the common features and molecular mechanisms underlying OIS and the interaction between senescent cells and the microenvironment. We propose that targeting senescent cells may have a beneficial therapeutic effect during the treatment of cancer.
Collapse
|
1469
|
Myrianthopoulos V. The emerging field of senotherapeutic drugs. Future Med Chem 2018; 10:2369-2372. [PMID: 30325213 DOI: 10.4155/fmc-2018-0234] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/08/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Vassilios Myrianthopoulos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Panepistimiopolis Zografou, Greece
- Department of Histology & Embryology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
- PharmaInformatics Unit, 'Athena' Research & Innovation Center, 15125 Athens, Greece
| |
Collapse
|
1470
|
Manzella N, Santin Y, Maggiorani D, Martini H, Douin-Echinard V, Passos JF, Lezoualc'h F, Binda C, Parini A, Mialet-Perez J. Monoamine oxidase-A is a novel driver of stress-induced premature senescence through inhibition of parkin-mediated mitophagy. Aging Cell 2018; 17:e12811. [PMID: 30003648 PMCID: PMC6156293 DOI: 10.1111/acel.12811] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022] Open
Abstract
Cellular senescence, the irreversible cell cycle arrest observed in somatic cells, is an important driver of age‐associated diseases. Mitochondria have been implicated in the process of senescence, primarily because they are both sources and targets of reactive oxygen species (ROS). In the heart, oxidative stress contributes to pathological cardiac ageing, but the mechanisms underlying ROS production are still not completely understood. The mitochondrial enzyme monoamine oxidase‐A (MAO‐A) is a relevant source of ROS in the heart through the formation of H2O2 derived from the degradation of its main substrates, norepinephrine (NE) and serotonin. However, the potential link between MAO‐A and senescence has not been previously investigated. Using cardiomyoblasts and primary cardiomyocytes, we demonstrate that chronic MAO‐A activation mediated by synthetic (tyramine) and physiological (NE) substrates induces ROS‐dependent DNA damage response, activation of cyclin‐dependent kinase inhibitors p21cip, p16ink4a, and p15ink4b and typical features of senescence such as cell flattening and SA‐β‐gal activity. Moreover, we observe that ROS produced by MAO‐A lead to the accumulation of p53 in the cytosol where it inhibits parkin, an important regulator of mitophagy, resulting in mitochondrial dysfunction. Additionally, we show that the mTOR kinase contributes to mitophagy dysfunction by enhancing p53 cytoplasmic accumulation. Importantly, restoration of mitophagy, either by overexpression of parkin or inhibition of mTOR, prevents mitochondrial dysfunction and induction of senescence. Altogether, our data demonstrate a novel link between MAO‐A and senescence in cardiomyocytes and provides mechanistic insights into the potential role of MAO‐dependent oxidative stress in age‐related pathologies.
Collapse
Affiliation(s)
- Nicola Manzella
- Institute of Metabolic and Cardiovascular Diseases (I2MC); Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse; Toulouse France
- Department of Biology and Biotechnology; University of Pavia; Pavia Italy
| | - Yohan Santin
- Institute of Metabolic and Cardiovascular Diseases (I2MC); Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse; Toulouse France
| | - Damien Maggiorani
- Institute of Metabolic and Cardiovascular Diseases (I2MC); Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse; Toulouse France
| | - Hélène Martini
- Institute of Metabolic and Cardiovascular Diseases (I2MC); Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse; Toulouse France
| | - Victorine Douin-Echinard
- Institute of Metabolic and Cardiovascular Diseases (I2MC); Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse; Toulouse France
| | - Joao F. Passos
- Ageing Research Laboratories; Newcastle University Institute for Ageing, Newcastle University; Newcastle upon Tyne UK
| | - Frank Lezoualc'h
- Institute of Metabolic and Cardiovascular Diseases (I2MC); Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse; Toulouse France
| | - Claudia Binda
- Department of Biology and Biotechnology; University of Pavia; Pavia Italy
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC); Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse; Toulouse France
| | - Jeanne Mialet-Perez
- Institute of Metabolic and Cardiovascular Diseases (I2MC); Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse; Toulouse France
| |
Collapse
|
1471
|
Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci 2018; 19:E2937. [PMID: 30261683 PMCID: PMC6213570 DOI: 10.3390/ijms19102937] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 01/10/2023] Open
Abstract
Ageing is a major risk factor for developing many neurodegenerative diseases. Cellular senescence is a homeostatic biological process that has a key role in driving ageing. There is evidence that senescent cells accumulate in the nervous system with ageing and neurodegenerative disease and may predispose a person to the appearance of a neurodegenerative condition or may aggravate its course. Research into senescence has long been hindered by its variable and cell-type specific features and the lack of a universal marker to unequivocally detect senescent cells. Recent advances in senescence markers and genetically modified animal models have boosted our knowledge on the role of cellular senescence in ageing and age-related disease. The aim now is to fully elucidate its role in neurodegeneration in order to efficiently and safely exploit cellular senescence as a therapeutic target. Here, we review evidence of cellular senescence in neurons and glial cells and we discuss its putative role in Alzheimer's disease, Parkinson's disease and multiple sclerosis and we provide, for the first time, evidence of senescence in neurons and glia in multiple sclerosis, using the novel GL13 lipofuscin stain as a marker of cellular senescence.
Collapse
Affiliation(s)
- Marios Kritsilis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Sophia V Rizou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Paraskevi N Koutsoudaki
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Konstantinos Evangelou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Vassilis G Gorgoulis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Dimitrios Papadopoulos
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| |
Collapse
|
1472
|
Milanovic M, Yu Y, Schmitt CA. The Senescence-Stemness Alliance - A Cancer-Hijacked Regeneration Principle. Trends Cell Biol 2018; 28:1049-1061. [PMID: 30253901 DOI: 10.1016/j.tcb.2018.09.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
Abstract
Activated oncogenes or anticancer therapies evoke senescent cell-cycle arrest in (pre-)malignant cells, thereby interrupting tumor formation or progression. Physiologically, cellular senescence contributes to embryonic development and tissue regeneration. These observations and the overlap of numerous gene products in senescence and stem cell signaling prompted investigations into whether epigenetic establishment of the senescent state may concomitantly reprogram the cell into a latent stem-like condition, whose functional impact becomes evident when arrested cells resume proliferation. We review here recent discoveries underscoring the unexpected senescence-stemness alliance, elucidate underlying molecular mechanisms, and discuss its fundamentally different implications in normal tissue repair - to replenish the exhausted repopulation capacity - as compared to cancer biology, where usurpation of this natural principle accounts for particularly aggressive tumor behavior.
