1651
|
Sánchez R, Sali A. Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc Natl Acad Sci U S A 1998; 95:13597-602. [PMID: 9811845 PMCID: PMC24864 DOI: 10.1073/pnas.95.23.13597] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1998] [Indexed: 11/18/2022] Open
Abstract
The function of a protein generally is determined by its three-dimensional (3D) structure. Thus, it would be useful to know the 3D structure of the thousands of protein sequences that are emerging from the many genome projects. To this end, fold assignment, comparative protein structure modeling, and model evaluation were automated completely. As an illustration, the method was applied to the proteins in the Saccharomyces cerevisiae (baker's yeast) genome. It resulted in all-atom 3D models for substantial segments of 1,071 (17%) of the yeast proteins, only 40 of which have had their 3D structure determined experimentally. Of the 1,071 modeled yeast proteins, 236 were related clearly to a protein of known structure for the first time; 41 of these previously have not been characterized at all.
Collapse
Affiliation(s)
- R Sánchez
- Laboratories of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
1652
|
Enenkel C, Lehmann A, Kloetzel PM. Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO J 1998; 17:6144-54. [PMID: 9799224 PMCID: PMC1170941 DOI: 10.1093/emboj/17.21.6144] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
26S proteasomes are the key enzyme complexes responsible for selective turnover of short-lived and misfolded proteins. Based on the assumption that they are dispersed over the nucleoplasm and cytoplasm in all eukaryotic cells, we wanted to determine the subcellular distribution of 26S proteasomes in living yeast cells. For this purpose, we generated yeast strains that express functional green fluorescent protein (GFP) fusions of proteasomal subunits. An alpha subunit of the proteolytically active 20S core complex of the 26S proteasome, Pre6/YOL038w, as well as an ATPase-type subunit of the regulatory 19S cap complex, Cim5/YOL145w, were tagged with GFP. Both chimeras were shown to be incorporated completely into active 26S proteasomes. Microscopic analysis revealed that GFP-labelled 20S as well as 19S subunits are accumulated mainly in the nuclear envelope (NE)-endoplasmic reticulum (ER) network in yeast. These findings were supported by the co-localization and co-enrichment of 26S proteasomes with NE-ER marker proteins. A major location of proteasomal peptide cleavage activity was visualized in the NE-ER network, indicating that proteasomal degradation takes place mainly in this subcellular compartment in yeast.
Collapse
Affiliation(s)
- C Enenkel
- Institut für Biochemie, Humboldt Universität, Universitätsklinikum Charité, Monbijoustrasse 2, D-10117 Berlin, Germany.
| | | | | |
Collapse
|
1653
|
Fujimuro M, Takada H, Saeki Y, Toh-e A, Tanaka K, Yokosawa H. Growth-dependent change of the 26S proteasome in budding yeast. Biochem Biophys Res Commun 1998; 251:818-23. [PMID: 9790993 DOI: 10.1006/bbrc.1998.9560] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 26S proteasome is assembled from the 20S proteasome and the regulatory subunit complex in an ATP-dependent manner. In the present study, we found that the ATP-dependent activity and the protein amount of the 26S proteasome change during growth of the budding yeast Saccharomyces cerevisiae. Both levels in the stationary phase are higher than those in the exponentially growing phase. On the other hand, the levels of the 20S proteasome appear to remain unchanged during growth. These results suggest that the 26S proteasome undergoes a growth-dependent change and that the 26S proteasome plays a role in the survival of yeast cells under starvation conditions.
Collapse
Affiliation(s)
- M Fujimuro
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
1654
|
André P, Groettrup M, Klenerman P, de Giuli R, Booth BL, Cerundolo V, Bonneville M, Jotereau F, Zinkernagel RM, Lotteau V. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc Natl Acad Sci U S A 1998; 95:13120-4. [PMID: 9789051 PMCID: PMC23730 DOI: 10.1073/pnas.95.22.13120] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inhibitors of the protease of HIV-1 have been used successfully for the treatment of HIV-1-infected patients and AIDS disease. We tested whether these protease inhibitory drugs exerted effects in addition to their antiviral activity. Here, we show in mice infected with lymphocytic choriomeningitis virus and treated with the HIV-1 protease inhibitor ritonavir a marked inhibition of antiviral cytotoxic T lymphocyte (CTL) activity and impaired major histocompatibility complex class I-restricted epitope presentation in the absence of direct effects on lymphocytic choriomeningitis virus replication. A potential molecular target was found: ritonavir selectively inhibited the chymotrypsin-like activity of the 20S proteasome. In view of the possible role of T cell-mediated immunopathology in AIDS pathogenesis, the two mechanisms of action (i.e., reduction of HIV replication and impairment of CTL responses) may complement each other beneficially. Thus, the surprising ability of ritonavir to block the presentation of antigen to CTLs may possibly contribute to therapy of HIV infections but potentially also to the therapy of virally induced immunopathology, autoimmune diseases, and transplantation reactions.
Collapse
Affiliation(s)
- P André
- Institut Nationale de la Santé et de la Recherche Médicale U98X, Ecole Normale Supérieure, 46 rue d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1655
|
Hoskins JR, Pak M, Maurizi MR, Wickner S. The role of the ClpA chaperone in proteolysis by ClpAP. Proc Natl Acad Sci U S A 1998; 95:12135-40. [PMID: 9770452 PMCID: PMC22797 DOI: 10.1073/pnas.95.21.12135] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ClpA, a member of the Clp/Hsp100 family of ATPases, is a molecular chaperone and, in combination with a proteolytic component ClpP, participates in ATP-dependent proteolysis. We investigated the role of ClpA in protein degradation by ClpAP by dissociating the reaction into several discrete steps. In the assembly step, ClpA-ClpP-substrate complexes assemble either by ClpA-substrate complexes interacting with ClpP or by ClpA-ClpP complexes interacting with substrate; ClpP in the absence of ClpA is unable to bind substrates. Assembly requires ATP binding but not hydrolysis. We discovered that ClpA translocates substrates from their binding sites on ClpA to ClpP. The translocation step specifically requires ATP; nonhydrolyzable ATP analogs are ineffective. Only proteins that are degraded by ClpAP are translocated. Characterization of the degradation step showed that substrates can be degraded in a single round of ClpA-ClpP-substrate binding followed by ATP hydrolysis. The products generated are indistinguishable from steady-state products. Taken together, our results suggest that ClpA, through its interaction with both the substrate and ClpP, acts as a gatekeeper, actively translocating specific substrates into the proteolytic chamber of ClpP where degradation occurs. As multicomponent ATP-dependent proteases are widespread in nature and share structural similarities, these findings may provide a general mechanism for regulation of substrate import into the proteolytic chamber.
Collapse
Affiliation(s)
- J R Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
1656
|
Nussbaum AK, Dick TP, Keilholz W, Schirle M, Stevanović S, Dietz K, Heinemeyer W, Groll M, Wolf DH, Huber R, Rammensee HG, Schild H. Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc Natl Acad Sci U S A 1998; 95:12504-9. [PMID: 9770515 PMCID: PMC22860 DOI: 10.1073/pnas.95.21.12504] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 436-amino acid protein enolase 1 from yeast was degraded in vitro by purified wild-type and mutant yeast 20S proteasome particles. Analysis of the cleavage products at different times revealed a processive degradation mechanism and a length distribution of fragments ranging from 3 to 25 amino acids with an average length of 7 to 8 amino acids. Surprisingly, the average fragment length was very similar between wild-type and mutant 20S proteasomes with reduced numbers of active sites. This implies that the fragment length is not influenced by the distance between the active sites, as previously postulated. A detailed analysis of the cleavages also allowed the identification of certain amino acid characteristics in positions flanking the cleavage site that guide the selection of the P1 residues by the three active beta subunits. Because yeast and mammalian proteasomes are highly homologous, similar cleavage motifs might be used by mammalian proteasomes. Therefore, our data provide a basis for predicting proteasomal degradation products from which peptides are sampled by major histocompatibility complex class I molecules for presentation to cytotoxic T cells.
