1701
|
Guimarães ES, Cerda A, Dorea EL, Bernik MMS, Gusukuma MC, Pinto GA, Fajardo CM, Hirata MH, Hirata RDC. Effects of short-term add-on ezetimibe to statin treatment on expression of adipokines and inflammatory markers in diabetic and dyslipidemic patients. Cardiovasc Ther 2017; 35. [DOI: 10.1111/1755-5922.12307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023] Open
Affiliation(s)
- Elizandra Silva Guimarães
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Alvaro Cerda
- Center of Excellence in Translational Medicine, CETM-BIOREN, Department of Basic Sciences; Universidad de La Frontera; Temuco Chile
| | | | | | | | | | - Cristina Moreno Fajardo
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences; University of Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
1702
|
Al-Daghri NM, Batzel JJ, Burgmann H, Carbone F, Charmandari E, Chrousos GP, Distelmaier K, Cvirn G, Dullaart RPF, Dumitrascu DL, Esteve-Pastor MA, Gervasini G, Goliasch G, Goswami N, Gruppen EG, Hernández-Mijares A, Kalantaridou SN, Krause R, Latini R, Makrigiannakis A, Marín F, Masson S, Montecucco F, Ndrepepa G, Nicolaides NC, Novelli D, Orasan OH, Qorbani M, Ratzinger F, Roessler A, Sabico S, Sciatti E, Stefanaki C, Stoner L, Tabatabaei-Malazy O, Tatar E, Toz H, Uslu A, Victor VM, Vizzardi E. Research update for articles published in EJCI in 2015. Eur J Clin Invest 2017; 47:775-788. [PMID: 28960328 DOI: 10.1111/eci.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Nasser M Al-Daghri
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jerry J Batzel
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Heinz Burgmann
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Federico Carbone
- First Clinical of Internal Medicine Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George P Chrousos
- Choremeion Research Laboratory, 1st Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Klaus Distelmaier
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Gerhard Cvirn
- Physiology, Medical University of Graz, Graz, Austria
- Institute of Physiological Chemistry, Medical University of Graz, Graz, Austria
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Dan L Dumitrascu
- 2nd Medical Department, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - María A Esteve-Pastor
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBER-CV, Murcia, Spain
| | - Guillermo Gervasini
- Department of Medical and Surgical Therapeutics, Medical School, University of Extremadura, Badajoz, Spain
| | - Georg Goliasch
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Eke G Gruppen
- Department of Endocrinology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Antonio Hernández-Mijares
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Sophia N Kalantaridou
- 2nd Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- CBmed GmbH - Center for Biomarker Research in Medicine, Graz, Austria
| | - Roberto Latini
- Department of Cardiovascular Research, IRCCS - Istituto Mario Negri, Milano, Italy
| | - Antonis Makrigiannakis
- Department of Obstetrics and Gynecology, Medical School, University of Crete, Heraklion, Greece
| | - Francisco Marín
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBER-CV, Murcia, Spain
| | - Serge Masson
- Department of Cardiovascular Research, IRCCS - Istituto Mario Negri, Milano, Italy
| | - Fabrizio Montecucco
- First Clinical of Internal Medicine Department of Internal Medicine, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino, Genova, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | | | - Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Deborah Novelli
- Department of Cardiovascular Research, IRCCS - Istituto Mario Negri, Milano, Italy
| | - Olga H Orasan
- 4th Medical Department, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mostafa Qorbani
- Department of Community Medicine, School of Medicine, Alborz University of Medical sciences, Karaj, Iran
- Non-Communicable Disease Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran university of Medical sciences, Tehran, Iran
| | - Franz Ratzinger
- Division of Medical and Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Andreas Roessler
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Shaun Sabico
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Edoardo Sciatti
- Section of Cardiovascular Diseases, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University and Spedali Civili of Brescia, Brescia, Italy
| | - Charikleia Stefanaki
- Choremeion Research Laboratory, 1st Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Lee Stoner
- School of Sport and Exercise, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ozra Tabatabaei-Malazy
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran university of Medical sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Erhan Tatar
- Department of Nephrology, Izmir Bozyaka Education and Research Hospital, Izmir, Turkey
| | - Huseyin Toz
- Department of Nephrology, Ege University School of Medicine, Izmir, Turkey
| | - Adam Uslu
- Department of General Surgery and Transplantation, Izmir Bozyaka Education and Research Hospital, Izmir, Turkey
| | - Victor M Victor
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Enrico Vizzardi
- Section of Cardiovascular Diseases, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University and Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
1703
|
Bañuls C, Rovira-Llopis S, Lopez-Domenech S, Diaz-Morales N, Blas-Garcia A, Veses S, Morillas C, Victor VM, Rocha M, Hernandez-Mijares A. Oxidative and endoplasmic reticulum stress is impaired in leukocytes from metabolically unhealthy vs healthy obese individuals. Int J Obes (Lond) 2017; 41:1556-1563. [PMID: 28630460 DOI: 10.1038/ijo.2017.147] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxidative stress and inflammation are related to obesity, but the influence of metabolic disturbances on these parameters and their relationship with endoplasmic reticulum (ER) stress is unknown. Therefore, this study was performed to evaluate whether metabolic profile influences ER and oxidative stress in an obese population with/without comorbidities. SUBJECTS AND METHODS A total of 113 obese patients were enrolled in the study; 29 were metabolically healthy (MHO), 53 were metabolically abnormal (MAO) and 31 had type 2 diabetes (MADO). We assessed metabolic parameters, proinflammatory cytokines (TNFα and IL-6), mitochondrial and total reactive oxygen species (ROS) production, glutathione levels, antioxidant enzymes activity, total antioxidant status, mitochondrial membrane potential and ER stress marker expression levels (glucose-regulated protein (GRP78), spliced X-box binding protein 1 (XBP1), P-subunit 1 alpha (P-eIF2α) and activating transcription factor 6 (ATF6). RESULTS The MAO and MADO groups showed higher blood pressure, atherogenic dyslipidemia, insulin resistance and inflammatory profile than that of MHO subjects. Total and mitochondrial ROS production was enhanced in MAO and MADO patients, and mitochondrial membrane potential and catalase activity differed significantly between the MADO and MHO groups. In addition, decreases in glutathione levels and superoxide dismutase activity were observed in the MADO vs MAO and MHO groups. GRP78 and CHOP protein and gene expression were higher in the MAO and MADO groups with respect to MHO subjects, and sXBP1 gene expression was associated with the presence of diabetes. Furthermore, MAO patients exhibited higher levels of ATF6 than their MHO counterparts. Waist circumference was positively correlated with ATF6 and GRP78, and A1c was positively correlated with P-Eif2α. Interestingly, CHOP was positively correlated with TNFα and total ROS production and GRP78 was negatively correlated with glutathione levels. CONCLUSIONS Our findings support the hypothesis that both inflammation and oxidative stress are involved in the induction of ER stress signaling pathways in the leukocytes of metabolically unhealthy obese vs healthy obese subjects.
Collapse
Affiliation(s)
- C Bañuls
- Service of Endocrinology. University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
- CIBERehd-Department of Pharmacology and Physiology, University of Valencia, Valencia, Spain
| | - S Rovira-Llopis
- Service of Endocrinology. University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | - S Lopez-Domenech
- Service of Endocrinology. University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - N Diaz-Morales
- Service of Endocrinology. University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - A Blas-Garcia
- CIBERehd-Department of Pharmacology and Physiology, University of Valencia, Valencia, Spain
| | - S Veses
- Service of Endocrinology. University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | - C Morillas
- Service of Endocrinology. University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | - V M Victor
- Service of Endocrinology. University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- CIBERehd-Department of Pharmacology and Physiology, University of Valencia, Valencia, Spain
- Department of Physiology, University of Valencia, Valencia, Spain
| | - M Rocha
- Service of Endocrinology. University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- CIBERehd-Department of Pharmacology and Physiology, University of Valencia, Valencia, Spain
| | - A Hernandez-Mijares
- Service of Endocrinology. University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
1704
|
Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc Diabetol 2017; 16:120. [PMID: 28962617 PMCID: PMC5622555 DOI: 10.1186/s12933-017-0604-9] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in humans. Several risk factors promote AF, among which diabetes mellitus has emerged as one of the most important. The growing recognition that obesity, diabetes and AF are closely intertwined disorders has spurred major interest in uncovering their mechanistic links. In this article we provide an update on the growing evidence linking oxidative stress and inflammation to adverse atrial structural and electrical remodeling that leads to the onset and maintenance of AF in the diabetic heart. We then discuss several therapeutic strategies to improve atrial excitability by targeting pathways that control oxidative stress and inflammation.
Collapse
Affiliation(s)
- Basil S Karam
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Wonjoon Koh
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph G Akar
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Fadi G Akar
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
1705
|
Bansal A, Rashid C, Xin F, Li C, Polyak E, Duemler A, van der Meer T, Stefaniak M, Wajid S, Doliba N, Bartolomei MS, Simmons RA. Sex- and Dose-Specific Effects of Maternal Bisphenol A Exposure on Pancreatic Islets of First- and Second-Generation Adult Mice Offspring. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:097022. [PMID: 29161229 PMCID: PMC5915189 DOI: 10.1289/ehp1674] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND Exposure to the environmental endocrine disruptor bisphenol A (BPA) is ubiquitous and associated with the increased risk of diabetes and obesity. However, the underlying mechanisms remain unknown. We recently demonstrated that perinatal BPA exposure is associated with higher body fat, impaired glucose tolerance, and reduced insulin secretion in first- (F1) and second-generation (F2) C57BL/6J male mice offspring. OBJECTIVE We sought to determine the multigenerational effects of maternal bisphenol A exposure on mouse pancreatic islets. METHODS Cellular and molecular mechanisms underlying these persistent changes were determined in F1 and F2 adult offspring of F0 mothers exposed to two relevant human exposure levels of BPA (10μg/kg/d-LowerB and 10mg/kg/d-UpperB). RESULTS Both doses of BPA significantly impaired insulin secretion in male but not female F1 and F2 offspring. Surprisingly, LowerB and UpperB induced islet inflammation in male F1 offspring that persisted into the next generation. We also observed dose-specific effects of BPA on islets in males. UpperB exposure impaired mitochondrial function, whereas LowerB exposure significantly reduced β-cell mass and increased β-cell death that persisted in the F2 generation. Transcriptome analyses supported these physiologic findings and there were significant dose-specific changes in the expression of genes regulating inflammation and mitochondrial function. Previously we observed increased expression of the critically important β-cell gene, Igf2 in whole F1 embryos. Surprisingly, increased Igf2 expression persisted in the islets of male F1 and F2 offspring and was associated with altered DNA methylation. CONCLUSION These findings demonstrate that maternal BPA exposure has dose- and sex-specific effects on pancreatic islets of adult F1 and F2 mice offspring. The transmission of these changes across multiple generations may involve either mitochondrial dysfunction and/or epigenetic modifications. https://doi.org/10.1289/EHP1674.
