1851
|
Abstract
For almost two decades, cell-based therapies have been tested in modern regenerative medicine to either replace or regenerate human cells, tissues, or organs and restore normal function. Secreted paracrine factors are increasingly accepted to exert beneficial biological effects that promote tissue regeneration. These factors are called the cell secretome and include a variety of proteins, lipids, microRNAs, and extracellular vesicles, such as exosomes and microparticles. The stem cell secretome has most commonly been investigated in pre-clinical settings. However, a growing body of evidence indicates that other cell types, such as peripheral blood mononuclear cells (PBMCs), are capable of releasing significant amounts of biologically active paracrine factors that exert beneficial regenerative effects. The apoptotic PBMC secretome has been successfully used pre-clinically for the treatment of acute myocardial infarction, chronic heart failure, spinal cord injury, stroke, and wound healing. In this review we describe the benefits of choosing PBMCs instead of stem cells in regenerative medicine and characterize the factors released from apoptotic PBMCs. We also discuss pre-clinical studies with apoptotic cell-based therapies and regulatory issues that have to be considered when conducting clinical trials using cell secretome-based products. This should allow the reader to envision PBMC secretome-based therapies as alternatives to all other forms of cell-based therapies.
Collapse
Affiliation(s)
- Lucian Beer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Vienna, Austria.
- Head FFG Project 852748 "APOSEC", FOLAB Surgery, Medical University of Vienna, Vienna, Austria.
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
1852
|
Katsiougiannis S, Chia D, Kim Y, Singh RP, Wong DTW. Saliva exosomes from pancreatic tumor-bearing mice modulate NK cell phenotype and antitumor cytotoxicity. FASEB J 2016; 31:998-1010. [PMID: 27895106 DOI: 10.1096/fj.201600984r] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022]
Abstract
Tumor exosomes are emerging as antitumor immunity regulators; however, their effects on secondary exosome secretion by distal organs have not been explored. We have previously demonstrated that suppression of exosomes at the distal tumor site of pancreatic ductal adenocarcinoma (PDAC) ablated the development of salivary biomarker profile. Here, we explore the function of salivary exosomes from tumor-bearing mice in immune surveillance. We provide evidence that salivary exosomes from mice with PDAC exhibit a suppressive effect that results in reduced tumor-killing capacity by NK cells. Salivary exosomes from mice with PDAC where pancreatic tumors were engineered to suppress exosome biogenesis failed to suppress NK cell cytotoxic potential against tumor cells, as opposed to salivary exosomes from mice with PDAC with normal tumor exosome biogenesis. These results reveal an important and previously unknown mechanism of antitumor immune regulation and provide new insights into our understanding of the alterations of this biofluid during tumor development.-Katsiougiannis, S., Chia, D., Kim, Y., Singh, R. P., Wong, D. T. W. Saliva exosomes from pancreatic tumor-bearing mice modulate NK cell phenotype and antitumor cytotoxicity.
Collapse
Affiliation(s)
- Stergios Katsiougiannis
- Center for Oral/Head and Neck Oncology Research, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| | - David Chia
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Yong Kim
- Center for Oral/Head and Neck Oncology Research, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA.,Laboratory of Stem Cell and Cancer Epigenetic Research, University of California Los Angeles, Los Angeles, California, USA
| | - Ram P Singh
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; and.,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - David T W Wong
- Center for Oral/Head and Neck Oncology Research, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA; .,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
1853
|
Greening DW, Xu R, Gopal SK, Rai A, Simpson RJ. Proteomic insights into extracellular vesicle biology - defining exosomes and shed microvesicles. Expert Rev Proteomics 2016; 14:69-95. [PMID: 27838931 DOI: 10.1080/14789450.2017.1260450] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are critical mediators of intercellular communication, capable of regulating the transcriptional landscape of target cells through horizontal transmission of biological information, such as proteins, lipids, and RNA species. This capability highlights their potential as novel targets for disease intervention. Areas covered: This review focuses on the emerging importance of discovery proteomics (high-throughput, unbiased quantitative protein identification) and targeted proteomics (hypothesis-driven quantitative protein subset analysis) mass spectrometry (MS)-based strategies in EV biology, especially exosomes and shed microvesicles. Expert commentary: Recent advances in MS hardware, workflows, and informatics provide comprehensive, quantitative protein profiling of EVs and EV-treated target cells. This information is seminal to understanding the role of EV subtypes in cellular crosstalk, especially when integrated with other 'omics disciplines, such as RNA analysis (e.g., mRNA, ncRNA). Moreover, high-throughput MS-based proteomics promises to provide new avenues in identifying novel markers for detection, monitoring, and therapeutic intervention of disease.