Collapse
Affiliation(s)
- Maja Milanovic
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum (MKFZ), Virchow Campus, 13353 Berlin, Germany
| | - Yong Yu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Clemens A Schmitt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum (MKFZ), Virchow Campus, 13353 Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner Site Berlin, Germany; Berlin Institute of Health, Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany.
| |
Collapse
|
1473
|
Tiniakos D, Jurk D. A novel Sudan Black B-based analogue revives lipofuscin as a biomarker for in vivo senescence. Virchows Arch 2018; 473:781-783. [PMID: 30225657 DOI: 10.1007/s00428-018-2452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Dina Tiniakos
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Department of Pathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Diana Jurk
- Institute for Cell and Molecular Biosciences (ICaMB) and Newcastle University Institute for Ageing (NUIA), Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| |
Collapse
|
1474
|
Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 2018; 20:1-16. [PMID: 30229407 DOI: 10.1007/s10522-018-9769-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/12/2018] [Indexed: 01/10/2023]
Abstract
Aging is a biological process characterized by a progressive functional decline in tissues and organs, which eventually leads to mortality. Telomeres, the repetitive DNA repeat sequences at the end of linear eukaryotic chromosomes protecting chromosome ends from degradation and illegitimate recombination, play a crucial role in cell fate and aging. Due to the mechanism of replication, telomeres shorten as cells proliferate, which consequently contributes to cellular senescence and mitochondrial dysfunction. Cells are the basic unit of organismal structure and function, and mitochondria are the powerhouse and metabolic center of cells. Therefore, cellular senescence and mitochondrial dysfunction would result in tissue or organ degeneration and dysfunction followed by somatic aging through multiple pathways. In this review, we summarized the main mechanisms of cellular senescence, mitochondrial malfunction and aging triggered by telomere attrition. Understanding the molecular mechanisms involved in the aging process may elicit new strategies for improving health and extending lifespan.
Collapse
Affiliation(s)
- Yukun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xuewen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xuelu Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. .,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
1475
|
Oost W, Talma N, Meilof JF, Laman JD. Targeting senescence to delay progression of multiple sclerosis. J Mol Med (Berl) 2018; 96:1153-1166. [PMID: 30229272 PMCID: PMC6208951 DOI: 10.1007/s00109-018-1686-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/18/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a chronic and often progressive, demyelinating disease of the central nervous system (CNS) white and gray matter and the single most common cause of disability in young adults. Age is one of the factors most strongly influencing the course of progression in MS. One of the hallmarks of aging is cellular senescence. The elimination of senescent cells with senolytics has very recently been shown to delay age-related dysfunction in animal models for other neurological diseases. In this review, the possible link between cellular senescence and the progression of MS is discussed, and the potential use of senolytics as a treatment for progressive MS is explored. Currently, there is no cure for MS and there are limited treatment options to slow the progression of MS. Current treatment is based on immunomodulatory approaches. Various cell types present in the CNS can become senescent and thus potentially contribute to MS disease progression. We propose that, after cellular senescence has indeed been shown to be directly implicated in disease progression, administration of senolytics should be tested as a potential therapeutic approach for the treatment of progressive MS.
Collapse
Affiliation(s)
- Wendy Oost
- University of Groningen, Groningen, The Netherlands
| | - Nynke Talma
- European Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan F Meilof
- Department of Neurology, Martini Hospital, Groningen, The Netherlands.,MS Center Noord Nederland (MSCNN), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jon D Laman
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. .,MS Center Noord Nederland (MSCNN), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
1476
|
Muñoz-Espín D, Rovira M, Galiana I, Giménez C, Lozano-Torres B, Paez-Ribes M, Llanos S, Chaib S, Muñoz-Martín M, Ucero AC, Garaulet G, Mulero F, Dann SG, VanArsdale T, Shields DJ, Bernardos A, Murguía JR, Martínez-Máñez R, Serrano M. A versatile drug delivery system targeting senescent cells. EMBO Mol Med 2018; 10:e9355. [PMID: 30012580 PMCID: PMC6127887 DOI: 10.15252/emmm.201809355] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/11/2022] Open
Abstract
Senescent cells accumulate in multiple aging-associated diseases, and eliminating these cells has recently emerged as a promising therapeutic approach. Here, we take advantage of the high lysosomal β-galactosidase activity of senescent cells to design a drug delivery system based on the encapsulation of drugs with galacto-oligosaccharides. We show that gal-encapsulated fluorophores are preferentially released within senescent cells in mice. In a model of chemotherapy-induced senescence, gal-encapsulated cytotoxic drugs target senescent tumor cells and improve tumor xenograft regression in combination with palbociclib. Moreover, in a model of pulmonary fibrosis in mice, gal-encapsulated cytotoxics target senescent cells, reducing collagen deposition and restoring pulmonary function. Finally, gal-encapsulation reduces the toxic side effects of the cytotoxic drugs. Drug delivery into senescent cells opens new diagnostic and therapeutic applications for senescence-associated disorders.
