1601
|
Hamer HM, De Preter V, Windey K, Verbeke K. Functional analysis of colonic bacterial metabolism: relevant to health? Am J Physiol Gastrointest Liver Physiol 2012; 302:G1-9. [PMID: 22016433 PMCID: PMC3345969 DOI: 10.1152/ajpgi.00048.2011] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With the use of molecular techniques, numerous studies have evaluated the composition of the intestinal microbiota in health and disease. However, it is of major interest to supplement this with a functional analysis of the microbiota. In this review, the different approaches that have been used to characterize microbial metabolites, yielding information on the functional end products of microbial metabolism, have been summarized. To analyze colonic microbial metabolites, the most conventional way is by application of a hypothesis-driven targeted approach, through quantification of selected metabolites from carbohydrate (e.g., short-chain fatty acids) and protein fermentation (e.g., p-cresol, phenol, ammonia, or H(2)S), secondary bile acids, or colonic enzymes. The application of stable isotope-labeled substrates can provide an elegant solution to study these metabolic pathways in vivo. On the other hand, a top-down approach can be followed by applying metabolite fingerprinting techniques based on (1)H-NMR or mass spectrometric analysis. Quantification of known metabolites and characterization of metabolite patterns in urine, breath, plasma, and fecal samples can reveal new pathways and give insight into physiological regulatory processes of the colonic microbiota. In addition, specific metabolic profiles can function as a diagnostic tool for the identification of several gastrointestinal diseases, such as ulcerative colitis and Crohn's disease. Nevertheless, future research will have to evaluate the relevance of associations between metabolites and different disease states.
Collapse
Affiliation(s)
- Henrike M. Hamer
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Research Center, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Vicky De Preter
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Research Center, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Karen Windey
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Research Center, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Research Center, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
1602
|
Wang A, Si H, Liu D, Jiang H. Butyrate activates the cAMP-protein kinase A-cAMP response element-binding protein signaling pathway in Caco-2 cells. J Nutr 2012; 142:1-6. [PMID: 22113869 PMCID: PMC6498458 DOI: 10.3945/jn.111.148155] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Butyrate is a major SCFA produced by microbial fermentation of dietary fiber in the gastrointestinal tract. Butyrate is widely thought to mediate the benefits of fiber and resistant starch consumption to colon health in humans. Besides serving as a substrate for energy production, butyrate has many regulatory effects in animals. Little is known about the signaling mechanisms underlying the regulatory effects of butyrate and other SCFA. In this study, we determined whether butyrate can activate cAMP-protein kinase A (PKA)- cAMP response element (CRE)-binding protein (CREB) signaling in Caco-2 cells, a model of intestinal epithelial cells. Butyrate promoted luciferase expression from a CRE-reporter construct, induced phosphorylation of CREB, increased the activity of PKA, and elevated the levels of cAMP in Caco-2 cells. These data suggest that butyrate activates cAMP-PKA-CREB signaling in Caco-2 cells. Butyrate, however, had no effect on the activities of adenylyl cyclase (AC) and phosphodiesterase (PDE), two enzymes that determine the production and degradation of intracellular cAMP, respectively. Because the activities of AC and PDE are primarily regulated by G protein-coupled receptor (GPR)-mediated intracellular signaling, lack of an effect of butyrate on these two enzymes suggests that butyrate does not activate cAMP-PKA-CREB signaling through GPR. Butyrate-treated Caco-2 cells had greater concentrations of ATP than untreated cells. Because ATP is the substrate for cAMP production, this difference suggests that butyrate may activate cAMP-PKA-CREB signaling in Caco-2 cells through increased ATP production. Overall, this study raises the possibility that some of the regulatory effects of butyrate in animals, including those on the colonocytes, may be mediated by the cAMP-PKA-CREB signaling pathway at the cellular level.
Collapse
Affiliation(s)
- Aihua Wang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| | - Hongwei Si
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1603
|
|
1604
|
Chassaing B, Aitken JD, Gewirtz AT, Vijay-Kumar M. Gut microbiota drives metabolic disease in immunologically altered mice. Adv Immunol 2012; 116:93-112. [PMID: 23063074 DOI: 10.1016/b978-0-12-394300-2.00003-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian intestine harbors trillions of microbes collectively known as the microbiota, which can be viewed as an anaerobic metabolic organ that benefits the host in a number of ways. The homeostasis of this large microbial biomass is a prerequisite to maintaining host health by maximizing symbiotic interrelations and minimizing the risk of living in a close relationship. The cooperation between the innate and adaptive immune systems of the host maintains homeostasis of the microbiota. The dysregulation/alteration of microbiota in various immunodeficiency states including both innate and adaptive deficiency results in metabolic disease. This review examines the influence of microbiota on host metabolic health in immunologically altered mice. Accumulated data from a variety of immune-deficient murine models indicate that altered microbiota can play a key role in origination of metabolic diseases through the following potential mechanisms: (i) increasing calorie extraction resulting in adiposity, (ii) inducing low-grade chronic inflammation in the gut directly or increasing systemic loads of microbial ligands via leaky guts, (iii) generating toxic metabolites from dietary components, and (iv) inducing a switch from pro-metabolic to pro-immune phenotype that drives malabsorption of lipids resulting in muscle wastage and weight loss-particularly upon states of adaptive immune deficiency. Further, these murine models demonstrate that altered microbiota is not purely a consequence of metabolic disease but plays a key role in driving this disorder.
Collapse
Affiliation(s)
- Benoit Chassaing
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
1605
|
Zhang M, Qiao X, Zhao L, Jiang L, Ren F. Lactobacillus salivarius REN counteracted unfavorable 4-nitroquinoline-1-oxide-induced changes in colonic microflora of rats. J Microbiol 2011; 49:877-83. [DOI: 10.1007/s12275-011-1137-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/20/2011] [Indexed: 01/07/2023]
|
1606
|
Zhang WH, Gao F, Zhu QF, Li C, Jiang Y, Dai SF, Zhou GH. Dietary sodium butyrate alleviates the oxidative stress induced by corticosterone exposure and improves meat quality in broiler chickens. Poult Sci 2011; 90:2592-9. [PMID: 22010246 DOI: 10.3382/ps.2011-01446] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The present study was to investigate the effects of dietary microencapsulated sodium butyrate (SB) and acute pre-slaughter stress, mimicked by subcutaneous corticosterone (CORT) administration, on BW, carcass characteristics, muscle antioxidant status, and meat quality of broiler chickens. A total of 120 1-d-old broiler chickens were fed a control diet (without SB) or a 0.4-g microencapsulated SB/kg diet. On 42 d, half of the birds from each treatment were given 1 single subcutaneous injection of CORT (4 mg/kg of BW in corn oil) to mimic acute stress, whereas the other half were injected with the same amount of corn oil (sham control). Three hours later, BW loss was determined and breast meat samples were collected. The results showed that the BW of the CORT-challenged groups lost much more than the sham control group (P < 0.001), whereas it was alleviated by the dietary microencapsulated SB (P < 0.05). Meanwhile, the catalase activity was decreased and malondialdehyde level was increased by the stress (P < 0.05), and the microencapsulated-SB diet significantly inhibited this effect (P < 0.05). Lower pH values and higher yellowness values were also observed in CORT-challenged chickens (P < 0.05), and the microencapsulated-SB diet treatment partially exerted a preventive effect. Microencapsulated SB significantly decreased the contents of saturated fatty acids and C18:0 (P < 0.01 and P < 0.001), and increased C20:0 and C20:4 contents. However, the effect of the stress treatment on fatty acid composition was insignificant (P > 0.05). In addition, diet and stress did not significantly influence carcass characteristics and the chemical composition of breast meat (P > 0.05). These results suggest that microencapsulated SB was favorable for chickens in the presence of stress, which may be partially ascribed to the ability of SB to decrease catabolism and oxidative injury of tissues.