Collapse
Affiliation(s)
- David W Greening
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Rong Xu
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Shashi K Gopal
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Alin Rai
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Richard J Simpson
- a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| |
Collapse
|
1854
|
Hyenne V, Labouesse M, Goetz JG. The Small GTPase Ral orchestrates MVB biogenesis and exosome secretion. Small GTPases 2016; 9:445-451. [PMID: 27875100 DOI: 10.1080/21541248.2016.1251378] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles are novel mediators of cell-cell communication. They are present in all species and involved in physiological and pathological processes. One class of extracellular vesicles, the exosomes, originate from an endosomal compartment, the MultiVesicular Body (MVB), and are released from the cell upon fusion of the MVB with the plasma membrane. Although different molecular mechanisms have been associated with MVB biogenesis and exosome secretion, how they coordinate remains poorly documented. We recently found that the small GTPase Ral contributes to exosome release in nematodes and mammalian tumor cells. More specifically, we found that C. elegans RAL-1 is required for the biogenesis of MVBs, and later for MVB fusion with the plasma membrane. Here, we discuss our results in relationship with other factors involved in extracellular vesicle production such as the ESCRT complex and Phospholipase 1D. We propose models to explain Ral function in exosome secretion, its conservation in animals, and its possible role in tumor progression.
Collapse
Affiliation(s)
- Vincent Hyenne
- a Inserm U1109 , MN3T , Strasbourg , France.,b Université de Strasbourg , Strasbourg , France.,c LabEx Medalis , Université de Strasbourg , Strasbourg , France.,d Fédération de Médecine Translationnelle de Strasbourg (FMTS) , Strasbourg , France.,e CNRS SNC5055 , Strasbourg , France
| | - Michel Labouesse
- f Sorbonne Universités , UPMC Univ Paris 06, UMR7622 - CNRS, Institut de Biologie Paris-Seine , Paris , France
| | - Jacky G Goetz
- a Inserm U1109 , MN3T , Strasbourg , France.,b Université de Strasbourg , Strasbourg , France.,c LabEx Medalis , Université de Strasbourg , Strasbourg , France.,d Fédération de Médecine Translationnelle de Strasbourg (FMTS) , Strasbourg , France
| |
Collapse
|
1855
|
Chen Y, Xie Y, Xu L, Zhan S, Xiao Y, Gao Y, Wu B, Ge W. Protein content and functional characteristics of serum-purified exosomes from patients with colorectal cancer revealed by quantitative proteomics. Int J Cancer 2016; 140:900-913. [PMID: 27813080 DOI: 10.1002/ijc.30496] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022]
Abstract
Tumor cells of colorectal cancer (CRC) release exosomes into the circulation. These exosomes can mediate communication between cells and affect various tumor-related processes in their target cells. We present a quantitative proteomics analysis of the exosomes purified from serum of patients with CRC and normal volunteers; data are available via ProteomeXchange with identifier PXD003875. We identified 918 proteins with an overlap of 725 Gene IDs in the Exocarta proteins list. Compared with the serum-purified exosomes (SPEs) of normal volunteers, we found 36 proteins upregulated and 22 proteins downregulated in the SPEs of CRC patients. Bioinformatics analysis revealed that upregulated proteins are involved in processes that modulate the pretumorigenic microenvironment for metastasis. In contrast, differentially expressed proteins (DEPs) that play critical roles in tumor growth and cell survival were principally downregulated. Our study demonstrates that SPEs of CRC patients play a pivotal role in promoting the tumor invasiveness, but have minimal influence on putative alterations in tumor survival or proliferation. According to bioinformatics analysis, we speculate that the protein contents of exosomes might be associated with whether they are involved in premetastatic niche establishment or growth and survival of metastatic tumor cells. This information will be helpful in elucidating the pathophysiological functions of tumor-derived exosomes, and aid in the development of CRC diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yanyu Chen
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Dongcheng District, Beijing, 100005, China
| | - Yong Xie
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Dongcheng District, Beijing, 100005, China
| | - Lai Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China
| | - Shaohua Zhan
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Dongcheng District, Beijing, 100005, China
| | - Yi Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China
| | - Yanpan Gao
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Dongcheng District, Beijing, 100005, China
| | - Bin Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Dongcheng District, Beijing, 100005, China
| |
Collapse
|
1856
|
Exosomes derived from embryonal and alveolar rhabdomyosarcoma carry differential miRNA cargo and promote invasion of recipient fibroblasts. Sci Rep 2016; 6:37088. [PMID: 27853183 PMCID: PMC5112573 DOI: 10.1038/srep37088] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood soft tissue tumor, which exists in oncoprotein PAX-FOXO1 fusion positive and fusion negative subtypes, with the fusion-positive RMS being characterized by a more aggressive clinical behavior. Exosomes are small membranous vesicles secreted into body fluids by multiple cell types, including tumor cells, and have been implicated in metastatic progression through paracrine signaling. We characterized exosomes secreted by a panel of 5 RMS cell lines. Expression array analysis showed that, for both fusion-positive and fusion-negative cells, exosome miRNA clustered well together and to a higher extent than cellular miRNA. While enriched miRNA in exosomes of fusion-negative RMS cells were distinct from those of fusion-positive RMS cells, the most significant predicted disease and functions in both groups were related to processes relevant to cancer and tissue remodelling. Functionally, we found that RMS-derived exosomes exerted a positive effect on cellular proliferation of recipient RMS cells and fibroblasts, induced cellular migration and invasion of fibroblasts, and promoted angiogenesis. These findings show that RMS-derived exosomes enhance invasive properties of recipient cells, and that exosome content of fusion-positive RMS is different than that of fusion-negative RMS, possibly contributing to the different metastatic propensity of the two subtypes.