Collapse
Affiliation(s)
- Amita Bansal
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cetewayo Rashid
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Frances Xin
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Erzsebet Polyak
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anna Duemler
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Eberly College of Science, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tom van der Meer
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Groningen, Groningen, Netherlands
| | - Martha Stefaniak
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sana Wajid
- Exposure Biology Informatics Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicolai Doliba
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa S Bartolomei
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
1706
|
Ávila J, González-Fernández R, Rotoli D, Hernández J, Palumbo A. Oxidative Stress in Granulosa-Lutein Cells From In Vitro Fertilization Patients. Reprod Sci 2017; 23:1656-1661. [PMID: 27821562 DOI: 10.1177/1933719116674077] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ovarian aging is associated with gradual follicular loss by atresia/apoptosis. Increased production of toxic metabolites such as reactive oxygen species (ROS) and reactive nitrogen species as well as external oxidant agents plays an important role in the process of ovarian senescence and in the pathogenesis of ovarian pathologies such as endometriosis and polycystic ovary syndrome (PCOS). This review provides a synthesis of available studies of oxidative stress (OS) in the ovary, focusing on the most recent evidence obtained in mural granulosa-lutein (GL) cells of in vitro fertilization patients. Synthesis of antioxidant enzymes such as peroxiredoxin 4, superoxide dismutase, and catalase and OS damage response proteins such as aldehyde dehydrogenase 3, member A2 decreases with aging in human GL cells, favoring an unbalance in ROS/antioxidants that mediates molecular damage and altered cellular function. The increase in OS in the granulosa cell correlates with diminished expression of follicle-stimulating hormone receptor (FSHR) and a dysregulation of the FSHR signaling pathway and may be implicated in disrupted steroidogenic function and poor response to FSH in women with aging. Women with endometriosis and PCOS have lower antioxidant production capacity that may contribute to abnormal follicular development and infertility. Further investigation of the signaling pathways involved in cellular response to OS could shed light into molecular characterization of these diseases and development of new treatment strategies to improve reproductive potential in these women.
Collapse
Affiliation(s)
- Julio Ávila
- Departamento de Bioquímica y Biología Molecular, Laboratorio de Biología del Desarrollo, Universidad de La Laguna, La Laguna, Spain.,Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, La Laguna, Spain
| | - Rebeca González-Fernández
- Departamento de Bioquímica y Biología Molecular, Laboratorio de Biología del Desarrollo, Universidad de La Laguna, La Laguna, Spain
| | - Deborah Rotoli
- Departamento de Bioquímica y Biología Molecular, Laboratorio de Biología del Desarrollo, Universidad de La Laguna, La Laguna, Spain.,Institute of Endocrinology and Experimental Oncology (IEOS), CNR-National Research Council, Naples, Italy
| | - Jairo Hernández
- Centro de Asistencia a la Reproducción Humana de Canarias, La Laguna, Spain
| | - Angela Palumbo
- Centro de Asistencia a la Reproducción Humana de Canarias, La Laguna, Spain .,Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
1707
|
Mitochondria-Targeted Antioxidants SkQ1 and MitoTEMPO Failed to Exert a Long-Term Beneficial Effect in Murine Polymicrobial Sepsis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6412682. [PMID: 29104729 PMCID: PMC5625755 DOI: 10.1155/2017/6412682] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/22/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022]
Abstract
Mitochondrial-derived reactive oxygen species have been deemed an important contributor in sepsis pathogenesis. We investigated whether two mitochondria-targeted antioxidants (mtAOX; SkQ1 and MitoTEMPO) improved long-term outcome, lessened inflammation, and improved organ homeostasis in polymicrobial murine sepsis. 3-month-old female CD-1 mice (n = 90) underwent cecal ligation and puncture (CLP) and received SkQ1 (5 nmol/kg), MitoTEMPO (50 nmol/kg), or vehicle 5 times post-CLP. Separately, 52 SkQ1-treated CLP mice were sacrificed at 24 h and 48 h for additional endpoints. Neither MitoTEMPO nor SkQ1 exerted any protracted survival benefit. Conversely, SkQ1 exacerbated 28-day mortality by 29%. CLP induced release of 10 circulating cytokines, increased urea, ALT, and LDH, and decreased glucose but irrespectively of treatment. Similar occurred for CLP-induced lymphopenia/neutrophilia and the NO blood release. At 48 h post-CLP, dying mice had approximately 100-fold more CFUs in the spleen than survivors, but this was not SkQ1 related. At 48 h, macrophage and granulocyte counts increased in the peritoneal lavage but irrespectively of SkQ1. Similarly, hepatic mitophagy was not altered by SkQ1 at 24 h. The absence of survival benefit of mtAOX may be due to the extended treatment and/or a relatively moderate-risk-of-death CLP cohort. Long-term effect of mtAOX in abdominal sepsis appears different to sepsis/inflammation models arising from other body compartments.
Collapse
|
1708
|
Sepsis-Induced Cardiomyopathy: Oxidative Implications in the Initiation and Resolution of the Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7393525. [PMID: 29057035 PMCID: PMC5625757 DOI: 10.1155/2017/7393525] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/14/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Cardiac dysfunction may complicate the course of severe sepsis and septic shock with significant implications for patient's survival. The basic pathophysiologic mechanisms leading to septic cardiomyopathy have not been fully clarified until now. Disease-specific treatment is lacking, and care is still based on supportive modalities. Septic state causes destruction of redox balance in many cell types, cardiomyocytes included. The production of reactive oxygen and nitrogen species is increased, and natural antioxidant systems fail to counterbalance the overwhelming generation of free radicals. Reactive species interfere with many basic cell functions, mainly through destruction of protein, lipid, and nucleic acid integrity, compromising enzyme function, mitochondrial structure and performance, and intracellular signaling, all leading to cardiac contractile failure. Takotsubo cardiomyopathy may result from oxidative imbalance. This review will address the multiple aspects of cardiomyocyte bioenergetic failure in sepsis and discuss potential therapeutic interventions.
Collapse
|
1709
|
Hitsumoto T. Relationship Between Serum Total Testosterone Concentration and Augmentation Index at Radial Artery in Japanese Postmenopausal Patients. J Clin Med Res 2017; 9:872-878. [PMID: 28912924 PMCID: PMC5593435 DOI: 10.14740/jocmr3164w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 08/25/2017] [Indexed: 11/11/2022] Open
Abstract
Background The significance of testosterone as a risk factor for cardiovascular disease (CVD) in females is controversial. This cross-sectional study aimed to elucidate the relationship between serum total testosterone concentration (T-T) and augmentation index at the radial artery (r-AIx) as a marker of arterial function in Japanese postmenopausal patients. Methods A total of 447 postmenopausal patients with traditional cardiovascular risk factors and/or a history of CVD (age (mean ± standard deviation (SD)), 73 ± 10 years) were enrolled. r-AIx was measured using tonometry, and the association between r-AIx and various clinical parameters, including T-T, was determined. Results r-AIx significantly increased (CVD vs. non-CVD: 99±11% vs. 91±11%, P < 0.001) and T-T significantly decreased (CVD vs. non-CVD: 0.31 ± 0.13 ng/mL vs. 0.49 ± 0.23 ng/mL, P < 0.001) in patients with CVD than in those without CVD. A significant negative correlation (r = -0.48; P < 0.001) between r-AIx and T-T was observed. Furthermore, multiple regression analysis indicated that T-T (t value = -7.7; P < 0.001), height (t value = -5.3; P < 0.001), d-ROMs test as a marker of oxidative stress in vivo (t value = 3.2; P < 0.001), CVD (t value = 2.9; P < 0.01), and pulse rate (t value = -2.7; P < 0.01) were independent variables for r-AIx as a subordinate factor. Conclusion This study revealed that low T-T is an important determining factor for an increase in r-AIx in Japanese postmenopausal patients. A prospective multicenter study with a large sample size is required to confirm the results of this study.
Collapse
Affiliation(s)
- Takashi Hitsumoto
- Hitsumoto Medical Clinic, 2-7-7, Takezakicyou, Shimonoseki City, Yamaguchi 750-0025, Japan.
| |
Collapse
|
1710
|
Li H, Xu C, Li Q, Gao X, Sugano E, Tomita H, Yang L, Shi S. Thioredoxin 2 Offers Protection against Mitochondrial Oxidative Stress in H9c2 Cells and against Myocardial Hypertrophy Induced by Hyperglycemia. Int J Mol Sci 2017; 18:ijms18091958. [PMID: 28914755 PMCID: PMC5618607 DOI: 10.3390/ijms18091958] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial oxidative stress is thought to be a key contributor towards the development of diabetic cardiomyopathy. Thioredoxin 2 (Trx2) is a mitochondrial antioxidant that, along with Trx reductase 2 (TrxR2) and peroxiredoxin 3 (Prx3), scavenges H2O2 and offers protection against oxidative stress. Our previous study showed that TrxR inhibitors resulted in Trx2 oxidation and increased ROS emission from mitochondria. In the present study, we observed that TrxR inhibition also impaired the contractile function of isolated heart. Our studies showed a decrease in the expression of Trx2 in the high glucose-treated H9c2 cardiac cells and myocardium of streptozotocin (STZ)-induced diabetic rats. Overexpression of Trx2 could significantly diminish high glucose-induced mitochondrial oxidative damage and improved ATP production in cultured H9c2 cells. Notably, Trx2 overexpression could suppress high glucose-induced atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) gene expression. Our studies suggest that high glucose-induced mitochondrial oxidative damage can be prevented by elevating Trx2 levels, thereby providing extensive protection to the diabetic heart.
Collapse
Affiliation(s)
- Hong Li
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China.
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China.
| | - Quanfeng Li
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China.
| | - Xiuxiang Gao
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China.
| | - Erkio Sugano
- Department of Chemistry and Bioengineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan.
| | - Hiroshi Tomita
- Department of Chemistry and Bioengineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan.
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China.
| | - Sa Shi
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
1711
|
Kim S, Kim C, Park S. Mdivi-1 Protects Adult Rat Hippocampal Neural Stem Cells against Palmitate-Induced Oxidative Stress and Apoptosis. Int J Mol Sci 2017; 18:E1947. [PMID: 28891994 PMCID: PMC5618596 DOI: 10.3390/ijms18091947] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
Palmitate concentrations in type 2 diabetic patients are higher than in healthy subjects. The prolonged elevation of plasma palmitate levels induces oxidative stress and mitochondrial dysfunction in neuronal cells. In this study, we examined the role of mdivi-1, a selective inhibitor of mitochondrial fission protein dynamin-regulated protein 1 (Drp1), on the survival of cultured hippocampal neural stem cells (NSCs) exposed to high palmitate. Treatment of hippocampal NSCs with mdivi-1 attenuated palmitate-induced increase in cell death and apoptosis. Palmitate exposure significantly increased Drp1 protein levels, which were prevented by pretreatment of cells with mdivi-1. We found that cytosolic Drp1 was translocated to the mitochondria when cells were exposed to palmitate. In contrast, palmitate-induced translocation of Drp1 was inhibited by mdivi-1 treatment. We also investigated mdivi-1 regulation of apoptosis at the mitochondrial level. Mdivi-1 rescued cells from palmitate-induced lipotoxicity by suppressing intracellular and mitochondrial reactive oxygen species production and stabilizing mitochondrial transmembrane potential. Mdivi-1-treated cells showed an increased Bcl-2/Bax ratio, prevention of cytochrome c release, and inhibition of caspase-3 activation. Our data suggest that mdivi-1 protects hippocampal NSCs against lipotoxicity-associated oxidative stress by preserving mitochondrial integrity and inhibiting mitochondrial apoptotic cascades.