Collapse
Affiliation(s)
- A K Nussbaum
- Institut für Zellbiologie, Abteilung Immunologie, Universität Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1657
|
Abstract
The selective degradation of many short-lived proteins in eukaryotic cells is carried out by the ubiquitin system. In this pathway, proteins are targeted for degradation by covalent ligation to ubiquitin, a highly conserved small protein. Ubiquitin-mediated degradation of regulatory proteins plays important roles in the control of numerous processes, including cell-cycle progression, signal transduction, transcriptional regulation, receptor down-regulation, and endocytosis. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Abnormalities in ubiquitin-mediated processes have been shown to cause pathological conditions, including malignant transformation. In this review we discuss recent information on functions and mechanisms of the ubiquitin system. Since the selectivity of protein degradation is determined mainly at the stage of ligation to ubiquitin, special attention is focused on what we know, and would like to know, about the mode of action of ubiquitin-protein ligation systems and about signals in proteins recognized by these systems.
Collapse
Affiliation(s)
- A Hershko
- Unit of Biochemistry, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
1658
|
Dick TP, Nussbaum AK, Deeg M, Heinemeyer W, Groll M, Schirle M, Keilholz W, Stevanović S, Wolf DH, Huber R, Rammensee HG, Schild H. Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J Biol Chem 1998; 273:25637-46. [PMID: 9748229 DOI: 10.1074/jbc.273.40.25637] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasomes generate peptides that can be presented by major histocompatibility complex (MHC) class I molecules in vertebrate cells. Using yeast 20 S proteasomes carrying different inactivated beta-subunits, we investigated the specificities and contributions of the different beta-subunits to the degradation of polypeptide substrates containing MHC class I ligands and addressed the question of additional proteolytically active sites apart from the active beta-subunits. We found a clear correlation between the contribution of the different subunits to the cleavage of fluorogenic and long peptide substrates, with beta5/Pre2 cleaving after hydrophobic, beta2/Pup1 after basic, and beta1/Pre3 after acidic residues, but with the exception that beta2/Pup1 and beta1/Pre3 can also cleave after some hydrophobic residues. All proteolytic activities including the "branched chain amino acid-preferring" component are associated with beta5/Pre2, beta1/Pre3, or beta2/Pup1, arguing against additional proteolytic sites. Because of the high homology between yeast and mammalian 20 S proteasomes in sequence and subunit topology and the conservation of cleavage specificity between mammalian and yeast proteasomes, our results can be expected to also describe most of the proteolytic activity of mammalian 20 S proteasomes leading to the generation of MHC class I ligands.
Collapse
Affiliation(s)
- T P Dick
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Federal Republic of Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1659
|
|
1660
|
Abstract
Proteasomes are major sites for protein degradation in eukaryotic cells. The recent identification of selective proteasome inhibitors has allowed a definition of the roles of the ubiquitin-proteasome pathway in various cellular processes, such as antigen presentation and the degradation of regulatory or membrane proteins. This review describes the actions of these inhibitors, how they can be used to investigate cellular responses, the functions of the proteasome demonstrated by such studies and their potential applications in the future.
Collapse
Affiliation(s)
- D H Lee
- Dept of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
1661
|
Rinaldi T, Ricci C, Porro D, Bolotin-Fukuhara M, Frontali L. A mutation in a novel yeast proteasomal gene, RPN11/MPR1, produces a cell cycle arrest, overreplication of nuclear and mitochondrial DNA, and an altered mitochondrial morphology. Mol Biol Cell 1998; 9:2917-31. [PMID: 9763452 PMCID: PMC25568 DOI: 10.1091/mbc.9.10.2917] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We report here the functional characterization of an essential Saccharomyces cerevisiae gene, MPR1, coding for a regulatory proteasomal subunit for which the name Rpn11p has been proposed. For this study we made use of the mpr1-1 mutation that causes the following pleiotropic defects. At 24 degreesC growth is delayed on glucose and impaired on glycerol, whereas no growth is seen at 36 degreesC on either carbon source. Microscopic observation of cells growing on glucose at 24 degreesC shows that most of them bear a large bud, whereas mitochondrial morphology is profoundly altered. A shift to the nonpermissive temperature produces aberrant elongated cell morphologies, whereas the nucleus fails to divide. Flow cytometry profiles after the shift to the nonpermissive temperature indicate overreplication of both nuclear and mitochondrial DNA. Consistently with the identification of Mpr1p with a proteasomal subunit, the mutation is complemented by the human POH1 proteasomal gene. Moreover, the mpr1-1 mutant grown to stationary phase accumulates ubiquitinated proteins. Localization of the Rpn11p/Mpr1p protein has been studied by green fluorescent protein fusion, and the fusion protein has been found to be mainly associated to cytoplasmic structures. For the first time, a proteasomal mutation has also revealed an associated mitochondrial phenotype. We actually showed, by the use of [rho degrees] cells derived from the mutant, that the increase in DNA content per cell is due in part to an increase in the amount of mitochondrial DNA. Moreover, microscopy of mpr1-1 cells grown on glucose showed that multiple punctate mitochondrial structures were present in place of the tubular network found in the wild-type strain. These data strongly suggest that mpr1-1 is a valuable tool with which to study the possible roles of proteasomal function in mitochondrial biogenesis.
Collapse
Affiliation(s)
- T Rinaldi
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Cell and Developmental Biology, University of Rome "La Sapienza", 00185 Rome, Italy. Rinaldit.axcasp.caspur.it
| | | | | | | | | |
Collapse
|
1662
|
Gantt SM, Myung JM, Briones MR, Li WD, Corey EJ, Omura S, Nussenzweig V, Sinnis P. Proteasome inhibitors block development of Plasmodium spp. Antimicrob Agents Chemother 1998; 42:2731-8. [PMID: 9756786 PMCID: PMC105928 DOI: 10.1128/aac.42.10.2731] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/1998] [Accepted: 08/03/1998] [Indexed: 11/20/2022] Open
Abstract
Proteasomes degrade most of the proteins inside eukaryotic cells, including transcription factors and regulators of cell cycle progression. Here we show that nanomolar concentrations of lactacystin, a specific irreversible inhibitor of the 20S proteasome, inhibit development of the exoerythrocytic and erythrocytic stages of the malaria parasite. Although lactacystin-treated Plasmodium berghei sporozoites are still invasive, their development into exoerythrocytic forms (EEF) is inhibited in vitro and in vivo. Erythrocytic schizogony of P. falciparum in vitro is also profoundly inhibited when drug treatment of the synchronized parasites is prior, but not subsequent, to the initiation of DNA synthesis, suggesting that the inhibitory effect of lactacystin is cell cycle specific. Lactacystin reduces P. berghei parasitemia in rats, but the therapeutic index is very low. Along with other studies showing that lactacystin inhibits stage-specific transformation in Trypanosoma and Entamoeba spp., these findings highlight the potential of proteasome inhibitors as drugs for the treatment of diseases caused by protozoan parasites.
Collapse
Affiliation(s)
- S M Gantt
- Department of Pathology, NYU Medical Center, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
1663
|
Corey E, Li WDZ. Enantioselective synthesis of the (5S, 6R, 9R) and (5S, 6R, 9S) analogs of lactacystin β-lactone. Tetrahedron Lett 1998. [DOI: 10.1016/s0040-4039(98)01797-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
1664
|
Nagy I, Tamura T, Vanderleyden J, Baumeister W, De Mot R. The 20S proteasome of Streptomyces coelicolor. J Bacteriol 1998; 180:5448-53. [PMID: 9765579 PMCID: PMC107596 DOI: 10.1128/jb.180.20.5448-5453.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
20S proteasomes were purified from Streptomyces coelicolor A3(2) and shown to be built from one alpha-type subunit (PrcA) and one beta-type subunit (PrcB). The enzyme displayed chymotrypsin-like activity on synthetic substrates and was sensitive to peptide aldehyde and peptide vinyl sulfone inhibitors and to the Streptomyces metabolite lactacystin. Characterization of the structural genes revealed an operon-like gene organization (prcBA) similar to Rhodococcus and Mycobacterium spp. and showed that the beta subunit is encoded with a 53-amino-acid propeptide which is removed during proteasome assembly. The upstream DNA region contains the conserved orf7 and an AAA ATPase gene (arc).