Collapse
|
1857
|
Howitt J, Hill AF. Exosomes in the Pathology of Neurodegenerative Diseases. J Biol Chem 2016; 291:26589-26597. [PMID: 27852825 DOI: 10.1074/jbc.r116.757955] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
More than 30 years ago, two unexpected findings were discovered that challenged conventional thinking in biology. The first was the identification of a misfolded protein with transmissible properties associated with a group of neurodegenerative diseases known as transmissible spongiform encephalopathies. The second was the discovery of a new pathway used for the extracellular release of biomolecules, including extracellular vesicles called exosomes. Two decades later, the convergence of these pathways was shown when exosomes were found to play a significant role in both the transmission and propagation of protein aggregates in disease. Recent research has now revealed that the majority of proteins involved in neurodegenerative diseases are transported in exosomes, and that external stresses due to age-related impairment of protein quality control mechanisms can promote the transcellular flux of these proteins in exosomes. Significantly, exosomes provide an environment that can induce the conformational conversion of native proteins into aggregates that can be transmitted to otherwise aggregate-free cells in the brain. Here we review the current roles of exosomes in the pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jason Howitt
- From the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010 and
| | - Andrew F Hill
- the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
1858
|
Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 2016; 106:148-156. [PMID: 26928656 DOI: 10.1016/j.addr.2016.02.006] [Citation(s) in RCA: 841] [Impact Index Per Article: 93.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/11/2016] [Accepted: 02/17/2016] [Indexed: 01/05/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained considerable scientific interest. EVs may have multiple advantages over currently available drug delivery vehicles, such as their ability to overcome natural barriers, their intrinsic cell targeting properties, and stability in the circulation. However, therapeutic applications of EVs as drug delivery systems have been limited due to a lack of methods for scalable EV isolation and efficient drug loading. Furthermore, in order to achieve targeted drug delivery, their intrinsic cell targeting properties should be tuned through EV engineering. Here, we review and discuss recent progress and remaining challenges in the development of EVs as drug delivery vehicles.
Collapse
Affiliation(s)
- Pieter Vader
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Emma A Mol
- Department of Experimental Cardiology, University Medical Center Utrecht, the Netherlands, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Experimental Cardiology, University Medical Center Utrecht, the Netherlands, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
1859
|
Paidi SK, Rizwan A, Zheng C, Cheng M, Glunde K, Barman I. Label-Free Raman Spectroscopy Detects Stromal Adaptations in Premetastatic Lungs Primed by Breast Cancer. Cancer Res 2016; 77:247-256. [PMID: 28069800 DOI: 10.1158/0008-5472.can-16-1862] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/13/2016] [Accepted: 10/30/2016] [Indexed: 12/22/2022]
Abstract
Recent advances in animal modeling, imaging technology, and functional genomics have permitted precise molecular observations of the metastatic process. However, a comprehensive understanding of the premetastatic niche remains elusive, owing to the limited tools that can map subtle differences in molecular mediators in organ-specific microenvironments. Here, we report the ability to detect premetastatic changes in the lung microenvironment, in response to primary breast tumors, using a combination of metastatic mouse models, Raman spectroscopy, and multivariate analysis of consistent patterns in molecular expression. We used tdTomato fluorescent protein expressing MDA-MB-231 and MCF-7 cells of high and low metastatic potential, respectively, to grow orthotopic xenografts in athymic nude mice and allow spontaneous dissemination from the primary mammary fat pad tumor. Label-free Raman spectroscopic mapping was used to record the molecular content of premetastatic lungs. These measurements show reliable distinctions in vibrational features, characteristic of the collageneous stroma and its cross-linkers as well as proteoglycans, which uniquely identify the metastatic potential of the primary tumor by recapitulating the compositional changes in the lungs. Consistent with histological assessment and gene expression analysis, our study suggests that remodeling of the extracellular matrix components may present promising markers for objective recognition of the premetastatic niche, independent of conventional clinical information. Cancer Res; 77(2); 247-56. ©2016 AACR.
