1801
|
Boerrigter G, Lark MW, Whalen EJ, Soergel DG, Violin JD, Burnett JC. Cardiorenal Actions of TRV120027, a Novel ß-Arrestin–Biased Ligand at the Angiotensin II Type I Receptor, in Healthy and Heart Failure Canines. Circ Heart Fail 2011; 4:770-8. [DOI: 10.1161/circheartfailure.111.962571] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Guido Boerrigter
- From the Cardiorenal Research Laboratory, Mayo Clinic and Foundation, Rochester, MN (G.B., J.C.B.); and Trevena, Inc, King of Prussia, PA (M.W.L., E.J.W., D.G.S., J.D.V.)
| | - Michael W. Lark
- From the Cardiorenal Research Laboratory, Mayo Clinic and Foundation, Rochester, MN (G.B., J.C.B.); and Trevena, Inc, King of Prussia, PA (M.W.L., E.J.W., D.G.S., J.D.V.)
| | - Erin J. Whalen
- From the Cardiorenal Research Laboratory, Mayo Clinic and Foundation, Rochester, MN (G.B., J.C.B.); and Trevena, Inc, King of Prussia, PA (M.W.L., E.J.W., D.G.S., J.D.V.)
| | - David G. Soergel
- From the Cardiorenal Research Laboratory, Mayo Clinic and Foundation, Rochester, MN (G.B., J.C.B.); and Trevena, Inc, King of Prussia, PA (M.W.L., E.J.W., D.G.S., J.D.V.)
| | - Jonathan D. Violin
- From the Cardiorenal Research Laboratory, Mayo Clinic and Foundation, Rochester, MN (G.B., J.C.B.); and Trevena, Inc, King of Prussia, PA (M.W.L., E.J.W., D.G.S., J.D.V.)
| | - John C. Burnett
- From the Cardiorenal Research Laboratory, Mayo Clinic and Foundation, Rochester, MN (G.B., J.C.B.); and Trevena, Inc, King of Prussia, PA (M.W.L., E.J.W., D.G.S., J.D.V.)
| |
Collapse
|
1802
|
Feldman AM. The Development of β-Adrenergic Receptor Antagonists for the Treatment of Heart Failure: A Paradigm for Translational Science. Circ Res 2011; 109:1173-5. [DOI: 10.1161/circresaha.111.255976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
1803
|
Kamal FA, Smrcka AV, Blaxall BC. Taking the heart failure battle inside the cell: small molecule targeting of Gβγ subunits. J Mol Cell Cardiol 2011; 51:462-7. [PMID: 21256851 PMCID: PMC3137754 DOI: 10.1016/j.yjmcc.2011.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 01/09/2011] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
Heart failure (HF) is devastating disease with poor prognosis. Elevated sympathetic nervous system activity and outflow, leading to pathologic attenuation and desensitization of β-adrenergic receptors (β-ARs) signaling and responsiveness, are salient characteristic of HF progression. These pathologic effects on β-AR signaling and HF progression occur in part due to Gβγ-mediated signaling, including recruitment of receptor desensitizing kinases such as G-protein coupled receptor (GPCR) kinase 2 (GRK2) and phosphoinositide 3-kinase (PI3K), which subsequently phosphorylate agonist occupied GPCRs. Additionally, chronic GPCR signaling signals chronically dissociated Gβγ subunits to interact with multiple effector molecules that activate various signaling cascades involved in HF pathophysiology. Importantly, targeting Gβγ signaling with large peptide inhibitors has proven a promising therapeutic paradigm in the treatment of HF. We recently described an approach to identify small molecule Gβγ inhibitors that selectively block particular Gβγ functions by specifically targeting a Gβγ protein-protein interaction "hot spot." Here we describe their effects on Gβγ downstream signaling pathways, including their role in HF pathophysiology. We suggest a promising therapeutic role for small molecule inhibition of pathologic Gβγ signaling in the treatment of HF. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Fadia A. Kamal
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Alan V. Smrcka
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Burns C. Blaxall
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
1804
|
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and are responsible for regulating a wide variety of physiological processes. This is accomplished via ligand binding to GPCRs, activating associated heterotrimeric G proteins and intracellular signaling pathways. G protein-coupled receptor kinases (GRKs), in concert with β-arrestins, classically desensitize receptor signal transduction, thus preventing hyperactivation of GPCR second-messenger cascades. As changes in GRK expression have featured prominently in many cardiovascular pathologies, including heart failure, myocardial infarction, hypertension, and cardiac hypertrophy, GRKs have been intensively studied as potential diagnostic or therapeutic targets. Herein, we review our evolving understanding of the role of GRKs in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Stephen L Belmonte
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
1805
|
Schutzer WE, Xue H, Reed J, Oyama T, Beard DR, Anderson S, Mader SL. Age-related β-adrenergic receptor-mediated vasorelaxation is changed by altering G protein receptor kinase 2 expression. Vascul Pharmacol 2011; 55:178-88. [PMID: 21951806 DOI: 10.1016/j.vph.2011.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/18/2011] [Accepted: 09/08/2011] [Indexed: 11/26/2022]
Abstract
Beta-adrenergic receptor- (β-AR) mediated vasorelaxation declines with age. This change is likely related to receptor desensitization, rather than down regulation. One kinase responsible for desensitization is G protein receptor kinase 2 (GRK2). We have shown that GRK expression and activity increases with age in Fischer 344 rat aorta. In this study we validated that carotid arteries have similar age-related changes in the β-AR signaling axis as aorta. This finding allowed use of in vivo infection and delivery of two adenovirus vectors to carotid arteries of 2-month-old (2M) and 12-month-old (12M) male Fischer 344 rats. Adeno-GRK2 was used to overexpress GRK2, and adeno-β-ARK-ct was used to inhibit GRK2 function. Following a five-day infection, vessels were collected and ex vivo tissue bath was used to evaluate vasoreactivity. We used KCl contracted segments, and determined that overexpression of GRK2 significantly impaired isoproterenol (ISO)-mediated vasorelaxation in both age groups. Maximum relaxation (MAX) to ISO in vessels from 2M decreased from 44% to 21%. MAX to ISO in vessels from 12M decreased from 12% to 6%. Sensitivity (ED₅₀) in vessels from 2M and 12M was also impaired 57%, and 30% respectively. We also determined that expression of adeno-β-ARK-ct significantly improved ISO-mediated vasorelaxation in both age groups. MAX in vessels from 2M increased from 44% to 58%. MAX in vessels from 12M increased from 15% to 69%. ED₅₀ in vessels from 2M and 12M was also improved 46%, and 50% respectively. These findings further implicate age-related increases in GRK2 expression as an important regulator of the age-related decline in β-AR-mediated vasorelaxation.
Collapse
Affiliation(s)
- William E Schutzer
- Portland VA Medical Center, Research Service, 3710 SW US Veterans Hospital Rd., Portland, OR 97239, United States
| | | | | | | | | | | | | |
Collapse
|
1806
|
Vaniotis G, Allen BG, Hébert TE. Nuclear GPCRs in cardiomyocytes: an insider's view of β-adrenergic receptor signaling. Am J Physiol Heart Circ Physiol 2011; 301:H1754-64. [PMID: 21890692 DOI: 10.1152/ajpheart.00657.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, we have come to appreciate the complexity of G protein-coupled receptor signaling in general and β-adrenergic receptor (β-AR) signaling in particular. Starting originally from three β-AR subtypes expressed in cardiomyocytes with relatively simple, linear signaling cascades, it is now clear that there are large receptor-based networks which provide a rich and diverse set of responses depending on their complement of signaling partners and the physiological state. More recently, it has become clear that subcellular localization of these signaling complexes also enriches the diversity of phenotypic outcomes. Here, we review our understanding of the signaling repertoire controlled by nuclear β-AR subtypes as well our understanding of the novel roles for G proteins themselves in the nucleus, with a special focus, where possible, on their effects in cardiomyocytes. Finally, we discuss the potential pathological implications of alterations in nuclear β-AR signaling.
Collapse
|
1807
|
Abstract
With the emerging new crystal structures of G-protein coupled receptors (GPCRs), the number of reported in silico receptor models vastly increases every year. The use of these models in lead optimization (LO) is investigated here. Although there are many studies where GPCR models are used to identify new chemotypes by virtual screening, the classical application in LO is rarely reported. The reason for this may be that the quality of a model, which is appropriate for atomistic modeling, must be very high, and the biology of GPCR ligand-dependent signaling is still not fully understood. However, the few reported studies show that GPCR models can be used efficiently in LO for various problems, such as affinity optimization or tuning of physicochemical parameters.
Collapse
|
1808
|
Raake PWJ, Tscheschner H, Reinkober J, Ritterhoff J, Katus HA, Koch WJ, Most P. Gene therapy targets in heart failure: the path to translation. Clin Pharmacol Ther 2011; 90:542-53. [PMID: 21866097 DOI: 10.1038/clpt.2011.148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is the common end point of cardiac diseases. Despite the optimization of therapeutic strategies and the consequent overall reduction in HF-related mortality, the key underlying intracellular signal transduction abnormalities have not been addressed directly. In this regard, the gaps in modern HF therapy include derangement of β-adrenergic receptor (β-AR) signaling, Ca(2+) disbalances, cardiac myocyte death, diastolic dysfunction, and monogenetic cardiomyopathies. In this review we discuss the potential of gene therapy to fill these gaps and rectify abnormalities in intracellular signaling. We also examine current vector technology and currently available vector-delivery strategies, and we delineate promising gene therapy structures. Finally, we analyze potential limitations related to the transfer of successful preclinical gene therapy approaches to HF treatment in the clinic, as well as impending strategies aimed at overcoming these limitations.