Collapse
Affiliation(s)
- W H Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
1607
|
Abstract
It is proven that nuts contain essential macro- and micronutrients, e.g. fatty acids, vitamins and dietary fibre (DF). Fermentation of DF by the gut microflora results in the formation of SCFA which are recognised for their chemopreventive potential, especially by influencing cell growth. However, little is known about cellular response to complex fermentation samples of nuts. Therefore, we prepared and analysed (pH, SCFA, bile acids, tocopherol, antioxidant capacity) fermentation supernatant (fs) fractions of nuts (almonds, macadamias, hazelnuts, pistachios, walnuts) after in vitro fermentation and determined their effects on growth of HT29 cells as well as their genotoxic/anti-genotoxic potential. The fermented nut samples contained 2- to 3-fold higher amounts of SCFA than the faeces control, but considerable reduced levels of bile acids. While most of the investigated native nuts comprised relatively high amounts of tocopherol (α-tocopherol in almonds and hazelnuts and γ- and δ-tocopherol in pistachios and walnuts), rather low concentrations were found in the fs. All nut extracts and nut fs showed a strong antioxidant potential. Furthermore, all fs, except the fs pistachio, reduced growth of HT29 cells significantly. DNA damage induced by H₂O₂ was significantly reduced by the fs of walnuts after 15 min co-incubation of HT29 cells. In conclusion, this is the first study which presents the chemopreventive effects (reduction of tumour-promoting desoxycholic acid, rise in chemopreventive SCFA, protection against oxidative stress) of different nuts after in vitro digestion and fermentation, and shows the potential importance of nuts in the prevention of colon cancer.
Collapse
|
1608
|
Beta glucan: health benefits in obesity and metabolic syndrome. J Nutr Metab 2011; 2012:851362. [PMID: 22187640 PMCID: PMC3236515 DOI: 10.1155/2012/851362] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/27/2011] [Indexed: 12/27/2022] Open
Abstract
Despite the lack of international agreement regarding the definition and classification of fiber, there is established evidence on the role of dietary fibers in obesity and metabolic syndrome. Beta glucan (β-glucan) is a soluble fiber readily available from oat and barley grains that has been gaining interest due to its multiple functional and bioactive properties. Its beneficial role in insulin resistance, dyslipidemia, hypertension, and obesity is being continuously documented. The fermentability of β-glucans and their ability to form highly viscous solutions in the human gut may constitute the basis of their health benefits. Consequently, the applicability of β-glucan as a food ingredient is being widely considered with the dual purposes of increasing the fiber content of food products and enhancing their health properties. Therefore, this paper explores the role of β-glucans in the prevention and treatment of characteristics of the metabolic syndrome, their underlying mechanisms of action, and their potential in food applications.
Collapse
|
1609
|
Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res 2011; 56:184-96. [PMID: 22121108 DOI: 10.1002/mnfr.201100542] [Citation(s) in RCA: 424] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/03/2011] [Accepted: 10/19/2011] [Indexed: 01/05/2023]
Abstract
It is generally accepted that carbohydrate fermentation results in beneficial effects for the host because of the generation of short chain fatty acids, whereas protein fermentation is considered detrimental for the host's health. Protein fermentation mainly occurs in the distal colon, when carbohydrates get depleted and results in the production of potentially toxic metabolites such as ammonia, amines, phenols and sulfides. However, the effectivity of these metabolites has been established mainly in in vitro studies. In addition, some important bowel diseases such as colorectal cancer (CRC) and ulcerative colitis appear most often in the distal colon, which is the primary site of protein fermentation. Finally, epidemiological studies revealed that diets rich in meat are associated with the prevalence of CRC, as is the case in Western society. Importantly, meat intake not only increases fermentation of proteins but also induces increased intake of fat, heme and heterocyclic amines, which may also play a role in the development of CRC. Despite these indications, the relationship between gut health and protein fermentation has not been thoroughly investigated. In this review, the existing evidence about the potential toxicity of protein fermentation from in vitro animal and human studies will be summarized.
Collapse
Affiliation(s)
- Karen Windey
- Translational Research Center for Gastrointestinal Disorders, Leuven Food Science and Nutrition Research Centre, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
1610
|
Impact of polydextrose on the faecal microbiota: a double-blind, crossover, placebo-controlled feeding study in healthy human subjects. Br J Nutr 2011; 108:471-81. [PMID: 22099384 DOI: 10.1017/s0007114511005782] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this placebo-controlled, double-blind, crossover human feeding study, the effects of polydextrose (PDX; 8 g/d) on the colonic microbial composition, immune parameters, bowel habits and quality of life were investigated. PDX is a complex glucose oligomer used as a sugar replacer. The main goal of the present study was to identify the microbial groups affected by PDX fermentation in the colon. PDX was shown to significantly increase the known butyrate producer Ruminococcus intestinalis and bacteria of the Clostridium clusters I, II and IV. Of the other microbial groups investigated, decreases in the faecal Lactobacillus-Enterococcus group were demonstrated. Denaturing gel gradient electrophoresis analysis showed that bacterial profiles between PDX and placebo treatments were significantly different. PDX was shown to be slowly degraded in the colon, and the fermentation significantly reduced the genotoxicity of the faecal water. PDX also affected bowel habits of the subjects, as less abdominal discomfort was recorded and there was a trend for less hard and more formed stools during PDX consumption. Furthermore, reduced snacking was observed upon PDX consumption. This study demonstrated the impact of PDX on the colonic microbiota and showed some potential for reducing the risk factors that may be associated with colon cancer initiation.
Collapse
|
1611
|
Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol 2011; 78:420-8. [PMID: 22101049 DOI: 10.1128/aem.06858-11] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Faecalibacterium prausnitzii is one of the most abundant commensal bacteria in the healthy human large intestine, but information on genetic diversity and substrate utilization is limited. Here, we examine the phylogeny, phenotypic characteristics, and influence of gut environmental factors on growth of F. prausnitzii strains isolated from healthy subjects. Phylogenetic analysis based on the 16S rRNA sequences indicated that the cultured strains were representative of F. prausnitzii sequences detected by direct analysis of fecal DNA and separated the available isolates into two phylogroups. Most F. prausnitzii strains tested grew well under anaerobic conditions on apple pectin. Furthermore, F. prausnitzii strains competed successfully in coculture with two other abundant pectin-utilizing species, Bacteroides thetaiotaomicron and Eubacterium eligens, with apple pectin as substrate, suggesting that this species makes a contribution to pectin fermentation in the colon. Many F. prausnitzii isolates were able to utilize uronic acids for growth, an ability previously thought to be confined to Bacteroides spp. among human colonic anaerobes. Most strains grew on N-acetylglucosamine, demonstrating an ability to utilize host-derived substrates. All strains tested were bile sensitive, showing at least 80% growth inhibition in the presence of 0.5 μg/ml bile salts, while inhibition at mildly acidic pH was strain dependent. These attributes help to explain the abundance of F. prausnitzii in the colonic community but also suggest factors in the gut environment that may limit its distribution.
Collapse
|
1612
|
Mäkeläinen H, Forssten S, Saarinen M, Stowell J, Rautonen N, Ouwehand AC. Xylo-oligosaccharides enhance the growth of bifidobacteria and Bifidobacterium lactis in a simulated colon model. Benef Microbes 2011; 1:81-91. [PMID: 21831753 DOI: 10.3920/bm2009.0025] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A semi-continuous, anaerobic colon simulator, with four vessels mimicking the conditions of the human large intestine, was used to study the fermentation of xylo-oligosaccharides (XOS). Three XOS compounds and a xylan preparation were fermented for 48 hours by human colonic microbes. Fructo-oligosaccharides (FOS) were used as a prebiotic reference. As a result of the fermentation, the numbers of Bifidobacterium increased in all XOS and xylan simulations when compared to the growth observed in the baseline simulations, and increased levels of Bifidobacterium lactis were measured with the two XOS compounds that had larger distribution of the degree of polymerisation. Fermentation of XOS and xylan increased the microbial production of short chain fatty acids in the simulator vessels; especially the amounts of butyrate and acetate were increased. XOS was more efficient than FOS in increasing the numbers of B. lactis in the colonic model, whereas FOS increased the Bifidobacterium longum numbers more. The selective fermentation of XOS by B. lactis has been demonstrated in pure culture studies, and these results further indicate that the combination of B. lactis and XOS would form a successful, selective synbiotic combination.