Collapse
Affiliation(s)
- Santosh Kumar Paidi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Asif Rizwan
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chao Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Menglin Cheng
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
1860
|
Liu Y, Cao X. Characteristics and Significance of the Pre-metastatic Niche. Cancer Cell 2016; 30:668-681. [PMID: 27846389 DOI: 10.1016/j.ccell.2016.09.011] [Citation(s) in RCA: 762] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/22/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022]
Abstract
Primary tumors create a favorable microenvironment, namely, pre-metastatic niche, in secondary organs and tissue sites for subsequent metastases. The pre-metastatic niche can be primed and established through a complex interplay among primary tumor-derived factors, tumor-mobilized bone marrow-derived cells, and local stromal components. We review here our current understanding of the key components and underlying mechanisms for pre-metastatic niche formation. We propose six characteristics that define the pre-metastatic niche, which enable tumor cell colonization and promote metastasis, including immunosuppression, inflammation, angiogenesis/vascular permeability, lymphangiogenesis, organotropism, and reprogramming. We highlight the significance of the pre-metastatic niche, and discuss potential implications and future research directions.
Collapse
Affiliation(s)
- Yang Liu
- National Key Laboratory of Medical Molecular Biology, Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xuetao Cao
- National Key Laboratory of Medical Molecular Biology, Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
1861
|
Nazimek K, Bryniarski K, Askenase PW. Functions of Exosomes and Microbial Extracellular Vesicles in Allergy and Contact and Delayed-Type Hypersensitivity. Int Arch Allergy Immunol 2016; 171:1-26. [PMID: 27820941 PMCID: PMC5131095 DOI: 10.1159/000449249] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles, such as exosomes, are newly recognized intercellular conveyors of functional molecular mechanisms. Notably, they transfer RNAs and proteins between different cells that can then participate in the complex pathogenesis of allergic and related hypersensitivity responses and disease mechanisms, as described herein. This review highlights this important new appreciation of the in vivo participation of such extracellular vesicles in the interactions between allergy-mediating cells. We take into account paracrine epigenetic exchanges mediated by surrounding stromal cells and the endocrine receipt of exosomes from distant cells via the circulation. Exosomes are natural ancient nanoparticles of life. They are made by all cells and in some form by all species down to fungi and bacteria, and are present in all fluids. Besides a new focus on their role in the transmission of genetic regulation, exosome transfer of allergens was recently shown to induce allergic inflammation. Importantly, regulatory and tolerogenic exosomes can potently inhibit allergy and hypersensitivity responses, usually acting nonspecifically, but can also proceed in an antigen-specific manner due to the coating of the exosome surface with antibodies. Deep analysis of processes mediated by exosomes should result in the development of early diagnostic biomarkers, as well as allergen-specific, preventive and therapeutic strategies. These will likely significantly diminish the risks of current allergen-specific parenteral desensitization procedures, and of the use of systemic immunosuppressive drugs. Since extracellular vesicles are physiological, they can be fashioned for the specific delivery of therapeutic molecular instructions through easily tolerated, noninvasive routes, such as oral ingestion, nasal administration, and perhaps even inhalation.
Collapse
Affiliation(s)
- Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Philip W. Askenase
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
1862
|
Grünwald B, Harant V, Schaten S, Frühschütz M, Spallek R, Höchst B, Stutzer K, Berchtold S, Erkan M, Prokopchuk O, Martignoni M, Esposito I, Heikenwalder M, Gupta A, Siveke J, Saftig P, Knolle P, Wohlleber D, Krüger A. Pancreatic Premalignant Lesions Secrete Tissue Inhibitor of Metalloproteinases-1, Which Activates Hepatic Stellate Cells Via CD63 Signaling to Create a Premetastatic Niche in the Liver. Gastroenterology 2016; 151:1011-1024.e7. [PMID: 27506299 DOI: 10.1053/j.gastro.2016.07.043] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/04/2016] [Accepted: 07/25/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) metastasizes to liver at early stages, making this disease highly lethal. Tissue inhibitor of metalloproteinases-1 (TIMP1) creates a metastasis-susceptible environment in the liver. We investigated the role of TIMP1 and its receptor CD63 in metastasis of early-stage pancreatic tumors using mice and human cell lines and tissue samples. METHODS We obtained liver and plasma samples from patients in Germany with chronic pancreatitis, pancreatic intra-epithelial neoplasia, or PDAC, as well as hepatic stellate cells (HSCs). We performed studies with Ptf1a+/Cre;Kras+/LSL-G12D;Trp53loxP/loxP (CPK) mice, Pdx-1+/Cre;Kras+/LSL-G12D;Trp53+/LSL-R172H (KPC) mice, and their respective healthy littermates as control, and Cd63-/- mice with their wild-type littermates. KPC mice were bred with Timp1-/- mice to produce KPCxTimp1-/- mice. TIMP1 was overexpressed and CD63 was knocked down in mice using adenoviral vectors AdTIMP1 or AdshCD63, respectively. Hepatic susceptibility to metastases was determined after intravenous inoculation of syngeneic 9801L pancreas carcinoma cells. Pancreata and liver tissues were collected and analyzed by histology, immunohistochemical, immunoblot, enzyme-linked immunosorbent assay, and quantitative polymerase chain reaction analyses. We analyzed the effects of TIMP1 overexpression or knockdown and CD63 knockdown in transduced human primary HSCs and HSC cell lines. RESULTS Chronic pancreatitis, pancreatic intra-epithelial neoplasia, and PDAC tissues from patients expressed higher levels of TIMP1 protein than normal pancreas. The premalignant pancreatic lesions that developed in KPC and CPK mice expressed TIMP1 and secreted it into the circulation. In vitro and in vivo, TIMP1 activated human or mouse HSCs, which required interaction between TIMP1 and CD63 and signaling via phosphatidylinositol 3-kinase, but not TIMP1 protease inhibitor activity. This signaling pathway induced expression of endogenous TIMP1. TIMP1 knockdown in HSCs reduced their activation. Cultured TIMP1-activated human and mouse HSCs began to express stromal-derived factor-1, which induced neutrophil migration, a marker of the premetastatic niche. Mice with pancreatic intra-epithelial neoplasia-derived systemic increases in TIMP1 developed more liver metastases after injections of pancreatic cancer cells than mice without increased levels of TIMP1. This increase in formation of liver metastases from injected pancreatic cancer cells was not observed in TIMP1 or CD63 knockout mice. CONCLUSIONS Expression of TIMP1 is increased in chronic pancreatitis, pancreatic intra-epithelial neoplasia, and PDAC tissues from patients. TIMP1 signaling via CD63 leads to activation of HSCs, which create an environment in the liver that increases its susceptibility to pancreatic tumor cells. Strategies to block TIMP1 signaling via CD63 might be developed to prevent PDAC metastasis to the liver.
Collapse
Affiliation(s)
- Barbara Grünwald
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Veronika Harant
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Susanne Schaten
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Monika Frühschütz
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Ria Spallek
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Bastian Höchst
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Katharina Stutzer
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Sonja Berchtold
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Mert Erkan
- Chirurgische Klinik Technische Universität München, München, Germany
| | - Olga Prokopchuk
- Chirurgische Klinik Technische Universität München, München, Germany
| | - Marc Martignoni
- Chirurgische Klinik Technische Universität München, München, Germany
| | - Irene Esposito
- Institut für Pathologie, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | | | - Aayush Gupta
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Jens Siveke
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Percy Knolle
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Dirk Wohlleber
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Achim Krüger
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany.
| |
Collapse
|
1863
|
Bloom J, Sun S, Al-Abed Y. MIF, a controversial cytokine: a review of structural features, challenges, and opportunities for drug development. Expert Opin Ther Targets 2016; 20:1463-1475. [PMID: 27762152 DOI: 10.1080/14728222.2016.1251582] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Macrophage migration inhibitory factor (MIF) has emerged as a promising drug target in diseases including sepsis, rheumatoid arthritis, and cancer. MIF has multiple properties that favor development of specific, targeted therapies: it is expressed broadly among human cells, has noted roles in diverse inflammatory and oncological processes, and has intrinsic enzymatic activity amenable to high-throughput screening. Despite these advantages, anti-MIF therapy remains well behind other cytokine-targeted therapeutics, with no small molecules in the pipeline for clinical development and anti-MIF antibodies only recently beginning clinical trials. Areas covered: In this review we summarize current literature regarding MIF structure and function-including challenges and controversies that have arisen in studies of anti-MIF therapeutics-and propose a strategy for development of clinically relevant anti-MIF drugs. Expert opinion: We believe that the field of anti-MIF therapeutics would benefit from capitalizing on the protein's multiple assets while acknowledging their flaws. The tautomerase enzymatic site of MIF may not be active biologically, but can nonetheless offer a high-throughput method to highlight molecules of interest that can affect its other, frequently intertwined bioactivities. Future work should also focus on developing more robust assays for MIF bioactivity that can be used for second-pass screening and specificity studies.