Collapse
Affiliation(s)
- P W J Raake
- Division of Cardiology, Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
1809
|
Taguchi K, Kobayashi T, Matsumoto T, Kamata K. Dysfunction of endothelium-dependent relaxation to insulin via PKC-mediated GRK2/Akt activation in aortas of ob/ob mice. Am J Physiol Heart Circ Physiol 2011; 301:H571-83. [DOI: 10.1152/ajpheart.01189.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In diabetic states, hyperinsulinemia may negatively regulate Akt/endothelial nitric oxide synthase (eNOS) activation. Our main aim was to investigate whether and how insulin might negatively regulate Akt/eNOS activities via G protein-coupled receptor kinase 2 (GRK2) in aortas from ob/ob mice. Endothelium-dependent relaxation was measured in aortic rings from ob/ob mice (a type 2 diabetes model). GRK2, β-arrestin2, and Akt/eNOS signaling-pathway protein levels and activities were mainly assayed by Western blotting. Plasma insulin was significantly elevated in ob/ob mice. Insulin-induced relaxation was significantly decreased in the ob/ob aortas [vs. age-matched control (lean) ones]. The response in ob/ob aortas was enhanced by PKC inhibitor or GRK2 inhibitor. Akt (at Thr308) phosphorylation and eNOS (at Ser1177) phosphorylation, and also the β-arrestin2 protein level, were markedly decreased in the membrane fraction of insulin-stimulated ob/ob aortas (vs. insulin-stimulated lean ones). These membrane-fraction expressions were enhanced by GRK2 inhibitor and by PKC inhibitor in the ob/ob group but not in the lean group. PKC activity was much greater in ob/ob than in lean aortas. GRK2 protein and activity levels were increased in ob/ob and were greatly reduced by GRK2 inhibitor or PKC inhibitor pretreatment. These results suggest that in the aorta in diabetic mice with hyperinsulinemia an upregulation of GRK2 and a decrease in β-arrestin2 inhibit insulin-induced stimulation of the Akt/eNOS pathway and that GRK2 overactivation may result from an increase in PKC activity.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
1810
|
Gironacci MM, Adamo HP, Corradi G, Santos RA, Ortiz P, Carretero OA. Angiotensin (1-7) induces MAS receptor internalization. Hypertension 2011; 58:176-81. [PMID: 21670420 PMCID: PMC3141282 DOI: 10.1161/hypertensionaha.111.173344] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/19/2011] [Indexed: 11/16/2022]
Abstract
Angiotensin (Ang) (1-7) is the endogenous ligand for the G protein-coupled receptor Mas, a receptor associated with cardiac, renal, and cerebral protective responses. Physiological evidence suggests that Mas receptor (MasR) undergoes agonist-dependent desensitization, but the underlying molecular mechanism regulating receptor activity is unknown. We investigated the hypothesis that MasR desensitizes and internalizes on stimulation with Ang-(1-7). For this purpose, we generated a chimera between the MasR and the yellow fluorescent protein (YFP; MasR-YFP). MasR-YFP-transfected HEK 293T cells were incubated with Ang-(1-7), and the relative cellular distribution of MasR-YFP was observed by confocal microscopy. In resting cells, MasR-YFP was mostly localized to the cell membrane. Ang-(1-7) induced a redistribution of MasR-YFP to intracellular vesicles of various sizes after 5 minutes. Following the time course of [(125)I]Ang-(1-7) endocytosis, we observed that half of MasR-YFP underwent endocytosis after 10 minutes, and this was blocked by a MasR antagonist. MasR-YFP colocalized with Rab5, the early endosome antigen 1, and the adaptor protein complex 2, indicating that the R is internalized through a clathrin-mediated pathway and targeted to early endosomes after Ang-(1-7) stimulation. A fraction of MasR-YFP also colocalized with caveolin 1, suggesting that at some point MasR-YFP traverses caveolin 1-positive compartments. In conclusion, MasR undergoes endocytosis on stimulation with Ang-(1-7), and this event may explain the desensitization of MasR responsiveness. In this way, MasR activity and density may be tightly controlled by the cell.
Collapse
Affiliation(s)
- Mariela M Gironacci
- Instituto de Química y Fisicoquímica Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
1811
|
AAV vectors for cardiac gene transfer: experimental tools and clinical opportunities. Mol Ther 2011; 19:1582-90. [PMID: 21792180 DOI: 10.1038/mt.2011.124] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Since the first demonstration of in vivo gene transfer into myocardium there have been a series of advancements that have driven the evolution of cardiac gene delivery from an experimental tool into a therapy currently at the threshold of becoming a viable clinical option. Innovative methods have been established to address practical challenges related to tissue-type specificity, choice of delivery vehicle, potency of the delivered material, and delivery route. Most importantly for therapeutic purposes, these strategies are being thoroughly tested to ensure safety of the delivery system and the delivered genetic material. This review focuses on the development of recombinant adeno-associated virus (rAAV) as one of the most valuable cardiac gene transfer agents available today. Various forms of rAAV have been used to deliver "pre-event" cardiac protection and to temper the severity of hypertrophy, cardiac ischemia, or infarct size. Adeno-associated virus (AAV) vectors have also been functional delivery tools for cardiac gene expression knockdown studies and successfully improving the cardiac aspects of several metabolic and neuromuscular diseases. Viral capsid manipulations along with the development of tissue-specific and regulated promoters have greatly increased the utility of rAAV-mediated gene transfer. Important clinical studies are currently underway to evaluate AAV-based cardiac gene delivery in humans.
Collapse
|
1812
|
Brinks H, Das A, Koch WJ. A role for GRK2 in myocardial ischemic injury: indicators of a potential future therapy and diagnostic. Future Cardiol 2011; 7:547-56. [DOI: 10.2217/fca.11.36] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Morbidity and mortality of myocardial infarction remains significant with resulting left ventricular function presenting as a major determinant of clinical outcome. Protecting the myocardium against ischemia reperfusion injury has become a major therapeutic goal and the identification of key signaling pathways has paved the way for various interventions, but until now with disappointing results. This article describes the recently discovered new role of G-protein-coupled receptor kinase-2 (GRK2), which is known to critically influence the development and progression of heart failure, in acute myocardial injury. This article focuses on potential applications of the GRK2 peptide inhibitor βARKct in ischemic myocardial injury, the use of GRK2 as a biomarker in acute myocardial infarction and discusses the challenges of translating GRK2 inhibition as a cardioprotective strategy to a possible future clinical application.
Collapse
Affiliation(s)
- Henriette Brinks
- Department of Cardiovascular Surgery, Inselspital University Hospital, Berne, Switzerland
| | - Amrit Das
- Center for Translational Medicine, Department of Internal Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Walter J Koch
- Center for Translational Medicine, Department of Internal Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
1813
|
Lymperopoulos A. GRK2 and β-arrestins in cardiovascular disease: Something old, something new. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2011; 1:126-137. [PMID: 22254193 PMCID: PMC3253495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 06/23/2011] [Indexed: 05/31/2023]
Abstract
Heptahelical G protein-coupled receptors are the most diverse and therapeutically important family of receptors in the human genome, playing major roles in the physiology of various organs/tissues including the heart and blood vessels. Ligand binding activates heterotrimeric G proteins that transmit intracellular signals by regulating effector enzymes or ion channels. G protein signaling is terminated, in large part, by phosphorylation of the agonist-bound receptor by the family of G-protein coupled receptor kinases (GRKs) followed by βarrestin binding, which uncouples the phosphorylated receptor and G protein and subsequently targets the receptor for internalization. As the receptor-βarrestin complex enters the cell, βarrestins serve as ligand-regulated scaffolds that recruit a host of intracellular proteins and signal transducers, thus promoting their own wave of signal transduction independently of G-proteins. A large number of preclinical studies in small and large animals over the past several years have pinpointed specific pathophysiologic roles played by these two families of receptor-regulating proteins in various cardiovascular diseases, directly implicating them in disease pathology and suggesting them as potential therapeutic targets. The present review gives an account of what is currently known about the benefits of cardiac GRK2 inhibition for cardiovascular disease treatment, and also discusses the exciting new therapeutic possibilities emerging from uncovering the physiological roles of adrenal GRK2 and of βarrestin-mediated signaling in vivo in the cardiovascular system.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy Ft. Lauderdale, FL 33328, USA
| |
Collapse
|
1814
|
Fargnoli AS, Katz MG, Yarnall C, Sumaroka MV, Stedman H, Rabinowitz JJ, Koch WJ, Bridges CR. A pharmacokinetic analysis of molecular cardiac surgery with recirculation mediated delivery of βARKct gene therapy: developing a quantitative definition of the therapeutic window. J Card Fail 2011; 17:691-9. [PMID: 21807332 DOI: 10.1016/j.cardfail.2011.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/03/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Two major problems for translating gene therapy for heart failure therapy are: safe and efficient delivery and the inability to establish a relationship between vector exposure and in vivo effects. We present a pharmacokinetics (PK) analysis of molecular cardiac surgery with recirculating delivery (MCARD) of scAAV6-βARKct. MCARD's stable cardiac specific delivery profile was exploited to determine vector exposure, half-life, and systemic clearance. METHODS AND RESULTS Five naive sheep underwent MCARD with 10(14) genome copies of scAAV6-βARKct. Blood samples were collected over the recirculation interval time of 20 minutes and evaluated with quantitative polymerase chain reaction (qPCR). C(t) curves were generated and expressed on a log scale. The exposure, half-life, and clearance curves were generated for analysis. qPCR and Western blots were used to determine biodistribution. Finally, all in vivo transduction data was plotted against MCARD's PK to determine if a relationship existed. Vector concentrations at each time point were (cardiac and systemic, respectively): 5 minutes: 9.16 ± 0.15 and 3.21 ± 0.38; 10 minutes: 8.81 ± 0.19 and 3.62 ± 0.37; 15 minutes: 8.75 ± 0.12 and 3.69 ± 0.31; and 20 minutes: 8.66 ± 0.22 and 3.95 ± 0.26; P < .00001. The half life of the vector was 2.66 ± 0.24 minutes. PK model data revealed that only 0.61 ± 0.43% of the original dose remained in the blood after delivery, and complete clearance from the system was achieved at 1 week. A PK transfer function revealed a positive correlation between exposure and in vivo transduction. Robust βARKct expression was found in all cardiac regions with none in the liver. CONCLUSION MCARD may offer a viable method to establish a relationship between vector exposure and in vivo transduction. Using this methodology, it may be possible to address a critical need for establishing an effective therapeutic window.