Collapse
Affiliation(s)
- H Mäkeläinen
- Health and Nutrition, Danisco Finland, Kantvik, Finland.
| | | | | | | | | | | |
Collapse
|
1613
|
Nutritional influences on the gut microbiota and the consequences for gastrointestinal health. Biochem Soc Trans 2011; 39:1073-8. [PMID: 21787350 DOI: 10.1042/bst0391073] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human colonic microbiota degrades dietary substrates that are indigestible in the upper GIT (gastrointestinal tract), releasing bacterial metabolites, some of which are important for gut health. Advances in molecular biology techniques have facilitated detailed analyses of the composition of the bacterial community resident in the lower GIT. Such analyses have indicated that more than 500 different bacterial species colonize an individual, and that, although there is much functional consistency in the resident bacterial groups, there is considerable inter-individual variation at the species/strain level. The bacterial community develops during early childhood until it reaches an adult-like composition. Whereas colonization and host factors influence the species composition, dietary factors also have an important impact, with specific bacterial groups changing in response to specific dietary interventions. Since bacterial species have different metabolic activities, specific diets have various consequences for health, dependent on the effect exerted on the bacterial population.
Collapse
|
1614
|
Sunkara LT, Achanta M, Schreiber NB, Bommineni YR, Dai G, Jiang W, Lamont S, Lillehoj HS, Beker A, Teeter RG, Zhang G. Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression. PLoS One 2011; 6:e27225. [PMID: 22073293 PMCID: PMC3208584 DOI: 10.1371/journal.pone.0027225] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 10/12/2011] [Indexed: 12/20/2022] Open
Abstract
Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. In this study, we tested the hypothesis that exogenous administration of butyrate, a major type of short-chain fatty acids derived from bacterial fermentation of undigested dietary fiber, is capable of inducing HDPs and enhancing disease resistance in chickens. We have found that butyrate is a potent inducer of several, but not all, chicken HDPs in HD11 macrophages as well as in primary monocytes, bone marrow cells, and jejuna and cecal explants. In addition, butyrate treatment enhanced the antibacterial activity of chicken monocytes against Salmonella enteritidis, with a minimum impact on inflammatory cytokine production, phagocytosis, and oxidative burst capacities of the cells. Furthermore, feed supplementation with 0.1% butyrate led to a significant increase in HDP gene expression in the intestinal tract of chickens. More importantly, such a feeding strategy resulted in a nearly 10-fold reduction in the bacterial titer in the cecum following experimental infections with S. enteritidis. Collectively, the results indicated that butyrate-induced synthesis of endogenous HDPs is a phylogenetically conserved mechanism of innate host defense shared by mammals and aves, and that dietary supplementation of butyrate has potential for further development as a convenient antibiotic-alternative strategy to enhance host innate immunity and disease resistance.
Collapse
Affiliation(s)
- Lakshmi T. Sunkara
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Mallika Achanta
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Nicole B. Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Yugendar R. Bommineni
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Gan Dai
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Weiyu Jiang
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Susan Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Hyun S. Lillehoj
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, United States Department of Agriculture-Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Ali Beker
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Robert G. Teeter
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
1615
|
Abstract
Irritable bowel syndrome (IBS) is a common health issue that is characterized by abdominal pain, abnormal bowel movements, and altered visceral perception. The complexity and variability in symptoms pose serious challenges in treating IBS. Current therapy for IBS is primarily focused on reducing the abdominal pain, thereby improving the quality of life to a significant extent. Although the use of fiber rich diet is widely recommended in treating IBS, some studies have questioned its use. Intra-colonic butyrate, a short-chain fatty acid, is primarily produced by the fermentation of dietary fibers in the colon. In the existing literature there are conflicting reports about the function of butyrate. In rats it is known to induce visceral hypersensitivity without altered pathology, whereas in humans it has been reported to reduce visceral pain. Understanding the molecular mechanisms responsible for this contrasting effect of butyrate is important before recommending fiber rich diet to IBS patients.
Collapse
Affiliation(s)
| | | | - Jyoti N. Sengupta
- Address for correspondence: Jyoti N. Sengupta, MSc, PhD. Associate Professor of Medicine Division of Gastroenterology and Hepatology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA Tel: 414-456-4011 Fax: 414-456-6361
| |
Collapse
|
1616
|
Lam YY, Mitchell AJ, Holmes AJ, Denyer GS, Gummesson A, Caterson ID, Hunt NH, Storlien LH. Role of the gut in visceral fat inflammation and metabolic disorders. Obesity (Silver Spring) 2011; 19:2113-20. [PMID: 21881620 DOI: 10.1038/oby.2011.68] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yan Y Lam
- Boden Institute of Obesity, Nutrition and Exercise, University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
1617
|
Jahns F, Wilhelm A, Greulich KO, Mothes H, Radeva M, Wölfert A, Glei M. Impact of butyrate on PKM2 and HSP90β expression in human colon tissues of different transformation stages: a comparison of gene and protein data. GENES AND NUTRITION 2011; 7:235-46. [PMID: 22009386 DOI: 10.1007/s12263-011-0254-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/30/2011] [Indexed: 12/26/2022]
Abstract
Due to protection of oncogenic proteins from degradation and enhancement of glycolytic phosphometabolites for synthetic processes, respectively, heat shock protein 90 (HSP90) and pyruvate kinase type M2 (PKM2) are important proteins for tumor growth. The present study was undertaken to investigate the susceptibility of both proteins and their encoding genes to the chemopreventive agent butyrate in human colon cells. Matched tissue of different transformation stages derived from 20 individual colon cancer patients was used for the experiments. The results of quantitative real-time PCR revealed a moderate increase of HSP90β and PKM2 mRNA in colon tumors (P < 0.01) compared to normal tissues without relation to clinical parameters. The expression pattern could be confirmed for PKM2 protein by Western blot but not for HSP90β. During culturing with butyrate, the amount of PKM2 transcripts decreased in all three tissue types with the strongest effects observed in tumors (median fold decrease 45%, P < 0.05). The protein data have not reflected this influence supposing a more gradual degradation rate due to a longer half-life of PKM2. In contrast, the mRNA expression of HSP90β in normal tissue was found 1.38-fold increased by butyrate (P < 0.05), but not the corresponding protein level. HSP90β expression in adenomas and tumors remained generally insensitive. Only in malignant tissue, however, a significant correlation was found between the individual effects observed on gene and protein expression level. In conclusion, the present study identified PKM2 as a potential direct target of butyrate in neoplastic colon tissue, whereas HSP90β is none of it.
Collapse
Affiliation(s)
- Franziska Jahns
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, Jena, Germany,
| | | | | | | | | | | | | |
Collapse
|
1618
|
Moore AM, Munck C, Sommer MOA, Dantas G. Functional metagenomic investigations of the human intestinal microbiota. Front Microbiol 2011; 2:188. [PMID: 22022321 PMCID: PMC3195301 DOI: 10.3389/fmicb.2011.00188] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/23/2011] [Indexed: 12/15/2022] Open
Abstract
The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation, and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique, used for decades to study environmental microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host.