Collapse
Affiliation(s)
- Joshua Bloom
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| | - Shan Sun
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| | - Yousef Al-Abed
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| |
Collapse
|
1864
|
Goddard ET, Hill RC, Barrett A, Betts C, Guo Q, Maller O, Borges VF, Hansen KC, Schedin P. Quantitative extracellular matrix proteomics to study mammary and liver tissue microenvironments. Int J Biochem Cell Biol 2016; 81:223-232. [PMID: 27771439 DOI: 10.1016/j.biocel.2016.10.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 01/22/2023]
Abstract
Normal epithelium exists within a dynamic extracellular matrix (ECM) that is tuned to regulate tissue specific epithelial cell function. As such, ECM contributes to tissue homeostasis, differentiation, and disease, including cancer. Though it is now recognized that the functional unit of normal and transformed epithelium is the epithelial cell and its adjacent ECM, we lack a basic understanding of tissue-specific ECM composition and abundance, as well as how physiologic changes in ECM impact cancer risk and outcomes. While traditional proteomic techniques have advanced to robustly identify ECM proteins within tissues, methods to determine absolute abundance have lagged. Here, with a focus on tissues relevant to breast cancer, we utilize mass spectrometry methods optimized for absolute quantitative ECM analysis. Employing an extensive protein extraction and digestion method, combined with stable isotope labeled Quantitative conCATamer (QconCAT) peptides that serve as internal standards for absolute quantification of protein, we quantify 98 ECM, ECM-associated, and cellular proteins in a single analytical run. In rodent models, we applied this approach to the primary site of breast cancer, the normal mammary gland, as well as a common and particularly deadly site of breast cancer metastasis, the liver. We find that mammary gland and liver have distinct ECM abundance and relative composition. Further, we show mammary gland ECM abundance and relative compositions differ across the reproductive cycle, with the most dramatic changes occurring during the pro-tumorigenic window of weaning-induced involution. Combined, this work suggests ECM candidates for investigation of breast cancer progression and metastasis, particularly in postpartum breast cancers that are characterized by high metastatic rates. Finally, we suggest that with use of absolute quantitative ECM proteomics to characterize tissues of interest, it will be possible to reconstruct more relevant in vitro models to investigate tumor-ECM dynamics at higher resolution.
Collapse
Affiliation(s)
- Erica T Goddard
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander Barrett
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Courtney Betts
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Qiuchen Guo
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Ori Maller
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA, USA
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; University of Colorado Cancer Center, Aurora, CO, USA; Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Pepper Schedin
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
1865
|
Doldán X, Fagúndez P, Cayota A, Laíz J, Tosar JP. Electrochemical Sandwich Immunosensor for Determination of Exosomes Based on Surface Marker-Mediated Signal Amplification. Anal Chem 2016; 88:10466-10473. [DOI: 10.1021/acs.analchem.6b02421] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ximena Doldán
- Analytical
Biochemistry Unit, Nuclear Research Center, Faculty of Sciences, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay
| | - Pablo Fagúndez
- Analytical
Biochemistry Unit, Nuclear Research Center, Faculty of Sciences, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay
| | - Alfonso Cayota
- Functional
Genomics Laboratory, Institut Pasteur de Montevideo. Mataojo 2020, Montevideo 11400, Uruguay
- Department
of Medicine, Faculty of Medicine, Universidad de la República, Av. Italia S/N, Montevideo 11600, Uruguay
| | - Justo Laíz
- Analytical
Biochemistry Unit, Nuclear Research Center, Faculty of Sciences, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay
| | - Juan Pablo Tosar
- Analytical
Biochemistry Unit, Nuclear Research Center, Faculty of Sciences, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay
- Functional
Genomics Laboratory, Institut Pasteur de Montevideo. Mataojo 2020, Montevideo 11400, Uruguay
| |
Collapse
|
1866
|
Wen SW, Sceneay J, Lima LG, Wong CSF, Becker M, Krumeich S, Lobb RJ, Castillo V, Wong KN, Ellis S, Parker BS, Möller A. The Biodistribution and Immune Suppressive Effects of Breast Cancer-Derived Exosomes. Cancer Res 2016; 76:6816-6827. [PMID: 27760789 DOI: 10.1158/0008-5472.can-16-0868] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 11/16/2022]
Abstract
Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the tumor microenvironment. Here, we use optical imaging to determine that exogenously administered fluorescently labeled exosomes derived from highly metastatic murine breast cancer cells distributed predominantly to the lung of syngeneic mice, a frequent site of breast cancer metastasis. At the sites of accumulation, exosomes were taken up by CD45+ bone marrow-derived cells. Subsequent long-term conditioning of naïve mice with exosomes from highly metastatic breast cancer cells revealed the accumulation of myeloid-derived suppressor cells in the lung and liver. This favorable immune suppressive microenvironment was capable of promoting metastatic colonization in the lung and liver, an effect not observed from exosomes derived from nonmetastatic cells and liposome control vesicles. Furthermore, we determined that breast cancer exosomes directly suppressed T-cell proliferation and inhibited NK cell cytotoxicity, and hence likely suppressed the anticancer immune response in premetastatic organs. Together, our findings provide novel insight into the tissue-specific outcomes of breast cancer-derived exosome accumulation and their contribution to immune suppression and promotion of metastases. Cancer Res; 76(23); 6816-27. ©2016 AACR.