Collapse
Affiliation(s)
- I Nagy
- F. A. Janssens Laboratory of Genetics, Catholic University of Leuven, B-3001 Heverlee, Belgium
| | | | | | | | | |
Collapse
|
1665
|
Abstract
Proteolytic inactivation of key regulatory proteins is essential in eukaryotic cell-cycle control. We have identified a protease in the eubacterium Caulobacter crescentus that is indispensable for viability and cell-cycle progression, indicating that proteolysis is also involved in controlling the bacterial cell cycle. Mutants of Caulobacter that lack the ATP-dependent serine protease ClpXP are arrested in the cell cycle before the initiation of chromosome replication and are blocked in the cell division process. ClpXP is composed of two types of polypeptides, the ClpX ATPase and the ClpP peptidase. Site-directed mutagenesis of the catalytically active serine residue of ClpP confirmed that the proteolytic activity of ClpXP is essential. Analysis of mutants lacking ClpX or ClpP revealed that both proteins are required in vivo for the cell-cycle-dependent degradation of the regulatory protein CtrA. CtrA is a member of the response regulator family of two-component signal transduction systems and controls multiple cell-cycle processes in Caulobacter. In particular, CtrA negatively controls DNA replication and our findings suggest that specific degradation of the CtrA protein by the ClpXP protease contributes to G1-to-S transition in this organism.
Collapse
Affiliation(s)
- U Jenal
- Division of Molecular Microbiology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
1666
|
Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA, Finley D. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 1998; 94:615-23. [PMID: 9741626 DOI: 10.1016/s0092-8674(00)81603-7] [Citation(s) in RCA: 682] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proteasome consists of a 20S proteolytic core particle (CP) and a 19S regulatory particle (RP), which selects ubiquitinated substrates for translocation into the CP. An eight-subunit subcomplex of the RP, the lid, can be dissociated from proteasomes prepared from a deletion mutant for Rpn10, an RP subunit. A second subcomplex, the base, contains all six proteasomal ATPases and links the RP to the CP. The base is sufficient to activate the CP for degradation of peptides or a nonubiquitinated protein, whereas the lid is required for ubiquitin-dependent degradation. By electron microscopy, the base and the lid correspond to the proximal and distal masses of the RP, respectively. The lid subunits share sequence motifs with components of the COP9/signalosome complex and eIF3, suggesting that these functionally diverse particles have a common evolutionary ancestry.
Collapse
Affiliation(s)
- M H Glickman
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1667
|
Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S, Finley D. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J 1998; 17:4909-19. [PMID: 9724628 PMCID: PMC1170820 DOI: 10.1093/emboj/17.17.4909] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A family of ATPases resides within the regulatory particle of the proteasome. These proteins (Rpt1-Rpt6) have been proposed to mediate substrate unfolding, which may be required for translocation of substrates through the channel that leads from the regulatory particle into the proteolytic core particle. To analyze the role of ATP hydrolysis in protein breakdown at the level of the individual ATPase, we have introduced equivalent site-directed mutations into the ATPbinding motif of each RPT gene. Non-conservative substitutions of the active-site lysine were lethal in four of six cases, and conferred a strong growth defect in two cases. Thus, the ATPases are not functionally redundant, despite their multiplicity and sequence similarity. Degradation of a specific substrate can be inhibited by ATP-binding-site substitutions in many of the Rpt proteins, indicating that they co-operate in the degradation of individual substrates. The phenotypic defects of the different rpt mutants were strikingly varied. The most divergent phenotype was that of the rpt1 mutant, which was strongly growth defective despite showing no general defect in protein turnover. In addition, rpt1 was unique among the rpt mutants in displaying a G1 cell-cycle defect. Proteasomes purified from an rpt2 mutant showed a dramatic inhibition of peptidase activity, suggesting a defect in gating of the proteasome channel. In summary, ATP promotes protein breakdown by the proteasome through multiple mechanisms, as reflected by the diverse phenotypes of the rpt mutants.
Collapse
Affiliation(s)
- D M Rubin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
1668
|
Hori T, Kato S, Saeki M, DeMartino GN, Slaughter CA, Takeuchi J, Toh-e A, Tanaka K. cDNA cloning and functional analysis of p28 (Nas6p) and p40.5 (Nas7p), two novel regulatory subunits of the 26S proteasome. Gene 1998; 216:113-22. [PMID: 9714768 DOI: 10.1016/s0378-1119(98)00309-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We employed cDNA cloning to deduce the complete primary structures of p28 and p40.5, two novel subunits of PA700 (also called 19S complex), a 700 kDa multisubunit regulatory complex of the human 26S proteasome. These polypeptides consisted of 226 and 376 amino acids with calculated molecular masses of 24428 Da and 42945 Da, and isoelectric points of 5. 68 and 5.46, respectively. Intriguingly, p28 contained five conserved motifs known as 'ankyrin repeats', implying that this subunit may contribute to interaction of the 26S proteasome with other protein(s). Computer-assisted homology analysis revealed high sequence similarities of p28 and p40.5 with yeast proteins, termed Nas6p and Nas7p (non-ATPase subunits 6 and 7), respectively, whose functions are as yet unknown. Disruption of these yeast genes, NAS6 and NAS7, had no effect on cell viability, indicating that neither of the two subunits is essential for proliferation of yeast cells. However, the NAS7, but not NAS6, disruptant cells caused high sensitivity to heat stress, being unable to proliferate at 37 degreesC.
Collapse
MESH Headings
- Adenosine Triphosphatases/genetics
- Amino Acid Sequence
- Amino Acids/analysis
- Animals
- Base Sequence
- Cattle
- Cell Division/genetics
- Cell Division/physiology
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Endopeptidases
- Fungal Proteins/genetics
- Gene Expression Regulation, Enzymologic
- Genes, Fungal/genetics
- Hot Temperature
- Humans
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Peptide Hydrolases/chemistry
- Peptide Hydrolases/genetics
- Proteasome Endopeptidase Complex
- Proteins/chemistry
- Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- T Hori
- The Tokyo Metropolitan Institute of Medical Science, and CREST, Japan Science and Technology Corporation (JST), 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | | | | | | | | | | | |
Collapse
|
1669
|
Mykles DL. Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 184:157-289. [PMID: 9697313 DOI: 10.1016/s0074-7696(08)62181-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytosolic proteinases carry out a variety of regulatory functions by controlling protein levels and/or activities within cells. Calcium-dependent and ubiquitin/proteasome-dependent pathways are common to all eukaryotes. The former pathway consists of a diverse group of Ca(2+)-dependent cysteine proteinases (CDPs; calpains in vertebrate tissues). The latter pathway is highly conserved and consists of ubiquitin, ubiquitin-conjugating enzymes, deubiquitinases, and the proteasome. This review summarizes the biochemical properties and genetics of invertebrate CDPs and proteasomes and their roles in programmed cell death, stress responses (heat shock and anoxia), skeletal muscle atrophy, gametogenesis and fertilization, development and pattern formation, cell-cell recognition, signal transduction and learning, and photoreceptor light adaptation. These pathways carry out bulk protein degradation in the programmed death of the intersegmental and flight muscles of insects and of individuals in a colonial ascidian; molt-induced atrophy of crustacean claw muscle; and responses of brine shrimp, mussels, and insects to environmental stress. Selective proteolysis occurs in response to specific signals, such as in modulating protein kinase A activity in sea hare and fruit fly associated with learning; gametogenesis, differentiation, and development in sponge, echinoderms, nematode, ascidian, and insects; and in light adaptation of photoreceptors in the eyes of squid, insects, and crustaceans. Proteolytic activities and specificities are regulated through proteinase gene expression (CDP isozymes and proteasomal subunits), allosteric regulators, and posttranslational modifications, as well as through specific targeting of protein substrates by a diverse assemblage of ubiquitin-conjugases and deubiquitinases. Thus, the regulation of intracellular proteolysis approaches the complexity and versatility of transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- D L Mykles
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
1670
|
Guo HC, Xu Q, Buckley D, Guan C. Crystal structures of Flavobacterium glycosylasparaginase. An N-terminal nucleophile hydrolase activated by intramolecular proteolysis. J Biol Chem 1998; 273:20205-12. [PMID: 9685368 DOI: 10.1074/jbc.273.32.20205] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosylasparaginase (GA) is a member of a novel family of N-terminal nucleophile hydrolases that catalytically use an N-terminal residue as both a polarizing base and a nucleophile. These enzymes are activated from a single chain precursor by intramolecular autoproteolysis to yield the N-terminal nucleophile. A deficiency of GA results in the human genetic disorder known as aspartylglycosaminuria. In this study, we report the crystal structure of recombinant GA from Flavobacterium meningosepticum. Similar to the human structure, the bacterial GA forms an alphabetabetaalpha sandwich. However, some significant differences are observed between the Flavobacterium and human structures. The active site of Flavobacterium glycosylasparaginase is in an open conformation when compared with the human structure. We also describe the structure of a mutant wherein the N-terminal nucleophile Thr152 is substituted by a cysteine. In the bacterial GA crystals, we observe a heterotetrameric structure similar to that found in the human structure, as well as that observed in solution for eukaryotic glycosylasparaginases. The results confirm the suitability of the bacterial enzyme as a model to study the consequences of mutations in aspartylglycosaminuria patients. They also suggest that further studies are necessary to understand the detail mechanism of this enzyme. The presence of the heterotetrameric structure in the crystals is significant because dimerization of precursors has been suggested in the human enzyme to be a prerequisite to trigger autoproteolysis.