Collapse
Affiliation(s)
- Aimee M Moore
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine St. Louis, MO, USA
| | | | | | | |
Collapse
|
1619
|
Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 2011; 6:e25792. [PMID: 22043294 PMCID: PMC3197175 DOI: 10.1371/journal.pone.0025792] [Citation(s) in RCA: 559] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/11/2011] [Indexed: 12/12/2022] Open
Abstract
Recent studies have suggested a bacterial role in the development of autoimmune disorders including type 1 diabetes (T1D). Over 30 billion nucleotide bases of Illumina shotgun metagenomic data were analyzed from stool samples collected from four pairs of matched T1D case-control subjects collected at the time of the development of T1D associated autoimmunity (i.e., autoantibodies). From these, approximately one million open reading frames were predicted and compared to the SEED protein database. Of the 3,849 functions identified in these samples, 144 and 797 were statistically more prevalent in cases and controls, respectively. Genes involved in carbohydrate metabolism, adhesions, motility, phages, prophages, sulfur metabolism, and stress responses were more abundant in cases while genes with roles in DNA and protein metabolism, aerobic respiration, and amino acid synthesis were more common in controls. These data suggest that increased adhesion and flagella synthesis in autoimmune subjects may be involved in triggering a T1D associated autoimmune response. Extensive differences in metabolic potential indicate that autoimmune subjects have a functionally aberrant microbiome. Mining 16S rRNA data from these datasets showed a higher proportion of butyrate-producing and mucin-degrading bacteria in controls compared to cases, while those bacteria that produce short chain fatty acids other than butyrate were higher in cases. Thus, a key rate-limiting step in butyrate synthesis is more abundant in controls. These data suggest that a consortium of lactate- and butyrate-producing bacteria in a healthy gut induce a sufficient amount of mucin synthesis to maintain gut integrity. In contrast, non-butyrate-producing lactate-utilizing bacteria prevent optimal mucin synthesis, as identified in autoimmune subjects.
Collapse
|
1620
|
Haskå L, Andersson R, Nyman M. A water-soluble fraction from a by-product of wheat increases the formation of propionic acid in rats compared with diets based on other by-product fractions and oligofructose. Food Nutr Res 2011; 55:6397. [PMID: 22022302 PMCID: PMC3198505 DOI: 10.3402/fnr.v55i0.6397] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 09/05/2011] [Accepted: 09/07/2011] [Indexed: 11/24/2022] Open
Abstract
Background Dietary fibre is fermented by the colonic microbiota to carboxylic acids (CA), with potential health effects associated in particular with butyric and propionic acid. Objective To investigate the formation of CA in the hindgut of healthy rats fed dietary fibre from different fractions of wheat shorts, a by-product of the milling of wheat. Design Rats were fed dietary fibre (80 g/kg feed per day for 7 days) from wheat shorts and fractions thereof (ethanol-soluble, water-soluble and insoluble fractions), oligofructose (OF) diet and a mixture of oligofructose and raffinose (OR) diet. Results The water-soluble fraction, with a high content of arabinoxylan (AX), increased the formation of propionic acid in the hindgut and lowered the ratio of acetic to propionic acid in the portal blood of rats. High levels and proportions of butyric acid were seen in rats fed the OR diet. The pattern of CA resulting from the ethanol-soluble diet, mainly composed of fructan and raffinose, was more similar to that of the OF diet than the OR diet. Conclusions The high formation of propionic acid with the water-soluble fraction may be attributed to the high AX content. The results also indicate that the wheat fructans produced more propionic acid and less butyric acid than OF. It may furthermore be speculated that the formation of butyric acid associated with the OR diet was due to a synergetic effect of OR.
Collapse
Affiliation(s)
- Lina Haskå
- Department of Food Technology, Engineering and Nutrition, Applied Nutrition and Food Chemistry, Lund University, Lund, Sweden
| | | | | |
Collapse
|
1621
|
Hypolipidemic effect of Smallanthus sonchifolius (yacon) roots on diabetic rats: Biochemical approach. Chem Biol Interact 2011; 194:31-9. [DOI: 10.1016/j.cbi.2011.08.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/16/2011] [Accepted: 08/19/2011] [Indexed: 12/19/2022]
|
1622
|
Shores DR, Binion DG, Freeman BA, Baker PR. New insights into the role of fatty acids in the pathogenesis and resolution of inflammatory bowel disease. Inflamm Bowel Dis 2011; 17:2192-204. [PMID: 21910181 PMCID: PMC4100336 DOI: 10.1002/ibd.21560] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 10/05/2010] [Indexed: 12/12/2022]
Abstract
Dietary and endogenously modified lipids modulate inflammation by functioning as intra- and intercellular signaling molecules. Proinflammatory lipid mediators such as the eicosanoids compete against the signaling actions of newly discovered modified fatty acids that act to resolve inflammation. In inflammatory bowel disease, multiple aberrancies in lipid metabolism have been discovered, which shed further light on the pathogenesis of intestinal inflammation. Mechanisms by which lipids modulate inflammation, abnormalities of lipid metabolism in the setting of inflammatory bowel disease, and potential therapeutic application of lipid derivatives in this setting are discussed.
Collapse
Affiliation(s)
- Darla R. Shores
- Division of Pediatric Gastroenterology, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - David G. Binion
- Division of Gastroenterology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Paul R.S. Baker
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
1623
|
Abstract
The epithelial apical membrane Na+/H+ exchangers [NHE (sodium hydrogen exchanger)2 and NHE3] and Cl-/HCO3- exchangers [DRA (down-regulated in adenoma) and PAT-1 (putative anion transporter 1)] are key luminal membrane transporters involved in electroneutral NaCl absorption in the mammalian intestine. During the last decade, there has been a surge of studies focusing on the short-term regulation of these electrolyte transporters, particularly for NHE3 regulation. However, the long-term regulation of the electrolyte transporters, involving transcriptional mechanisms and transcription factors that govern their basal regulation or dysregulation in diseased states, has only now started to unfold with the cloning and characterization of their gene promoters. The present review provides a detailed analysis of the core promoters of NHE2, NHE3, DRA and PAT-1 and outlines the transcription factors involved in their basal regulation as well as in response to both physiological (butyrate, protein kinases and probiotics) and pathophysiological (cytokines and high levels of serotonin) stimuli. The information available on the transcriptional regulation of the recently identified NHE8 isoform is also highlighted. Therefore the present review bridges a gap in our knowledge of the transcriptional mechanisms underlying the alterations in the gene expression of intestinal epithelial luminal membrane Na+ and Cl- transporters involved in electroneutral NaCl absorption. An understanding of the mechanisms of the modulation of gene expression of these transporters is important for a better assessment of the pathophysiology of diarrhoea associated with inflammatory and infectious diseases and may aid in designing better management protocols.
Collapse
|
1624
|
Anson NM, Havenaar R, Vaes W, Coulier L, Venema K, Selinheimo E, Bast A, Haenen GR. Effect of bioprocessing of wheat bran in wholemeal wheat breads on the colonic SCFA production in vitro and postprandial plasma concentrations in men. Food Chem 2011; 128:404-9. [DOI: 10.1016/j.foodchem.2011.03.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 02/07/2011] [Accepted: 03/08/2011] [Indexed: 11/30/2022]
|
1625
|
De Preter V, Geboes KP, Bulteel V, Vandermeulen G, Suenaert P, Rutgeerts P, Verbeke K. Kinetics of butyrate metabolism in the normal colon and in ulcerative colitis: the effects of substrate concentration and carnitine on the β-oxidation pathway. Aliment Pharmacol Ther 2011; 34:526-32. [PMID: 21707682 DOI: 10.1111/j.1365-2036.2011.04757.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Butyrate, a colonic metabolite of carbohydrates, is considered as the major energy source for the colonic mucosa. An impaired butyrate metabolism has been reported in ulcerative colitis (UC), however, the cause still remains unknown. AIM In the present study, we investigated whether higher butyrate concentrations could normalise the oxidation rate in UC. Furthermore, it was investigated whether carnitine could enhance the butyrate oxidation. METHODS Mucosal biopsies from a total of 26 UC patients and 25 controls were incubated with (14)C-labelled Na-butyrate and the produced (14)CO(2) was measured. First, the rate of oxidative metabolism was compared at three different concentrations of Na-butyrate (0.05 mm, 1 mm and 10 mm). Then, incubations of biopsies were performed with carnitine alone or combined with ATP. RESULTS Overall, butyrate oxidation in UC was significantly lower than that in controls. The maximum rate of butyrate oxidation was achieved in UC and control subjects from 1 mm onwards. Increasing the butyrate concentration to a level to be present in the colonic lumen, i.e. 10 mm, did not increase the rate of butyrate oxidation in UC to the rate observed in controls. Addition of carnitine alone or combined with ATP caused no effects. CONCLUSIONS Saturation of butyrate kinetics was achieved from 1 mm in UC and control subjects. The rate of butyrate metabolism was significantly impaired in active ulcerative colitis. The addition of compounds interfering with the β-oxidation pathway had no effect on the butyrate metabolism in UC.