Collapse
Affiliation(s)
- Sehee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Chanyang Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Seungjoon Park
- Department of Pharmacology and Medical Research Center for Bioreaction to ROS and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
1712
|
Qiu L, Ma Y, Luo Y, Cao Z, Lu H. Protective effects of isorhamnetin on N2a cell against endoplasmic reticulum stress-induced injury is mediated by PKCε. Biomed Pharmacother 2017; 93:830-836. [DOI: 10.1016/j.biopha.2017.06.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023] Open
|
1713
|
Romero R, Erez O, Hüttemann M, Maymon E, Panaitescu B, Conde-Agudelo A, Pacora P, Yoon BH, Grossman LI. Metformin, the aspirin of the 21st century: its role in gestational diabetes mellitus, prevention of preeclampsia and cancer, and the promotion of longevity. Am J Obstet Gynecol 2017; 217:282-302. [PMID: 28619690 DOI: 10.1016/j.ajog.2017.06.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022]
Abstract
Metformin is everywhere. Originally introduced in clinical practice as an antidiabetic agent, its role as a therapeutic agent is expanding to include treatment of prediabetes mellitus, gestational diabetes mellitus, and polycystic ovarian disease; more recently, experimental studies and observations in randomized clinical trials suggest that metformin could have a place in the treatment or prevention of preeclampsia. This article provides a brief overview of the history of metformin in the treatment of diabetes mellitus and reviews the results of metaanalyses of metformin in gestational diabetes mellitus as well as the treatment of obese, non-diabetic, pregnant women to prevent macrosomia. We highlight the results of a randomized clinical trial in which metformin administration in early pregnancy did not reduce the frequency of large-for-gestational-age infants (the primary endpoint) but did decrease the frequency of preeclampsia (a secondary endpoint). The mechanisms by which metformin may prevent preeclampsia include a reduction in the production of antiangiogenic factors (soluble vascular endothelial growth factor receptor-1 and soluble endoglin) and the improvement of endothelial dysfunction, probably through an effect on the mitochondria. Another potential mechanism whereby metformin may play a role in the prevention of preeclampsia is its ability to modify cellular homeostasis and energy disposition, mediated by rapamycin, a mechanistic target. Metformin has a molecular weight of 129 Daltons and therefore readily crosses the placenta. There is considerable evidence to suggest that this agent is safe during pregnancy. New literature on the role of metformin as a chemotherapeutic adjuvant in the prevention of cancer and in prolonging life and protecting against aging is reviewed briefly. Herein, we discuss the mechanisms of action and potential benefits of metformin.
Collapse
|
1714
|
Wang J, Zhu L, Hu K, Tang Y, Zeng X, Liu J, Xu J. Effects of metformin treatment on serum levels of C-reactive protein and interleukin-6 in women with polycystic ovary syndrome: a meta-analysis: A PRISMA-compliant article. Medicine (Baltimore) 2017; 96:e8183. [PMID: 28953677 PMCID: PMC5626320 DOI: 10.1097/md.0000000000008183] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Metformin is effective for the treatment of polycystic ovary syndrome (PCOS), but conflicting results regarding its impact on serum levels of C-reactive protein (CRP) and interleukin-6 (IL-6) in women with PCOS have been reported. To provide high-quality evidence about the effect of treatment with metformin on CRP and IL-6 in PCOS, relevant studies that assessed the serum levels of CRP and IL-6 in women with PCOS receiving metformin treatment were reviewed and analyzed. METHODS A literature search was conducted in the Science Citation Index, PubMed, Embase, and Cochrane Library databases, and personal contact was made with the authors. Random-effects model was used to estimate the standardized mean differences (SMDs) with 95% confidence intervals (95% CIs). To ensure synthesis of the best available evidence, subgroup analysis, sensitivity analysis, meta-regression analysis, and publication bias were performed. RESULTS Of 216 studies identified, 20 were included in the meta-analysis (7 prospective, nonrandomized studies, and 13 randomized control trials). Data suggest that serum levels of CRP were decreased after metformin treatment in PCOS patients with an SMD (95% CI) of -0.86 [-1.24 to -0.48] and P = .000 (random-effects). However, significant heterogeneity was detected across studies (I = 84.6% and P = .000). Unfortunately, the sources of heterogeneity were not found by subgroup analysis and meta-regression analysis. Serum IL-6 concentrations were not significantly changed after metformin treatment in PCOS with an SMD (95% CI) of -0.48 [-1.26 to 0.31] and P > .05 (random-effects). Significant heterogeneity was also detected across studies (I = 90.9% and P = .000). The subgroup analysis suggested that treatment-related reductions in serum IL-6 levels were significantly correlated with BMI, whereas the sources of heterogeneity were not found. In addition, we noticed that metformin treatment could decrease BMI in the CRP and IL-6 related studies (SMD = -0.45, 95% CI: -0.68 to -0.23; SMD = -0.44, 95% CI: -0.73 to -0.16). CONCLUSION This meta-analysis showed a significant decrease of serum CRP levels, especially in obese women, but no significant changes in IL-6 levels after metformin treatment in women with PCOS. In general, the data support that early metformin therapy may ameliorate the state of chronic inflammation in women with PCOS. Considering the obvious heterogeneity reported in the literature, further well-designed investigations with larger samples are needed to ascertain the long-term effects of metformin on chronic inflammation in PCOS.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University
| | - Lingyan Zhu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University
| | - Kaixiang Hu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University
| | - Yunliang Tang
- Department of Endocrinology and Metabolism, The Third Hospital of Nanchang, Nanchang, Jiangxi, China
| | - Xiangxia Zeng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University
| | - Jianying Liu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University
| |
Collapse
|
1715
|
Ravera S, Cossu V, Tappino B, Nicchia E, Dufour C, Cavani S, Sciutto A, Bolognesi C, Columbaro M, Degan P, Cappelli E. Concentration-dependent metabolic effects of metformin in healthy and Fanconi anemia lymphoblast cells. J Cell Physiol 2017; 233:1736-1751. [PMID: 28681917 DOI: 10.1002/jcp.26085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
Abstract
Metformin (MET) is the drug of choice for patients with type 2 diabetes and has been proposed for use in cancer therapy and for treating other metabolic diseases. More than 14,000 studies have been published addressing the cellular mechanisms affected by MET. However, several in vitro studies have used concentrations of the drug 10-100-fold higher than the plasmatic concentration measured in patients. Here, we evaluated the biochemical, metabolic, and morphologic effects of various concentrations of MET. Moreover, we tested the effect of MET on Fanconi Anemia (FA) cells, a DNA repair genetic disease with defects in energetic and glucose metabolism, as well as on human promyelocytic leukemia (HL60) cell lines. We found that the response of wild-type cells to MET is concentration dependent. Low concentrations (15 and 150 µM) increase both oxidative phosphorylation and the oxidative stress response, acting on the AMPK/Sirt1 pathway, while the high concentration (1.5 mM) inhibits the respiratory chain, alters cell morphology, becoming toxic to the cells. In FA cells, MET was unable to correct the energetic/respiratory defect and did not improve the response to oxidative stress and DNA damage. By contrast, HL60 cells appear sensitive also at 150 μM. Our findings underline the importance of the MET concentration in evaluating the effect of this drug on cell metabolism and demonstrate that data obtained from in vitro experiments, that have used high concentrations of MET, cannot be readily translated into improving our understanding of the cellular effects of metformin when used in the clinical setting.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Vanessa Cossu
- Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Barbara Tappino
- Centro di Diagnostica Genetica e Biochimica Delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| | - Elena Nicchia
- Department of Medical Sciences University of Trieste, Trieste, Italy
| | - Carlo Dufour
- Hematology Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Simona Cavani
- Laboratorio di Genetica Umana, E.O. Ospedali Galliera, Genova, Italy
| | - Andrea Sciutto
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genova, Italy
| | - Marta Columbaro
- SC Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Paolo Degan
- U.O. Mutagenesi e Prevenzione Oncologica, IRCCS AOU San Martino-IST (Istituto Nazionale per la Ricerca sul Cancro), Genova, Italy
| | | |
Collapse
|
1716
|
T-Cell Intracellular Antigens and Hu Antigen R Antagonistically Modulate Mitochondrial Activity and Dynamics by Regulating Optic Atrophy 1 Gene Expression. Mol Cell Biol 2017. [PMID: 28630277 DOI: 10.1128/mcb.00174-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria undergo frequent morphological changes to control their function. We show here that T-cell intracellular antigens (TIA1b/TIARb) and Hu antigen R (HuR) have antagonistic roles in mitochondrial function by modulating the expression of mitochondrial shaping proteins. Expression of TIA1b/TIARb alters the mitochondrial dynamic network by enhancing fission and clustering, which is accompanied by a decrease in respiration. In contrast, HuR expression promotes fusion and cristae remodeling and increases respiratory activity. Mechanistically, TIA proteins downregulate the expression of optic atrophy 1 (OPA1) protein via switching of the splicing patterns of OPA1 to facilitate the production of OPA1 variant 5 (OPA1v5). Conversely, HuR enhances the expression of OPA1 mRNA isoforms through increasing steady-state levels and targeting translational efficiency at the 3' untranslated region. Knockdown of TIA1/TIAR or HuR partially reversed the expression profile of OPA1, whereas knockdown of OPA1 or overexpression of OPA1v5 provoked mitochondrial clustering. Middle-term expression of TIA1b/TIARb triggers reactive oxygen species production and mitochondrial DNA damage, which is accompanied by mitophagy, autophagy, and apoptosis. In contrast, HuR expression promotes mitochondrion-dependent cell proliferation. Collectively, these results provide molecular insights into the antagonistic functions of TIA1b/TIARb and HuR in mitochondrial activity dynamics and suggest that their balance might contribute to mitochondrial physiopathology.
Collapse
|
1717
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 1057] [Impact Index Per Article: 132.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
1718
|
Delanghe S, Delanghe JR, Speeckaert R, Van Biesen W, Speeckaert MM. Mechanisms and consequences of carbamoylation. Nat Rev Nephrol 2017; 13:580-593. [PMID: 28757635 DOI: 10.1038/nrneph.2017.103] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein carbamoylation is a non-enzymatic post-translational modification that binds isocyanic acid, which can be derived from the dissociation of urea or from the myeloperoxidase-mediated catabolism of thiocyanate, to the free amino groups of a multitude of proteins. Although the term 'carbamoylation' is usually replaced by the term "carbamylation" in the literature, carbamylation refers to a different chemical reaction (the reversible interaction of CO2 with α and ε-amino groups of proteins). Depending on the altered molecule (for example, collagen, erythropoietin, haemoglobin, low-density lipoprotein or high-density lipoprotein), carbamoylation can have different pathophysiological effects. Carbamoylated proteins have been linked to atherosclerosis, lipid metabolism, immune system dysfunction (such as inhibition of the classical complement pathway, inhibition of complement-dependent rituximab cytotoxicity, reduced oxidative neutrophil burst, and the formation of anti-carbamoylated protein antibodies) and renal fibrosis. In this Review, we discuss the carbamoylation process and evaluate the available biomarkers of carbamoylation (for example, homocitrulline, the percentage of carbamoylated albumin, carbamoylated haemoglobin, and carbamoylated low-density lipoprotein). We also discuss the relationship between carbamoylation and the occurrence of cardiovascular events and mortality in patients with chronic kidney disease and assess the effects of strategies to lower the carbamoylation load.