Collapse
Affiliation(s)
- H C Guo
- Department of Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, USA.
| | | | | | | |
Collapse
|
1671
|
Grimes JM, Stuart DI. Large unit cells and cellular mechanics. NATURE STRUCTURAL BIOLOGY 1998; 5 Suppl:630-4. [PMID: 9699610 DOI: 10.1038/1322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
1672
|
Abstract
Most cellular proteins are targeted for degradation by the proteasome, a eukaryotic ATP-dependent protease, after they have been covalently attached to ubiquitin (Ub) in the form of a poly Ub chain functioning as a degradation signal. The proteasome is an unusually large multisubunit proteolytic complex, consisting of a central catalytic machine (called the 20S proteasome) and two terminal regulatory subcomplexes, termed PA700 or PA28, that are attached to both ends of the central portion in opposite orientations, to form enzymatically active proteasomes. The large assembled proteasome acts as a protein-destroying machine responsible for the selective breakdown of numerous ubiquitinylated cellular proteins and certain nonubiquitinylated proteins. To date, proteolysis mediated by the Ub-proteasome pathway has been shown to be involved in a wide variety of biologically important processes, such as the cell cycle, apoptosis, metabolism, signal transduction, immune response and protein quality control, implying that it functions as a previously unrecognized regulatory system for determining the final fate of protein factors involved in these biological reactions.
Collapse
Affiliation(s)
- K Tanaka
- The Tokyo Metropolitan Institute of Medical Science, and CREST, Japan Science and Technology Corporation (JST), 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-0021, Japan.
| | | |
Collapse
|
1673
|
Gueckel R, Enenkel C, Wolf DH, Hilt W. Mutations in the yeast proteasome beta-type subunit Pre3 uncover position-dependent effects on proteasomal peptidase activity and in vivo function. J Biol Chem 1998; 273:19443-52. [PMID: 9677364 DOI: 10.1074/jbc.273.31.19443] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasomes are highly complex proteases responsible for selective protein degradation in the eukaryotic cell. 26 S proteasomes consist of two regulatory 19 S cap complexes and the 20 S proteasome, which acts as the proteolytic core module. We isolated six mutants of the yeast Saccharomyces cerevisiae containing mutations in the 20 S proteasome beta-type subunit Pre3. Three mutations (pre3-2, pre3-3, and pre3-5) which reside at the active site cleft of the Pre3 subunit solely caused reduction of the proteasomal peptidylglutamyl peptide-hydrolyzing activity but did not lead to detectable defects in protein degradation nor to any other phenotype. However, the pre3-2 mutation strengthened phenotypes induced by other 20 S proteasomal mutations, indicating that the peptidylglutamyl peptide-hydrolyzing activity has to fulfill some rescue functions. The other three mutations (pre3-1, pre3-4, and pre3-6) are located at diverse sites of the Pre3 protein and caused multiple defects in proteasomal peptide cleaving activities. pre3-1 and pre3-6 mutants exhibited significant defects in proteasomal protein degradation; they accumulated ubiquitinated proteins and stabilized defined substrate proteins as, e.g. fructose-1,6-bisphosphatase. In addition, pre3-1 and pre3-6 mutant cells exhibited pleiotropic phenotypes as temperature sensitivity and cell cycle-related effects.
Collapse
Affiliation(s)
- R Gueckel
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
1674
|
Belote JM, Miller M, Smyth KA. Evolutionary conservation of a testes-specific proteasome subunit gene in Drosophila. Gene 1998; 215:93-100. [PMID: 9666090 DOI: 10.1016/s0378-1119(98)00256-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Proteasomes are large multisubunit particles that act as the proteolytic machinery for the ubiquitin-dependent proteolytic pathway. The core of this complex, the 20S proteasome, is made up of seven alpha-type and seven beta-type subunits, arranged in an (alpha1-alpha7)(beta1-beta7)(beta1-beta7)(alpha1-al pha7) configuration. Previous work had shown that there exist alternative isoforms of the Drosophila melanogaster alpha4-type subunit, encoded by two distinct genes, alpha4t1_dm and alpha4t2_dm, and that these are expressed exclusively in the germline of the testes. We sought to investigate the evolutionary conservation of this phenomenon by screening for orthologs of the alpha4-type gene family in the distantly related Drosophila species, D. virilis. We isolated the D. virilis orthologs of the somatically expressed gene, alpha4_dm, and the testes-specific gene, alpha4t2_dm. We failed to find an ortholog of the other testes-specific gene, alpha4t1_dm. The alpha4_dv gene maps to the X chromosome at 12A-C, its product shares 90% amino acid identity with alpha4_dm, and it is expressed at high levels in both males and females. The other gene, alpha4t_dv, encodes a protein most similar to the testes-specific alpha4t2_dm proteasome subunit (59% a.a. identity), and it maps to position 27 on chomosome 2. The expression of the alpha4t_dv gene is testes-specific, like that of alpha4t2_dm. The existence of testes-specific alpha4-type subunits in two widely diverged subgenera of Drosophila suggests that these subunit isoforms have important functional roles in spermatogenesis.
Collapse
Affiliation(s)
- J M Belote
- Department of Biology, Syracuse University, 130 College Place, Syracuse, NY 13244, USA.
| | | | | |
Collapse
|
1675
|
Abstract
The molecular chaperones are a diverse set of protein families required for the correct folding, transport and degradation of other proteins in vivo. There has been great progress in understanding the structure and mechanism of action of the chaperonin family, exemplified by Escherichia coli GroEL. The chaperonins are large, double-ring oligomeric proteins that act as containers for the folding of other protein subunits. Together with its co-protein GroES, GroEL binds non-native polypeptides and facilitates their refolding in an ATP-dependent manner. The action of the ATPase cycle causes the substrate-binding surface of GroEL to alternate in character between hydrophobic (binding/unfolding) and hydrophilic (release/folding). ATP binding initiates a series of dramatic conformational changes that bury the substrate-binding sites, lowering the affinity for non-native polypeptide. In the presence of ATP, GroES binds to GroEL, forming a large chamber that encapsulates substrate proteins for folding. For proteins whose folding is absolutely dependent on the full GroE system, ATP binding (but not hydrolysis) in the encapsulating ring is needed to initiate protein folding. Similarly, ATP binding, but not hydrolysis, in the opposite GroEL ring is needed to release GroES, thus opening the chamber. If the released substrate protein is still not correctly folded, it will go through another round of interaction with GroEL.