Collapse
Affiliation(s)
- V De Preter
- Translational Research Center for Gastrointestinal Disorders, KULeuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
1626
|
Tabernero M, Venema K, Maathuis AJH, Saura-Calixto FD. Metabolite production during in vitro colonic fermentation of dietary fiber: analysis and comparison of two European diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8968-8975. [PMID: 21761861 DOI: 10.1021/jf201777w] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Metabolite production and antioxidant released during colonic fermentation of naturally occurring dietary fiber (DF) from two European diets (Mediterranean and Scandinavian) were determined. With this aim, DF and associated components were isolated from both whole diets, as well as from cereals and fruits and vegetables comprising the diets. DF was used as substrate for colonic fermentation in a dynamic in vitro model of the colon, samples were collected, and fermentation metabolites were analyzed. Statistical differences between samples were observed in the concentrations of short-chain fatty acids and ammonia and in the ratio acetate/propionate/butyrate. Whole grain cereal DF generated a larger amount of propionate than refined flour cereal DF. Fruit and vegetable DF generated higher amounts of butyrate than cereal DF. Most antioxidant compounds were released from DF during in vitro colonic fermentation. It is concluded that different sources of DF may play a specific role in health maintenance mediated by metabolites produced during colonic fermentation.
Collapse
Affiliation(s)
- Maria Tabernero
- Experimental Surgery Department, Hospital La Paz Health Research Institute, Madrid, Spain.
| | | | | | | |
Collapse
|
1627
|
Araújo JR, Gonçalves P, Martel F. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr Res 2011; 31:77-87. [PMID: 21419311 DOI: 10.1016/j.nutres.2011.01.006] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 12/27/2010] [Accepted: 01/24/2011] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC) is the second most fatal and the third most diagnosed type of cancer worldwide. Despite having multifactorial causes, most CRC cases are mainly determined by dietary factors. In recent years, a large number of studies have attributed a protective effect to polyphenols and foods containing these compounds (fruits and vegetables) against CRC. Indeed, polyphenols have been reported to interfere with cancer initiation, promotion, and progression, acting as chemopreventive agents. The aim of this review is to summarize the main chemopreventive properties of some polyphenols (quercetin, rutin, myricetin, chrysin, epigallocatechin-3-gallate, epicatechin, catechin, resveratrol, and xanthohumol) against CRC, observed in cell culture models. From the data reviewed in this article, it can be concluded that these compounds inhibit cell growth, by inducing cell cycle arrest and/or apoptosis; inhibit proliferation, angiogenesis, and/or metastasis; and exhibit anti-inflammatory and/or antioxidant effects. In turn, these effects involve multiple molecular and biochemical mechanisms of action, which are still not completely characterized. Thus, caution is mandatory when attempting to extrapolate the observations obtained in CRC cell line studies to humans.
Collapse
Affiliation(s)
- João R Araújo
- Department of Biochemistry (U38-FCT), Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
1628
|
Le Gall G, Noor SO, Ridgway K, Scovell L, Jamieson C, Johnson IT, Colquhoun IJ, Kemsley EK, Narbad A. Metabolomics of Fecal Extracts Detects Altered Metabolic Activity of Gut Microbiota in Ulcerative Colitis and Irritable Bowel Syndrome. J Proteome Res 2011; 10:4208-18. [DOI: 10.1021/pr2003598] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gwénaëlle Le Gall
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom
| | - Samah O. Noor
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom
| | - Karyn Ridgway
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom
| | - Louise Scovell
- The Ipswich Hospital NHS Trust, Heath Road, Ipswich IP4 5PD, United Kingdom
| | - Crawford Jamieson
- Norfolk and Norwich University Hospital, Colney Lane, Norwich NR4 7UY, United Kingdom
| | - Ian T. Johnson
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom
| | - Ian J. Colquhoun
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom
| | - E. Kate Kemsley
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom
| | - Arjan Narbad
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom
| |
Collapse
|
1629
|
Degen C, Lochner A, Keller S, Kuhnt K, Dänicke S, Jahreis G. Influence of in vitro supplementation with lipids from conventional and Alpine milk on fatty acid distribution and cell growth of HT-29 cells. Lipids Health Dis 2011; 10:131. [PMID: 21816049 PMCID: PMC3163618 DOI: 10.1186/1476-511x-10-131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/04/2011] [Indexed: 12/22/2022] Open
Abstract
Background To date, the influence of milk and dairy products on carcinogenesis remains controversial. However, lipids of ruminant origin such as conjugated linoleic acids (CLA) are known to exhibit beneficial effects in vitro and in vivo. The aim of the present study was to determine the influence of milk lipids of different origin and varying quality presenting as free fatty acid (FFA) solutions on cellular fatty acid distribution, cellular viability, and growth of human colon adenocarcinoma cells (HT-29). Methods FAME of conventional and Alpine milk lipids (MLcon, MLalp) and cells treated with FFA derivatives of milk lipids were analyzed by means of GC-FID and Ag+-HPLC. Cellular viability and growth of the cells were determined by means of CellTiter-Blue®-assay and DAPI-assay (4',6-diamidino-2-phenylindole dihydrochloride), respectively. Results Supplementation with milk lipids significantly decreased viability and growth of HT-29 cells in a dose- and time-dependent manner. MLalp showed a lower SFA/MUFA ratio, a 8 fold increased CLA content, and different CLA profile compared to MLcon but did not demonstrate additional growth-inhibitory effects. In addition, total concentration and fatty acid distribution of cellular lipids were altered. In particular, treatment of the cells yielded highest amounts of two types of milk specific major fatty acids (μg FA/mg cellular protein) after 8 h of incubation compared to 24 h; 200 μM of MLcon (C16:0, 206 ± 43), 200 μM of MLalp (C18:1 c9, (223 ± 19). Vaccenic acid (C18:1 t11) contained in milk lipids was converted to c9,t11-CLA in HT-29 cells. Notably, the ratio of t11,c13-CLA/t7,c9-CLA, a criterion for pasture feeding of the cows, was significantly changed after incubation for 8 h with lipids from MLalp (3.6 - 4.8), compared to lipids from MLcon (0.3 - 0.6). Conclusions Natural lipids from conventional and Alpine milk showed similar growth inhibitory effects. However, different changes in cellular lipid composition suggested a milk lipid-depending influence on cell sensitivity. It is expected that similar changes may also be evident in other cell lines. To our knowledge, this is the first study showing a varied impact of complex milk lipids on fatty acid distribution in a colon cancer cell line.
Collapse
Affiliation(s)
- Christian Degen
- Institute of Nutrition, Dept. of Nutritional Physiology, Friedrich-Schiller-University, Dornburger Strasse 24, Jena, Germany
| | | | | | | | | | | |
Collapse
|
1630
|
Touyarou P, Sulmont-Rossé C, Issanchou S, Despalins R, Brondel L. Influence of substrate oxidation on the reward system, no role of dietary fibre. Appetite 2011; 57:134-41. [DOI: 10.1016/j.appet.2011.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/21/2011] [Accepted: 04/12/2011] [Indexed: 11/29/2022]
|
1631
|
Gerritsen J, Smidt H, Rijkers GT, de Vos WM. Intestinal microbiota in human health and disease: the impact of probiotics. GENES & NUTRITION 2011; 6:209-40. [PMID: 21617937 PMCID: PMC3145058 DOI: 10.1007/s12263-011-0229-7] [Citation(s) in RCA: 432] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/20/2011] [Indexed: 02/07/2023]
Abstract
The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the present state of the art on the intestinal microbiota with specific attention for the application of high-throughput functional microbiomic approaches to determine the contribution of the intestinal microbiota to human health. Moreover, we review the association between dysbiosis of the microbiota and both intestinal and extra-intestinal diseases. Finally, we discuss the potential of probiotic microorganism to modulate the intestinal microbiota and thereby contribute to health and well-being. The effects of probiotic consumption on the intestinal microbiota are addressed, as well as the development of tailor-made probiotics designed for specific aberrations that are associated with microbial dysbiosis.