Collapse
Affiliation(s)
- Daniel Muñoz-Espín
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Miguel Rovira
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Irene Galiana
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Cristina Giménez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
| | - Beatriz Lozano-Torres
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Marta Paez-Ribes
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Susana Llanos
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Selim Chaib
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maribel Muñoz-Martín
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alvaro C Ucero
- Genes, Development and Disease Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guillermo Garaulet
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Stephen G Dann
- Oncology R&D Group, Pfizer Worldwide Research & Development, Pfizer Inc., La Jolla, CA, USA
| | - Todd VanArsdale
- Oncology R&D Group, Pfizer Worldwide Research & Development, Pfizer Inc., La Jolla, CA, USA
| | - David J Shields
- Oncology R&D Group, Pfizer Worldwide Research & Development, Pfizer Inc., La Jolla, CA, USA
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - José Ramón Murguía
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química, Universitat Politècnica de València, Valencia, Spain
| | - Manuel Serrano
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
1477
|
Farr JN, Almeida M. The Spectrum of Fundamental Basic Science Discoveries Contributing to Organismal Aging. J Bone Miner Res 2018; 33:1568-1584. [PMID: 30075061 PMCID: PMC6327947 DOI: 10.1002/jbmr.3564] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
Abstract
Aging research has undergone unprecedented advances at an accelerating rate in recent years, leading to excitement in the field as well as opportunities for imagination and innovation. Novel insights indicate that, rather than resulting from a preprogrammed series of events, the aging process is predominantly driven by fundamental non-adaptive mechanisms that are interconnected, linked, and overlap. To varying degrees, these mechanisms also manifest with aging in bone where they cause skeletal fragility. Because these mechanisms of aging can be manipulated, it might be possible to slow, delay, or alleviate multiple age-related diseases and their complications by targeting conserved genetic signaling pathways, controlled functional networks, and basic biochemical processes. Indeed, findings in various mammalian species suggest that targeting fundamental aging mechanisms (eg, via either loss-of-function or gain-of-function mutations or administration of pharmacological therapies) can extend healthspan; ie, the healthy period of life free of chronic diseases. In this review, we summarize the evidence supporting the role of the spectrum of fundamental basic science discoveries contributing to organismal aging, with emphasis on mammalian studies and in particular aging mechanisms in bone that drive skeletal fragility. These mechanisms or aging hallmarks include: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. Because these mechanisms are linked, interventions that ameliorate one hallmark can in theory ameliorate others. In the field of bone and mineral research, current challenges include defining the relative contributions of each aging hallmark to the natural skeletal aging process, better understanding the complex interconnections among the hallmarks, and identifying the most effective therapeutic strategies to safely target multiple hallmarks. Based on their interconnections, it may be feasible to simultaneously interfere with several fundamental aging mechanisms to alleviate a wide spectrum of age-related chronic diseases, including osteoporosis. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joshua N Farr
- Division of Endocrinology and Metabolism and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
1478
|
Gurău F, Baldoni S, Prattichizzo F, Espinosa E, Amenta F, Procopio AD, Albertini MC, Bonafè M, Olivieri F. Anti-senescence compounds: A potential nutraceutical approach to healthy aging. Ageing Res Rev 2018; 46:14-31. [PMID: 29742452 DOI: 10.1016/j.arr.2018.05.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/02/2018] [Accepted: 05/03/2018] [Indexed: 01/10/2023]
Abstract
The desire of eternal youth seems to be as old as mankind. However, the increasing life expectancy experienced by populations in developed countries also involves a significantly increased incidence of the most common age-related diseases (ARDs). Senescent cells (SCs) have been identified as culprits of organismal aging. Their number rises with age and their senescence-associated secretory phenotype fuels the chronic, pro-inflammatory systemic state (inflammaging) that characterizes aging, impairing the regenerative ability of stem cells and increasing the risk of developing ARDs. A variegated class of molecules, including synthetic senolytic compounds and natural compounds contained in food, have been suggested to possess anti-senescence activity. Senolytics are attracting growing interest, and their safety and reliability as anti-senescence drugs are being assessed in human clinical trials. Notably, since SCs spread inflammation at the systemic level through pro-oxidant and pro-inflammatory signals, foods rich in polyphenols, which exert antioxidant and anti-inflammatory actions, have the potential to be harnessed as "anti-senescence foods" in a nutraceutical approach to healthier aging. We discuss the beneficial effects of polyphenol-rich foods in relation to the Mediterranean diet and the dietary habits of long-lived individuals, and examine their ability to modulate bacterial genera in the gut.
Collapse
Affiliation(s)
- Felicia Gurău
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Simone Baldoni
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy
| | | | - Emma Espinosa
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Amenta
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | | | - Massimiliano Bonafè
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Bologna, Italy; Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Forlì, Italy.
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy.
| |
Collapse
|
1479
|
Sun Y, Coppé JP, Lam EWF. Cellular Senescence: The Sought or the Unwanted? Trends Mol Med 2018; 24:871-885. [PMID: 30153969 DOI: 10.1016/j.molmed.2018.08.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a process that results in irreversible cell-cycle arrest, and is thought to be an autonomous tumor-suppressor mechanism. During senescence, cells develop distinctive metabolic and signaling features, together referred to as the senescence-associated secretory phenotype (SASP). The SASP is implicated in several aging-related pathologies, including various malignancies. Accumulating evidence argues that cellular senescence acts as a double-edged sword in human cancer, and new agents and innovative strategies to tackle senescent cells are in development pipelines to counter the adverse effects of cellular senescence in the clinic. We focus on recent discoveries in senescence research and SASP biology, and highlight the potential of SASP suppression and senescent cell clearance in advancing precision medicine.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Medicine and Veterans Affairs Puget Sound Health Care Systems (VAPSHCS), University of Washington, Seattle, WA 98195, USA.
| | - Jean-Philippe Coppé
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| |
Collapse
|
1480
|
Czerwińska J, Nowak M, Wojtczak P, Dziuban-Lech D, Cieśla JM, Kołata D, Gajewska B, Barańczyk-Kuźma A, Robinson AR, Shane HL, Gregg SQ, Rigatti LH, Yousefzadeh MJ, Gurkar AU, McGowan SJ, Kosicki K, Bednarek M, Zarakowska E, Gackowski D, Oliński R, Speina E, Niedernhofer LJ, Tudek B. ERCC1-deficient cells and mice are hypersensitive to lipid peroxidation. Free Radic Biol Med 2018; 124:79-96. [PMID: 29860127 PMCID: PMC6098728 DOI: 10.1016/j.freeradbiomed.2018.05.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/01/2023]
Abstract
Lipid peroxidation (LPO) products are relatively stable and abundant metabolites, which accumulate in tissues of mammals with aging, being able to modify all cellular nucleophiles, creating protein and DNA adducts including crosslinks. Here, we used cells and mice deficient in the ERCC1-XPF endonuclease required for nucleotide excision repair and the repair of DNA interstrand crosslinks to ask if specifically LPO-induced DNA damage contributes to loss of cell and tissue homeostasis. Ercc1-/- mouse embryonic fibroblasts were more sensitive than wild-type (WT) cells to the LPO products: 4-hydroxy-2-nonenal (HNE), crotonaldehyde and malondialdehyde. ERCC1-XPF hypomorphic mice were hypersensitive to CCl4 and a diet rich in polyunsaturated fatty acids, two potent inducers of endogenous LPO. To gain insight into the mechanism of how LPO influences DNA repair-deficient cells, we measured the impact of the major endogenous LPO product, HNE, on WT and Ercc1-/- cells. HNE inhibited proliferation, stimulated ROS and LPO formation, induced DNA base damage, strand breaks, error-prone translesion DNA synthesis and cellular senescence much more potently in Ercc1-/- cells than in DNA repair-competent control cells. HNE also deregulated base excision repair and energy production pathways. Our observations that ERCC1-deficient cells and mice are hypersensitive to LPO implicates LPO-induced DNA damage in contributing to cellular demise and tissue degeneration, notably even when the source of LPO is dietary polyunsaturated fats.