Collapse
Affiliation(s)
- Anthony S Fargnoli
- Department of Surgery, Division of Cardiovascular Surgery, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
1815
|
Jewell ML, Breyer RM, Currie KPM. Regulation of calcium channels and exocytosis in mouse adrenal chromaffin cells by prostaglandin EP3 receptors. Mol Pharmacol 2011; 79:987-96. [PMID: 21383044 PMCID: PMC3102550 DOI: 10.1124/mol.110.068569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 03/07/2011] [Indexed: 11/22/2022] Open
Abstract
Prostaglandin (PG) E(2) controls numerous physiological functions through a family of cognate G protein-coupled receptors (EP1-EP4). Targeting specific EP receptors might be therapeutically useful and reduce side effects associated with nonsteroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors that block prostanoid synthesis. Systemic immune challenge and inflammatory cytokines have been shown to increase expression of the synthetic enzymes for PGE(2) in the adrenal gland. Catecholamines and other hormones, released from adrenal chromaffin cells in response to Ca(2+) influx through voltage-gated Ca(2+) channels, play central roles in homeostatic function and the coordinated stress response. However, long-term elevation of circulating catecholamines contributes to the pathogenesis of hypertension and heart failure. Here, we investigated the EP receptor(s) and cellular mechanisms by which PGE(2) might modulate chromaffin cell function. PGE(2) did not alter resting intracellular [Ca(2+)] or the peak amplitude of nicotinic acetylcholine receptor currents, but it did inhibit Ca(V)2 voltage-gated Ca(2+) channel currents (I(Ca)). This inhibition was voltage-dependent and mediated by pertussis toxin-sensitive G proteins, consistent with a direct Gβγ subunit-mediated mechanism common to other G(i/o)-coupled receptors. mRNA for all four EP receptors was detected, but using selective pharmacological tools and EP receptor knockout mice, we demonstrated that EP3 receptors mediate the inhibition of I(Ca). Finally, changes in membrane capacitance showed that Ca(2+)-dependent exocytosis was reduced in parallel with I(Ca). To our knowledge, this is the first study of EP receptor signaling in mouse chromaffin cells and identifies a molecular mechanism for paracrine regulation of neuroendocrine function by PGE(2).
Collapse
Affiliation(s)
- Mark L Jewell
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232-2520, USA
| | | | | |
Collapse
|
1816
|
Stowasser M, Pimenta E, Gordon RD. Familial or genetic primary aldosteronism and Gordon syndrome. Endocrinol Metab Clin North Am 2011; 40:343-68, viii. [PMID: 21565671 DOI: 10.1016/j.ecl.2011.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Salt-sensitive forms of hypertension have received considerable renewed attention in recent years. This article focuses on 2 main forms of salt-sensitive hypertension (familial or genetic primary aldosteronism [PA] and Gordon syndrome) and the current state of knowledge regarding their genetic bases. The glucocorticoid-remediable form of familial PA (familial hyperaldosteronism type I) is dealt with only briefly because it is covered in depth elsewhere.
Collapse
Affiliation(s)
- Michael Stowasser
- Endocrine Hypertension Research Center, University of Queensland School of Medicine, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane 4102, Australia.
| | | | | |
Collapse
|
1817
|
Banks L, Sasson Z, Esfandiari S, Busato GM, Goodman JM. Cardiac function following prolonged exercise: influence of age. J Appl Physiol (1985) 2011; 110:1541-8. [DOI: 10.1152/japplphysiol.01242.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study sought to determine the influence of age on the left ventricular (LV) response to prolonged exercise (PE; 150 min). LV systolic and diastolic performance was assessed using echocardiography (ECHO) before (pre) and 60 min following (post) exercise performed at 80% maximal aerobic power in young (28 ± 4.5 years; n = 18; mean ± SD) and middle-aged (52 ± 3.9 years; n = 18) participants. LV performance was assessed using two-dimensional ECHO, including speckle-tracking imaging, to determine LV strain (LV S) and LV S rate (LV SR), in addition to Doppler measures of diastolic function. We observed a postexercise elevation in LV S (young: −19.5 ± 2.1% vs. −21.6 ± 2.1%; middle-aged: −19.9 ± 2.3% vs. −20.8 ± 2.1%; P < 0.05) and LV SR (young: −1.19 ± 0.1 vs. −1.37 ± 0.2; middle-aged: −1.20 ± 0.2 vs. −1.38 ± 0.2; P < 0.05) during recovery in both groups. Diastolic function was reduced during recovery, including the LV SR ratio of early-to-late atrial diastolic filling (SRe/a), in young (2.35 ± 0.7 vs. 1.89 ± 0.5; P < 0.01) and middle-aged (1.51 ± 0.5 vs. 1.05 ± 0.2; P < 0.01) participants, as were conventional indices including the E/A ratio. Dobutamine stress ECHO revealed a postexercise depression in LV S in response to increasing dobutamine dose, which was similar in both young (pre-exercise dobutamine 0 vs. 20 μg·kg−1·min−1: −19.5 ± 2.1 vs. −27.2 ± 2.2%; postexercise dobutamine 0 vs. 20 μg·kg−1·min−1: −21.6 ± 2.1 vs. −23.7 ± 2.2%; P < 0.05) and middle-aged participants (pre: −19.9 ± 2.3 vs. −25.3 ± 2.7%; post: −20.8 ± 2.1 vs. −23.5 ± 2.7; P < 0.05). This was despite higher noradrenaline concentrations immediately postexercise in the middle-aged participants compared with young (4.26 ± 2.7 nmol/L vs. 3.00 ± 1.4 nmol/L; P = 0.12). These data indicate that LV dysfunction is observed following PE and that advancing age does not increase the magnitude of this response.
Collapse
Affiliation(s)
- Laura Banks
- Faculty of Physical Education and Health and
| | - Zion Sasson
- Division of Cardiology, Mt. Sinai Hospital, Toronto, Canada
| | | | | | - Jack M. Goodman
- Faculty of Physical Education and Health and
- Heart and Stroke/Richard Lewar Centre of Excellence, Faculty of Medicine, University of Toronto, Toronto, Canada; and
| |
Collapse
|
1818
|
Huang ZM, Gold JI, Koch WJ. G protein-coupled receptor kinases in normal and failing myocardium. Front Biosci (Landmark Ed) 2011; 16:3047-60. [PMID: 21622221 DOI: 10.2741/3898] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is the end stage of many underlying cardiovascular diseases and is among the leading causes of morbidity and mortality in industrialized countries. One of the striking characteristics of HF is the desensitization of G protein-coupled receptor (GPCR) signaling, particularly the beta-adrenergic receptor (betaAR) system. GPCR desensitization is initiated by phosphorylation by GPCR kinases (GRKs), followed by downregulation and functional uncoupling from their G proteins. In the heart, the major GRK isoforms, GRK2 and GRK5, undergo upregulation due to the heightened sympathetic nervous system activity that is characteristic of HF as catecholamine levels increase in an effort to drive the failing pump. This desensitization leads to the distinctive loss of inotropic reserve and functional capacity of the failing heart. Moreover, GRK2 and GRK5 have an increasing non-GPCR interactome, which may play critical roles in cardiac physiology. In the current review, the canonical GPCR kinase function of GRKs and the novel non-GPCR kinase activity of GRKs, their contribution to the pathogenesis of cardiac hypertrophy and HF, and the possibility of GRKs serving as future drug targets will be discussed.
Collapse
Affiliation(s)
- Zheng Maggie Huang
- Center for Translational Medicine and George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | |
Collapse
|
1819
|
Zhang M, Kass DA. Phosphodiesterases and cardiac cGMP: evolving roles and controversies. Trends Pharmacol Sci 2011; 32:360-5. [PMID: 21477871 PMCID: PMC3106121 DOI: 10.1016/j.tips.2011.02.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/25/2011] [Accepted: 02/25/2011] [Indexed: 11/25/2022]
Abstract
cGMP and its primary target kinase, protein kinase G (PKG), are well recognized modulators of cardiac function and the chronic stress response. Their enhancement appears to serve as a myocardial brake, reducing maladaptive hypertrophy, improving cell survival, signaling and mitochondrial function, protecting against ischemia/reperfusion injury, and blunting the stimulatory effects of catecholamines. Translation of these effects into a chronic treatment for patients with heart failure based on increasing the generation of cGMP has been difficult, however, with tolerance and hypotension effects occurring with nitrates and neutral responses to natriuretic peptides (at least B-type). Inhibition of cGMP-targeted phosphodiesterases (PDEs) such as PDE5A is an alternative approach that appears to have more potent effects. Recent studies in experimental models and patients are revealing benefits in heart failure syndromes, and ongoing multicenter trials are testing the efficacy of PDE5A inhibition. In this review we discuss recent research findings and controversies regarding the PDE/cGMP/PKG signaling pathway, and suggest directions for further research.
Collapse
Affiliation(s)
- Manling Zhang
- Division of Cardiology, Department of Medicine, Johns Hopkins University Medical Institutions, Baltimore, MD, USA
| | | |
Collapse
|
1820
|
Moura E, Pinto CE, Caló A, Serrão MP, Afonso J, Vieira-Coelho MA. α2-Adrenoceptor-Mediated Inhibition of Catecholamine Release from the Adrenal Medulla of Spontaneously Hypertensive Rats is Preserved in the Early Stages of Hypertension. Basic Clin Pharmacol Toxicol 2011; 109:253-60. [DOI: 10.1111/j.1742-7843.2011.00712.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
1821
|
Liles JT, Ida KK, Joly KM, Chapo J, Plato CF. Age exacerbates chronic catecholamine-induced impairments in contractile reserve in the rat. Am J Physiol Regul Integr Comp Physiol 2011; 301:R491-9. [PMID: 21593430 DOI: 10.1152/ajpregu.00756.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Contractile reserve decreases with advancing age and chronic isoproterenol (ISO) administration is a well-characterized model of cardiac hypertrophy known to impair cardiovascular function. This study evaluated whether nonsenescent, mature adult rats are more susceptible to detrimental effects of chronic ISO administration than younger adult rats. Rats received daily injections of ISO (0.1 mg/kg sc) or vehicle for 3 wk. ISO induced a greater impairment in contractile reserve [maximum of left ventricular pressure development (Δ+dP/dt(max))] in mature adult ISO-treated (MA-ISO) than in young adult ISO-treated rats (YA-ISO) in response to infusions of mechanistically distinct inotropes (digoxin, milrinone; 20-200 μl·kg(-1)·min(-1)), while basal and agonist-induced changes in heart rate and systolic arterial pressure (SAP) were not different across groups. ISO decreased expression of the calcium handling protein, sarco(endo)plasmic reticulum Ca(2+)-ATPase-2a, in MA-ISO compared with YA, YA-ISO, and MA rats. Chronic ISO also induced greater increases in cardiac hypertrophy [left ventricular (LV) index: 33 ± 3 vs. 22 ± 5%] and caspase-3 activity (34 vs. 5%) in MA-ISO relative to YA-ISO rats. Moreover, β-myosin heavy chain (β-MHC) and atrial natriuretic factor (ANF) mRNA expression was significantly elevated in MA-ISO. These results demonstrate that adult rats develop greater impairments in systolic performance than younger rats when exposed to chronic catecholamine excess. Reduced contractile reserve may result from calcium dysregulation, increased caspase-3 activity, or increased β-MHC and ANF expression. Although several studies report age-related declines in systolic performance in older and senescent animals, the present study demonstrates that catecholamine excess induces reductions in systolic performance significantly earlier in life.