Collapse
Affiliation(s)
- Jacoline Gerritsen
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands,
| | | | | | | |
Collapse
|
1632
|
Gonçalves P, Gregório I, Martel F. The short-chain fatty acid butyrate is a substrate of breast cancer resistance protein. Am J Physiol Cell Physiol 2011; 301:C984-94. [PMID: 21775706 DOI: 10.1152/ajpcell.00146.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Colorectal cancer is one of the most common cancers worldwide. Butyrate (BT) plays a key role in colonic epithelium homeostasis. The aim of this work was to investigate the possibility of BT being transported by P-glycoprotein (MDR1), multidrug resistance proteins (MRPs), or breast cancer resistance protein (BCRP). Uptake and efflux of (14)C-BT and (3)H-folic acid were measured in Caco-2, IEC-6, and MDA-MB-231 cell lines. mRNA expression of BCRP was detected by RT-PCR. Cell viability, proliferation, and differentiation were quantified with the lactate dehydrogenase, sulforhodamine B, and alkaline phosphatase activity assays, respectively. In both IEC-6 cells and Caco-2 cells, no evidence was found for the involvement of either MDR1 or MRPs in (14)C-BT efflux from the cells. In contrast, several lines of evidence support the conclusion that BT is a substrate of both rat and human BCRP. Indeed, BCRP inhibitors reduced (14)C-BT efflux in IEC-6 cells, both BT and BCRP inhibitors significantly decreased the efflux of the known BCRP substrate (3)H-folic acid in IEC-6 cells, and BCRP inhibitors reduced (14)C-BT efflux in the BCRP-expressing MDA-MB-231 cell line. In IEC-6 cells, combination of BT with a BCRP inhibitor significantly potentiated the effect of BT on cell proliferation. The results of this study, showing for the first time that BT is a BCRP substrate, are very important in the context of the high levels of BCRP expression in the human colon and the anticarcinogenic and anti-inflammatory role of BT at that level. So, interaction of BT with BCRP and with other BCRP substrates/inhibitors is clearly of major importance.
Collapse
Affiliation(s)
- Pedro Gonçalves
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | |
Collapse
|
1633
|
Kovatcheva-Datchary P, Zoetendal EG, Venema K, de Vos WM, Smidt H. Tools for the tract: understanding the functionality of the gastrointestinal tract. Therap Adv Gastroenterol 2011; 2:9-22. [PMID: 21180550 DOI: 10.1177/1756283x09337646] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract comprises a series of complex and dynamic organs ranging from the stomach to the distal colon, which harbor immense microbial assemblages that are known to be vital for human health. Until recently, most of the details concerning our gut microbiota remained obscure. Over the past several years, however, a number of crucial technological and conceptual innovations have been introduced to shed more light on the composition and functionality of human gut microbiota. Recently developed high throughput approaches, including next-generation sequencing technologies and phylogenetic microarrays targeting ribosomal RNA gene sequences, allow for comprehensive analysis of the diversity and dynamics of the gut microbiota composition. Nevertheless, most of the microbes especially in the human large intestine still remain uncultured, and the in situ functions of distinct groups of the gut microbiota are therefore largely unknown, but pivotal to the understanding of their role in human physiology. Apart from functional and metagenomics approaches, stable isotope probing is a promising tool to link the metabolic activity and diversity of microbial communities, including yet uncultured microbes, in a complex environment. Advancements in current stable isotope probing approaches integrated with the application of high-throughput diagnostic microarray-based phylogenetic profiling and metabolic flux analysis should facilitate the understanding of human microbial ecology and will enable the development of innovative strategies to treat or prevent intestinal diseases of as yet unknown etiology.
Collapse
Affiliation(s)
- Petia Kovatcheva-Datchary
- TI Food and Nutrition, Wageningen, The Netherlands; and Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
1634
|
Prakash S, Rodes L, Coussa-Charley M, Tomaro-Duchesneau C. Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics 2011; 5:71-86. [PMID: 21847343 PMCID: PMC3156250 DOI: 10.2147/btt.s19099] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Indexed: 12/29/2022]
Abstract
The gut microbiota is a remarkable asset for human health. As a key element in the development and prevention of specific diseases, its study has yielded a new field of promising biotherapeutics. This review provides comprehensive and updated knowledge of the human gut microbiota, its implications in health and disease, and the potentials and limitations of its modification by currently available biotherapeutics to treat, prevent and/or restore human health, and future directions. Homeostasis of the gut microbiota maintains various functions which are vital to the maintenance of human health. Disruption of the intestinal ecosystem equilibrium (gut dysbiosis) is associated with a plethora of human diseases, including autoimmune and allergic diseases, colorectal cancer, metabolic diseases, and bacterial infections. Relevant underlying mechanisms by which specific intestinal bacteria populations might trigger the development of disease in susceptible hosts are being explored across the globe. Beneficial modulation of the gut microbiota using biotherapeutics, such as prebiotics, probiotics, and antibiotics, may favor health-promoting populations of bacteria and can be exploited in development of biotherapeutics. Other technologies, such as development of human gut models, bacterial screening, and delivery formulations eg, microencapsulated probiotics, may contribute significantly in the near future. Therefore, the human gut microbiota is a legitimate therapeutic target to treat and/or prevent various diseases. Development of a clear understanding of the technologies needed to exploit the gut microbiota is urgently required.
Collapse
Affiliation(s)
- Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
1635
|
Zeanandin G, Schneider SM, Hébuterne X. Intérêt des fibres en nutrition entérale en réanimation : de la théorie à la pratique. MEDECINE INTENSIVE REANIMATION 2011. [DOI: 10.1007/s13546-011-0270-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
1636
|
Effects of carbon source and metabolic engineering on butyrate production in Escherichia coli. KOREAN J CHEM ENG 2011. [DOI: 10.1007/s11814-011-0032-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
1637
|
T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. Proc Natl Acad Sci U S A 2011; 108:11268-73. [PMID: 21690417 DOI: 10.1073/pnas.1100869108] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The symptoms of irritable bowel syndrome (IBS) include significant abdominal pain and bloating. Current treatments are empirical and often poorly efficacious, and there is a need for the development of new and efficient analgesics aimed at IBS patients. T-type calcium channels have previously been validated as a potential target to treat certain neuropathic pain pathologies. Here we report that T-type calcium channels encoded by the Ca(V)3.2 isoform are expressed in colonic nociceptive primary afferent neurons and that they contribute to the exaggerated pain perception in a butyrate-mediated rodent model of IBS. Both the selective genetic inhibition of Ca(V)3.2 channels and pharmacological blockade with calcium channel antagonists attenuates IBS-like painful symptoms. Mechanistically, butyrate acts to promote the increased insertion of Ca(V)3.2 channels into primary sensory neuron membranes, likely via a posttranslational effect. The butyrate-mediated regulation can be recapitulated with recombinant Ca(V)3.2 channels expressed in HEK cells and may provide a convenient in vitro screening system for the identification of T-type channel blockers relevant to visceral pain. These results implicate T-type calcium channels in the pathophysiology of chronic visceral pain and suggest Ca(V)3.2 as a promising target for the development of efficient analgesics for the visceral discomfort and pain associated with IBS.