Collapse
Affiliation(s)
- N A Ranson
- Department of Crystallography, Birkbeck College London, Malet Street, London WC1E 7HX,
| | | | | |
Collapse
|
1676
|
Cardozo C, Kohanski RA. Altered properties of the branched chain amino acid-preferring activity contribute to increased cleavages after branched chain residues by the "immunoproteasome". J Biol Chem 1998; 273:16764-70. [PMID: 9642232 DOI: 10.1074/jbc.273.27.16764] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multicatalytic proteinase complex (MPC, proteasome) is assembled from 14 nonidentical protein subunits. It expresses five distinct proteolytic activities, including a chymotrypsin-like activity, cleaving after hydrophobic residues, and a branched chain amino acid-preferring component (BrAAP), cleaving preferentially after branched chain residues. Exposure of cells to interferons leads to replacement of the X, Y, and Z subunits by the LMP2, LMP7, and MECL1 subunits. This "immunoproteasome" is critical to processing of certain antigens. The enzymatic basis for enhanced antigen processing has not been determined. To gain insight into this question, we examined sites and relative rates of cleavage of bonds in denatured, reduced, carboxyamidomethylated lysozyme, a 129-amino acid protein, by MPC from bovine spleen, in which the X, Y, and Z subunits are replaced by LMP2, LMP7, and MECL1. We compared cleavages to those catalyzed by MPC from bovine pituitary, which contains only the X, Y, and Z subunits. We found marked increases in the rates and number of cleavages after branched chain residues in reduced, carboxyamidomethylated lysozyme by the spleen MPC. This was largely due to accelerated cleavages of bonds after a Phi-X-Br motif, where Phi is a hydrophobic residue, X is a small neutral or polar residue, and Br is a branched chain residue. Inhibitors with these structural properties were selective and potent inhibitors of the BrAAP activity of the spleen MPC. The above findings indicate that alterations in activity and substrate specificity of the BrAAP activity are important factors underlying the altered cleavages after hydrophobic residues associated with incorporation of interferon-inducible subunits. The potential relevance of the findings to antigen processing functions of MPC is discussed.
Collapse
Affiliation(s)
- C Cardozo
- Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
1677
|
Marcus N, Teckman JH, Perlmutter DH. Alpha1-antitrypsin deficiency: from genotype to childhood disease. J Pediatr Gastroenterol Nutr 1998; 27:65-74. [PMID: 9669729 DOI: 10.1097/00005176-199807000-00012] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- N Marcus
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
1678
|
Benham AM, Grommé M, Neefjes J. Allelic Differences in the Relationship Between Proteasome Activity and MHC Class I Peptide Loading. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.1.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
MHC class I molecules are cell surface glycoproteins that play a pivotal role in the response to intracellular pathogens. The loading of MHC class I molecules with antigenic substrates takes place in the endoplasmic reticulum. This requires a functional TAP transporter, which translocates peptides into the endoplasmic reticulum from the cytosol. The generation of antigenic peptides from polypeptide precursors is thought to be mediated in the cytosol by the proteasome. Previously, we have demonstrated that inhibiting the proteasome with the specific covalent inhibitor lactacystin results in a direct reduction of peptide-loaded MHC class I molecules. This indicates that the proteasome is the limiting step in the MHC class I pathway. In this study we use isoelectric focusing to demonstrate that two related MHC class I alleles, HLA-A3 and HLA-A11, as well as HLA-B35 do not follow this behavior. In contrast to other class I alleles expressed by the same cells, these alleles are loaded with peptides and mature normally when proteasome activity is severely inhibited. Our observations highlight a new level of diversity in the MHC class I system and indicate that there are allele-specific differences in the linkage between proteasome activity and MHC class I peptide loading.
Collapse
Affiliation(s)
- Adam M. Benham
- Division Cellular Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Monique Grommé
- Division Cellular Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacques Neefjes
- Division Cellular Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
1679
|
Ditzel L, Huber R, Mann K, Heinemeyer W, Wolf DH, Groll M. Conformational constraints for protein self-cleavage in the proteasome. J Mol Biol 1998; 279:1187-91. [PMID: 9642094 DOI: 10.1006/jmbi.1998.1818] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proteasome is the central enzyme of protein degradation in the cytosol and the nucleus. It is involved in the removal of abnormal, misfolded or incorrectly assembled proteins, in the processing or degradation of transcriptional regulators in stress response, in degradation of cyclins in cell-cycle control, in the destruction of transcription factors or metabolic enzymes in cell differentiation and metabolic response, and in MHC class I mediated cellular immune response. By the analysis of the crystal and molecular structures of the 20 S proteasomes from the archaeon Thermoplasma acidophilum and from yeast it was shown that the beta-type subunits in which the proteolytic activities reside are members of the N-terminal nucleophile (Ntn) protein family. They are synthesized as proproteins and become active by autoprocessing at a Gly-1-Thr1 bond. The Thr1Ala mutant of subunit beta1/Pre3 of the 20 S proteasome from yeast is unable to autolyse. Its crystal and molecular structure at 2.2 A resolution described here shows that the pro-segment adopts a well-defined gamma-turn conformation at Gly-1 and provides a first view at an autolysis site in Ntn hydrolases. The Gly-1 carbonyl oxygen displays two hydrogen bonds. The modelled Thr1 side-chain is located above the gamma-turn bulge such that addition of its nucleophilic hydroxyl group to the electrophilic Gly-1 carbonyl carbon atom may proceed by very small motions. The pro-segment binding site and the catalytic site provide a rigid structural framework and appropriate hydrogen bond donors for this reaction. The same structure also supports addition of the Thr1 hydroxyl group to the carbonyl carbon atom of Leu-2 as a model for the first step in substrate hydrolysis by the proteasome.
Collapse
Affiliation(s)
- L Ditzel
- Max-Planck-Institut für Biochemie, Martinsried, D-82152, Germany
| | | | | | | | | | | |
Collapse
|
1680
|
Affiliation(s)
- E. J. Corey
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA, Fax: (+1) 617‐495‐0376
| | - Weidong Li
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA, Fax: (+1) 617‐495‐0376
| | - Tohru Nagamitsu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA, Fax: (+1) 617‐495‐0376
| |
Collapse
|
1681
|
Abstract
Proteasome assembly is regulated to ensure the enzyme is inactive until its active sites are compartmentalized within an interior aqueous chamber. In yeast, this depends on a dedicated chaperone that is trapped within the nascent proteasome, and degraded on maturation of the proteolytic subunits.
Collapse
Affiliation(s)
- M R Maurizi
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| |
Collapse
|
1682
|
Wiersma EJ, Collins C, Fazel S, Shulman MJ. Structural and Functional Analysis of J Chain-Deficient IgM. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.12.5979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Previous studies have discerned two forms of polymeric mouse IgM: moderately cytolytic (complement-activating) pentamer, which contains J chain, and highly cytolytic hexamer, which lacks J chain. To investigate the relationships among polymeric structure, J chain content, and cytolytic activity, we produced IgM in J chain-deficient and J chain-proficient mouse hybridoma cell lines. Both hexamer and pentamer were produced in the absence as well as the presence of J chain. Hexameric IgM activated (guinea pig) complement approximately 100-fold more efficiently than did J chain-deficient pentamer, which, in turn, was more active than J chain-containing pentamer. These results are consistent with the hypothesis that J chain-containing pentamer cannot activate complement. We also analyzed the structure of IgM-S337, in which the μ-chain bears the C337S substitution. Like normal IgM, IgM-S337 was formed as a hexamer and as both J chain deficient- and J chain-containing pentamers. Unlike normal IgM, IgM-S337 dissociated in SDS into various subunits. For IgM-S337 pentamer, the predominant subunits migrated as μ2κ2 and μ4κ4, and the subunit distribution was unaltered by J chain. However, J chain was found only in the μ2κ2 species, suggesting that some arrangement of inter-μ bonds directs incorporation of J chain. IgM-S337 hexamer also dissociated to μ2κ2 and μ4κ4, but also yielded several species migrating much more slowly in SDS-PAGE than wild-type μ12κ12. To account for these forms, we propose that each μ-chain can interact with three other μ-chains and that some hexameric molecules contain two catenated μ6κ6 circles.
Collapse
Affiliation(s)
- Erik J. Wiersma
- Departments of Immunology and Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Cathy Collins
- Departments of Immunology and Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shafie Fazel
- Departments of Immunology and Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marc J. Shulman
- Departments of Immunology and Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
1683
|
Hendil KB, Khan S, Tanaka K. Simultaneous binding of PA28 and PA700 activators to 20 S proteasomes. Biochem J 1998; 332 ( Pt 3):749-54. [PMID: 9620878 PMCID: PMC1219536 DOI: 10.1042/bj3320749] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two activators, named PA700 and PA28, are known to bind to 20 S proteasomes, forming two different complexes. The PA700-proteasome complex, also known as the 26 S proteasome, can degrade intact proteins, whereas complexes with PA28 can degrade only peptides. Monoclonal antibodies to 20 S proteasomes or the p45 ATPase subunit (Trip1, Sug1) of PA700 precipitated the same set of proteins from HeLa extracts, including six different ATPase subunits of PA700. This shows that p45 is not present in other protein complexes and suggests that all 26 S proteasome particles contain the same set of ATPase subunits. Interferons alpha and gamma had no effect on the composition of the 26 S proteasome, except for the replacement of subunits delta, MB1 and Z with Lmp2, Lmp7 and MECL1 respectively. Surprisingly, antibodies to PA28 precipitated p42, a component of PA700. Conversely, anti-p45 antibodies precipitated not only 26 S proteasomes but also PA28 alpha, beta and gamma, indicating that 20 S proteasomes can simultaneously bind both PA700 and PA28. PA28 alpha beta is known to be involved in antigen presentation. Conceivably, intact substrate proteins are recognized by PA700 and fed into proteasomes whose cleavage specificity is optimized for antigen presentation on MHC class I by PA28 and three interferon inducible proteasome subunits.