Collapse
Affiliation(s)
- John T Liles
- Gilead Sciences, Inc., 1651 Page Mill Road, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
1822
|
Ciccarelli M, Chuprun JK, Rengo G, Gao E, Wei Z, Peroutka RJ, Gold J, Gumpert A, Chen M, Otis NJ, Dorn GW, Trimarco B, Iaccarino G, Koch WJ. G protein-coupled receptor kinase 2 activity impairs cardiac glucose uptake and promotes insulin resistance after myocardial ischemia. Circulation 2011; 123:1953-62. [PMID: 21518983 PMCID: PMC3113597 DOI: 10.1161/circulationaha.110.988642] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 03/01/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND Alterations in cardiac energy metabolism downstream of neurohormonal stimulation play a crucial role in the pathogenesis of heart failure. The chronic adrenergic stimulation that accompanies heart failure is a signaling abnormality that leads to the upregulation of G protein-coupled receptor kinase 2 (GRK2), which is pathological in the myocyte during disease progression in part owing to uncoupling of the β-adrenergic receptor system. In this study, we explored the possibility that enhanced GRK2 expression and activity, as seen during heart failure, can negatively affect cardiac metabolism as part of its pathogenic profile. METHODS AND RESULTS Positron emission tomography studies revealed in transgenic mice that cardiac-specific overexpression of GRK2 negatively affected cardiac metabolism by inhibiting glucose uptake and desensitization of insulin signaling, which increases after ischemic injury and precedes heart failure development. Mechanistically, GRK2 interacts with and directly phosphorylates insulin receptor substrate-1 in cardiomyocytes, causing insulin-dependent negative signaling feedback, including inhibition of membrane translocation of the glucose transporter GLUT4. This identifies insulin receptor substrate-1 as a novel nonreceptor target for GRK2 and represents a new pathological mechanism for this kinase in the failing heart. Importantly, inhibition of GRK2 activity prevents postischemic defects in myocardial insulin signaling and improves cardiac metabolism via normalized glucose uptake, which appears to participate in GRK2-targeted prevention of heart failure. CONCLUSIONS Our data provide novel insights into how GRK2 is pathological in the injured heart. Moreover, it appears to be a critical mechanistic link within neurohormonal crosstalk governing cardiac contractile signaling/function through β-adrenergic receptors and metabolism through the insulin receptor.
Collapse
Affiliation(s)
- Michele Ciccarelli
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Clinical Medicine and Cardiovascular Science, “Federico II” University of Naples, Italy
| | - J. Kurt Chuprun
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Giuseppe Rengo
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Division of Cardiology, Fondazione “Salvatore Maugeri” – IRCCS – Istituto di Telese Terme – Italy
| | - Erhe Gao
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhengyu Wei
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond J. Peroutka
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica Gold
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anna Gumpert
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mai Chen
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nicholas J. Otis
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gerald W. Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruno Trimarco
- Department of Clinical Medicine and Cardiovascular Science, “Federico II” University of Naples, Italy
| | - Guido Iaccarino
- University of Salerno, Department of Medicine, Salerno, Italy Ciccarelli, GRK2 and Cardiac Metabolism
| | - Walter J. Koch
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
1823
|
Rengo G, Lymperopoulos A, Leosco D, Koch WJ. GRK2 as a novel gene therapy target in heart failure. J Mol Cell Cardiol 2011; 50:785-92. [PMID: 20800067 PMCID: PMC3005526 DOI: 10.1016/j.yjmcc.2010.08.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 12/13/2022]
Abstract
Despite significant advances in pharmacological and clinical treatment, heart failure (HF) remains a leading cause of morbidity and mortality worldwide. HF is a chronic and progressive clinical syndrome characterized by a reduction in left ventricular (LV) ejection fraction and adverse remodeling of the myocardium. The past several years have seen remarkable progress using animal models in unraveling the cellular and molecular mechanisms underlying HF pathogenesis and progression. These studies have revealed potentially novel therapeutic targets/strategies. The application of cardiac gene transfer, which allows for the manipulation of targets in cardiomyocytes, appears to be a promising therapeutic tool in HF. β-adrenergic receptor (βAR) dysfunction represents a hallmark abnormality of chronic HF, and increased G protein-coupled receptor kinase 2 (GRK2) levels/activity in failing myocardium is among these alterations. In the past 15years, several animal studies have shown that expression of a peptide inhibitor of GRK2 (βARKct) can improve the contractile function of failing myocardium including promoting reverse remodeling of the LV. Therefore, data support the use of the βARKct as a promising candidate for therapeutic application in human HF. Importantly, recent studies in cardiac-specific GRK2 knockout mice have corroborated GRK2 being pathological in failing myocytes. The purpose of this review is to discuss: 1) the alterations of βAR signaling that occur in HF, 2) the evidence from transgenic mouse studies investigating the impact of GRK2 manipulation in failing myocardium, 3) the therapeutic efficacy of in vivo βARKct gene therapy in HF, and 4) the intriguing possibility of lowering HF-related sympathetic nervous system hyperactivity by inhibiting GRK2 activity in the adrenal gland. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".
Collapse
Affiliation(s)
- Giuseppe Rengo
- Center for Translational Medicine and George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
1824
|
Kendall RT, Strungs EG, Rachidi SM, Lee MH, El-Shewy HM, Luttrell DK, Janech MG, Luttrell LM. The beta-arrestin pathway-selective type 1A angiotensin receptor (AT1A) agonist [Sar1,Ile4,Ile8]angiotensin II regulates a robust G protein-independent signaling network. J Biol Chem 2011; 286:19880-91. [PMID: 21502318 DOI: 10.1074/jbc.m111.233080] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The angiotensin II peptide analog [Sar(1),Ile(4),Ile(8)]AngII (SII) is a biased AT(1A) receptor agonist that stimulates receptor phosphorylation, β-arrestin recruitment, receptor internalization, and β-arrestin-dependent ERK1/2 activation without activating heterotrimeric G-proteins. To determine the scope of G-protein-independent AT(1A) receptor signaling, we performed a gel-based phosphoproteomic analysis of AngII and SII-induced signaling in HEK cells stably expressing AT(1A) receptors. A total of 34 differentially phosphorylated proteins were detected, of which 16 were unique to SII and eight to AngII stimulation. MALDI-TOF/TOF mass fingerprinting was employed to identify 24 SII-sensitive phosphoprotein spots, of which three (two peptide inhibitors of protein phosphatase 2A (I1PP2A and I2PP2A) and prostaglandin E synthase 3 (PGES3)) were selected for validation and further study. We found that phosphorylation of I2PP2A was associated with rapid and transient inhibition of a β-arrestin 2-associated pool of protein phosphatase 2A, leading to activation of Akt and increased phosphorylation of glycogen synthase kinase 3β in an arrestin signalsome complex. SII-stimulated PGES3 phosphorylation coincided with an increase in β-arrestin 1-associated PGES3 and an arrestin-dependent increase in cyclooxygenase 1-dependent prostaglandin E(2) synthesis. These findings suggest that AT(1A) receptors regulate a robust G protein-independent signaling network that affects protein phosphorylation and autocrine/paracrine prostaglandin production and that these pathways can be selectively modulated by biased ligands that antagonize G protein activation.
Collapse
Affiliation(s)
- Ryan T Kendall
- Department of Medicine, Division of Endocrinology, Diabetes, and Medical Genetics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
1825
|
G protein-coupled receptor kinase 2 in patients with acute myocardial infarction. Am J Cardiol 2011; 107:1125-30. [PMID: 21296320 DOI: 10.1016/j.amjcard.2010.12.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 12/17/2022]
Abstract
Lymphocyte G protein-coupled receptor kinase 2 (GRK2) levels are increased in patients with chronic heart failure, and in this condition, they correlate with cardiac function. The aim of this study was to assess the prognostic role of GRK2 during acute cardiac dysfunction in humans. A study was designed to investigate the role of GRK2 levels in patients with acute coronary syndromes. Lymphocyte GRK2 levels were examined at admission and after 24 and 48 hours in 42 patients with acute coronary syndromes, 32 with ST-segment elevation myocardial infarction and 10 with unstable angina as a control group. Echocardiographic parameters of systolic and diastolic function and left ventricular remodeling were evaluated at admission and after 2 years. GRK2 levels increased during ST-segment elevation myocardial infarction and were associated with worse systolic and diastolic function. This association held at 2-year follow-up, when GRK2 was correlated with the ejection fraction and end-systolic volume, indicating a prognostic value for GRK2 levels during acute ST-segment elevation myocardial infarction. In conclusion, lymphocyte GRK2 levels increase during acute myocardial infarction and are associated with worse cardiac function. Taken together, these data indicate that GRK2 could be predictive of ventricular remodeling after myocardial infarction and could facilitate the tailoring of appropriate therapy for high-risk patients.
Collapse
|
1826
|
Currie KPM. Inhibition of Ca2+ channels and adrenal catecholamine release by G protein coupled receptors. Cell Mol Neurobiol 2011; 30:1201-8. [PMID: 21061161 DOI: 10.1007/s10571-010-9596-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/02/2010] [Indexed: 02/03/2023]
Abstract
Catecholamines and other transmitters released from adrenal chromaffin cells play central roles in the "fight-or-flight" response and exert profound effects on cardiovascular, endocrine, immune, and nervous system function. As such, precise regulation of chromaffin cell exocytosis is key to maintaining normal physiological function and appropriate responsiveness to acute stress. Chromaffin cells express a number of different G protein coupled receptors (GPCRs) that sense the local environment and orchestrate this precise control of transmitter release. The primary trigger for catecholamine release is Ca2+ entry through voltage-gated Ca2+ channels, so it makes sense that these channels are subject to complex regulation by GPCRs. In particular G protein βγ heterodimers (Gbc) bind to and inhibit Ca2+ channels. Here I review the mechanisms by which GPCRs inhibit Ca2+ channels in chromaffin cells and how this might be altered by cellular context. This is related to the potent autocrine inhibition of Ca2+ entry and transmitter release seen in chromaffin cells. Recent data that implicate an additional inhibitory target of Gβγ on the exocytotic machinery and how this might fine tune neuroendocrine secretion are also discussed.