Collapse
|
1638
|
Abstract
The pathways of glutamate catabolism in the anaerobic bacterium Fusobacterium varium, grown on complex, undefined medium and chemically defined, minimal medium, were investigated using specifically labelled (13)C-glutamate. The metabolic end-products acetate and butyrate were isolated from culture fluids and derivatized for analysis by nuclear magnetic resonance and mass spectrometry. On complex medium, labels from L-[1-(13)C]glutamate and L-[4-(13)C]glutamate were incorporated into C1 of acetate and equally into C1/C3 of butyrate, while label derived from L-[5-(13)C]glutamate was not incorporated. The isotopic incorporation results and the detection of glutamate mutase and 3-methylaspartate ammonia lyase in cell extracts are most consistent with the methylaspartate pathway, the best known route of glutamate catabolism in Clostridium species. When F. varium was grown on defined medium, label from L-[4-(13)C]glutamate was incorporated mainly into C4 of butyrate, demonstrating a major role for the hydroxyglutarate pathway. Upon addition of coenzyme B(12) or cobalt ion to the defined medium in replicate experiments, isotope was located equally at C1/C3 of butyrate in accord with the methylaspartate pathway. Racemization of D-glutamate and subsequent degradation of L-glutamate via the methylaspartate pathway are supported by incorporation of label into C2 of acetate and equally into C2/C4 of butyrate from D-[3-(13)C]glutamate and the detection of a cofactor-independent glutamate racemase in cell extracts. Together the results demonstrate a major role for the methylaspartate pathway of glutamate catabolism in F. varium and substantial participation of the hydroxyglutarate pathway when coenzyme B(12) is not available.
Collapse
Affiliation(s)
- Mohammad Ramezani
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
1639
|
Putaala H, Mäkivuokko H, Tiihonen K, Rautonen N. Simulated colon fiber metabolome regulates genes involved in cell cycle, apoptosis, and energy metabolism in human colon cancer cells. Mol Cell Biochem 2011; 357:235-45. [DOI: 10.1007/s11010-011-0894-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/17/2011] [Indexed: 12/12/2022]
|
1640
|
Fenech M, El-Sohemy A, Cahill L, Ferguson LR, French TAC, Tai ES, Milner J, Koh WP, Xie L, Zucker M, Buckley M, Cosgrove L, Lockett T, Fung KYC, Head R. Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2011; 4:69-89. [PMID: 21625170 DOI: 10.1159/000327772] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nutrigenetics and nutrigenomics hold much promise for providing better nutritional advice to the public generally, genetic subgroups and individuals. Because nutrigenetics and nutrigenomics require a deep understanding of nutrition, genetics and biochemistry and ever new 'omic' technologies, it is often difficult, even for educated professionals, to appreciate their relevance to the practice of preventive approaches for optimising health, delaying onset of disease and diminishing its severity. This review discusses (i) the basic concepts, technical terms and technology involved in nutrigenetics and nutrigenomics; (ii) how this emerging knowledge can be applied to optimise health, prevent and treat diseases; (iii) how to read, understand and interpret nutrigenetic and nutrigenomic research results, and (iv) how this knowledge may potentially transform nutrition and dietetic practice, and the implications of such a transformation. This is in effect an up-to-date overview of the various aspects of nutrigenetics and nutrigenomics relevant to health practitioners who are seeking a better understanding of this new frontier in nutrition research and its potential application to dietetic practice.
Collapse
Affiliation(s)
- Michael Fenech
- CSIRO Preventative Health National Research Flagship, Adelaide, SA, Australia. michael.fenech @ csiro.au
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1641
|
Resmer KL, White RL. Metabolic footprinting of the anaerobic bacterium Fusobacterium varium using 1H NMR spectroscopy. MOLECULAR BIOSYSTEMS 2011; 7:2220-7. [PMID: 21547305 DOI: 10.1039/c1mb05105a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metabolic footprinting of the anaerobic bacterium Fusobacterium varium demonstrated the accumulation of six carboxylic acids as metabolic end-products and revealed specific growth requirements and utilization capabilities towards amino acids. Guided by (1)H NMR determinations of residual amino acids in spent medium, a modified chemically defined minimal medium (CDMM*) was developed by minimizing the amino acid composition while satisfying nutritional requirements to support abundant growth of F. varium. Quantitative determinations of carboxylate salts and residual substrates were readily performed by (1)H NMR analysis of lyophilized residues from CDMM* cultures without interference from initial medium components. Only small concentrations of alanine, arginine, glycine, isoleucine, leucine, methionine, proline and valine were required to support growth of F. varium, whereas larger quantities of aspartate, asparagine, cysteine, glutamine, glutamate, histidine, lysine, serine and threonine were utilized, most likely as energy sources. Both bacterial growth and the distribution of carboxylate end-products depended on the composition of the chemically defined medium. In cultures provided with glucose as the primary energy source, the accumulation of butyrate and lactate correlated with growth, consistent with the regeneration of reduced coenzyme formed by the oxidative steps of glucose catabolism.
Collapse
Affiliation(s)
- Kelly L Resmer
- Department of Chemistry, Dalhousie University, Halifax, Canada
| | | |
Collapse
|
1642
|
The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 2011; 13:517-26. [PMID: 21531334 PMCID: PMC3099420 DOI: 10.1016/j.cmet.2011.02.018] [Citation(s) in RCA: 1242] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 10/07/2010] [Accepted: 02/24/2011] [Indexed: 02/07/2023]
Abstract
The microbiome is being characterized by large-scale sequencing efforts, yet it is not known whether it regulates host metabolism in a general versus tissue-specific manner or which bacterial metabolites are important. Here, we demonstrate that microbiota have a strong effect on energy homeostasis in the colon compared to other tissues. This tissue specificity is due to colonocytes utilizing bacterially produced butyrate as their primary energy source. Colonocytes from germfree mice are in an energy-deprived state and exhibit decreased expression of enzymes that catalyze key steps in intermediary metabolism including the TCA cycle. Consequently, there is a marked decrease in NADH/NAD(+), oxidative phosphorylation, and ATP levels, which results in AMPK activation, p27(kip1) phosphorylation, and autophagy. When butyrate is added to germfree colonocytes, it rescues their deficit in mitochondrial respiration and prevents them from undergoing autophagy. The mechanism is due to butyrate acting as an energy source rather than as an HDAC inhibitor.
Collapse
|
1643
|
Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, Duncan G, Johnstone AM, Lobley GE, Wallace RJ, Duthie GG, Flint HJ. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 2011; 93:1062-72. [PMID: 21389180 DOI: 10.3945/ajcn.110.002188] [Citation(s) in RCA: 502] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diets that are high in protein but reduced in carbohydrate contents provide a common approach for achieving weight loss in obese humans. However, the effect of such diets on microbiota-derived metabolites that influence colonic health has not been established. OBJECTIVE We designed this study to assess the effect of diets with reduced carbohydrate and increased protein contents on metabolites considered to influence long-term colonic health, in particular the risk of colorectal disease. DESIGN We provided 17 obese men with a defined weight-maintenance diet (85 g protein, 116 g fat, and 360 g carbohydrate/d) for 7 d followed by 4 wk each of a high-protein and moderate-carbohydrate (HPMC; 139 g protein, 82 g fat, and 181 g carbohydrate/d) diet and a high-protein and low-carbohydrate (HPLC; 137 g protein, 143 g fat, and 22 g carbohydrate/d) diet in a crossover design. Fecal samples were analyzed to determine concentrations of phenolic metabolites, short-chain fatty acids, and nitrogenous compounds of dietary and microbial origin. RESULTS Compared with the maintenance diet, the HPMC and HPLC diets resulted in increased proportions of branched-chain fatty acids and concentrations of phenylacetic acid and N-nitroso compounds. The HPLC diet also decreased the proportion of butyrate in fecal short-chain fatty acid concentrations, which was concomitant with a reduction in the Roseburia/Eubacterium rectale group of bacteria, and greatly reduced concentrations of fiber-derived, antioxidant phenolic acids such as ferulate and its derivatives. CONCLUSIONS After 4 wk, weight-loss diets that were high in protein but reduced in total carbohydrates and fiber resulted in a significant decrease in fecal cancer-protective metabolites and increased concentrations of hazardous metabolites. Long-term adherence to such diets may increase risk of colonic disease.