Collapse
Affiliation(s)
- K B Hendil
- August Krogh Institute, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen O, Denmark.
| | | | | |
Collapse
|
1684
|
Abstract
In theory, mutations of protein sequences may eventually generate different functions as well as different structures. The observation of such records of protein evolution have been obscured by the dissipation of memory about the ancestors. In the past year, new advances in our understanding of divergent evolution were allowed by new protein structure determinations, including the ClpP proteases, steroid delta-isomerase, carboxypeptidase G2, the thrombin inhibitor triabin and the chloroplast Rieske protein. There is strong evidence for their distant homology with proteins of known structure despite significant functional or structural differences.
Collapse
Affiliation(s)
- A G Murzin
- Centre for Protein Engineering, MRC Centre, Cambridge, UK.
| |
Collapse
|
1685
|
Tanaka K, Kasahara M. The MHC class I ligand-generating system: roles of immunoproteasomes and the interferon-gamma-inducible proteasome activator PA28. Immunol Rev 1998; 163:161-76. [PMID: 9700509 DOI: 10.1111/j.1600-065x.1998.tb01195.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Production of antigenic peptides that serve as MHC class I ligands is essential for initiation of cell-mediated immunity. Accumulating evidence indicates that the proteasome, a large multisubunit protein deg radative machine in eukaryotes, functions as a processing enzyme responsible for the generation of MHC class I ligands. This processing system is elaborately regulated by various immunomodulatory cytokines. In particular, interferon-gamma induces the formation of immunoproteasomes and a recently identified proteasomal regulatory factor. PA28, which in concert contribute to efficient production of MHC class I ligands. Many of the MHC-encoded genes including LMP appear to have emerged by an ancient chromosomal duplication, suggesting that modifications and renewal of pre-existing non-immune genes were instrumental in the emergence of adaptive immunity.
Collapse
Affiliation(s)
- K Tanaka
- Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Japan.
| | | |
Collapse
|
1686
|
Glickman MH, Rubin DM, Fried VA, Finley D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol 1998; 18:3149-62. [PMID: 9584156 PMCID: PMC108897 DOI: 10.1128/mcb.18.6.3149] [Citation(s) in RCA: 381] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1997] [Accepted: 03/09/1998] [Indexed: 02/07/2023] Open
Abstract
The proteasome is a multisubunit protease responsible for degrading proteins conjugated to ubiquitin. The 670-kDa core particle of the proteasome contains the proteolytic active sites, which face an interior chamber within the particle and are thus protected from the cytoplasm. The entry of substrates into this chamber is thought to be governed by the regulatory particle of the proteasome, which covers the presumed channels leading into the interior of the core particle. We have resolved native yeast proteasomes into two electrophoretic variants and have shown that these represent core particles capped with one or two regulatory particles. To determine the subunit composition of the regulatory particle, yeast proteasomes were purified and analyzed by gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Resolution of the individual polypeptides revealed 17 distinct proteins, whose identities were determined by amino acid sequence analysis. Six of the subunits have sequence features of ATPases (Rpt1 to Rpt6). Affinity chromatography was used to purify regulatory particles from various strains, each of which expressed one of the ATPases tagged with hexahistidine. In all cases, multiple untagged ATPases copurified, indicating that the ATPases assembled together into a heteromeric complex. Of the remaining 11 subunits that we have identified (Rpn1 to Rpn3 and Rpn5 to Rpn12), 8 are encoded by previously described genes and 3 are encoded by genes not previously characterized for yeasts. One of the previously unidentified subunits exhibits limited sequence similarity with deubiquitinating enzymes. Overall, regulatory particles from yeasts and mammals are remarkably similar, suggesting that the specific mechanistic features of the proteasome have been closely conserved over the course of evolution.
Collapse
Affiliation(s)
- M H Glickman
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
1687
|
Bogyo M, Shin S, McMaster JS, Ploegh HL. Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. CHEMISTRY & BIOLOGY 1998; 5:307-20. [PMID: 9653549 DOI: 10.1016/s1074-5521(98)90169-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The proteasome is a multicatalytic protease complex responsible for most cytosolic protein breakdown. The complex has several distinct proteolytic activities that are defined by the preference of each for the carboxyterminal (P1) amino acid residue. Although mutational studies in yeast have begun to define substrate specificities of individual catalytically active beta subunits, little is known about the principles that govern substrate hydrolysis by the proteasome. RESULTS A series of tripeptide and tetrapeptide vinyl sulfones were used to study substrate binding and specificity of the proteasome. Removal of the aromatic amino-terminal cap of the potent tripeptide vinyl sulfone proteasome inhibitor 4-hydroxy-3-iodo-2-nitrophenyl-leucinyl-leucinyl-leucine vinyl sulfone resulted in the complete loss of binding and inhibition. Addition of a fourth amino acid (P4) to the tri-leucine core sequence fully restored inhibitory potency. 125I-labeled peptide vinyl sulfones were also used to examine inhibitor binding and to determine the correlation of subunit modification with inhibition of peptidase activity. Changing the amino acid in the P4 position resulted in dramatically different profiles of beta-subunit modification. CONCLUSIONS The P4 position, distal to the site of hydrolysis, is important in defining substrate processing by the proteasome. We observed direct correlations between subunit modification and inhibition of distinct proteolytic activities, allowing the assignment of activities to individual beta subunits. The ability of tetrapeptides, but not tripeptide vinyl sulfones, to act as substrates for the proteasome suggests there could be a minimal length requirement for hydrolysis by the proteasome. These studies indicate that it is possible to generate inhibitors that are largely specific for individual beta subunits of the proteasome by modulation of the P4 and carboxy-terminal vinyl sulfone moieties.
Collapse
Affiliation(s)
- M Bogyo
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
1688
|
Fu H, Doelling JH, Arendt CS, Hochstrasser M, Vierstra RD. Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics 1998; 149:677-92. [PMID: 9611183 PMCID: PMC1460176 DOI: 10.1093/genetics/149.2.677] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 20S proteasome is the proteolytic complex in eukaryotes responsible for degrading short-lived and abnormal intracellular proteins, especially those targeted by ubiquitin conjugation. The 700-kD complex exists as a hollow cylinder comprising four stacked rings with the catalytic sites located in the lumen. The two outer rings and the two inner rings are composed of seven different alpha and beta polypeptides, respectively, giving an alpha7/beta7/beta7/alpha7 symmetric organization. Here we describe the molecular organization of the 20S proteasome from the plant Arabidopsis thaliana. From an analysis of a collection of cDNA and genomic clones, we identified a superfamily of 23 genes encoding all 14 of the Arabidopsis proteasome subunits, designated PAA-PAG and PBA-PBG for Proteasome Alpha and Beta subunits A-G, respectively. Four of the subunits likely are encoded by single genes, and the remaining subunits are encoded by families of at least 2 genes. Expression of the alpha and beta subunit genes appears to be coordinately regulated. Three of the nine Arabidopsis proteasome subunit genes tested, PAC1 (alpha3), PAE1 (alpha5) and PBC2 (beta3), could functionally replace their yeast orthologs, providing the first evidence for cross-species complementation of 20S subunit genes. Taken together, these results demonstrate that the 20S proteasome is structurally and functionally conserved among eukaryotes and suggest that the subunit arrangement of the Arabidopsis 20S proteasome is similar if not identical to that recently determined for the yeast complex.