Collapse
Affiliation(s)
- Sigurd Delanghe
- Department of Nephrology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Joris R Delanghe
- Department of Clinical Chemistry, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Reinhart Speeckaert
- Department of Clinical Chemistry, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Wim Van Biesen
- Department of Nephrology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
1719
|
Wang YH, Zhang YG. Poly (I:C) alleviates obesity related pro-inflammatory status and promotes glucose homeostasis. Cytokine 2017; 99:225-232. [PMID: 28757363 DOI: 10.1016/j.cyto.2017.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022]
Abstract
Obesity associated insulin resistance (IR) is implicated in chronic inflammation that mediated by the immune system. Imbalance between anti-inflammatory and pro-inflammatory response contributes to the origins and drivers of IR. However, cells of innate and adaptive immune system participate in the pathogenesis of IR, while glucose homeostasis related immune tolerance could be compromised high fat diet (HFD) reduced metabolic disorder. Although previous studies have demonstrated that anti-inflammatory therapy has a protective role in alleviating the pro-inflammatory status in HFD induced IR, the precise mechanism is still unclear. Ploy (I:C) is a synthetic double-stranded RNA that activates innate and/or adaptive immune response via retinoic acid-inducible gene-I (RIG-I), toll-like receptor 3 (TLR3) and melanoma differentiation-associated protein 5 (MDA5). In the present study, we initially perform a novel research on the relationship between Poly (I:C) preconditioning and improved glucose metabolism in obesity related IR. Interestingly, Poly (I:C) treatment has alleviated the pro-inflammatory status and promoted glucose homeostasis during a HFD feeding. Improved insulin sensitivity is consistent with enhanced immune tolerance, which accompanied with increased Foxp3+ regulatory T cells (Tregs). Of note, Tregs have a pivotal role in orchestrating the self-balance between autoimmunity and inflammation reaction. Thus, our findings reveal that Ploy (I:C) preconditioning prevents HFD induced glucose intolerance, which may be recognized as vaccination by the host. Overall, selectively targeting precise immune regulators may lead to new classes of potentially meaningful therapies for IR in the clinical trials.
Collapse
Affiliation(s)
- Ying-Hui Wang
- Department of Immunology, Faculty of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Yu-Gen Zhang
- Department of Immunology, Faculty of Basic Medicine, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
1720
|
Go YM, Jones DP. Redox theory of aging: implications for health and disease. Clin Sci (Lond) 2017; 131:1669-1688. [PMID: 28667066 PMCID: PMC5773128 DOI: 10.1042/cs20160897] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 02/07/2023]
Abstract
Genetics ultimately defines an individual, yet the phenotype of an adult is extensively determined by the sequence of lifelong exposures, termed the exposome. The redox theory of aging recognizes that animals evolved within an oxygen-rich environment, which created a critical redox interface between an organism and its environment. Advances in redox biology show that redox elements are present throughout metabolic and structural systems and operate as functional networks to support the genome in adaptation to environmental resources and challenges during lifespan. These principles emphasize that physical and functional phenotypes of an adult are determined by gene-environment interactions from early life onward. The principles highlight the critical nature of cumulative exposure memories in defining changes in resilience progressively during life. Both plasma glutathione and cysteine systems become oxidized with aging, and the recent finding that cystine to glutathione ratio in human plasma predicts death in coronary artery disease (CAD) patients suggests this could provide a way to measure resilience of redox networks in aging and disease. The emerging concepts of cumulative gene-environment interactions warrant focused efforts to elucidate central mechanisms by which exposure memory governs health and etiology, onset and progression of disease.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, U.S.A
| | - Dean P Jones
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, U.S.A.
| |
Collapse
|
1721
|
Abstract
Interactions between macrophages and adipocytes influence both metabolism and inflammation. Obesity-induced changes to macrophages and adipocytes lead to chronic inflammation and insulin resistance. This paper reviews the various functions of macrophages in lean and obese adipose tissue and how obesity alters adipose tissue macrophage phenotypes. Metabolic disease and insulin resistance shift the balance between numerous pro- and anti-inflammatory regulators of macrophages and create a feed-forward loop of increasing inflammatory macrophage activation and worsening adipocyte dysfunction. This ultimately leads to adipose tissue fibrosis and diabetes. The molecular mechanisms underlying these processes have therapeutic implications for obesity, metabolic syndrome, and diabetes.
Collapse
Affiliation(s)
- Dylan Thomas
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston Medical Center, 88 East Newton Street, H-3600, Boston, MA 02118.
| | - Caroline Apovian
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston Medical Center, 88 East Newton Street, Robinson 4400, Boston, MA 02118.
| |
Collapse
|
1722
|
Hsiao CP, Chen MK, Meyers KJ, Saligan LN. Symptoms predicting health-related quality of life in prostate cancer patients treated with localized radiation therapy. Fam Med Community Health 2017; 5:119-128. [PMID: 30263893 PMCID: PMC6155995 DOI: 10.15212/fmch.2017.0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective Patient-reported health-related quality-of-life (HRQOL) measures can provide guidance for treatment decision making, symptom management, and discharge planning. HRQOL is often influenced by the distress experienced by patients from disease or treatment-related symptoms. This study aimed to identify symptoms that can predict changes in HRQOL in men undergoing external beam radiation therapy (EBRT) for nonmetastatic prostate cancer (NMPC). Methods Fifty-one men with NMPC scheduled for EBRT were assessed at the baseline, at the midpoint of EBRT, and at the end of EBRT. All participants received 38–42 daily doses of EBRT (five times a week), depending on the stage of their disease. Validated questionnaires were administered to evaluate depressive symptoms, urinary and sexual functions, bowel issues, symptom-related distress, fatigue, and HRQOL. Pearson correlations, repeated-measures ANOVA, and multiple regressions examined the relationships among variables. Results Intensification of symptoms and increased symptom-related distress, with a corresponding decline in HRQOL, were observed during EBRT in men with NMPC. Changes in symptoms and symptom distress were associated with changes in HRQOL at the midpoint of EBRT (r=−0.37 to −0.6, P=0.05) and at the end of EBRT (r=−0.3 to −0.47, P=0.01) compared with the baseline. The regression model comprising age, body mass index, Gleason score, T category, androgen-deprivation therapy use, radiation dose received, symptoms (urinary/sexual/bowel problems, fatigue), and overall symptom distress explained 70% of the variance in predicting HRQOL. Urinary problems and fatigue significantly predicted the decline in HRQOL during EBRT. Conclusion Identifying specific symptoms that can influence HRQOL during EBRT for NMPC can provide feasible interventional targets to improve treatment outcomes.
Collapse
Affiliation(s)
- Chao-Pin Hsiao
- The Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Mea-Kuang Chen
- University of Arizona, 3009 E 4th St. Tucson, AZ 85716, USA
| | - Kathy J Meyers
- The Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Leorey N Saligan
- National Institute of Nursing Research, Division of Intramural Research, National Institutes of Health, 9000 Rockville Pike, Building 3, Room 5E14, Bethesda, MD 20892, USA
| |
Collapse
|
1723
|
Rovira-Llopis S, Bañuls C, de Marañon AM, Diaz-Morales N, Jover A, Garzon S, Rocha M, Victor VM, Hernandez-Mijares A. Low testosterone levels are related to oxidative stress, mitochondrial dysfunction and altered subclinical atherosclerotic markers in type 2 diabetic male patients. Free Radic Biol Med 2017; 108:155-162. [PMID: 28359952 DOI: 10.1016/j.freeradbiomed.2017.03.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/11/2017] [Accepted: 03/25/2017] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Low testosterone levels in men are associated with type 2 diabetes and cardiovascular risk. However, the role of testosterone in mitochondrial function and leukocyte-endothelium interactions is unknown. Our aim was to evaluate the relationship between testosterone levels, metabolic parameters, oxidative stress, mitochondrial function, inflammation and leukocyte-endothelium interactions in type 2 diabetic patients. MATERIALS AND METHODS The study was performed in 280 male type 2 diabetic patients and 50 control subjects. Anthropometric and metabolic parameters, testosterone levels, reactive oxygen species (ROS) production, mitochondrial membrane potential, TNFα, adhesion molecules and leukocyte-endothelium cell interactions were evaluated. RESULTS Testosterone levels were lower in diabetic patients. Total and mitochondrial ROS were increased and mitochondrial membrane potential, SOD and GSR expression levels were reduced in diabetic patients. TNFα, ICAM-1 and VCAM-1 levels, leukocyte rolling flux and adhesion were all enhanced in diabetic patients, while rolling velocity was reduced. Testosterone levels correlated negatively with glucose, HOMA-IR, HbA1c, triglycerides, nonHDL-c, ApoB, hs-CRP and AIP, and positively with HDL-c and ApoA1. The multivariable regression model showed that HDL-c, HOMA-IR and age were independently associated with testosterone. Furthermore, testosterone levels correlated positively with membrane potential and rolling velocity and negatively with ROS production, VCAM-1, rolling flux and adhesion. CONCLUSIONS Our data highlight that low testosterone levels in diabetic men are related to impaired metabolic profile and mitochondrial function and enhanced inflammation and leukocyte-endothelium cell interaction, which leaves said patients at risk of cardiovascular events.