Collapse
Affiliation(s)
- Jolanta Czerwińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Małgorzata Nowak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Patrycja Wojtczak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Dorota Dziuban-Lech
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Jarosław M Cieśla
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Daria Kołata
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Beata Gajewska
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland.
| | | | - Andria R Robinson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Hillary L Shane
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Siobhán Q Gregg
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Lora H Rigatti
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Matthew J Yousefzadeh
- Department of Molecular Medicine, Center on Aging, The Scripps Research Institute, Jupiter, FL, USA.
| | - Aditi U Gurkar
- Department of Molecular Medicine, Center on Aging, The Scripps Research Institute, Jupiter, FL, USA.
| | - Sara J McGowan
- Department of Molecular Medicine, Center on Aging, The Scripps Research Institute, Jupiter, FL, USA.
| | - Konrad Kosicki
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Małgorzata Bednarek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland.
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland.
| | - Ryszard Oliński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland.
| | - Elżbieta Speina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Laura J Niedernhofer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Molecular Medicine, Center on Aging, The Scripps Research Institute, Jupiter, FL, USA.
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
1481
|
Myrianthopoulos V, Evangelou K, Vasileiou PVS, Cooks T, Vassilakopoulos TP, Pangalis GA, Kouloukoussa M, Kittas C, Georgakilas AG, Gorgoulis VG. Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther 2018; 193:31-49. [PMID: 30121319 DOI: 10.1016/j.pharmthera.2018.08.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a stress response mechanism ensuring homeostasis. Its temporal activation during embryonic development or normal adult life is linked with beneficial properties. In contrast, persistent (chronic) senescence seems to exert detrimental effects fostering aging and age-related disorders, such as cancer. Due to the lack of a reliable marker able to detect senescence in vivo, its precise impact in age-related diseases is to a large extent still undetermined. A novel reagent termed GL13 (SenTraGorTM) that we developed, allowing senescence recognition in any type of biological material, emerges as a powerful tool to study the phenomenon of senescence in vivo. Exploiting the advantages of this novel methodological approach, scientists will be able to detect and connect senescence with aggressive behavior in human malignancies, such as tolerance to chemotherapy in classical Hodgkin Lymphoma and Langerhans Cell Histiocytosis. The latter depicts the importance of developing the new and rapidly expanding field of senotherapeutic agents targeting and driving to cell death senescent cells. We discuss in detail the current progress of this exciting area of senotherapeutics and suggest its future perspectives and applications.
Collapse
Affiliation(s)
- Vassilios Myrianthopoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Division of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Greece; PharmaInformatics Unit, Athena Research Center, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Panagiotis V S Vasileiou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Theodoros P Vassilakopoulos
- Department of Haematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Myrsini Kouloukoussa
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Museum of Anthropology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Kittas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece.
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| |
Collapse
|
1482
|
Liu X, Wang Y, Zhang X, Gao Z, Zhang S, Shi P, Zhang X, Song L, Hendrickson H, Zhou D, Zheng G. Senolytic activity of piperlongumine analogues: Synthesis and biological evaluation. Bioorg Med Chem 2018; 26:3925-3938. [PMID: 29925484 PMCID: PMC6087492 DOI: 10.1016/j.bmc.2018.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023]
Abstract
Selective clearance of senescent cells (SCs) has emerged as a potential therapeutic approach for age-related diseases, as well as chemotherapy- and radiotherapy-induced adverse effects. Through a cell-based phenotypic screening approach, we recently identified piperlongumine (PL), a dietary natural product, as a novel senolytic agent, referring to small molecules that can selectively kill SCs over normal or non-senescent cells. In an effort to establish the structure-senolytic activity relationships of PL analogues, we performed a series of structural modifications on the trimethoxyphenyl and the α,β-unsaturated δ-valerolactam rings of PL. We show that modifications on the trimethoxyphenyl ring are well tolerated, while the Michael acceptor on the lactam ring is critical for the senolytic activity. Replacing the endocyclic C2-C3 olefin with an exocyclic methylene at C2 render PL analogues 47-49 with increased senolytic activity. These α-methylene containing analogues are also more potent than PL in inducing ROS production in WI-38 SCs. Similar to PL, 47-49 reduce the protein levels of oxidation resistance 1 (OXR1), an important oxidative stress response protein that regulates the expression of a variety of antioxidant enzymes, in cells. This study represents a useful starting point toward the discovery of senolytic agents for therapeutic uses.
Collapse
Affiliation(s)
- Xingui Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Yingying Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Xuan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Zhengya Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Suping Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Peizhong Shi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Xin Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Lin Song
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Howard Hendrickson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Daohong Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Guangrong Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
1483
|
Wang M, Monticone RE, McGraw KR. Proinflammatory Arterial Stiffness Syndrome: A Signature of Large Arterial Aging. J Vasc Res 2018; 55:210-223. [PMID: 30071538 PMCID: PMC6174095 DOI: 10.1159/000490244] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Age-associated structural and functional remodeling of the arterial wall produces a productive environment for the initiation and progression of hypertension and atherosclerosis. Chronic aging stress induces low-grade proinflammatory signaling and causes cellular proinflammation in arterial walls, which triggers the structural phenotypic shifts characterized by endothelial dysfunction, diffuse intimal-medial thickening, and arterial stiffening. Microscopically, aged arteries exhibit an increase in arterial cell senescence, proliferation, invasion, matrix deposition, elastin fragmentation, calcification, and amyloidosis. These characteristic cellular and matrix alterations not only develop with aging but can also be induced in young animals under experimental proinflammatory stimulation. Interestingly, these changes can also be attenuated in old animals by reducing low-grade inflammatory signaling. Thus, mitigating age-associated proinflammation and arterial phenotype shifts is a potential approach to retard arterial aging and prevent the epidemic of hypertension and atherosclerosis in the elderly.