Collapse
Affiliation(s)
- Kevin P M Currie
- Departments of Anesthesiology, Pharmacology, and Center for Molecular Neuroscience, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA.
| |
Collapse
|
1827
|
Jasmin JF, Rengo G, Lymperopoulos A, Gupta R, Eaton GJ, Quann K, Gonzales DM, Mercier I, Koch WJ, Lisanti MP. Caveolin-1 deficiency exacerbates cardiac dysfunction and reduces survival in mice with myocardial infarction. Am J Physiol Heart Circ Physiol 2011; 300:H1274-H1281. [PMID: 21297026 PMCID: PMC3075024 DOI: 10.1152/ajpheart.01173.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/28/2011] [Indexed: 11/22/2022]
Abstract
Caveolin (Cav)-1 has been involved in the pathogenesis of ischemic injuries. For instance, modulations of Cav-1 expression have been reported in animal models of myocardial infarction and cerebral ischemia-reperfusion. Furthermore, ablation of the Cav-1 gene in mice has been shown to increase the extent of ischemic injury in models of cerebral and hindlimb ischemia. Cav-1 has also been suggested to play a role in myocardial ischemic preconditioning. However, the role of Cav-1 in myocardial ischemia (MI)-induced cardiac dysfunction still remains to be determined. We determined the outcome of a permanent left anterior descending coronary artery (LAD) ligation in Cav-1 knockout (KO) mice. Wild-type (WT) and Cav-1 KO mice were subjected to permanent LAD ligation for 24 h. The progression of ischemic injury was monitored by echocardiography, hemodynamic measurements, 2,3,5-triphenyltetrazolium chloride staining, β-binding analysis, cAMP level measurements, and Western blot analyses. Cav-1 KO mice subjected to LAD ligation display reduced survival compared with WT mice. Despite similar infarct sizes, Cav-1 KO mice subjected to MI showed reduced left ventricular (LV) ejection fraction and fractional shortening as well as increased LV end-diastolic pressures compared with their WT counterparts. Mechanistically, Cav-1 KO mice subjected to MI exhibit reduced β-adrenergic receptor density at the plasma membrane as well as decreased cAMP levels and PKA phosphorylation. In conclusion, ablation of the Cav-1 gene exacerbates cardiac dysfunction and reduces survival in mice subjected to MI. Mechanistically, Cav-1 KO mice subjected to LAD ligation display abnormalities in β-adrenergic signaling.
Collapse
Affiliation(s)
- Jean-François Jasmin
- Department of Stem Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1828
|
Briston SJ, Caldwell JL, Horn MA, Clarke JD, Richards MA, Greensmith DJ, Graham HK, Hall MCS, Eisner DA, Dibb KM, Trafford AW. Impaired β-adrenergic responsiveness accentuates dysfunctional excitation-contraction coupling in an ovine model of tachypacing-induced heart failure. J Physiol 2011; 589:1367-82. [PMID: 21242250 PMCID: PMC3082097 DOI: 10.1113/jphysiol.2010.203984] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/10/2011] [Indexed: 01/08/2023] Open
Abstract
Reduced inotropic responsiveness is characteristic of heart failure (HF). This study determined the cellular Ca2+ homeostatic and molecular mechanisms causing the blunted β-adrenergic (β-AR) response in HF.We induced HF by tachypacing in sheep; intracellular Ca2+ concentration was measured in voltage-clamped ventricular myocytes. In HF, Ca2+ transient amplitude and peak L-type Ca2+ current (ICa-L) were reduced (to 70 ± 11% and 50 ± 3.7% of control, respectively, P <0.05) whereas sarcoplasmic reticulum (SR) Ca2+ content was unchanged. β-AR stimulation with isoprenaline (ISO) increased Ca2+ transient amplitude, ICa-L and SRCa2+ content in both cell types; however, the response of HF cells was markedly diminished (P <0.05).Western blotting revealed an increase in protein phosphatase levels (PP1, 158 ± 17% and PP2A, 188 ± 34% of control, P <0.05) and reduced phosphorylation of phospholamban in HF (Ser16, 30 ± 10% and Thr17, 41 ± 15% of control, P <0.05). The β-AR receptor kinase GRK-2 was also increased in HF (173 ± 38% of control, P <0.05). In HF, activation of adenylyl cyclase with forskolin rescued the Ca2+ transient, SR Ca2+ content and SR Ca2+ uptake rate to the same levels as control cells in ISO. In conclusion, the reduced responsiveness of the myocardium to β-AR agonists in HF probably arises as a consequence of impaired phosphorylation of key intracellular proteins responsible for regulating the SR Ca2+ content and therefore failure of the systolic Ca2+ transient to increase appropriately during β-AR stimulation.
Collapse
Affiliation(s)
- Sarah J Briston
- Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9NT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1829
|
Libonati JR, MacDonnell SM. Cardiac β-adrenergic responsiveness with exercise. Eur J Appl Physiol 2011; 111:2735-41. [PMID: 21404069 DOI: 10.1007/s00421-011-1909-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
Abstract
Left ventricular performance is enhanced with chronic exercise training. Alterations in cardiomyocyte β-adrenergic responsiveness (BAR) may, in part, mediate this response. In this study, cardiac BAR and the expression of some key cardiac hypertrophic signaling molecules following 3 months of treadmill training were examined. Four-month old, female, Wistar Kyoto (WKY) rats were randomly assigned into either a sedentary (WKY-SED, n = 15) or an exercise-trained (WKY-TRD, n = 11) group. All rats were maintained on a 12-h light/dark cycle, and fed ad libitum. Exercise training consisted of motorized treadmill training at 25 m/min, 0% grade, 60 continuous minutes, 5 days/week for a period of 12 weeks. RT-PCR was used to establish basal cardiac calcineurin A, ANP, and AKT mRNA expression. In vitro cardiac BAR responsiveness was determined in Langendorff, isolated hearts. Following baseline, isoproterenol (ISO) was incrementally infused at concentrations ranging from 1 × 10(-10) to 1 × 10(-7) mol/L. There were no group differences for heart weight, heart to body weight ratio, calcineurin A, ANP, or AKT mRNA levels between WKY-SED and WKY-TRD. WKY-TRD showed enhanced cardiac BAR relative to WKY-SED (at ISO 1 × 10(-7) mol/L; P < 0.05). Moderate intensity treadmill exercise improved cardiac BAR responsiveness to a high concentration of isoproterenol. This adaptation was independent of training-induced alterations in cardiac hypertrophy or hypertrophic marker expression.
Collapse
Affiliation(s)
- Joseph R Libonati
- Biobehavioral and Health Sciences, University of Pennsylvania, School of Nursing, 135 Claire M. Fagin Hall, 418 Curie Boulevard, Philadelphia, PA 19104-4217, USA.
| | | |
Collapse
|
1830
|
Schneider J, Lother A, Hein L, Gilsbach R. Chronic cardiac pressure overload induces adrenal medulla hypertrophy and increased catecholamine synthesis. Basic Res Cardiol 2011; 106:591-602. [PMID: 21547520 DOI: 10.1007/s00395-011-0166-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 02/14/2011] [Accepted: 03/01/2011] [Indexed: 01/08/2023]
Abstract
Increased activity of the sympathetic system is an important feature contributing to the pathogenesis and progression of chronic heart failure. While the mechanisms and consequences of enhanced norepinephrine release from sympathetic nerves have been intensely studied, the role of the adrenal gland in the development of cardiac hypertrophy and progression of heart failure is less well known. Thus, the aim of the present study was to determine the effect of chronic cardiac pressure overload in mice on adrenal medulla structure and function. Cardiac hypertrophy was induced in wild-type mice by transverse aortic constriction (TAC) for 8 weeks. After TAC, the degree of cardiac hypertrophy correlated significantly with adrenal weight and adrenal catecholamine storage. In the medulla, TAC caused an increase in chromaffin cell size but did not result in chromaffin cell proliferation. Ablation of chromaffin α(2C)-adrenoceptors did not affect adrenal weight or epinephrine synthesis. However, unilateral denervation of the adrenal gland completely prevented adrenal hypertrophy and increased catecholamine synthesis. Transcriptome analysis of microdissected adrenal medulla identified 483 up- and 231 downregulated, well-annotated genes after TAC. Among these genes, G protein-coupled receptor kinases 2 (Grk2) and 6 and phenylethanolamine N-methyltransferase (Pnmt) were significantly upregulated by TAC. In vitro, acetylcholine-induced Pnmt and Grk2 expression as well as enhanced epinephrine content was prevented by inhibition of nicotinic acetylcholine receptors and Ca(2+)/calmodulin-dependent signaling. Thus, activation of preganglionic sympathetic nerves innervating the adrenal medulla plays an essential role in inducing adrenal hypertrophy, enhanced catecholamine synthesis and induction of Grk2 expression after cardiac pressure overload.
Collapse
Affiliation(s)
- Johanna Schneider
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Albertstrasse 25, Freiburg, Germany
| | | | | | | |
Collapse
|
1831
|
Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol Med 2011; 17:126-39. [PMID: 21183406 PMCID: PMC3628754 DOI: 10.1016/j.molmed.2010.11.004] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/13/2010] [Accepted: 11/17/2010] [Indexed: 12/21/2022]
Abstract
Members of the seven-transmembrane receptor (7TMR), or G protein-coupled receptor (GPCR), superfamily represent some of the most successful targets of modern drug therapy, with proven efficacy in the treatment of a broad range of human conditions and disease processes. It is now appreciated that β-arrestins, once viewed simply as negative regulators of traditional 7TMR-stimulated G protein signaling, act as multifunctional adapter proteins that regulate 7TMR desensitization and trafficking and promote distinct intracellular signals in their own right. Moreover, several 7TMR biased agonists, which selectively activate these divergent signaling pathways, have been identified. Here we highlight the diversity of G protein- and β-arrestin-mediated functions and the therapeutic potential of selective targeting of these in disease states.
Collapse
Affiliation(s)
- Erin J Whalen
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
1832
|
Drosatos K, Bharadwaj KG, Lymperopoulos A, Ikeda S, Khan R, Hu Y, Agarwal R, Yu S, Jiang H, Steinberg SF, Blaner WS, Koch WJ, Goldberg IJ. Cardiomyocyte lipids impair β-adrenergic receptor function via PKC activation. Am J Physiol Endocrinol Metab 2011; 300:E489-99. [PMID: 21139071 PMCID: PMC3064003 DOI: 10.1152/ajpendo.00569.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/03/2010] [Indexed: 12/16/2022]
Abstract
Normal hearts have increased contractility in response to catecholamines. Because several lipids activate PKCs, we hypothesized that excess cellular lipids would inhibit cardiomyocyte responsiveness to adrenergic stimuli. Cardiomyocytes treated with saturated free fatty acids, ceramide, and diacylglycerol had reduced cellular cAMP response to isoproterenol. This was associated with increased PKC activation and reduction of β-adrenergic receptor (β-AR) density. Pharmacological and genetic PKC inhibition prevented both palmitate-induced β-AR insensitivity and the accompanying reduction in cell surface β-ARs. Mice with excess lipid uptake due to either cardiac-specific overexpression of anchored lipoprotein lipase, PPARγ, or acyl-CoA synthetase-1 or high-fat diet showed reduced inotropic responsiveness to dobutamine. This was associated with activation of protein kinase C (PKC)α or PKCδ. Thus, several lipids that are increased in the setting of lipotoxicity can produce abnormalities in β-AR responsiveness. This can be attributed to PKC activation and reduced β-AR levels.