Collapse
Affiliation(s)
- Susana Rovira-Llopis
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Celia Bañuls
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Aranzazu M de Marañon
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Noelia Diaz-Morales
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Ana Jover
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Sandra Garzon
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain; CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases, Department of Pharmacology, University of Valencia, Valencia, Spain
| | - Victor M Victor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain; CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases, Department of Pharmacology, University of Valencia, Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| | - Antonio Hernandez-Mijares
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain.
| |
Collapse
|
1724
|
Santos HO. Ketogenic diet and testosterone increase: Is the increased cholesterol intake responsible? To what extent and under what circumstances can there be benefits? Hormones (Athens) 2017; 16:266-270. [PMID: 30091118 DOI: 10.1007/bf03401520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Heitor Oliveira Santos
- Santos School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
- , Avenue Pará 1720, district Umuarama, Uberlándia, MG, Brazil.
| |
Collapse
|
1725
|
High-intensity Interval Training Improves Mitochondrial Function and Suppresses Thrombin Generation in Platelets undergoing Hypoxic Stress. Sci Rep 2017. [PMID: 28646182 PMCID: PMC5482849 DOI: 10.1038/s41598-017-04035-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This study elucidates how high-intensity interval training (HIT) and moderate-intensity continuous training (MCT) affect mitochondrial functionality and thrombin generation (TG) in platelets following hypoxic exercise (HE, 100 W under 12% O2 for 30 min). Forty-five healthy sedentary males were randomized to engage either HIT (3-minute intervals at 40% and 80%VO2max, n = 15) or MCT (sustained 60%VO2max, n = 15) for 30 minutes/day, 5 days/week for 6 weeks, or to a control group (CTL, n = 15) that did not received exercise intervention. Before the intervention, HE (i) reduced the ATP-linked O2 consumption rate (OCR), the reserve capacity of OCR, and the activities of citrate synthase (CS) and succinate dehydrogenase (SDH), (ii) lowered mitochondrial membrane potential (MP) and elevated matrix oxidant burden (MOB) in platelets, and (iii) enhanced dynamic TG in platelet-rich plasma (PRP), which responses were attenuated by pretreating PRP with oligomycin or rotenone/antimycin A. However, 6-week HIT (i) increased mitochondrial OCR capacity with enhancing the CS and SDH activities and (ii) heightened mitochondrial MP with depressing MOB in platelets following HE, compared to those of MCT and CTL. Moreover, the HIT suppressed the HE-promoted dynamic TG in PRP. Hence, we conclude that the HIT simultaneously improves mitochondrial bioenergetics and suppresses dynamic TG in platelets undergoing hypoxia.
Collapse
|
1726
|
Abstract
Lipidomics have a great potential as clinical tool for monitoring metabolic changes in health and disease. Nevertheless hardly anything is known about the heritability of lipids. Therefore, it is necessary to clarify how and how much we can affect these progresses in individuals. In our interventional twin study (46 healthy, non-obese twin pairs) we investigated the lipid profile in plasma samples after switching from a low fat diet to an isocaloric high fat diet (HFD) to characterize the metabolic adaptation. Additionally we used the ACE model for Additive genetics, Common and unique Environment as well as linear mixed modelling to analyse the heritability of lipids. The heritability of lipids varied between 0–62% and applied to lipid species rather than to lipid classes. Phospholipids showed the highest inheritance. In addition, sex, body mass index (BMI) and age were important modifiers. The lipid profile changed already after one week of HFD and diverged further after 5 weeks of additional HFD. Basal concentrations of specific lipids within phospholipids are strongly inherited and are likely to be associated with heritable disease risks. BMI, sex and age were major modifiers. Nutrition strongly alters specific lipid classes, and has to be controlled in clinical association studies.
Collapse
|
1727
|
Coenzyme Q10 ameliorates cerebral ischemia reperfusion injury in hyperglycemic rats. Pathol Res Pract 2017; 213:1191-1199. [PMID: 28698101 DOI: 10.1016/j.prp.2017.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 05/10/2017] [Accepted: 06/04/2017] [Indexed: 12/15/2022]
Abstract
The purpose of this study is to investigate the effect of coenzyme Q10 (CoQ10) on focal cerebral ischemia/reperfusion (I/R) injury in hyperglycemic rats and the possible involved mechanisms. In this study, we established the transient middle cerebral artery occlusion (MCAO) for 30min in the rats with diabetic hyperglycemia. The neurological deficit score, 2,3,5-triphenyltetrazolium chloride (TTC) staining and pathohistology are applied to detect the extent of the damage. The expression of Fis1, Mfn2 and Lc3 in the brain is investigated by immunohistochemical and Western blotting techniques. The results showed that the streptozotocin-induced diabetic hyperglycemia and MCAO-induced focal cerebral ischemia were successfully prepared in rats. In the hyperglycemic group, the neurological deficit scores, infarct volumes, and number of pyknotic cells were higher than that in the normalglycemic group at 24h and/or 72h reperfusion. Pretreated with CoQ10 (10mg/kg) for four weeks could significantly reduce the neurological scores, infarct volume, and pyknotic cells at 24h and/or 72h reperfusion of the hyperglycemic rats compared with non-CoQ10 pretreated hyperglycemic animals. Immunohistochemistry and Western blotting showed that pretreatment with CoQ10 or insulin could significantly reduce the expression of Fis1 protein in the brain at 24h and 72h reperfusion. Inversely, a significantly increased expression of Mfn2 was observed in the rats CoQ10 or insulin pretreated at 24h and/or 72h reperfusion when compared with matched hyperglycemic rats. These results demonstrated that hyperglycemia could aggravate ischemic brain injury. Pretreatment with CoQ10 might ameliorate the diabetic hyperglycemia aggravated I/R brain damage in the MCAO rats by maintain the balance between mitochondrial fission and fusion.
Collapse
|
1728
|
Sortino MA, Salomone S, Carruba MO, Drago F. Polycystic Ovary Syndrome: Insights into the Therapeutic Approach with Inositols. Front Pharmacol 2017. [PMID: 28642705 PMCID: PMC5463048 DOI: 10.3389/fphar.2017.00341] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is characterized by hormonal abnormalities that cause menstrual irregularity and reduce ovulation rate and fertility, associated to insulin resistance. Myo-inositol (cis-1,2,3,5-trans-4,6-cyclohexanehexol, MI) and D-chiro-inositol (cis-1,2,4-trans-3,5,6-cyclohexanehexol, DCI) represent promising treatments for PCOS, having shown some therapeutic benefits without substantial side effects. Because the use of inositols for treating PCOS is widespread, a deep understanding of this treatment option is needed, both in terms of potential mechanisms and efficacy. This review summarizes the current knowledge on the biological effects of MI and DCI and the results obtained from relevant intervention studies with inositols in PCOS. Based on the published results, both MI and DCI represent potential valid therapeutic approaches for the treatment of insulin resistance and its associated metabolic and reproductive disorders, such as those occurring in women affected by PCOS. Furthermore, the combination MI/DCI seems also effective and might be even superior to either inositol species alone. However, based on available data, a particular MI:DCI ratio to be administered to PCOS patients cannot be established. Further studies are then necessary to understand the real contents of MI or DCI uptaken by the ovary following oral administration in order to identify optimal doses and/or combination ratios.
Collapse
Affiliation(s)
- Maria A Sortino
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania UniversityCatania, Italy
| | - Salvatore Salomone
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania UniversityCatania, Italy
| | - Michele O Carruba
- Center for the Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of MilanMilan, Italy
| | - Filippo Drago
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania UniversityCatania, Italy
| |
Collapse
|
1729
|
Retinol-binding protein-4 expression marks the short-term mortality of critically ill patients with underlying liver disease: Lipid, but not glucose, matters. Sci Rep 2017; 7:2881. [PMID: 28588245 PMCID: PMC5460269 DOI: 10.1038/s41598-017-03096-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
The implications of retinol-binding protein-4 (RBP4) expression in critically ill patients with underlying liver diseases remain unclear. A prospective cohort study involving 200 liver intensive care unit (ICU) patients was conducted, with 274 blood donors as controls. Patient outcomes were assessed using Cox and Kaplan-Meier analyses. Of the 200 ICU patients (mean age: 56.0 yrs), 79.5% were male, 72.5% were cirrhotic, 62% were septic, 29.5% were diabetic, and 29% expired in the ICU (median admission: 7.5 days). ICU patients had lower baseline RBP4 (25.6+/−18.4 vs. 43.8+/−35.0 mg/L, p < 0.001) and total cholesterol (TC) levels than controls. The surviving ICU patients had lower baseline international normalized ratios (INRs) of prothrombin time, model for end-stage liver disease (MELD) scores and sepsis rates, but higher estimated glomerular filtration rates (eGFRs) and RBP4 levels than non-surviving patients. eGFRs, INRs and TC levels were independently associated with RBP4 levels. Only surviving patients exhibited significantly increased RBP4 levels after ICU discharge. Baseline RBP4 levels and MELD scores predicted 21-day (≤10 mg/L) and 1-year (≥25) mortality, respectively. In critically ill patients with underlying liver disease, with a link to eGFRs, INRs and TC levels, the baseline RBP4 may serve as a marker for short-term mortality.
Collapse
|
1730
|
Saito M, Ishida A, Nakagawa S. In vitro production of insulin-responsive skeletal muscle tissue from mouse embryonic stem cells by spermine-induced differentiation method. Hum Cell 2017; 30:162-168. [PMID: 28577277 DOI: 10.1007/s13577-017-0176-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/22/2017] [Indexed: 01/06/2023]
Abstract
The treatment of an embryoid body with spermine for a short duration can trigger the generation of a 3-dimensional multilayer myotube sheet (MMTS) that shows pulsatile activity. MMTS was previously characterized as a model of skeletal muscle tissue. In the present work, the insulin responsiveness of MMTS was investigated because it is an essential function for a model of skeletal muscle. The glucose uptake activity of MMTS was analyzed by confocal microscopy using fluorescent glucose analogs, namely 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG) and its L-glucose counterpart, 2-NBDLG. The specific uptake rate of glucose was estimated from the difference between the fluorescent signals of 2-NBDG and 2-NBDLG. It was enhanced by insulin stimulation to 3.6 times higher than the control without insulin, and this insulin responsiveness was maintained for 5 days. The advantages of the 3-dimensional structure of MMTS are discussed in the contexts of its potential in vivo and in vitro uses.
Collapse
Affiliation(s)
- Mikako Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Ayano Ishida
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Shota Nakagawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
1731
|
Bañuls C, Rovira-Llopis S, Martinez de Marañon A, Veses S, Jover A, Gomez M, Rocha M, Hernandez-Mijares A, Victor VM. Metabolic syndrome enhances endoplasmic reticulum, oxidative stress and leukocyte-endothelium interactions in PCOS. Metabolism 2017; 71:153-162. [PMID: 28521868 DOI: 10.1016/j.metabol.2017.02.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/31/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is associated with insulin resistance, which can lead to metabolic syndrome (MetS). Oxidative stress and leukocyte-endothelium interactions are related to PCOS. Our aim was to evaluate whether the presence of MetS in PCOS patients can influence endoplasmic reticulum (ER) and oxidative stress and leukocyte-endothelium interactions. MATERIAL AND METHODS This was a prospective controlled study conducted in an academic medical center. The study population consisted of 148 PCOS women (116 without/32 with MetS) and 112 control subjects (87 without / 25 with MetS). Metabolic parameters, reactive oxygen species (ROS) production, ER stress markers (GRP78, sXBP1, ATF6), leukocyte-endothelium interactions, adhesion molecules (VCAM-1, ICAM-1, E-Selectin), TNF-α and IL-6 were determined. RESULTS Total ROS, inflammatory parameters and adhesion molecules were enhanced in the presence of MetS (p<0.05), and the PCOS+MetS group showed higher levels of IL-6 and ICAM-1 than controls (p<0.05). Increased adhesion and leukocyte rolling flux were observed in PCOS and PCOS+MetS groups vs their respective controls (p<0.05). GRP78 protein expression was higher in the PCOS groups (p<0.05 vs controls) and sXBP1 was associated with the presence of MetS (p<0.05 vs controls without MetS). Furthermore, PCOS+MetS patients exhibited higher GRP78 and ATF6 levels than controls and PCOS patients without MetS (p<0.05). In PCOS women, HOMA-IR was positively correlated with ICAM-1 (r=0.501; p<0.01), ROS (r=0.604; p<0.01), rolling flux (r=0.455;p<0.05) and GRP78 (r=0.574; p<0.001). CONCLUSION Our findings support the hypothesis of an association between altered metabolic status, increased ROS production, ER stress and leukocyte-endothelium interactions in PCOS, all of which are related to vascular complications.