Collapse
Affiliation(s)
- Shu Wen Wen
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jaclyn Sceneay
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Luize Goncalves Lima
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Christina S F Wong
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Melanie Becker
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sophie Krumeich
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Richard J Lobb
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Vanessa Castillo
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ke Ni Wong
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sarah Ellis
- Peter MacCallum Cancer Centre, East Melbourne, and Sir Peter MacCallum Department of Histology, University of Melbourne, Parkville, Australia
| | - Belinda S Parker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Andreas Möller
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
1867
|
Brodt P. Role of the Microenvironment in Liver Metastasis: From Pre- to Prometastatic Niches. Clin Cancer Res 2016; 22:5971-5982. [PMID: 27797969 DOI: 10.1158/1078-0432.ccr-16-0460] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 01/14/2023]
Abstract
Liver metastases remain a major barrier to successful management of malignant disease, particularly for cancers of the gastrointestinal tract but also for other malignancies, such as breast carcinoma and melanoma. The ability of metastatic cells to survive and proliferate in the liver is determined by the outcome of complex, reciprocal interactions between tumor cells and different local resident subpopulations, including the sinusoidal endothelium, stellate, Kupffer, and inflammatory cells that are mediated through cell-cell and cell-extracellular matrix adhesion and the release of soluble factors. Cross-communication between different hepatic resident cells in response to local tissue damage and inflammation and the recruitment of bone marrow cells further enhance this intercellular communication network. Both resident and recruited cells can play opposing roles in the progression of metastasis, and the balance of these divergent effects determines whether the tumor cells will die, proliferate, and colonize the new site or enter a state of dormancy. Moreover, this delicate balance can be tilted in favor of metastasis, if factors produced by the primary tumor precondition the microenvironment to form niches of activated resident cells that promote tumor expansion. This review aims to summarize current knowledge on these diverse interactions and the impact they can have on the clinical management of hepatic metastases. Clin Cancer Res; 22(24); 5971-82. ©2016 AACR.
Collapse
Affiliation(s)
- Pnina Brodt
- Departments of Surgery, Medicine, and Oncology, McGill University and the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
1868
|
Zhang Y, Liu F, Yuan Y, Jin C, Chang C, Zhu Y, Zhang X, Tian C, He F, Wang J. Inflammasome-Derived Exosomes Activate NF-κB Signaling in Macrophages. J Proteome Res 2016; 16:170-178. [PMID: 27684284 DOI: 10.1021/acs.jproteome.6b00599] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exosomes are secreted small vesicles that mediate various biological processes, such as tumorigenesis and immune response. However, whether the inflammasome signaling leads to the change of constituent of exosomes and its roles in immune response remains to be determined. We isolated the exosomes from macrophages with treatment of mock, endotoxin, or endotoxin/nigericin. A label-free quantification method by MS/MS was used to identify the components of exosomes. In total, 2331 proteins were identified and 513 proteins were exclusively detected in exosomes with endotoxin and nigericin treatment. The differentially expressed proteins were classified by Gene Ontology and KEGG pathways. The immune response-related proteins and signaling pathways were specifically enriched in inflammasome-derived exosomes. Moreover, we treated macrophages with the exosomes from different stimulation. We found that inflammasome-derived exosomes directly activate NF-κB signaling pathway, while the control or endotoxin-derived exosomes have no effect. The inflammatory signaling was amplified in neighbor cells in an exosome-dependent way. The inflammasome-derived exosomes might be used to augment the immune response in disease treatment, and preventing the transfer of these exosomes might ameliorate autoimmune diseases.