Collapse
Affiliation(s)
- Konstantinos Drosatos
- Dept. of Medicine, Columbia University, 630 West 168th St., New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1833
|
D'Souza KM, Malhotra R, Philip JL, Staron ML, Theccanat T, Jeevanandam V, Akhter SA. G protein-coupled receptor kinase-2 is a novel regulator of collagen synthesis in adult human cardiac fibroblasts. J Biol Chem 2011; 286:15507-16. [PMID: 21357420 DOI: 10.1074/jbc.m111.218263] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiac fibroblasts (CF) make up 60-70% of the total cell number in the heart and play a critical role in regulating normal myocardial function and in adverse remodeling following myocardial infarction and the transition to heart failure. Recent studies have shown that increased intracellular cAMP can inhibit CF transformation and collagen synthesis in adult rat CF; however, mechanisms by which cAMP production is regulated in CF have not been elucidated. We investigated the potential role of G protein-coupled receptor kinase-2 (GRK2) in modulating collagen synthesis by adult human CF isolated from normal and failing left ventricles. Baseline collagen synthesis was elevated in failing CF and was not inhibited by β-agonist stimulation in contrast to normal controls. β-adrenergic receptor (β-AR) signaling was markedly uncoupled in the failing CF, and expression and activity of GRK2 were increased 3-fold. Overexpression of GRK2 in normal CF recapitulated a heart failure phenotype with minimal inhibition of collagen synthesis following β-agonist stimulation. In contrast, knockdown of GRK2 expression in normal CF enhanced cAMP production and led to greater β-agonist-mediated inhibition of basal and TGFβ-stimulated collagen synthesis versus control. Inhibition of GRK2 activity in failing CF by expression of the GRK2 inhibitor, GRK2ct, or siRNA-mediated knockdown restored β-agonist-stimulated inhibition of collagen synthesis and decreased collagen synthesis in response to TGFβ stimulation. GRK2 appears to play a significant role in regulating collagen synthesis in adult human CF, and increased activity of this kinase may be an important mechanism of maladaptive ventricular remodeling as mediated by cardiac fibroblasts.
Collapse
Affiliation(s)
- Karen M D'Souza
- Department of Surgery, Section of Cardiac and Thoracic Surgery, University of Chicago Medical Center, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
1834
|
Nguyen K, Kassimatis T, Lymperopoulos A. Impaired desensitization of a human polymorphic α2B-adrenergic receptor variant enhances its sympatho-inhibitory activity in chromaffin cells. Cell Commun Signal 2011; 9:5. [PMID: 21299895 PMCID: PMC3041786 DOI: 10.1186/1478-811x-9-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/07/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND α2-adrenergic receptors (ARs) mediate many cellular actions of epinephrine and norepinephrine and inhibit their secretion from adrenal chromaffin cells. Like many other G-protein coupled receptors (GPCRs), they undergo agonist-dependent phopshorylation and desensitization by GPCR Kinases (GRKs), a phenomenon recently shown to play a major role in the sympathetic overdrive that accompanies and aggravates chronic heart failure. A deletion polymorphism in the human α2B-AR gene (Glu301-303) causes impaired agonist-promoted receptor phosphorylation and desensitization in heterologous cell lines. Given the importance of α2-ARs in regulation of catecholamine secretion from chromaffin cells, we sought to investigate, in the present study, the desensitization properties and the sympatho-inhibitory activity of this variant in a chromaffin cell line. For this purpose, we expressed this variant and its wild type counterpart in the well-established chromaffin cell line PC12, and performed receptor phosphorylation and desensitization studies, as well as in vitro catecholamine secretion assays. RESULTS Both the agonist-induced phosphorylation and agonist-dependent desensitization of the human Glu301-303 deletion polymorphic α2B-AR are significantly impaired in PC12 cells, resulting in enhanced signaling to inhibition of cholinergic-induced catecholamine secretion in vitro. CONCLUSION This α2B-AR gene polymorphism (Glu301-303 deletion) might confer better protection against conditions characterized and aggravated by sympathetic/catecholaminergic overstimulation in vivo.
Collapse
Affiliation(s)
- Kristy Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | | | - Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
1835
|
Abstract
Heart failure is an important cause of morbidity and mortality in individuals of all ages. The many-faceted nature of the clinical heart failure syndrome has historically frustrated attempts to develop an overarching explanative theory. However, much useful information has been gained by basic and clinical investigation, even though a comprehensive understanding of heart failure has been elusive. Heart failure is a growing problem, in both adult and pediatric populations, for which standard medical therapy, as of 2010, can have positive effects, but these are usually limited and progressively diminish with time in most patients. If we want curative or near-curative therapy that will return patients to a normal state of health at a feasible cost, much better diagnostic and therapeutic technologies need to be developed. This review addresses the vexing group of heart failure etiologies that include cardiomyopathies and other ventricular dysfunctions of various types, for which current therapy is only modestly effective. Although there are many unique aspects to heart failure in patients with pediatric and congenital heart disease, many of the innovative approaches that are being developed for the care of adults with heart failure will be applicable to heart failure in childhood.
Collapse
Affiliation(s)
- Daniel J Penny
- Section of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, 6621 Fannin Street, Houston, TX 77030, USA
| | | |
Collapse
|
1836
|
Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nat Rev Drug Discov 2011; 10:111-26. [PMID: 21283106 DOI: 10.1038/nrd3252] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
1837
|
Lymperopoulos A, Rengo G, Zincarelli C, Kim J, Koch WJ. Adrenal beta-arrestin 1 inhibition in vivo attenuates post-myocardial infarction progression to heart failure and adverse remodeling via reduction of circulating aldosterone levels. J Am Coll Cardiol 2011; 57:356-65. [PMID: 21232674 PMCID: PMC3087631 DOI: 10.1016/j.jacc.2010.08.635] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 12/31/2022]
Abstract
OBJECTIVES We investigated whether adrenal beta-arrestin 1 (βarr1)-mediated aldosterone production plays any role in post-myocardial infarction (MI) heart failure (HF) progression. BACKGROUND Heart failure represents 1 of the most significant health problems worldwide, and new and innovative treatments are needed. Aldosterone contributes significantly to HF progression after MI by accelerating adverse cardiac remodeling and ventricular dysfunction. It is produced by the adrenal cortex after angiotensin II activation of angiotensin II type 1 receptors (AT₁Rs), G protein-coupled receptors that also signal independently of G proteins. The G protein-independent signaling is mediated by βarr1 and βarr2. We recently reported that adrenal βarr1 promotes AT₁R-dependent aldosterone production leading to elevated circulating aldosterone levels in vivo. METHODS Adrenal-targeted, adenoviral-mediated gene delivery in vivo in 2-week post-MI rats, a time point around which circulating aldosterone significantly increases to accelerate HF progression, was performed to either increase the expression of adrenal βarr1 or inhibit its function via expression of a βarr1 C-terminal-derived peptide fragment. RESULTS We found that adrenal βarr1 overexpression promotes aldosterone elevation after MI, resulting in accelerated cardiac adverse remodeling and deterioration of ventricular function. Importantly, these detrimental effects of aldosterone are prevented when adrenal βarr1 is inhibited in vivo, which markedly decreases circulating aldosterone after MI. Finally, the prototypic AT₁R antagonist losartan seems unable to lower this adrenal βarr1-driven aldosterone elevation. CONCLUSIONS Adrenal βarr1 inhibition, either directly or with AT₁R "biased" antagonists that prevent receptor-βarr1 coupling, might be of therapeutic value for curbing HF-exacerbating hyperaldosteronism.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, Florida 33328, USA.
| | | | | | | | | |
Collapse
|
1838
|
Lambert WS, Ruiz L, Crish SD, Wheeler LA, Calkins DJ. Brimonidine prevents axonal and somatic degeneration of retinal ganglion cell neurons. Mol Neurodegener 2011; 6:4. [PMID: 21232114 PMCID: PMC3035592 DOI: 10.1186/1750-1326-6-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/13/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brimonidine is a common drug for lowering ocular pressure and may directly protect retinal ganglion cells in glaucoma. The disease involves early loss of retinal ganglion cell transport to brain targets followed by axonal and somatic degeneration. We examined whether brimonidine preserves ganglion cell axonal transport and abates degeneration in rats with elevated ocular pressure induced by laser cauterization of the episcleral veins. RESULTS Ocular pressure was elevated unilaterally by 90% for a period of 8 weeks post- cauterization. During this time, brimonidine (1mg/kg/day) or vehicle (phosphate-buffered saline) was delivered systemically and continuously via subcutaneous pump. Animals received bilateral intravitreal injections of fluorescent cholera toxin subunit β (CTB) two days before sacrifice to assess anterograde transport. In retinas from the vehicle group, elevated pressure induced a 44% decrease in the fraction of ganglion cells with intact uptake of CTB and a 14-42% reduction in the number of immuno-labelled ganglion cell bodies, with the worst loss occurring nasally. Elevated pressure also caused a 33% loss of ganglion cell axons in vehicle optic nerves and a 70% decrease in CTB transport to the superior colliculus. Each of these components of ganglion cell degeneration was either prevented or significantly reduced in the brimonidine treatment group. CONCLUSIONS Continuous and systemic treatment with brimonidine by subcutaneous injection significantly improved retinal ganglion cell survival with exposure to elevated ocular pressure. This effect was most striking in the nasal region of the retina. Brimonidine treatment also preserved ganglion cell axon morphology, sampling density and total number in the optic nerve with elevated pressure. Consistent with improved outcome in the optic projection, brimonidine also significantly reduced the deficits in axonal transport to the superior colliculus associated with elevated ocular pressure. As transport deficits to and from retinal ganglion cell projection targets in the brain are relevant to the progression of glaucoma, the ability of brimonidine to preserve optic nerve axons and active transport suggests its neuroprotective effects are relevant not only at the cell body, but throughout the entire optic projection.