Collapse
Affiliation(s)
- Celia Bañuls
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | - Susana Rovira-Llopis
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | - Aranzazu Martinez de Marañon
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Silvia Veses
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Ana Jover
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Marcelino Gomez
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; CIBERehd - Department of Pharmacology and Physiology, University of Valencia, Valencia, Spain
| | - Antonio Hernandez-Mijares
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain.
| | - Victor M Victor
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; CIBERehd - Department of Pharmacology and Physiology, University of Valencia, Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
1732
|
Miller KN, Burhans MS, Clark JP, Howell PR, Polewski MA, DeMuth TM, Eliceiri KW, Lindstrom MJ, Ntambi JM, Anderson RM. Aging and caloric restriction impact adipose tissue, adiponectin, and circulating lipids. Aging Cell 2017; 16:497-507. [PMID: 28156058 PMCID: PMC5418198 DOI: 10.1111/acel.12575] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2016] [Indexed: 11/26/2022] Open
Abstract
Adipose tissue expansion has been associated with system-wide metabolic dysfunction and increased vulnerability to diabetes, cancer, and cardiovascular disease. A reduction in adiposity is a hallmark of caloric restriction (CR), an intervention that extends longevity and delays the onset of these same age-related conditions. Despite these parallels, the role of adipose tissue in coordinating the metabolism of aging is poorly defined. Here, we show that adipose tissue metabolism and secretory profiles change with age and are responsive to CR. We conducted a cross-sectional study of CR in adult, late-middle-aged, and advanced-aged mice. Adiposity and the relationship between adiposity and circulating levels of the adipose-derived peptide hormone adiponectin were age-sensitive. CR impacted adiposity but only levels of the high molecular weight isoform of adiponectin responded to CR. Activators of metabolism including PGC-1a, SIRT1, and NAMPT were differentially expressed with CR in adipose tissues. Although age had a significant impact on NAD metabolism, as detected by biochemical assay and multiphoton imaging, the impact of CR was subtle and related to differences in reliance on oxidative metabolism. The impact of age on circulating lipids was limited to composition of circulating phospholipids. In contrast, the impact of CR was detected in all lipid classes regardless of age, suggesting a profound difference in lipid metabolism. These data demonstrate that aspects of adipose tissue metabolism are life phase specific and that CR is associated with a distinct metabolic state, suggesting that adipose tissue signaling presents a suitable target for interventions to delay aging.
Collapse
Affiliation(s)
- Karl N. Miller
- Division of GeriatricsDepartment of MedicineSMPHMadisonWI53706USA
- Department of Nutritional SciencesUniversity of Wisconsin MadisonMadisonWI53706USA
| | - Maggie S. Burhans
- Division of GeriatricsDepartment of MedicineSMPHMadisonWI53706USA
- Present address: Fred Hutchinson Cancer CenterSeattleWAUSA
| | - Josef P. Clark
- Division of GeriatricsDepartment of MedicineSMPHMadisonWI53706USA
| | - Porsha R. Howell
- Division of GeriatricsDepartment of MedicineSMPHMadisonWI53706USA
| | | | - Tyler M. DeMuth
- Division of GeriatricsDepartment of MedicineSMPHMadisonWI53706USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational InstrumentationUniversity of Wisconsin MadisonMadisonWI53706USA
| | - Mary J. Lindstrom
- Department of Biostatistics and Medical InformaticsUniversity of WisconsinMadisonWI53705USA
| | - James M. Ntambi
- Department of Nutritional SciencesUniversity of Wisconsin MadisonMadisonWI53706USA
- Department of BiochemistryUniversity of WisconsinMadisonWI53706USA
| | - Rozalyn M. Anderson
- Division of GeriatricsDepartment of MedicineSMPHMadisonWI53706USA
- Laboratory for Optical and Computational InstrumentationUniversity of Wisconsin MadisonMadisonWI53706USA
- GRECCWilliam S. Middleton Memorial Veterans HospitalMadisonWI53705USA
| |
Collapse
|
1733
|
Dendoncker K, Libert C. Glucocorticoid resistance as a major drive in sepsis pathology. Cytokine Growth Factor Rev 2017; 35:85-96. [DOI: 10.1016/j.cytogfr.2017.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 01/07/2023]
|
1734
|
Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol 2017; 100:1-19. [PMID: 28579545 DOI: 10.1016/j.vph.2017.05.005] [Citation(s) in RCA: 854] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/21/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are reactive intermediates of molecular oxygen that act as important second messengers within the cells; however, an imbalance between generation of reactive ROS and antioxidant defense systems represents the primary cause of endothelial dysfunction, leading to vascular damage in both metabolic and atherosclerotic diseases. Endothelial activation is the first alteration observed, and is characterized by an abnormal pro-inflammatory and pro-thrombotic phenotype of the endothelial cells lining the lumen of blood vessels. This ultimately leads to reduced nitric oxide (NO) bioavailability, impairment of the vascular tone and other endothelial phenotypic changes collectively termed endothelial dysfunction(s). This review will focus on the main mechanisms involved in the onset of endothelial dysfunction, with particular focus on inflammation and aberrant ROS production and on their relationship with classical and non-classical cardiovascular risk factors, such as hypertension, metabolic disorders, and aging. Furthermore, new mediators of vascular damage, such as microRNAs, will be discussed. Understanding mechanisms underlying the development of endothelial dysfunction is an important base of knowledge to prevent vascular damage in metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Angela Incalza
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Rossella D'Oria
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Annalisa Natalicchio
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Sebastio Perrini
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Laviola
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
1735
|
The Role of Interleukin-18, Oxidative Stress and Metabolic Syndrome in Alzheimer's Disease. J Clin Med 2017; 6:jcm6050055. [PMID: 28531131 PMCID: PMC5447946 DOI: 10.3390/jcm6050055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/06/2017] [Accepted: 05/18/2017] [Indexed: 12/12/2022] Open
Abstract
The role of interleukins (ILs) and oxidative stress (OS) in precipitating neurodegenerative diseases including sporadic Alzheimer's disease (AD), requires further clarification. In addition to neuropathological hallmarks-extracellular neuritic amyloid-β (Aβ) plaques, neurofibrillary tangles (NFT) containing hyperphosphorylated tau and neuronal loss-chronic inflammation, as well as oxidative and excitotoxic damage, are present in the AD brain. The pathological sequelae and the interaction of these events during the course of AD need further investigation. The brain is particularly sensitive to OS, due to the richness of its peroxidation-sensitive fatty acids, coupled with its high oxygen demand. At the same time, the brain lack robust antioxidant systems. Among the multiple mechanisms and triggers by which OS can accumulate, inflammatory cytokines can sustain oxidative and nitrosative stress, leading eventually to cellular damage. Understanding the consequences of inflammation and OS may clarify the initial events underlying AD, including in interaction with genetic factors. Inflammatory cytokines are potential inducers of aberrant gene expression through transcription factors. Susceptibility disorders for AD, including obesity, type-2 diabetes, cardiovascular diseases and metabolic syndrome have been linked to increases in the proinflammatory cytokine, IL-18, which also regulates multiple AD related proteins. The association of IL-18 with AD and AD-linked medical conditions are reviewed in the article. Such data indicates that an active lifestyle, coupled to a healthy diet can ameliorate inflammation and reduce the risk of sporadic AD.
Collapse
|
1736
|
Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1066-1077. [PMID: 27836629 PMCID: PMC5423868 DOI: 10.1016/j.bbadis.2016.11.010] [Citation(s) in RCA: 1007] [Impact Index Per Article: 125.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/06/2023]
Abstract
Mitochondria are the powerhouses of the cell and are involved in essential functions of the cell, including ATP production, intracellular Ca2+ regulation, reactive oxygen species production & scavenging, regulation of apoptotic cell death and activation of the caspase family of proteases. Mitochondrial dysfunction and oxidative stress are largely involved in aging, cancer, age-related neurodegenerative and metabolic syndrome. In the last decade, tremendous progress has been made in understanding mitochondrial structure, function and their physiology in metabolic syndromes such as diabetes, obesity, stroke and hypertension, and heart disease. Further, progress has also been made in developing therapeutic strategies, including lifestyle interventions (healthy diet and regular exercise), pharmacological strategies and mitochondria-targeted approaches. These strategies were mainly focused to reduce mitochondrial dysfunction and oxidative stress and to maintain mitochondrial quality in metabolic syndromes. The purpose of our article is to highlight the recent progress on the mitochondrial role in metabolic syndromes and also summarize the progress of mitochondria-targeted molecules as therapeutic targets to treat metabolic syndromes. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Department of Biotechnology and Bioinformatics, Sri Guru Gobind Singh College, Sector-26, Chandigarh 160019, India; Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States.
| | - Gurjit Kaur Bhatti
- UGC Centre of Excellence in Nano applications, Panjab University, UIPS building, Chandigarh 160014, India
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neuroscience & Pharmacology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, MS 7495, Lubbock, TX 79413, United States
| |
Collapse
|
1737
|
Cardona Velásquez S, Guzmán Vivares L, Cardona-Arias JA. Systematization of clinical trials related to treatment of metabolic syndrome, 1980-2015. ACTA ACUST UNITED AC 2017; 64:82-91. [PMID: 28440782 DOI: 10.1016/j.endinu.2016.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 09/16/2016] [Accepted: 09/29/2016] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Despite the clinical, epidemiological, and economic significance of metabolic syndrome, the profile of clinical trials on this disease is unknown. OBJECTIVE To characterize the clinical trials related to treatment of metabolic syndrome during the 1980-2015 period. METHODS Systematic review of the literature using an ex ante search protocol which followed the phases of the guide Preferred Reporting Items for Systematic Reviews and Meta-Analyses in four multidisciplinary databases with seven search strategies. Reproducibility and methodological quality of the studies were assessed. RESULTS One hundred and six trials were included, most from the United States, Italy, and Spain, of which 63.2% evaluated interventions effective for several components of the syndrome such as diet (40.6%) or physical activity (22.6%). Other studies assessed drugs for a single factor such as hypertension (7.5%), hypertriglyceridemia (11.3%), or hyperglycemia (9.4%). Placebo was used as control in 54.7% of trials, and outcome measures included triglycerides (52.8%), HDL (48.1%), glucose (29.2%), BMI (33.0%), blood pressure (27.4%), waist circumference (26.4%), glycated hemoglobin (11.3%), and hip circumference (7.5%). CONCLUSION It was shown that studies ob efficacy of treatment for metabolic syndrome are scarce and have mainly been conducted in the last five years and in high-income countries. Trials on interventions that affect three or more factors and assess several outcome measures are few, and lifestyle interventions (diet and physical activity) are highlighted as most important to impact on this multifactorial syndrome.