Collapse
|
1484
|
Zhang X, Zhang S, Liu X, Wang Y, Chang J, Zhang X, Mackintosh SG, Tackett AJ, He Y, Lv D, Laberge RM, Campisi J, Wang J, Zheng G, Zhou D. Oxidation resistance 1 is a novel senolytic target. Aging Cell 2018; 17:e12780. [PMID: 29766639 PMCID: PMC6052462 DOI: 10.1111/acel.12780] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2018] [Indexed: 01/02/2023] Open
Abstract
The selective depletion of senescent cells (SCs) by small molecules, termed senolytic agents, is a promising therapeutic approach for treating age-related diseases and chemotherapy- and radiotherapy-induced side effects. Piperlongumine (PL) was recently identified as a novel senolytic agent. However, its mechanism of action and molecular targets in SCs was unknown and thus was investigated. Specifically, we used a PL-based chemical probe to pull-down PL-binding proteins from live cells and then mass spectrometry-based proteomic analysis to identify potential molecular targets of PL in SCs. One prominent target was oxidation resistance 1 (OXR1), an important antioxidant protein that regulates the expression of a variety of antioxidant enzymes. We found that OXR1 was upregulated in senescent human WI38 fibroblasts. PL bound to OXR1 directly and induced its degradation through the ubiquitin-proteasome system in an SC-specific manner. The knockdown of OXR1 expression by RNA interference significantly increased the production of reactive oxygen species in SCs in conjunction with the downregulation of antioxidant enzymes such as heme oxygenase 1, glutathione peroxidase 2, and catalase, but these effects were much less significant when OXR1 was knocked down in non-SCs. More importantly, knocking down OXR1 selectively induced apoptosis in SCs and sensitized the cells to oxidative stress caused by hydrogen peroxide. These findings provide new insights into the mechanism by which SCs are highly resistant to oxidative stress and suggest that OXR1 is a novel senolytic target that can be further exploited for the development of new senolytic agents.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | - Suping Zhang
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
- Hematology Center of Cyrus Tang Medical Institute; Collaborative Innovation Center of Hematology; Soochow University School of Medicine; Suzhou China
| | - Xingui Liu
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | - Yingying Wang
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | - Jianhui Chang
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | - Xuan Zhang
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology; College of Medicine; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology; College of Medicine; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | - Yonghan He
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | - Dongwen Lv
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
| | | | - Judith Campisi
- The Buck Institute for Research on Aging; Novato California
- Lawrence Berkeley National Laboratories; Berkeley California
| | - Jianrong Wang
- Hematology Center of Cyrus Tang Medical Institute; Collaborative Innovation Center of Hematology; Soochow University School of Medicine; Suzhou China
| | - Guangrong Zheng
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
- Department of Medicinal Chemistry; College of Pharmacy; University of Florida; Gainesville Florida
| | - Daohong Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas
- Department of Pharmcodynamics; College of Pharmacy; University of Florida; Gainesville Florida
| |
Collapse
|
1485
|
Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, Inman CL, Ogrodnik MB, Hachfeld CM, Fraser DG, Onken JL, Johnson KO, Verzosa GC, Langhi LGP, Weigl M, Giorgadze N, LeBrasseur NK, Miller JD, Jurk D, Singh RJ, Allison DB, Ejima K, Hubbard GB, Ikeno Y, Cubro H, Garovic VD, Hou X, Weroha SJ, Robbins PD, Niedernhofer LJ, Khosla S, Tchkonia T, Kirkland JL. Senolytics improve physical function and increase lifespan in old age. Nat Med 2018; 24:1246-1256. [PMID: 29988130 PMCID: PMC6082705 DOI: 10.1038/s41591-018-0092-9] [Citation(s) in RCA: 1466] [Impact Index Per Article: 209.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/09/2018] [Indexed: 12/18/2022]
Abstract
Physical function declines in old age, portending disability, increased health expenditures, and mortality. Cellular senescence, leading to tissue dysfunction, may contribute to these consequences of aging, but whether senescence can directly drive age-related pathology and be therapeutically targeted is still unclear. Here we demonstrate that transplanting relatively small numbers of senescent cells into young mice is sufficient to cause persistent physical dysfunction, as well as to spread cellular senescence to host tissues. Transplanting even fewer senescent cells had the same effect in older recipients and was accompanied by reduced survival, indicating the potency of senescent cells in shortening health- and lifespan. The senolytic cocktail, dasatinib plus quercetin, which causes selective elimination of senescent cells, decreased the number of naturally occurring senescent cells and their secretion of frailty-related proinflammatory cytokines in explants of human adipose tissue. Moreover, intermittent oral administration of senolytics to both senescent cell-transplanted young mice and naturally aged mice alleviated physical dysfunction and increased post-treatment survival by 36% while reducing mortality hazard to 65%. Our study provides proof-of-concept evidence that senescent cells can cause physical dysfunction and decreased survival even in young mice, while senolytics can enhance remaining health- and lifespan in old mice.
Collapse
Affiliation(s)
- Ming Xu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
- University of Connecticut Center on Aging, University of Connecticut Health, Farmington, CT, USA.
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Joshua N Farr
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Bettina M Weigand
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Megan M Weivoda
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Christina L Inman
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Mikolaj B Ogrodnik
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Daniel G Fraser
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Jennifer L Onken
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Kurt O Johnson
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Grace C Verzosa
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Larissa G P Langhi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Moritz Weigl
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | | | - Jordan D Miller
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Diana Jurk
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ravinder J Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David B Allison
- Department of Epidemiology & Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN, USA
- Nathan Shock Center on Comparative Energetics and Aging, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Keisuke Ejima
- Department of Epidemiology & Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN, USA
- Nathan Shock Center on Comparative Energetics and Aging, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gene B Hubbard
- Barshop Institute for Longevity and Aging Studies and Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies and Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Geriatric Research Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | - Hajrunisa Cubro
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - S John Weroha
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Paul D Robbins
- Department of Molecular Medicine, Center on Aging, Scripps Research Institute, Jupiter, FL, USA
| | - Laura J Niedernhofer
- Department of Molecular Medicine, Center on Aging, Scripps Research Institute, Jupiter, FL, USA
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
1486
|
Sapieha P, Mallette FA. Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest. Trends Cell Biol 2018; 28:595-607. [DOI: 10.1016/j.tcb.2018.03.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
|
1487
|
Tachikart Y, Malaise O, Constantinides M, Jorgensen C, Brondello JM. Cibler les cellules sénescentes. Med Sci (Paris) 2018; 34:547-553. [DOI: 10.1051/medsci/20183406014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Avec le vieillissement des populations, nos sociétés doivent faire face à l’émergence d’un nombre exponentiel de patients atteints de maladies chroniques dégénératives liées à l’âge, telles que l’arthrose ou l’ostéoporose. Le « mieux » vieillir sera ainsi au centre des prochains défis médicaux par un maintien de l’autonomie des sujets âgés et une réduction des coûts des services de santé. Au cours des 5 dernières années, en se fondant sur des modèles murins innovants ou des études in vitro, de nombreuses équipes ont démontré que plusieurs pathologies dégénératives liées à l’âge avaient en commun une accumulation délétère de cellules dites sénescentes. Sous le concept de sénolyse, il a ainsi été proposé d’éliminer pharmacologiquement ces cellules afin de retarder l’émergence de ces pathologies chroniques du sujet âgé. Nous nous proposons ici de faire le point sur les stratégies récemment mises en place, permettant l’identification de composés sénolytiques, ainsi que de définir leurs utilisations thérapeutiques comme traitement de l’arthrose et de l’ostéoporose.