Collapse
Affiliation(s)
- H Fu
- Cellular and Molecular Biology Program and the Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
1689
|
Warren MJ, Cooper JB, Wood SP, Shoolingin-Jordan PM. Lead poisoning, haem synthesis and 5-aminolaevulinic acid dehydratase. Trends Biochem Sci 1998; 23:217-21. [PMID: 9644976 DOI: 10.1016/s0968-0004(98)01219-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In mammals and yeast, 5-aminolaevulinic acid dehydratase is a zinc-dependent enzyme that catalyses the synthesis of porphobilinogen-the pyrrole building block that is incorporated into all modified tetrapyrroles, including haem, chlorophyll and vitamin B12. The X-ray structure of this enzyme reveals how substitution of the catalytically important zinc ion by lead inactivates the enzyme and causes a form of pseudo-porphyria.
Collapse
Affiliation(s)
- M J Warren
- Dept of Molecular Genetics, Institute of Ophthalmology, London, UK.
| | | | | | | |
Collapse
|
1690
|
Abstract
Classical class I molecules assemble in the endoplasmic reticulum (ER) with peptides mostly generated from cytosolic proteins by the proteasome. The activity of the proteasome can be modulated by a variety of accessory protein complexes. A subset of the proteasome beta-subunits (LMP2, LMP7, and MECL-1) and one of the accessory complexes, PA28, are upregulated by gamma-interferon and affect the generation of peptides to promote more efficient antigen recognition. The peptides are translocated into the ER by the transporter associated with antigen processing (TAP). A transient complex containing a class I heavy chain-beta 2 microglobulin (beta 2 m) dimer is assembled onto the TAP molecule by successive interactions with the ER chaperones calnexin and calreticulin and a specialized molecule, tapasin. Peptide binding releases the class I-beta 2 m dimer for transport to the cell surface, while lack of binding results in proteasome-mediated degradation. The products of certain nonclassical MHC-linked class I genes bind peptides in a similar way. A homologous set of beta 2 m-associated membrane glycoproteins, the CD1 molecules, appears to bind lipid-based ligands within the endocytic pathway.
Collapse
Affiliation(s)
- E Pamer
- Department of Internal Medicine and Section of Immunobiology, Yale University School of Medicine, Howard Hughes Medical Institute, New Haven, CT 06510, USA.
| | | |
Collapse
|
1691
|
Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998; 16:225-60. [PMID: 9597130 DOI: 10.1146/annurev.immunol.16.1.225] [Citation(s) in RCA: 4129] [Impact Index Per Article: 152.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcription factor NF-kappa B, more than a decade after its discovery, remains an exciting and active area of study. The involvement of NF-kappa B in the expression of numerous cytokines and adhesion molecules has supported its role as an evolutionarily conserved coordinating element in the organism's response to situations of infection, stress, and injury. Recently, significant advances have been made in elucidating the details of the pathways through which signals are transmitted to the NF-kappa B:I kappa B complex in the cytosol. The field now awaits the discovery and characterization of the kinase responsible for the inducible phosphorylation of I kappa B proteins. Another exciting development has been the demonstration that in certain situations NF-kappa B acts as an anti-apoptotic protein; therefore, elucidation of the mechanism by which NF-kappa B protects against cell death is an important goal. Finally, the generation of knockouts of members of the NF-kappa B/I kappa B family has allowed the study of the roles of these proteins in normal development and physiology. In this review, we discuss some of these recent findings and their implications for the study of NF-kappa B.
Collapse
Affiliation(s)
- S Ghosh
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
1692
|
Mori H, Kamada M, Maegawa M, Yamamoto S, Aono T, Futaki S, Yano M, Kido H, Koide SS. Enzymatic activation of immunoglobulin binding factor in female reproductive tract. Biochem Biophys Res Commun 1998; 246:409-13. [PMID: 9610373 DOI: 10.1006/bbrc.1998.8633] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human seminal plasma and cervical mucus contains an immunoglobulin binding factor (IgBF) which interacts with IgG as monomers under reducing condition. It may play a role in preventing antibody production against allogeneic sperms in the female reproductive tract. However, since IgBF is secreted as a homodimer that does not bind IgG, in vivo activation systems should be investigated. GSH reduces the inactive native dimer to the active monomer. Protein disulfide isomerase (PDI), a molecular chaperone, alters the configuration of dimers to active monomers. 20S proteasomes produced by activated T cells which cleave the dimers in the presence of GSH to active fragments. All these activating systems are widely distributed as cellular enzymes in vivo. Also PDI mRNAs are expressed in uterine cervix, endometrium and fallopian tube. Since these enzymes are produced upon stimulation by the immune system, we hypothesize that immunocompetent cells interact with allogeneic sperms, leading to the local production of these enzymes that will activate IgBF.
Collapse
Affiliation(s)
- H Mori
- Department of Obstetrics and Gynecology, School of Medicine, University of Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1693
|
Schmidtke G, Eggers M, Ruppert T, Groettrup M, Koszinowski UH, Kloetzel PM. Inactivation of a defined active site in the mouse 20S proteasome complex enhances major histocompatibility complex class I antigen presentation of a murine cytomegalovirus protein. J Exp Med 1998; 187:1641-6. [PMID: 9584142 PMCID: PMC2212286 DOI: 10.1084/jem.187.10.1641] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Proteasomes generate peptides bound by major histocompatibility complex (MHC) class I molecules. Avoiding proteasome inhibitors, which in most cases do not distinguish between individual active sites within the cell, we used a molecular genetic approach that allowed for the first time the in vivo analysis of defined proteasomal active sites with regard to their significance for antigen processing. Functional elimination of the delta/low molecular weight protein (LMP) 2 sites by substitution with a mutated inactive LMP2 T1A subunit results in reduced cell surface expression of the MHC class I H-2Ld and H-2Dd molecules. Surface levels of H-2Ld and H-2Dd molecules were restored by external loading with peptides. However, as a result of the active site mutation, MHC class I presentation of a 9-mer peptide derived from a protein of murine cytomegalovirus was enhanced about three- to fivefold. Our experiments provide evidence that the delta/LMP2 active site elimination limits the processing and presentation of several peptides, but may be, nonetheless, beneficial for the generation and presentation of others.
Collapse
Affiliation(s)
- G Schmidtke
- Zentrum für Experimentelle Medizin (ZEM), Institut für Biochemie, Charité, Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
1694
|
Antón LC, Snyder HL, Bennink JR, Vinitsky A, Orlowski M, Porgador A, Yewdell JW. Dissociation of Proteasomal Degradation of Biosynthesized Viral Proteins from Generation of MHC Class I-Associated Antigenic Peptides. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.10.4859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
To study the role of proteasomes in Ag presentation, we analyzed the effects of proteasome inhibitors Cbz-Leu-Leu-Leucinal and lactacystin on the ability of mouse fibroblast cells to present recombinant vaccinia virus gene products to MHC class I-restricted T cells. The effects of the inhibitors depended on the determinant analyzed. For influenza virus nucleoprotein (NP), presentation of the immunodominant Kk-restricted determinant (NP50–57) was marginally inhibited, whereas presentation of the immunodominant Kd-restricted determinant (NP147–155) was enhanced, particularly by lactacystin. Biochemical purification of peptides confirmed that lactacystin enhanced the generation of Kd-NP147–155 complexes fourfold. Lactacystin also enhanced the recovery of one Kd-restricted vaccinia virus determinant from HPLC fractions, while inhibiting recovery of another. The inhibitors were used at sufficient concentrations to block presentation of biosynthesized full-length OVA and to completely stabilize a rapidly degraded chimeric ubiquitin-NP fusion protein. Strikingly, presentation of antigenic peptides from this protein was unaffected by proteasome inhibitors. We also observed that proteasome inhibitors induced expression of cytosolic and endoplasmic reticulum stress-responsive proteins. These data demonstrate first that the processes of protein degradation and generation of antigenic peptides from cytosolic proteins can be dissociated, and second that effects of proteasome inhibitors on Ag presentation may reflect secondary effects on cellular metabolism.