Collapse
Affiliation(s)
- Santiago Cardona Velásquez
- Grupo de Investigación, Salud y Sostenibilidad, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Laura Guzmán Vivares
- Grupo de Investigación, Salud y Sostenibilidad, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Jaiberth Antonio Cardona-Arias
- Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia; Facultad de Medicina, Universidad Cooperativa de Colombia.
| |
Collapse
|
1738
|
Alvendal C, Ehrström S, Brauner A, Lundberg JO, Bohm-Starke N. Elevated nitric oxide in recurrent vulvovaginal candidiasis - association with clinical findings. Acta Obstet Gynecol Scand 2017; 96:295-301. [PMID: 28052314 DOI: 10.1111/aogs.13093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/25/2016] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Recurrent vulvovaginal candidiasis is defined as having three to four episodes per year and causes substantial suffering. Little is known about the mechanisms leading to relapses in otherwise healthy women. Nitric oxide is part of the nonspecific host defense and is increased during inflammation. Nitric oxide levels were measured and the expression of inducible nitric oxide synthase was analyzed in the vagina during an acute episode of recurrent vulvovaginal candidiasis and after treatment with fluconazole. MATERIAL AND METHODS Twenty-eight women with symptoms of recurrent vulvovaginal candidiasis were enrolled together with 31 healthy controls. Nitric oxide was measured with an air-filled 25-mL silicon catheter balloon incubated in the vagina for five minutes and then analyzed by chemiluminescence technique. Vaginal biopsies were analyzed for the expression of inducible nitric oxide synthase. Symptoms and clinical findings were surveyed using a scoring system. The measurements and biopsies were repeated in patients after six weeks of fluconazole treatment. RESULTS Nitric oxide levels were increased during acute infection (median 352 ppb) compared with controls (median 6 ppb), p < 0.0001. The levels decreased after treatment (median 18 ppb) but were still higher than in controls. Increased expression of inducible nitric oxide synthase was observed in the epithelial basal layer in patients before and after treatment compared with controls. Before treatment, there were positive correlations between nitric oxide and symptom (rs = 0.644) and examination scores (rs = 0.677), p < 0.001. CONCLUSIONS Nitric oxide is significantly elevated in patients with recurrent vulvovaginal candidiasis during acute episodes of infection and decreases after antifungal treatment. The results illustrate the pronounced inflammatory response in recurrent vulvovaginal candidiasis correlating to symptoms of pain and discomfort.
Collapse
Affiliation(s)
- Cathrin Alvendal
- Department of Clinical Sciences, Division of Obstetrics and Gynecology, Karolinska Institute, Danderyd Hospital, Stockholmn, Sweden
| | - Sophia Ehrström
- Department of Clinical Sciences, Division of Obstetrics and Gynecology, Karolinska Institute, Danderyd Hospital, Stockholmn, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Nina Bohm-Starke
- Department of Clinical Sciences, Division of Obstetrics and Gynecology, Karolinska Institute, Danderyd Hospital, Stockholmn, Sweden
| |
Collapse
|
1739
|
Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol 2017; 11:637-645. [PMID: 28131082 PMCID: PMC5284490 DOI: 10.1016/j.redox.2017.01.013] [Citation(s) in RCA: 445] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/05/2017] [Accepted: 01/13/2017] [Indexed: 12/18/2022] Open
Abstract
Mitochondria play a key role in maintaining cellular metabolic homeostasis. These organelles have a high plasticity and are involved in dynamic processes such as mitochondrial fusion and fission, mitophagy and mitochondrial biogenesis. Type 2 diabetes is characterised by mitochondrial dysfunction, high production of reactive oxygen species (ROS) and low levels of ATP. Mitochondrial fusion is modulated by different proteins, including mitofusin-1 (MFN1), mitofusin-2 (MFN2) and optic atrophy (OPA-1), while fission is controlled by mitochondrial fission 1 (FIS1), dynamin-related protein 1 (DRP1) and mitochondrial fission factor (MFF). PARKIN and (PTEN)-induced putative kinase 1 (PINK1) participate in the process of mitophagy, for which mitochondrial fission is necessary. In this review, we discuss the molecular pathways of mitochondrial dynamics, their impairment under type 2 diabetes, and pharmaceutical approaches for targeting mitochondrial dynamics, such as mitochondrial division inhibitor-1 (mdivi-1), dynasore, P110 and 15-oxospiramilactone. Furthermore, we discuss the pathophysiological implications of impaired mitochondrial dynamics, especially in type 2 diabetes.
Collapse
Affiliation(s)
- Susana Rovira-Llopis
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Celia Bañuls
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Noelia Diaz-Morales
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Antonio Hernandez-Mijares
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; CIBERehd - Department of Pharmacology, University of Valencia, Valencia, Spain
| | - Victor M Victor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; CIBERehd - Department of Pharmacology, University of Valencia, Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
1740
|
Zhang Y, Hu M, Meng F, Sun X, Xu H, Zhang J, Cui P, Morina N, Li X, Li W, Wu XK, Brännström M, Shao R, Billig H. Metformin Ameliorates Uterine Defects in a Rat Model of Polycystic Ovary Syndrome. EBioMedicine 2017; 18:157-170. [PMID: 28336389 PMCID: PMC5405166 DOI: 10.1016/j.ebiom.2017.03.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 01/24/2023] Open
Abstract
Adult rats treated concomitantly with insulin and human chorionic gonadotropin exhibit endocrine, metabolic, and reproductive abnormalities that are very similar to those observed in polycystic ovary syndrome (PCOS) patients. In this study, we used this rat model to assess the effects of metformin on PCOS-related uterine dysfunction. In addition to reducing androgen levels, improving insulin sensitivity, and correcting the reproductive cycle, metformin treatment induced morphological changes in the PCOS-like uterus. At the molecular and cellular levels, metformin normalized the androgen receptor-mediated transcriptional program and restored epithelial–stromal interactions. In contrast to glucose transport, uterine inflammatory gene expression was suppressed through the PI3K–Akt–NFκB network, but without affecting apoptosis. These effects appeared to be independent of AMPK subunit and autophagy-related protein regulation. We found that when metformin treatment partially restored implantation, several implantation-related genes were normalized in the PCOS-like rat uterus. These results improve our understanding of how metformin rescues the disruption of the implantation process due to the uterine defects that result from hyperandrogenism and insulin resistance. Our data provide insights into the molecular and functional clues that might help explain, at least in part, the potential therapeutic options of metformin in PCOS patients with uterine dysfunction. The therapeutic dose of metformin sufficiently suppresses hyperandrogenism and insulin resistance. Metformin inhibits uterine androgen receptor (AR)-dependent gene expression to restore epithelial–stromal interactions. Metformin reduces uterine inflammation through the PI3K–Akt–NFκB pathway. Metformin partially restores implantation in PCOS-like rats.
The systemic benefits of metformin therapy for women with polycystic ovary syndrome (PCOS) are widely appreciated, but knowledge of the molecular mechanisms of its action and to what extent it beneficially affects uterine function is limited. Using a PCOS-like rat model, we show that treatment with metformin can reverse the negative effects of androgenic and inflammatory conditions in the rat uterus. Importantly, we find that the sustained benefit of metformin is to rescue implantation failure in some PCOS-like rats. Thus, our data will be of translational value in the clinical management of metformin treatment in PCOS patients with uterine dysfunction.
Collapse
Affiliation(s)
- Yuehui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China; Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Min Hu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Fanci Meng
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| | - Xiaoyan Sun
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| | - Hongfei Xu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| | - Jiao Zhang
- Department of Acupuncture and Moxibustion, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150001 Harbin, China
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Shanghai Medical College, Institute of Acupuncture Research (WHO Collaborating Center for Traditional Medicine), Institute of Brain Science, Fudan University, 200032 Shanghai, China
| | - Njomeza Morina
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011 Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011 Shanghai, China
| | - Wei Li
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| | - Xiao-Ke Wu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
1741
|
Li Y, Chang Y, Ye N, Chen Y, Zhang N, Sun Y. Advanced glycation end products-induced mitochondrial energy metabolism dysfunction alters proliferation of human umbilical vein endothelial cells. Mol Med Rep 2017; 15:2673-2680. [DOI: 10.3892/mmr.2017.6314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 01/20/2017] [Indexed: 11/06/2022] Open
|
1742
|
Association between periodontal disease and polycystic ovary syndrome: a systematic review. Int J Impot Res 2017; 29:89-95. [PMID: 28275229 DOI: 10.1038/ijir.2017.7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/07/2017] [Accepted: 02/02/2017] [Indexed: 12/27/2022]
Abstract
The purpose of the present study was to review systematically the association between periodontal diseases (PDs) and polycystic ovary syndrome (PCOS). To address the focused question, 'Is there a relationship between PD and PCOS?' indexed databases were searched up to October 2016 without time or language restrictions using different combinations of the following key words: PCOS, ovarian cysts, PD, periodontitis, gingival diseases and gingivitis. Letters to the Editor, commentaries, historic reviews, case-report, unpublished articles and animal/experimental studies were excluded. Seven case-control studies were included. The number of study participants ranged between 52 and 196 females aged between 15 and 45 years. In three and three studies, proinflammatory cytokines were assessed in gingival crevicular fluid and saliva samples, respectively. In one study, salivary microbes were investigated. All studies reported that a positive association exists between PD and PCOS. In conclusion, there is a positive association between PD and PCOS; however, further well-designed longitudinal controlled clinical trials are needed in this regard. It is recommended that physicians should refer patients with PCOS to oral health-care providers for comprehensive oral evaluation and treatment.
Collapse
|
1743
|
Torabi R, Ghourchian H, Amanlou M, Pasalar P. Aptamer-Conjugated Calcium Phosphate Nanoparticles for Reducing Diabetes Risk via Retinol Binding Protein 4 Inhibition. Can J Diabetes 2017; 41:305-311. [PMID: 28279618 DOI: 10.1016/j.jcjd.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/11/2016] [Accepted: 11/01/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Inhibition of the binding of retinol to its carrier, retinol binding protein 4, is a new strategy for treating type 2 diabetes; for this purpose, we have provided an aptamer-functionalized multishell calcium phosphate nanoparticle. METHODS First, calcium phosphate nanoparticles were synthesized and conjugated to the aptamer. The cytotoxicity of nanoparticles releases the process of aptamer from nanoparticles and their inhibition function of binding retinol to retinol binding protein 4. RESULTS After synthesizing and characterizing the multishell calcium phosphate nanoparticles and observing the noncytotoxicity of conjugate, the optimum time (48 hours) and the pH (7.4) for releasing the aptamer from the nanoparticles was determined. The half-maximum inhibitory concentration (IC50) value for inhibition of retinol binding to retinol binding protein 4 was 210 femtomolar (fmol). CONCLUSIONS The results revealed that the aptamer could prevent connection between retinol and retinol binding protein 4 at a very low IC50 value (210 fmol) compared to other reported inhibitors. It seems that this aptamer could be used as an efficient candidate not only for decreasing the insulin resistance in type 2 diabetes, but also for inhibiting the other retinol binding protein 4-related diseases.