Collapse
|
1488
|
Mialet-Perez J, Santin Y, Parini A. Monoamine oxidase-A, serotonin and norepinephrine: synergistic players in cardiac physiology and pathology. J Neural Transm (Vienna) 2018; 125:1627-1634. [DOI: 10.1007/s00702-018-1908-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
1489
|
Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD. Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle 2018; 17:1048-1055. [PMID: 29886783 DOI: 10.1080/15384101.2018.1475828] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aging is characterized by progressive decay of biological systems and although it is not considered a disease, it is one of the main risk factors for chronic diseases and many types of cancers. The accumulation of senescent cells in various tissues is thought to be a major factor contributing to aging and age-related diseases. Removal of senescent cells during aging by either genetic or therapeutic methods have led to an improvement of several age related disease in mice. In this preview, we highlight the significance of developing senotherapeutic approaches to specifically kill senescent cells (senolytics) or suppress the senescence-associated secretory phenotype (SASP) that drives sterile inflammation (senomorphics) associated with aging to extend healthspan and potentially lifespan. Also, we provide an overview of the senotherapeutic drugs identified to date. In particular, we discuss and expand upon the recent identification of inhibitors of the HSP90 co-chaperone as a new class of senolytics.
Collapse
Affiliation(s)
- Heike Fuhrmann-Stroissnigg
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| | - Laura J Niedernhofer
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| | - Paul D Robbins
- a Department of Molecular Medicine and The Center on Aging , The Scripps Research Institute , Jupiter , FL , USA
| |
Collapse
|
1490
|
The Role of Na/K-ATPase Signaling in Oxidative Stress Related to Aging: Implications in Obesity and Cardiovascular Disease. Int J Mol Sci 2018; 19:ijms19072139. [PMID: 30041449 PMCID: PMC6073138 DOI: 10.3390/ijms19072139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022] Open
Abstract
Aging has been associated with a series of pathophysiological processes causing general decline in the overall health of the afflicted population. The cumulative line of evidence suggests an important role of oxidative stress in the development and progression of the aging process and metabolic abnormalities, exacerbating adipocyte dysfunction, cardiovascular diseases, and associated complications at the same time. In recent years, robust have established the implication of Na/K-ATPase signaling in causing oxidative stress and alterations in cellular mechanisms, in addition to its distinct pumping function. Understanding the underlying molecular mechanisms and exploring the possible sources of pro-oxidants may allow for developing therapeutic targets in these processes and formulate novel intervention strategies for patients susceptible to aging and associated complications, such as obesity and cardiovascular disease. The attenuation of oxidative stress with targeted treatment options can improve patient outcomes and significantly reduce economic burden.
Collapse
|
1491
|
Nath KA, O'Brien DR, Croatt AJ, Grande JP, Ackerman AW, Nath MC, Yamada S, Terzic A, Tchkonia T, Kirkland JL, Katusic ZS. The murine dialysis fistula model exhibits a senescence phenotype: pathobiological mechanisms and therapeutic potential. Am J Physiol Renal Physiol 2018; 315:F1493-F1499. [PMID: 30019935 DOI: 10.1152/ajprenal.00308.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is no therapy that promotes maturation and functionality of a dialysis arteriovenous fistula (AVF). The search for such therapies largely relies on evaluation of vascular responses and putative therapies in experimental AVFs. We studied an AVF in mice with chronic kidney disease (CKD). We demonstrate numerous stressors in the vein of the AVF-CKD group, including pathological shear, mitogenic, inflammatory, and hypoxia-reoxygenation stress. Because stress promotes premature senescence, we examined whether senescence is induced in the vein of the AVF-CKD model. We demonstrate a senescence phenotype in the AVF-CKD model, as indicated by increased expression of p16Ink4a, p21Cip1, and p53 and expected changes for certain senescence-associated microRNAs. RNA-sequencing analysis demonstrated differential expression of ~10,000 genes, including upregulation of proinflammatory and proliferative genes, in the vein of the AVF-CKD group. The vein in the AVF-CKD group exhibited telomere erosion and increased senescence-associated β-galactosidase activity and staining. Senescence was induced in the artery of the AVF-CKD group and in the vein of the AVF without CKD. Finally, given the rapidly rising clinical interest in senolytics, we provide proof of concept of senolytics as a therapeutic approach by demonstrating that senolytics decrease p16Ink4a expression in the AVF-CKD model. This study introduces a novel concept underlying the basis for maturational and functional failure in human dialysis AVFs and identifies a new target for senolytic therapy.
Collapse
Affiliation(s)
- Karl A Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic , Rochester, Minnesota
| | - Daniel R O'Brien
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic , Rochester, Minnesota
| | - Anthony J Croatt
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic , Rochester, Minnesota
| | - Joseph P Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, Minnesota
| | - Allan W Ackerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic , Rochester, Minnesota
| | - Meryl C Nath
- Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, Minnesota
| | - Satsuki Yamada
- Department of Cardiovascular Medicine, Mayo Clinic , Rochester, Minnesota.,Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic , Rochester, Minnesota.,Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
1492
|
Clarke G, Harley P, Hubber EL, Manea T, Manuelli L, Read E, Watt FM. Bench to bedside: Current advances in regenerative medicine. Curr Opin Cell Biol 2018; 55:59-66. [PMID: 30007127 DOI: 10.1016/j.ceb.2018.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 02/07/2023]
Abstract
Regenerative medicine is a diverse and rapidly evolving field, employing core expertise from biologists, engineers, and clinicians. Recently the field has made significant progress towards regenerating or replacing tissues lost to age, disease or injury. Current strategies include transplantation of adult or pluripotent stem cells to replace tissue or support tissue healing. Promising approaches for the future of regenerative medicine include stimulating endogenous stem cells for in situ repair, transplantation of organoids to repair minor tissue injury, and the use of interspecies chimerism to produce functional metabolic organs for transplantation. In our review we focus on these emerging strategies, paying particular attention to their current and prospective translational impacts and challenges.