Collapse
Affiliation(s)
- Wendi S Lambert
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37205, USA.
| | | | | | | | | |
Collapse
|
1839
|
Völkers M, Weidenhammer C, Herzog N, Qiu G, Spaich K, Wegner FV, Peppel K, Müller OJ, Schinkel S, Rabinowitz JE, Hippe HJ, Brinks H, Katus HA, Koch WJ, Eckhart AD, Friedrich O, Most P. The inotropic peptide βARKct improves βAR responsiveness in normal and failing cardiomyocytes through G(βγ)-mediated L-type calcium current disinhibition. Circ Res 2011; 108:27-39. [PMID: 21106943 PMCID: PMC4013502 DOI: 10.1161/circresaha.110.225201] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/15/2010] [Indexed: 12/20/2022]
Abstract
RATIONALE The G(βγ)-sequestering peptide β-adrenergic receptor kinase (βARK)ct derived from the G-protein-coupled receptor kinase (GRK)2 carboxyl terminus has emerged as a promising target for gene-based heart failure therapy. Enhanced downstream cAMP signaling has been proposed as the underlying mechanism for increased β-adrenergic receptor (βAR) responsiveness. However, molecular targets mediating improved cardiac contractile performance by βARKct and its impact on G(βγ)-mediated signaling have yet to be fully elucidated. OBJECTIVE We sought to identify G(βγ)-regulated targets and signaling mechanisms conveying βARKct-mediated enhanced βAR responsiveness in normal (NC) and failing (FC) adult rat ventricular cardiomyocytes. METHODS AND RESULTS Assessing viral-based βARKct gene delivery with electrophysiological techniques, analysis of contractile performance, subcellular Ca²(+) handling, and site-specific protein phosphorylation, we demonstrate that βARKct enhances the cardiac L-type Ca²(+) channel (LCC) current (I(Ca)) both in NCs and FCs on βAR stimulation. Mechanistically, βARKct augments I(Ca) by preventing enhanced inhibitory interaction between the α1-LCC subunit (Cav1.2α) and liberated G(βγ) subunits downstream of activated βARs. Despite improved βAR contractile responsiveness, βARKct neither increased nor restored cAMP-dependent protein kinase (PKA) and calmodulin-dependent kinase II signaling including unchanged protein kinase (PK)Cε, extracellular signal-regulated kinase (ERK)1/2, Akt, ERK5, and p38 activation both in NCs and FCs. Accordingly, although βARKct significantly increases I(Ca) and Ca²(+) transients, being susceptible to suppression by recombinant G(βγ) protein and use-dependent LCC blocker, βARKct-expressing cardiomyocytes exhibit equal basal and βAR-stimulated sarcoplasmic reticulum Ca²(+) load, spontaneous diastolic Ca²(+) leakage, and survival rates and were less susceptible to field-stimulated Ca²(+) waves compared with controls. CONCLUSION Our study identifies a G(βγ)-dependent signaling pathway attenuating cardiomyocyte I(Ca) on βAR as molecular target for the G(βγ)-sequestering peptide βARKct. Targeted interruption of this inhibitory signaling pathway by βARKct confers improved βAR contractile responsiveness through increased I(Ca) without enhancing regular or restoring abnormal cAMP-signaling. βARKct-mediated improvement of I(Ca) rendered cardiomyocytes neither susceptible to βAR-induced damage nor arrhythmogenic sarcoplasmic reticulum Ca²(+) leakage.
Collapse
Affiliation(s)
- Mirko Völkers
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Christian Weidenhammer
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Nicole Herzog
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Gang Qiu
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Kristin Spaich
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Frederic V Wegner
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Karsten Peppel
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Oliver J Müller
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Stefanie Schinkel
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Joseph E Rabinowitz
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Hans-Jorg Hippe
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Henriette Brinks
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Hugo A Katus
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Walter J Koch
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Andrea D Eckhart
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Oliver Friedrich
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Patrick Most
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| |
Collapse
|
1840
|
Zhu W, Woo AYH, Zhang Y, Cao CM, Xiao RP. β-adrenergic receptor subtype signaling in the heart: from bench to the bedside. CURRENT TOPICS IN MEMBRANES 2011; 67:191-204. [PMID: 21771491 DOI: 10.1016/b978-0-12-384921-2.00009-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Weizhong Zhu
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
1841
|
Gilsbach R, Albarrán-Juárez J, Hein L. Pre- versus Postsynaptic Signaling by α2-Adrenoceptors. CURRENT TOPICS IN MEMBRANES 2011; 67:139-60. [DOI: 10.1016/b978-0-12-384921-2.00007-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
1842
|
Gesty-Palmer D, Luttrell LM. Refining efficacy: exploiting functional selectivity for drug discovery. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 62:79-107. [PMID: 21907907 DOI: 10.1016/b978-0-12-385952-5.00009-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Early models of G protein-coupled receptor (GPCR) activation envisioned the receptor in equilibrium between unique "off" and "on" states, wherein ligand binding affected signaling by increasing or decreasing the fraction of receptors in the active conformation. It is now apparent that GPCRs spontaneously sample multiple conformations, any number of which may couple to one or more downstream effectors. Such "multistate" models imply that the receptor-ligand complex, not the receptor alone, defines which active receptor conformations predominate. "Functional selectivity" refers to the ability of a ligand to activate only a subset of its receptor's signaling repertoire. There are now numerous examples of ligands that "bias" receptor coupling between different G protein pools and non-G protein effectors such as arrestins. The type 1 parathyroid hormone receptor (PTH(1)R) is a particularly informative example, not only because of the range of biased effects that have been produced, but also because the actions of many of these ligands have been characterized in vivo. Biased PTH(1)R ligands can selectively couple the PTH(1)R to G(s) or G(q/11) pathways, with or without activating arrestin-dependent receptor desensitization and signaling. These reagents have provided insight into the contribution of different signaling pathways to PTH action in vivo and suggest it may be possible to exploit ligand bias to uncouple the anabolic effects of PTH(1)R from its catabolic and calcitropic effects. Whereas conventional agonists and antagonists only modulate the quantity of efficacy, functionally selective ligands qualitatively change GPCR signaling, offering the prospect of drugs with improved therapeutic efficacy or reduced side effects.
Collapse
Affiliation(s)
- Diane Gesty-Palmer
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
1843
|
Phosphodiesterases in the central nervous system: implications in mood and cognitive disorders. Handb Exp Pharmacol 2011:447-85. [PMID: 21695652 DOI: 10.1007/978-3-642-17969-3_19] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes that are involved in the regulation of the intracellular second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) by controlling their rates of hydrolysis. There are 11 different PDE families and each family typically has multiple isoforms and splice variants. The PDEs differ in their structures, distribution, modes of regulation, and sensitivity to inhibitors. Since PDEs have been shown to play distinct roles in processes of emotion and related learning and memory processes, selective PDE inhibitors, by preventing the breakdown of cAMP and/or cGMP, modulate mood and related cognitive activity. This review discusses the current state and future development in the burgeoning field of PDEs in the central nervous system. It is becoming increasingly clear that PDE inhibitors have therapeutic potential for the treatment of neuropsychiatric disorders involving disturbances of mood, emotion, and cognition.
Collapse
|
1844
|
Gao E, Lei YH, Shang X, Huang ZM, Zuo L, Boucher M, Fan Q, Chuprun JK, Ma XL, Koch WJ. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circ Res 2010; 107:1445-53. [PMID: 20966393 PMCID: PMC3005817 DOI: 10.1161/circresaha.110.223925] [Citation(s) in RCA: 572] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 10/12/2010] [Indexed: 02/06/2023]
Abstract
RATIONALE coronary artery ligation to induce myocardial infarction (MI) in mice is typically performed by an invasive and time-consuming approach that requires ventilation and chest opening (classic method), often resulting in extensive tissue damage and high mortality. We developed a novel and rapid surgical method to induce MI that does not require ventilation. OBJECTIVE the purpose of this study was to develop and comprehensively describe this method and directly compare it to the classic method. METHODS AND RESULTS male C57/B6 mice were grouped into 4 groups: new method MI (MI-N) or sham (S-N) and classic method MI (MI-C) or sham (S-C). In the new method, heart was manually exposed without intubation through a small incision and MI was induced. In the classic method, MI was induced through a ventilated thoracotomy. Similar groups were used in an ischemia/reperfusion injury model. This novel MI procedure is rapid, with an average procedure time of 1.22 ± 0.05 minutes, whereas the classic method requires 23.2 ± 0.6 minutes per procedure. Surgical mortality was 3% in MI-N and 15.9% in MI-C. The rate of arrhythmia was significantly lower in MI-N. The postsurgical levels of tumor necrosis factor-α and myeloperoxidase were lower in new method, indicating less inflammation. Overall, 28-day post-MI survival rate was 68% with MI-N and 48% with MI-C. Importantly, there was no difference in infarct size or post-MI cardiac function between the methods. CONCLUSIONS this new rapid method of MI in mice represents a more efficient and less damaging model of myocardial ischemic injury compared with the classic method.
Collapse
Affiliation(s)
- Erhe Gao
- Center for Translational Medicine, George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Thomas Jefferson University, 1025 Walnut St, Room 302, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1845
|
Penela P, Murga C, Ribas C, Lafarga V, Mayor F. The complex G protein-coupled receptor kinase 2 (GRK2) interactome unveils new physiopathological targets. Br J Pharmacol 2010; 160:821-32. [PMID: 20590581 DOI: 10.1111/j.1476-5381.2010.00727.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
GRK2 is a ubiquitous member of the G protein-coupled receptor kinase (GRK) family that appears to play a central, integrative role in signal transduction cascades. GRKs participate together with arrestins in the regulation of G protein-coupled receptors (GPCR), a family of hundreds of membrane proteins of key physiological and pharmacological importance, by triggering receptor desensitization from G proteins and GPCR internalization, and also by helping assemble macromolecular signalosomes in the receptor environment acting as agonist-regulated adaptor scaffolds, thus contributing to signal propagation. In addition, emerging evidence indicates that GRK2 can phosphorylate a growing number of non-GPCR substrates and associate with a variety of proteins related to signal transduction, thus suggesting that this kinase could also have diverse 'effector' functions. We discuss herein the increasing complexity of such GRK2 'interactome', with emphasis on the recently reported roles of this kinase in cell migration and cell cycle progression and on the functional impact of the altered GRK2 levels observed in several relevant cardiovascular, inflammatory or tumour pathologies. Deciphering how the different networks of potential GRK2 functional interactions are orchestrated in a stimulus, cell type or context-specific way is critical to unveil the contribution of GRK2 to basic cellular processes, to understand how alterations in GRK2 levels or functionality may participate in the onset or development of several cardiovascular, tumour or inflammatory diseases, and to assess the feasibility of new therapeutic strategies based on the modulation of the activity, levels or specific interactions of GRK2.