Collapse
Affiliation(s)
| | | | | | - Alexander Vinitsky
- ‡Mount Sinai School of Medicine of City University of New York, Department of Pharmacology, New York, NY 10029
- Laboratories of
| | - Marian Orlowski
- ‡Mount Sinai School of Medicine of City University of New York, Department of Pharmacology, New York, NY 10029
- Laboratories of
| | - Angel Porgador
- †Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892; and
- Laboratories of
| | | |
Collapse
|
1695
|
Lum RT, Kerwar SS, Meyer SM, Nelson MG, Schow SR, Shiffman D, Wick MM, Joly A. A new structural class of proteasome inhibitors that prevent NF-kappa B activation. Biochem Pharmacol 1998; 55:1391-7. [PMID: 10076530 DOI: 10.1016/s0006-2952(97)00655-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The multicatalytic proteinase or proteasome is a highly conserved cellular structure that is responsible for the ATP-dependent proteolysis of many proteins involved in important regulatory cellular processes. We have identified a novel class of inhibitors of the chymotrypsin-like proteolytic activity of the 20S proteasome that exhibit IC50 values ranging from 0.1 to 0.5 microgram/mL (0.1 to 1 microM). In cell proliferation assays, these compounds inhibit growth with an IC50 ranging from 5 to 10 micrograms/mL (10-20 microM). A representative member of this class of inhibitors was tested in other biological assays. CVT-634 (5-methoxy-1-indanone-3-acetyl-leu-D-leu-1-indanylamide) prevented lipopolysaccharide (LPS), tumor necrosis factor (TNF)-, and phorbol ester-induced activation of nuclear factor kappa B (NF-kappa B) in vitro by preventing signal-induced degradation of I kappa B-alpha. In these studies, the I kappa B-alpha that accumulated was hyperphosphorylated, indicating that CVT-634 did not inhibit I kappa B-alpha kinase, the enzyme responsible for signal-induced phosphorylation of I kappa B-alpha. In vivo studies indicated that CVT-634 prevented LPS-induced TNF synthesis in a murine macrophage cell line. In addition, in mice pretreated with CVT-634 at 25 and 50 mg/kg and subsequently treated with LPS, serum TNF levels were significantly lower (225 +/- 59 and 83 +/- 41 pg/mL, respectively) than in those mice that were treated only with LPS (865 +/- 282 pg/mL). These studies suggest that specific inhibition of the chymotrypsin-like activity of the proteasome is sufficient to prevent signal-induced NF-kappa B activation and that the proteasome is a novel target for the identification of agents that may be useful in the treatment of diseases whose etiology is dependent upon the activation of NF-kappa B.
Collapse
Affiliation(s)
- R T Lum
- CV Therapeutics, Inc., Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | |
Collapse
|
1696
|
Hayashi T, Goto S. Age-related changes in the 20S and 26S proteasome activities in the liver of male F344 rats. Mech Ageing Dev 1998; 102:55-66. [PMID: 9663792 DOI: 10.1016/s0047-6374(98)00011-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Accumulation of altered proteins in old animals has been ascribed to slower turnover of proteins. Since proteasomes can be regarded as the major proteolytic enzymes responsible for the degradation of the majority of cellular proteins, we examined age-related changes of 20S and 26S proteasomes in the liver of young (8-10-month-old), middle-aged (15-18-month-old) and old (25-28-month-old) Fischer 344 male rats. The two forms of proteasomes were separated by glycerol gradient centrifugation. Fluorogenic peptides were used as substrates to evaluate three types of peptidase activities. The ratio of peptidase activities in the 20S proteasome vs. those in the 26S form did not appear to change with age. Unstimulated chymotrypsin-like activity found only in the 26S form decreased by 30% in the old rats as compared with that in the young ones, while no change in the activity was observed during aging when stimulated by sodium dodecyl sulfate. The trypsin-like activity declined significantly by 17% to an apparently similar extent in both 20S and 26S forms. The peptidylglutamyl peptide hydrolyzing activity exhibited gradual decrease with age, resulting in 60% lower value in the old rats as compared with the young animals. These changes are considered to account for the age-related extension of half-life of proteins. Since the amount of total proteasomes measured by immunoblot did not appear to change with age, posttranslational modifications or subunit replacement is possibly responsible for the decrease in the activities.
Collapse
Affiliation(s)
- T Hayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| | | |
Collapse
|
1697
|
Schwartz O, Maréchal V, Friguet B, Arenzana-Seisdedos F, Heard JM. Antiviral activity of the proteasome on incoming human immunodeficiency virus type 1. J Virol 1998; 72:3845-50. [PMID: 9557668 PMCID: PMC109608 DOI: 10.1128/jvi.72.5.3845-3850.1998] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Following cell surface receptor binding and membrane fusion, human immunodeficiency virus (HIV) virion cores are released in the cytoplasm. Incoming viral proteins represent potential targets for cytosolic proteases. We show that treatment of target cells with the proteasome inhibitors MG132 and lactacystin increased the efficiency of HIV infection. Proteasome inhibitors were active at the early steps of the viral cycle. Incoming p24Gag proteins accumulated in the cytosol, and larger amounts of proviral DNA were synthesized. In vitro, purified 20S proteasome degraded HIV virion components. Thus, degradation of incoming viral proteins by the proteasome represents an early intracellular defense against infection.
Collapse
Affiliation(s)
- O Schwartz
- Laboratoire Rétrovirus et Transfert Génétique, URA CNRS 1157, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
1698
|
Nandi D, Marusina K, Monaco JJ. How do endogenous proteins become peptides and reach the endoplasmic reticulum. Curr Top Microbiol Immunol 1998; 232:15-47. [PMID: 9557392 DOI: 10.1007/978-3-642-72045-1_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D Nandi
- Howard Hughes Medical Institute, University of Cincinnati, OH 45267-0524, USA
| | | | | |
Collapse
|
1699
|
Richards NG, Schuster SM. Mechanistic issues in asparagine synthetase catalysis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1998; 72:145-98. [PMID: 9559053 DOI: 10.1002/9780470123188.ch5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The enzymatic synthesis of asparagine is an ATP-dependent process that utilizes the nitrogen atom derived from either glutamine or ammonia. Despite a long history of kinetic and mechanistic investigation, there is no universally accepted catalytic mechanism for this seemingly straightforward carboxyl group activating enzyme, especially as regards those steps immediately preceding amide bond formation. This chapter considers four issues dealing with the mechanism: (a) the structural organization of the active site(s) partaking in glutamine utilization and aspartate activation; (b) the relationship of asparagine synthetase to other amidotransferases; (c) the way in which ATP is used to activate the beta-carboxyl group; and (d) the detailed mechanism by which nitrogen is transferred.
Collapse
Affiliation(s)
- N G Richards
- Department of Chemistry, University of Florida, Gainesville 32611, USA
| | | |
Collapse
|
1700
|
Zhang Z, Realini C, Clawson A, Endicott S, Rechsteiner M. Proteasome activation by REG molecules lacking homolog-specific inserts. J Biol Chem 1998; 273:9501-9. [PMID: 9545278 DOI: 10.1074/jbc.273.16.9501] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peptidase activities of eukaryotic proteasomes are markedly activated by the 11 S REG or PA28. The three identified REG subunits, designated alpha, beta, and gamma, differ significantly in sequence over a short span of 15-30 amino acids that we call homolog-specific inserts. These inserts were deleted from each REG to produce the mutant proteins REGalphaDeltai, REGbetaDeltai, and REGgammaDeltai. The purified recombinant proteins were then tested for their ability to oligomerize and activate the proteasome. Both REGalphaDeltai and REGgammaDeltai formed apparent heptamers and activated human red cell proteasomes to the same extent as their full-length counterparts. By contrast, REGbetaDeltai exhibited, at low protein concentrations, reduced proteasome activation when compared with the wild-type REGbeta protein. REGbetaDeltai was able to form hetero-oligomers with a single site, monomeric REGalpha mutant and with REGalphaDeltai. At low concentrations, the REGalphaDeltai/REGbetaDeltai hetero-oligomers stimulated the proteasome less than REGalpha/REGbeta oligomers formed from wild-type subunits, and the reduced activation by REGalphaDeltai/REGbetaDeltai was due to removal of the REGbeta insert, not the REGalpha insert. These studies demonstrate that the REGalpha and REGgamma inserts play virtually no role in oligomerization or in proteasome activation. By contrast, removal of REGbeta insert reduces binding of this subunit and REGalpha/REGbeta oligomers to proteasomes. On the whole, however, our findings show that REG inserts are not required for binding and activating the proteasome. We speculate that they serve to localize REG-proteasome complexes within cells, possibly by binding components in endoplasmic reticulum membranes.
Collapse
Affiliation(s)
- Z Zhang
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|