Collapse
Affiliation(s)
- Gabriella Clarke
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28. Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Peter Harley
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28. Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Ella-Louise Hubber
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28. Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Teodora Manea
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28. Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Luigi Manuelli
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28. Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Emily Read
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28. Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28. Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
1493
|
Harper EI, Sheedy EF, Stack MS. With Great Age Comes Great Metastatic Ability: Ovarian Cancer and the Appeal of the Aging Peritoneal Microenvironment. Cancers (Basel) 2018; 10:E230. [PMID: 29996539 PMCID: PMC6070816 DOI: 10.3390/cancers10070230] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
Age is one of the biggest risk factors for ovarian cancer. Older women have higher rates of diagnosis and death associated with the disease. In mouse models, it was shown that aged mice had greater tumor burden than their younger counterparts when intraperitoneally injected with ovarian tumor cells. While very few papers have been published looking at the direct link between ovarian cancer metastasis and age, there is a wealth of information on how age affects metastatic microenvironments. Mesothelial cells, the peritoneal extracellular matrix (ECM), fibroblasts, adipocytes and immune cells all exhibit distinct changes with age. The aged peritoneum hosts a higher number of senescent cells than its younger counterpart, in both the mesothelium and the stroma. These senescent cells promote an inflammatory profile and overexpress Matrix Metalloproteinases (MMPs), which remodel the ECM. The aged ECM is also modified by dysregulated collagen and laminin synthesis, increases in age-related crosslinking and increasing ovarian cancer invasion into the matrix. These changes contribute to a vastly different microenvironment in young and aged models for circulating ovarian cancer cells, creating a more welcoming “soil”.
Collapse
Affiliation(s)
- Elizabeth I Harper
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46617, USA.
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
- Integrated Biomedical Sciences Program, University of Notre Dame, South Bend, IN 46617, USA.
| | - Emma F Sheedy
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
- Department of Mathematics, University of Notre Dame, South Bend, IN 46617, USA.
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46617, USA.
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
| |
Collapse
|
1494
|
Alique M, Ramírez-Carracedo R, Bodega G, Carracedo J, Ramírez R. Senescent Microvesicles: A Novel Advance in Molecular Mechanisms of Atherosclerotic Calcification. Int J Mol Sci 2018; 19:E2003. [PMID: 29987251 PMCID: PMC6073566 DOI: 10.3390/ijms19072003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease that causes the most heart attacks and strokes in humans, is the leading cause of death in the developing world; its principal clinical manifestation is coronary artery disease. The development of atherosclerosis is attributed to the aging process itself (biological aging) and is also associated with the development of chronic diseases (premature aging). Both aging processes produce an increase in risk factors such as oxidative stress, endothelial dysfunction and proinflammatory cytokines (oxi-inflamm-aging) that might generate endothelial senescence associated with damage in the vascular system. Cellular senescence increases microvesicle release as carriers of molecular information, which contributes to the development and calcification of atherosclerotic plaque, as a final step in advanced atherosclerotic plaque formation. Consequently, this review aims to summarize the information gleaned to date from studies investigating how the senescent extracellular vesicles, by delivering biological signalling, contribute to atherosclerotic calcification.
Collapse
Affiliation(s)
- Matilde Alique
- Biology Systems Department, Physiology, Alcala University, Alcala de Henares, 28805 Madrid, Spain.
| | - Rafael Ramírez-Carracedo
- Cardiovascular Joint Research Unit, University Francisco de Vitoria/University Hospital Ramon y Cajal Research Unit (IRYCIS), 28223 Madrid, Spain.
| | - Guillermo Bodega
- Biomedicine and Biotechnology Department, Alcala University, Alcala de Henares, 28805 Madrid, Spain.
| | - Julia Carracedo
- Department of Genetic, Physiology and Microbiology, Faculty of Biology, Complutense University/Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - Rafael Ramírez
- Biology Systems Department, Physiology, Alcala University, Alcala de Henares, 28805 Madrid, Spain.
| |
Collapse
|
1495
|
|
1496
|
Cazzola M, Matera MG, Rogliani P, Calzetta L. Senolytic drugs in respiratory medicine: is it an appropriate therapeutic approach? Expert Opin Investig Drugs 2018; 27:573-581. [DOI: 10.1080/13543784.2018.1492548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Maria Gakriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Luigino Calzetta
- Chair of Respiratory Medicine, Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
1497
|
Golemis EA, Scheet P, Beck TN, Scolnick EM, Hunter DJ, Hawk E, Hopkins N. Molecular mechanisms of the preventable causes of cancer in the United States. Genes Dev 2018; 32:868-902. [PMID: 29945886 PMCID: PMC6075032 DOI: 10.1101/gad.314849.118] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Annually, there are 1.6 million new cases of cancer and nearly 600,000 cancer deaths in the United States alone. The public health burden associated with these numbers has motivated enormous research efforts into understanding the root causes of cancer. These efforts have led to the recognition that between 40% and 45% of cancers are associated with preventable risk factors and, importantly, have identified specific molecular mechanisms by which these exposures modify human physiology to induce or promote cancer. The increasingly refined knowledge of these mechanisms, which we summarize here, emphasizes the need for greater efforts toward primary cancer prevention through mitigation of modifiable risk factors. It also suggests exploitable avenues for improved secondary prevention (which includes the development of therapeutics designed for cancer interception and enhanced techniques for noninvasive screening and early detection) based on detailed knowledge of early neoplastic pathobiology. Such efforts would complement the current emphasis on the development of therapeutic approaches to treat established cancers and are likely to result in far greater gains in reducing morbidity and mortality.