Collapse
Affiliation(s)
- Wendy R Russell
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1644
|
McOrist AL, Miller RB, Bird AR, Keogh JB, Noakes M, Topping DL, Conlon MA. Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J Nutr 2011; 141:883-9. [PMID: 21430242 DOI: 10.3945/jn.110.128504] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Butyrate and other SCFA produced by bacterial fermentation of resistant starch (RS) or nonstarch polysaccharides (NSP) promote human colonic health. To examine variation in fecal variables, especially butyrate, among individuals and the response to these fibers, a randomized cross-over study was conducted that compared the effects of foods supplying 25 g of NSP or 25 g of NSP plus 22 g of RS/d over 4 wk in 46 healthy adults (16 males, 30 females; age 31-66 y). Fecal SCFA levels varied widely among participants at entry (butyrate concentrations: 3.5-32.6 mmol/kg; butyrate excretions: 0.3-18.2 mmol/48 h). BMI explained 27% of inter-individual butyrate variation, whereas protein, starch, carbohydrate, fiber, and fat intake explained up to 16, 6, 2, 4, and 2% of butyrate variation, respectively. Overall, acetate, butyrate, and total SCFA concentrations were higher when participants consumed RS compared with entry and NSP diets, but individual responses varied. Individual and total fecal SCFA excretion, weight, and moisture were higher than those for habitual diets when either fiber diet was consumed. SCFA concentrations (except butyrate) and excretions were higher for males than for females. Butyrate levels increased in response to RS in most individuals but often decreased when entry levels were high. Fecal butyrate and ammonia excretions were positively associated ((2) = 0.76; P < 0.001). In conclusion, fecal butyrate levels vary widely among individuals but consuming a diet high in RS usually increases levels and may help maintain colorectal health.
Collapse
Affiliation(s)
- Alexandra L McOrist
- Commonwealth Scientific and Industrial Research Organisation Preventative Health National Research Flagship, Adelaide, SA 5000, Australia
| | | | | | | | | | | | | |
Collapse
|
1645
|
Hosseini E, Grootaert C, Verstraete W, Van de Wiele T. Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev 2011; 69:245-58. [DOI: 10.1111/j.1753-4887.2011.00388.x] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
1646
|
Grootaert C, Van de Wiele T, Van Roosbroeck I, Possemiers S, Vercoutter-Edouart AS, Verstraete W, Bracke M, Vanhoecke B. Bacterial monocultures, propionate, butyrate and H2O2 modulate the expression, secretion and structure of the fasting-induced adipose factor in gut epithelial cell lines. Environ Microbiol 2011; 13:1778-89. [PMID: 21518214 DOI: 10.1111/j.1462-2920.2011.02482.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previous research showed that an intestinal microbial community represses the fasting-induced adipose factor (FIAF) in the gut epithelium, thereby increasing fat storage in the host. This study was designed to investigate the overall effect of different bacterial species and metabolites on FIAF in intestinal (Caco-2, HT-29 and HCT-116) and hepatic (HepG2) cancer cell lines. First, we showed that FIAF was present in different isoforms, and secreted as N-glycosylated proteins, exclusively at the basal side of the cell monolayer. Second, co-incubation of cell lines with bacterial monocultures and metabolites altered both FIAF production and isoform appearance. Propionate and/or butyrate treatment increased FIAF expression and cleavage in all tested cell lines. In contrast, different bacteria induced cell line-specific FIAF modulation. Clostridium perfringens induced FIAF isoform changes in Caco-2 cells. Enterococcus faecalis and Bacteroides thetaiotaomicron treatment resulted in cell line-specific FIAF increases, whereas Escherichia coli significantly decreased FIAF expression in HCT-116 cells. Treatment with H(2) O(2) and peroxide-producing E. faecalis strains induced FIAF isoform changes in Caco-2 cells. Since bacteria and bacterial metabolites alter both FIAF production and isoform appearance, further investigation may reveal an important role for bacteria in FIAF-regulated physiological processes, such as cell differentiation and fat metabolism.
Collapse
Affiliation(s)
- Charlotte Grootaert
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
1647
|
Haskå L, Andersson R, Nyman M. The effect of dietary fiber from wheat processing streams on the formation of carboxylic acids and microbiota in the hindgut of rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:3406-3413. [PMID: 21391670 DOI: 10.1021/jf104380f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Colonic fermentation of dietary fiber produces carboxylic acids and may stimulate the growth of beneficial bacteria. This study investigated how byproducts of wheat processing (distillers' grains and two fractions from the wet fractionation to starch and gluten, one of which was treated with xylanase) affect the composition of the cecal microbiota and the formation of carboxylic acids in rats. Differences were mostly found between diets based on supernatants and pellets, rather than between fiber sources. Cecal pools and levels of most carboxylic acids in portal blood were higher for rats fed the supernatant diets, while cecal pH and ratios of acetic to propionic acid in portal blood were lower. The diet based on supernatant from distillers' grains gave the highest level of bifidobacteria. Molecular weight and solubility are easier to modify with technological processes, which provides an opportunity to optimize these properties in the development of health products.
Collapse
Affiliation(s)
- Lina Haskå
- Applied Nutrition and Food Chemistry, Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | | | | |
Collapse
|
1648
|
Iggman D, Risérus U. Role of different dietary saturated fatty acids for cardiometabolic risk. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.11.7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
1649
|
Jahns F, Wilhelm A, Jablonowski N, Mothes H, Radeva M, Wölfert A, Greulich KO, Glei M. Butyrate suppresses mRNA increase of osteopontin and cyclooxygenase-2 in human colon tumor tissue. Carcinogenesis 2011; 32:913-20. [PMID: 21459756 DOI: 10.1093/carcin/bgr061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The short chain fatty acid (SCFA) butyrate, a product of fermentation of dietary fiber in the human colon, is found to exert multiple regulatory processes in colon carcinogenesis. The aim of this study was to find out whether butyrate affects the tumor-promoting genes osteopontin (OPN) and cyclooxygenase (COX)-2, their respective proteins and/or their functional activity in matched normal, adenoma and tumor colon tissues obtained from 20 individuals at colon cancer surgery. Quantitative real-time polymerase chain reaction experiments showed increased levels of OPN and COX-2 messenger RNA in tumor tissues when compared with the adjacent normal samples (P < 0.001). The addition of butyrate reduced OPN and COX-2 mRNA expression in all tissue types compared with the related medium controls (tumor: P < 0.05). In tumor samples, a downregulation of up to median 35% (COX-2) and 50% (OPN) was observed, respectively. Thereby, tumors with lower levels of OPN basal expression were more sensitive to inhibition and vice versa for COX-2 in normal tissue. At the protein and enzyme level, which were determined by using western blot and enzyme immunometric assays, the impact of the SCFA was not clearly visible anymore. The active proteins of OPN and COX-2 (determined by prostaglandin E(2)) were found to correlate with their respective mRNA expression only in 50-63% of analyzed donors. For the first time, our data reveal new insights into the chemoprotective potential of butyrate by showing the suppression of OPN and COX-2 mRNA in primary human colon tissue with the strongest effects observed in tumors.
Collapse
Affiliation(s)
- F Jahns
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, Dornburger Straße 24, 07743 Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
1650
|
Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 2011; 17:1519-28. [PMID: 21472114 PMCID: PMC3070119 DOI: 10.3748/wjg.v17.i12.1519] [Citation(s) in RCA: 834] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 01/12/2011] [Accepted: 01/17/2011] [Indexed: 02/06/2023] Open
Abstract
The multiple beneficial effects on human health of the short-chain fatty acid butyrate, synthesized from non-absorbed carbohydrate by colonic microbiota, are well documented. At the intestinal level, butyrate plays a regulatory role on the transepithelial fluid transport, ameliorates mucosal inflammation and oxidative status, reinforces the epithelial defense barrier, and modulates visceral sensitivity and intestinal motility. In addition, a growing number of studies have stressed the role of butyrate in the prevention and inhibition of colorectal cancer. At the extraintestinal level, butyrate exerts potentially useful effects on many conditions, including hemoglobinopathies, genetic metabolic diseases, hypercholesterolemia, insulin resistance, and ischemic stroke. The mechanisms of action of butyrate are different; many of these are related to its potent regulatory effects on gene expression. These data suggest a wide spectrum of positive effects exerted by butyrate, with a high potential for a therapeutic use in human medicine.
Collapse
|