Collapse
Affiliation(s)
- Petronila Penela
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Madrid, Spain
| | | | | | | | | |
Collapse
|
1846
|
Nichols R, Demers LA, Larsen BM, Robinson D, Converso K, Russell MW, Westfall MV. Human RFamide-related peptide-1 diminishes cellular and integrated cardiac contractile performance. Peptides 2010; 31:2067-74. [PMID: 20797420 PMCID: PMC3449299 DOI: 10.1016/j.peptides.2010.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 11/22/2022]
Abstract
Peptides influence cardiac dysfunction; however, peptidergic modulation of contractile performance remains relatively uncharacterized. We identified a novel human peptide that modulates mammalian contractile performance. Members of the FMRFamide-related peptide (FaRP) family contain a C-terminal RFamide but structurally variant N-terminal extension. We report human RFamide-related peptide-1 (hRFRP-1) and rat RFRP-1 rapidly and reversibly decreased shortening and relaxation in isolated mammalian cardiac myocytes in a dose dependent manner. The mammalian FaRP, 26RFa, structurally related to RFRP-1 by only an RFamide did not influence myocyte contractile function. The protein kinase C (PKC) inhibitor bisindolylmaleimide-1 blocked hRFRP-1 activity. Pretreatment with pertussis toxin (PTX) did not diminish hRFRP-1 influence on contractile function. In addition, intravenous injection of hRFRP-1 in mice decreased heart rate, stroke volume, ejection fraction, and cardiac output. Collectively these findings are consistent with the conclusion RFRP-1 is an endogenous signaling molecule that activates PKC and acts through a PTX-insensitive pathway to modulate cardiac contractile function. Taken together these negative chronotropic, inotropic, and lusitropic effects of hRFRP-1 are significant; they suggest direct acute cellular and organ-level responses in mammalian heart. This is the first known study to identify a mammalian FaRP with cardio-depressant effects, opening a new area of research on peptidergic modulation of contractile performance. The high degree of RFRP structure conservation from amphibians to mammals, and similarity to invertebrate cardioinhibitory peptides suggests RFRP-1 is involved in important physiological functions. Elucidation of mechanisms involved in hRFRP-1 synthesis, release, and signaling may aid the development of strategies to prevent or attenuate cardiac dysfunction.
Collapse
Affiliation(s)
- R Nichols
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
1847
|
Sumi Y, Woehrle T, Chen Y, Yao Y, Li A, Junger WG. Adrenergic receptor activation involves ATP release and feedback through purinergic receptors. Am J Physiol Cell Physiol 2010; 299:C1118-26. [PMID: 20668211 PMCID: PMC2980303 DOI: 10.1152/ajpcell.00122.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/26/2010] [Indexed: 01/15/2023]
Abstract
Formyl peptide receptor-induced chemotaxis of neutrophils depends on the release of ATP and autocrine feedback through purinergic receptors. Here, we show that adrenergic receptor signaling requires similar purinergic feedback mechanisms. Real-time RT-PCR analysis revealed that human embryonic kidney (HEK)-293 cells express several subtypes of adrenergic (α(1)-, α(2)-, and β-receptors), adenosine (P1), and nucleotide receptors (P2). Stimulation of G(q)-coupled α(1)-receptors caused release of cellular ATP and MAPK activation, which was blocked by inhibiting P2 receptors with suramin. Stimulation of G(i)-coupled α(2)-receptors induced weak ATP release, while G(s)-coupled β-receptors caused accumulation of extracellular ADP and adenosine. β-Receptors triggered intracellular cAMP signaling, which was blocked by scavenging extracellular adenosine with adenosine deaminase or by inhibiting A2a adenosine receptors with SCH58261. These findings suggest that adrenergic receptors require purinergic receptors to elicit downstream signaling responses in HEK-293 cells. We evaluated the physiological relevance of these findings using mouse aorta tissue rings. Stimulation of α(1)-receptors induced ATP release and tissue contraction, which was reduced by removing extracellular ATP with apyrase or in the absence of P2Y(2) receptors in aorta rings from P2Y(2) receptor knockout mice. We conclude that, like formyl peptide receptors, adrenergic receptors require purinergic feedback mechanisms to control complex physiological processes such as smooth muscle contraction and regulation of vascular tone.
Collapse
Affiliation(s)
- Yuka Sumi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
1848
|
Yanagawa Y, Matsumoto M, Togashi H. Enhanced dendritic cell antigen uptake via alpha2 adrenoceptor-mediated PI3K activation following brief exposure to noradrenaline. THE JOURNAL OF IMMUNOLOGY 2010; 185:5762-8. [PMID: 20935206 DOI: 10.4049/jimmunol.1001899] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although noradrenaline (NA), a stress-associated neurotransmitter, seems to affect the immune system, the precise mechanisms underlying NA-mediated immunoregulation are not fully understood. We examined the effect of NA on Ag uptake (endocytosis) by dendritic cells (DCs) using murine bone marrow-derived DCs and fluorescence-labeled endocytic tracers (dextran and OVA). Ag uptake by DCs notably increased following a very brief treatment (3 min) with NA. NA-induced endocytosis was completely blocked by treatment with α(2)-adrenoceptor antagonist yohimbine. Neither α(1)-adrenoceptor antagonist prazosin nor β-adrenoceptor antagonist propranolol affected NA-induced endocytosis by DCs. A selective α(2)-adrenoceptor agonist, azepexole (B-HT 933), also significantly increased endocytosis by DCs. Thus, the α(2)-adrenoceptor seems to be responsible for NA-induced DC endocytosis. In parallel, NA markedly activated intracellular signaling pathways of PI3K and ERK1/2 in DCs. NA-mediated activation of these pathways was completely inhibited by yohimbine treatment. Blocking PI3K activation significantly reduced NA-induced endocytosis by DCs. Based on these results, NA rapidly enhances Ag capture by DCs via α(2) adrenoceptor-mediated PI3K activation, which may be associated with immune enhancement following acute stress.
Collapse
Affiliation(s)
- Yoshiki Yanagawa
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan.
| | | | | |
Collapse
|
1849
|
Wang Y, Wang S, Wier WG, Zhang Q, Jiang H, Li Q, Chen S, Tian Z, Li Y, Yu X, Zhao M, Liu J, Yang J, Zhang J, Zang W. Exercise improves the dilatation function of mesenteric arteries in postmyocardial infarction rats via a PI3K/Akt/eNOS pathway-mediated mechanism. Am J Physiol Heart Circ Physiol 2010; 299:H2097-106. [PMID: 20935150 DOI: 10.1152/ajpheart.00701.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial infarction (MI) has been shown to induce endothelial dysfunction in peripheral resistance arteries and thus increase peripheral resistance. This study was designed to investigate the underlying mechanisms of post-MI-related dysfunctional dilatation of peripheral resistance arteries and, furthermore, to examine whether exercise may restore dysfunctional dilatation of peripheral resistance arteries. Adult male Sprague-Dawley rats were divided into three groups: sham-operated, MI, and MI + exercise. Ultrastructure and relaxation function of the mesenteric arteries, as well as phosphatidylinositol-3 kinase (PI3K), Akt kinases (Akt), endothelial nitric oxide synthase (eNOS) activity, and phosphorylation of PI3K, Akt, and eNOS by ACh were determined. Post-MI rats exhibited pronounced ultrastructural changes in mesenteric artery endothelial cells and endothelial dysfunction. In addition, the activities of PI3K, Akt, and eNOS, and their phosphorylation by ACh were significantly attenuated in mesenteric arteries (P < 0.05-0.01). After 8 wk of exercise, not only did endothelial cells appeared more normal in structure, but also ameliorated post-MI-associated mesenteric arterial dysfunction, which were accompanied by elevated activities of PI3K, Akt, and eNOS, and their phosphorylation by ACh (P < 0.05-0.01). Importantly, inhibition of either PI3K or eNOS attenuated exercise-induced restoration of the dilatation function and blocked PI3K, Akt, and eNOS phosphorylation by ACh in the mesenteric arteries. These data demonstrate that MI induces dysfunctional dilation of peripheral resistance arteries by degradation of endothelial structural integrity and attenuating PI3K-Akt-eNOS signaling. Exercise may restore dilatation function of peripheral resistance arteries by protecting endothelial structural integrity and increasing PI3K-Akt-eNOS signaling cascades.
Collapse
Affiliation(s)
- Youhua Wang
- Department of Pharmacology, Xi'an Jiaotong University, College of Medicine, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1850
|
Fernández-Morales JC, Yáñez M, Orallo F, Cortés L, González JC, Hernández-Guijo JM, García AG, de Diego AMG. Blockade by nanomolar resveratrol of quantal catecholamine release in chromaffin cells. Mol Pharmacol 2010; 78:734-44. [PMID: 20631052 DOI: 10.1124/mol.110.066423] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cardiovascular protecting effects of resveratrol, an antioxidant polyphenol present in grapes and wine, have been attributed to its vasorelaxing effects and to its anti-inflammatory, antioxidant, and antiplatelet actions. Inhibition of adrenal catecholamine release has also been recently implicated in its cardioprotecting effects. Here, we have studied the effects of nanomolar concentrations of resveratrol on quantal single-vesicle catecholamine release in isolated bovine adrenal chromaffin cells. We have found that 30 to 300 nM concentrations of resveratrol blocked the acetylcholine (ACh) and high K(+)-evoked quantal catecholamine release, amperometrically measured with a carbon fiber microelectrode. At these concentrations, resveratrol did not affect the whole-cell inward currents through nicotinic receptors or voltage-dependent sodium and calcium channels, neither the ACh- or K(+)-elicited transients of cytosolic Ca(2+). Blockade by nanomolar resveratrol of secretion in ionomycin- or digitonin-treated cells suggests an intracellular site of action beyond Ca(2+)-dependent exocytotic steps. The fact that nanomolar resveratrol augmented cGMP is consistent with the view that resveratrol could be blocking the quantal secretion of catecholamine through a nitric oxide-linked mechanism. Because this effect occurs at nanomolar concentrations, our data are relevant in the context of the low circulating levels of resveratrol found in moderate consumers of red wines, which could afford cardioprotection by mitigating the catecholamine surge occurring during stress.
Collapse
|