Collapse
Affiliation(s)
- Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Paul Scheet
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tim N Beck
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Molecular and Cell Biology and Genetics Program, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | - Eward M Scolnick
- Eli and Edythe L. Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Medical Sciences Division, Oxford OX3 7LF, United Kingdom
| | - Ernest Hawk
- Division of Cancer Prevention and Population Sciences, University of Texas M.D. Anderson Cancer Center, Houston Texas 77030, USA
| | - Nancy Hopkins
- Koch Institute for Integrative Cancer Research, Biology Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
1498
|
Robinson AR, Yousefzadeh MJ, Rozgaja TA, Wang J, Li X, Tilstra JS, Feldman CH, Gregg SQ, Johnson CH, Skoda EM, Frantz MC, Bell-Temin H, Pope-Varsalona H, Gurkar AU, Nasto LA, Robinson RAS, Fuhrmann-Stroissnigg H, Czerwinska J, McGowan SJ, Cantu-Medellin N, Harris JB, Maniar S, Ross MA, Trussoni CE, LaRusso NF, Cifuentes-Pagano E, Pagano PJ, Tudek B, Vo NV, Rigatti LH, Opresko PL, Stolz DB, Watkins SC, Burd CE, Croix CMS, Siuzdak G, Yates NA, Robbins PD, Wang Y, Wipf P, Kelley EE, Niedernhofer LJ. Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol 2018; 17:259-273. [PMID: 29747066 PMCID: PMC6006678 DOI: 10.1016/j.redox.2018.04.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 11/20/2022] Open
Abstract
Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/∆ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/∆ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/∆ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/∆ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/∆ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/∆ and aged WT mice. Chronic treatment of Ercc1-/∆ mice with the mitochondrial-targeted radical scavenger XJB-5-131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline.
Collapse
Affiliation(s)
- Andria R Robinson
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA; University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Matthew J Yousefzadeh
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Tania A Rozgaja
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jin Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Xuesen Li
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jeremy S Tilstra
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Chelsea H Feldman
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Siobhán Q Gregg
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Erin M Skoda
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Marie-Céline Frantz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Harris Bell-Temin
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Hannah Pope-Varsalona
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aditi U Gurkar
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Luigi A Nasto
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Paediatric Orthopaedics, G. Gaslini Children's Hospital, Genoa, Italy
| | - Renã A S Robinson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Heike Fuhrmann-Stroissnigg
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jolanta Czerwinska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Sara J McGowan
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Jamie B Harris
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Salony Maniar
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mark A Ross
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Christy E Trussoni
- Division of Gastroenterology and Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Nam V Vo
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lora H Rigatti
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Patricia L Opresko
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Simon C Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Christin E Burd
- Department of Molecular Genetics, Cancer Biology and Genetics, The Ohio State University, Columbus OH 43210 USA
| | - Claudette M St Croix
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gary Siuzdak
- The Scripps Research Institute California, La Jolla, CA 92037, USA
| | - Nathan A Yates
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Biomedical Mass Spectrometry Center, Schools of the Health Sciences University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Paul D Robbins
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Eric E Kelley
- Department of Physiology & Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| | - Laura J Niedernhofer
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
1499
|
Nguyen HQ, To NH, Zadigue P, Kerbrat S, De La Taille A, Le Gouvello S, Belkacemi Y. Ionizing radiation-induced cellular senescence promotes tissue fibrosis after radiotherapy. A review. Crit Rev Oncol Hematol 2018; 129:13-26. [PMID: 30097231 DOI: 10.1016/j.critrevonc.2018.06.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation-exposure induces a variety of cellular reactions, such as senescence and apoptosis. Senescence is a permanent arrest state of the cell division, which can be beneficial or detrimental for normal tissue via an inflammatory response and senescence-associated secretion phenotype. Damage to healthy cells and their microenvironment is considered as an important source of early and late complications with an increased risk of morbidity in patients after radiotherapy (RT). In addition, the benefit/risk ratio may depend on the radiation technique/dose used for cancer eradication and the irradiated volume of healthy tissues. For radiation-induced fibrosis risk, the knowledge of mechanisms and potential prevention has become a crucial point to determining radiation parameters and patients' intrinsic radiosensitivity. This review summarizes our understanding of ionizing radiation-induced senescent cell in fibrogenesis. This mechanism may provide new insights for therapeutic modalities for better risk/benefit ratios after RT in the new era of personalized treatments.
Collapse
Affiliation(s)
- Hoang Quy Nguyen
- University of Paris Saclay, University of Paris Est Créteil (UPEC), France, University of Medicine and Pharmacy, Ho Chi Minh City, Viet Nam; INSERM U955 Team 07, Créteil, France
| | - Nhu Hanh To
- INSERM U955 Team 07, Créteil, France; APHP, Department of Radiation Oncology and Henri Mondor Breast Cancer and, Henri Mondor University Hospital, University of Paris Est Créteil (UPEC), France
| | | | - Stéphane Kerbrat
- INSERM U955 Team 04, University of Paris Est Créteil (UPEC), France
| | - Alexandre De La Taille
- INSERM U955 Team 07, Créteil, France; APHP, Department of Urology, Henri Mondor University Hospital, University of Paris Est Créteil (UPEC), Créteil, France
| | - Sabine Le Gouvello
- INSERM U955 Team 04, University of Paris Est Créteil (UPEC), France; APHP, Department of Biology & Pathology, Henri Mondor University Hospital, University of Paris Est Créteil (UPEC), Créteil, France
| | - Yazid Belkacemi
- INSERM U955 Team 07, Créteil, France; APHP, Department of Radiation Oncology and Henri Mondor Breast Cancer and, Henri Mondor University Hospital, University of Paris Est Créteil (UPEC), France.
| |
Collapse
|
1500
|
Abstract
PURPOSE OF REVIEW Age is a key risk factor for the development of osteoarthritis and age-related changes within the joint might represent targets for therapy. The recent literature was reviewed to find studies that provide new insight into the role of aging in osteoarthritis, with a focus on the potential for disease modification. RECENT FINDINGS Preclinical studies using isolated cells and animal models provide evidence that two hallmarks of aging (cellular senescence and mitochondrial dysfunction) contribute to the development of osteoarthritis. Senescent cells secrete pro-inflammatory mediators and matrix degrading enzymes, and killing these cells with 'senolytic' compounds has emerged as a potential disease-modifying therapy. Mitochondrial dysfunction is associated with increased levels of reactive oxygen species (ROS) that can promote osteoarthritis by disrupting homeostatic intracellular signaling. Reducing ROS production in the mitochondria, stimulating antioxidant gene expression through Nrf2 activation, or inhibiting specific redox-sensitive signaling proteins represent additional approaches to disease modification in osteoarthritis that require further investigation. SUMMARY Although no human clinical trials for osteoarthritis have specifically targeted aging, preclinical studies suggest that targeting cellular senescence and/or mitochondrial dysfunction and the effects of excessive ROS may lead to novel interventions that could slow the progression of osteoarthritis.
Collapse
|