Collapse
Affiliation(s)
- Raheleh Torabi
- Laboratory of Microanalysis, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hedayatollah Ghourchian
- Laboratory of Microanalysis, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Nanobiomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran.
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy and Medicinal Plants Research Center, Tehran University of Medical Sciences, Tehran, Iran; Nanobiomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran
| | - Parvin Pasalar
- Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
1744
|
Zhang B, Guo X, Li Y, Peng Q, Gao J, Liu B, Wang M. d
-Chiro inositol ameliorates endothelial dysfunction via inhibition of oxidative stress and mitochondrial fission. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201600710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/10/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Bobo Zhang
- College of Food Science and Engineering; Northwest A&F University; YangLing Shaanxi, China
| | - Xudan Guo
- College of Basic Medicine; Hebei University of Chinese Medicine; Shijiazhuang China
| | - Yunlong Li
- Institute of agricultural products processing; Shanxi Academy of Agriculture Sciences; Taiyuan China
| | - Qiang Peng
- College of Food Science and Engineering; Northwest A&F University; YangLing Shaanxi, China
| | - Jinfeng Gao
- College of Agronomy; Northwest A&F University; Yangling China
| | - Baolin Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research; Department of Complex Prescription of TCM; China Pharmaceutical University; Nanjing China
| | - Min Wang
- College of Food Science and Engineering; Northwest A&F University; YangLing Shaanxi, China
| |
Collapse
|
1745
|
Lin H, Levison BS, Buffa JA, Huang Y, Fu X, Wang Z, Gogonea V, DiDonato JA, Hazen SL. Myeloperoxidase-mediated protein lysine oxidation generates 2-aminoadipic acid and lysine nitrile in vivo. Free Radic Biol Med 2017; 104:20-31. [PMID: 28069522 PMCID: PMC5353359 DOI: 10.1016/j.freeradbiomed.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022]
Abstract
Recent studies reveal 2-aminoadipic acid (2-AAA) is both elevated in subjects at risk for diabetes and mechanistically linked to glucose homeostasis. Prior studies also suggest enrichment of protein-bound 2-AAA as an oxidative post-translational modification of lysyl residues in tissues associated with degenerative diseases of aging. While in vitro studies suggest redox active transition metals or myeloperoxidase (MPO) generated hypochlorous acid (HOCl) may produce protein-bound 2-AAA, the mechanism(s) responsible for generation of 2-AAA during inflammatory diseases are unknown. In initial studies we observed that traditional acid- or base-catalyzed protein hydrolysis methods previously employed to measure tissue 2-AAA can artificially generate protein-bound 2-AAA from an alternative potential lysine oxidative product, lysine nitrile (LysCN). Using a validated protease-based digestion method coupled with stable isotope dilution LC/MS/MS, we now report protein bound 2-AAA and LysCN are both formed by hypochlorous acid (HOCl) and the MPO/H2O2/Cl- system of leukocytes. At low molar ratio of oxidant to target protein Nε-lysine moiety, 2-AAA is formed via an initial Nε-monochloramine intermediate, which ultimately produces the more stable 2-AAA end-product via sequential generation of transient imine and semialdehyde intermediates. At higher oxidant to target protein Nε-lysine amine ratios, protein-bound LysCN is formed via initial generation of a lysine Nε-dichloramine intermediate. In studies employing MPO knockout mice and an acute inflammation model, we show that both free and protein-bound 2-AAA, and in lower yield, protein-bound LysCN, are formed by MPO in vivo during inflammation. Finally, both 2-AAA and to lesser extent LysCN are shown to be enriched in human aortic atherosclerotic plaque, a tissue known to harbor multiple MPO-catalyzed protein oxidation products. Collectively, these results show that MPO-mediated oxidation of protein lysyl residues serves as a mechanism for producing 2-AAA and LysCN in vivo. These studies further support involvement of MPO-catalyzed oxidative processes in both the development of atherosclerosis and diabetes risk.
Collapse
Affiliation(s)
- Hongqiao Lin
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States; Department of Chemistry, Cleveland State University, Cleveland, OH 44115, United States
| | - Bruce S Levison
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Jennifer A Buffa
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Ying Huang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Xiaoming Fu
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Valentin Gogonea
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, United States; Department of Chemistry, Cleveland State University, Cleveland, OH 44115, United States
| | - Joseph A DiDonato
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, United States; Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States.
| |
Collapse
|
1746
|
Cvetković Z, Milošević M, Cvetković B, Masnikosa R, Arsić A, Petrović S, Vučić V. Plasma phospholipid changes are associated with response to chemotherapy in non-Hodgkin lymphoma patients. Leuk Res 2017; 54:39-46. [PMID: 28107691 DOI: 10.1016/j.leukres.2017.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/23/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023]
Abstract
Limited studies have been performed to associate abnormal phospholipid (PL) profile and disease activity in hematological malignancies, including non-Hodgkin lymphoma (NHL). The aim of his study was to evaluate the levels of plasma PL fractions in NHL patients, in response to chemotherapy. Forty non-treated patients with NHL and 25 healthy individuals were recruited. Blood samples from patients were taken before chemotherapy, after 3 cycles and after the end of the treatment, and PL fractions were resolved by one-dimensional thin-layer chromatography. To assess potential relationship between plasma PL profile and response to therapy, patients were divided according to clinical outcome in 3 groups: complete remission (CR), stable disease (SD) and progression (PG). Despite significant differences between NHL patients and healthy controls, no differences were found at baseline among patients divided according to clinical outcome. During and after chemotherapy important alterations in PL profile were observed. Levels of total PLs and all PL fractions decreased in patients with PG while in patients who responded to therapy (CR, SD) PLs significantly increased. Results of our study suggest that changes of total PLs and PL fractions during the therapy are associated with the effects of therapy and clinical outcome in patients with NHL.
Collapse
Affiliation(s)
- Zorica Cvetković
- Department of Hematology, Clinical Hospital Center Zemun, Vukova 9, 11080 Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - Maja Milošević
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia.
| | - Bora Cvetković
- Department of Urology, Clinical Hospital Center Zemun, Vukova 9, 11080 Belgrade, Serbia
| | - Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Aleksandra Arsić
- Institute for Medical Research, Department for Nutrition and Metabolism, University of Belgrade, Tadeusa Koscuska 1, 11129 Belgrade, Serbia
| | - Snježana Petrović
- Institute for Medical Research, Department for Nutrition and Metabolism, University of Belgrade, Tadeusa Koscuska 1, 11129 Belgrade, Serbia
| | - Vesna Vučić
- Institute for Medical Research, Department for Nutrition and Metabolism, University of Belgrade, Tadeusa Koscuska 1, 11129 Belgrade, Serbia
| |
Collapse
|
1747
|
Metabolic consequences of obesity and insulin resistance in polycystic ovary syndrome: diagnostic and methodological challenges. Nutr Res Rev 2017; 30:97-105. [PMID: 28222828 DOI: 10.1017/s0954422416000287] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Women with polycystic ovary syndrome (PCOS) have a considerable risk of metabolic dysfunction. This review aims to present contemporary knowledge on obesity, insulin resistance and PCOS with emphasis on the diagnostic and methodological challenges encountered in research and clinical practice. Variable diagnostic criteria for PCOS and associated phenotypes are frequently published. Targeted searches were conducted to identify all available data concerning the association of obesity and insulin resistance with PCOS up to September 2016. Articles were considered if they were peer reviewed, in English and included women with PCOS. Obesity is more prevalent in women with PCOS, but studies rarely reported accurate assessments of adiposity, nor split the study population by PCOS phenotypes. Many women with PCOS have insulin resistance, though there is considerable variation reported in part due to not distinguishing subgroups known to have an impact on insulin resistance as well as limited methodology to measure insulin resistance. Inflammatory markers are positively correlated with androgen levels, but detailed interactions need to be identified. Weight management is the primary therapy; specific advice to reduce the glycaemic load of the diet and reduce the intake of pro-inflammatory SFA and advanced glycation endproducts have provided promising results. It is important that women with PCOS are educated about their increased risk of metabolic complications in order to make timely and appropriate lifestyle modifications. Furthermore, well-designed robust studies are needed to evaluate the mechanisms behind the improvements observed with dietary interventions.
Collapse
|
1748
|
Cervantes Gracia K, Llanas-Cornejo D, Husi H. CVD and Oxidative Stress. J Clin Med 2017; 6:E22. [PMID: 28230726 PMCID: PMC5332926 DOI: 10.3390/jcm6020022] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/12/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
Nowadays, it is known that oxidative stress plays at least two roles within the cell, the generation of cellular damage and the involvement in several signaling pathways in its balanced normal state. So far, a substantial amount of time and effort has been expended in the search for a clear link between cardiovascular disease (CVD) and the effects of oxidative stress. Here, we present an overview of the different sources and types of reactive oxygen species in CVD, highlight the relationship between CVD and oxidative stress and discuss the most prominent molecules that play an important role in CVD pathophysiology. Details are given regarding common pharmacological treatments used for cardiovascular distress and how some of them are acting upon ROS-related pathways and molecules. Novel therapies, recently proposed ROS biomarkers, as well as future challenges in the field are addressed. It is apparent that the search for a better understanding of how ROS are contributing to the pathophysiology of CVD is far from over, and new approaches and more suitable biomarkers are needed for the latter to be accomplished.
Collapse
Affiliation(s)
- Karla Cervantes Gracia
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK.
| | - Daniel Llanas-Cornejo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK.
| | - Holger Husi
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
1749
|
Kulkarni H, Mamtani M, Blangero J, Curran JE. Lipidomics in the Study of Hypertension in Metabolic Syndrome. Curr Hypertens Rep 2017; 19:7. [PMID: 28168678 DOI: 10.1007/s11906-017-0705-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
1750
|
Bhatti JS, Kumar S, Vijayan M, Bhatti GK, Reddy PH. Therapeutic Strategies for Mitochondrial Dysfunction and Oxidative Stress in Age-Related Metabolic Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:13-46. [PMID: 28253984 DOI: 10.1016/bs.pmbts.2016.12.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondria are complex, intercellular organelles present in the cells and are involved in multiple roles including ATP formation, free radicals generation and scavenging, calcium homeostasis, cellular differentiation, and cell death. Many studies depicted the involvement of mitochondrial dysfunction and oxidative damage in aging and pathogenesis of age-related metabolic disorders and neurodegenerative diseases. Remarkable advancements have been made in understanding the structure, function, and physiology of mitochondria in metabolic disorders such as diabetes, obesity, cardiovascular diseases, and stroke. Further, much progress has been done in the improvement of therapeutic strategies, including lifestyle interventions, pharmacological, and mitochondria-targeted therapeutic approaches. These strategies were mainly focused to reduce the mitochondrial dysfunction caused by oxidative stress and to retain the mitochondrial health in various diseases. In this chapter, we have highlighted the involvement of mitochondrial dysfunction in the pathophysiology of various disorders and recent progress in the development of mitochondria-targeted molecules as therapeutic measures for metabolic disorders.
Collapse
Affiliation(s)
- J S Bhatti
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India.
| | - S Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - M Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - G K Bhatti
- UGC Centre of Excellence in Nano Applications, Panjab University, Chandigarh, India
| | - P H Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|