Collapse
Affiliation(s)
- Yuehui Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China.,National Center for Protein Sciences Beijing , Beijing 102206, China
| | - Fangbing Liu
- Anhui Medical University , Hefei, Anhui 230032, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China.,National Center for Protein Sciences Beijing , Beijing 102206, China
| | - Yanzhi Yuan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China.,National Center for Protein Sciences Beijing , Beijing 102206, China
| | - Chaozhi Jin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China.,National Center for Protein Sciences Beijing , Beijing 102206, China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China.,National Center for Protein Sciences Beijing , Beijing 102206, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China.,National Center for Protein Sciences Beijing , Beijing 102206, China
| | - Xiuyuan Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China.,National Center for Protein Sciences Beijing , Beijing 102206, China
| | - Chunyan Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China.,National Center for Protein Sciences Beijing , Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China.,National Center for Protein Sciences Beijing , Beijing 102206, China
| | - Jian Wang
- Anhui Medical University , Hefei, Anhui 230032, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China.,National Center for Protein Sciences Beijing , Beijing 102206, China
| |
Collapse
|
1869
|
Goloviznina NA, Verghese SC, Yoon YM, Taratula O, Marks DL, Kurre P. Mesenchymal Stromal Cell-derived Extracellular Vesicles Promote Myeloid-biased Multipotent Hematopoietic Progenitor Expansion via Toll-Like Receptor Engagement. J Biol Chem 2016; 291:24607-24617. [PMID: 27758863 DOI: 10.1074/jbc.m116.745653] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/06/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) present in the bone marrow microenvironment secrete cytokines and angiogenic factors that support the maintenance and regenerative expansion of hematopoietic stem and progenitor cells (HSPCs). Here, we tested the hypothesis that extracellular vesicles (EVs) released by MSCs contribute to the paracrine crosstalk that shapes hematopoietic function. We systematically characterized EV release by murine stromal cells and demonstrate that MSC-derived EVs prompt a loss of HSPC quiescence with concomitant expansion of murine myeloid progenitors. Our studies reveal that HSPC expansion by MSC EVs is mediated via the MyD88 adapter protein and is partially blocked by treatment with a TLR4 inhibitor. Imaging of fluorescence protein-tagged MSC EVs corroborated their cellular co-localization with TLR4 and endosomal Rab5 compartments in HSPCs. The dissection of downstream responses to TLR4 activation reveals that the mechanism by which MSC EVs impact HSPCs involves canonical NF-κB signaling and downstream activation of Hif-1α and CCL2 target genes. Our aggregate data identify a previously unknown role for MSC-derived EVs in the regulation of hematopoiesis through innate immune mechanisms and illustrate the expansive cell-cell crosstalk in the bone marrow microenvironment.
Collapse
Affiliation(s)
| | | | - Young Me Yoon
- From the Department of Pediatrics,; Papé Family Pediatric Research Institute, and
| | - Oleh Taratula
- the Oregon State University, College of Pharmacy, Corvallis, Oregon 97331
| | - Daniel L Marks
- From the Department of Pediatrics,; Papé Family Pediatric Research Institute, and
| | - Peter Kurre
- From the Department of Pediatrics,; Papé Family Pediatric Research Institute, and; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, Oregon 97239 and.
| |
Collapse
|
1870
|
Leca J, Martinez S, Lac S, Nigri J, Secq V, Rubis M, Bressy C, Sergé A, Lavaut MN, Dusetti N, Loncle C, Roques J, Pietrasz D, Bousquet C, Garcia S, Granjeaud S, Ouaissi M, Bachet JB, Brun C, Iovanna JL, Zimmermann P, Vasseur S, Tomasini R. Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness. J Clin Invest 2016; 126:4140-4156. [PMID: 27701147 DOI: 10.1172/jci87734] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022] Open
Abstract
The intratumoral microenvironment, or stroma, is of major importance in the pathobiology of pancreatic ductal adenocarcinoma (PDA), and specific conditions in the stroma may promote increased cancer aggressiveness. We hypothesized that this heterogeneous and evolving compartment drastically influences tumor cell abilities, which in turn influences PDA aggressiveness through crosstalk that is mediated by extracellular vesicles (EVs). Here, we have analyzed the PDA proteomic stromal signature and identified a contribution of the annexin A6/LDL receptor-related protein 1/thrombospondin 1 (ANXA6/LRP1/TSP1) complex in tumor cell crosstalk. Formation of the ANXA6/LRP1/TSP1 complex was restricted to cancer-associated fibroblasts (CAFs) and required physiopathologic culture conditions that improved tumor cell survival and migration. Increased PDA aggressiveness was dependent on tumor cell-mediated uptake of CAF-derived ANXA6+ EVs carrying the ANXA6/LRP1/TSP1 complex. Depletion of ANXA6 in CAFs impaired complex formation and subsequently impaired PDA and metastasis occurrence, while injection of CAF-derived ANXA6+ EVs enhanced tumorigenesis. We found that the presence of ANXA6+ EVs in serum was restricted to PDA patients and represents a potential biomarker for PDA grade. These findings suggest that CAF-tumor cell crosstalk supported by ANXA6+ EVs is predictive of PDA aggressiveness, highlighting a therapeutic target and potential biomarker for PDA.
Collapse
|
1871
|
Schwarz KA, Leonard JN. Engineering cell-based therapies to interface robustly with host physiology. Adv Drug Deliv Rev 2016; 105:55-65. [PMID: 27266446 DOI: 10.1016/j.addr.2016.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/10/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Engineered cell-based therapies comprise a rapidly growing clinical technology for treating disease by leveraging the natural capabilities of cells, including migration, information transduction, and biosynthesis and secretion. There now exists a substantial portfolio of intracellular and extracellular sensors that enable bioengineers to program cells to execute defined responses to specific changes in state or environmental cues. As our capability to construct more sophisticated cellular programs increases, assessing and improving the degree to which cell-based therapies perform as desired in vivo will become an increasingly important consideration and opportunity for technological advancement. In this review, we seek to describe both current capabilities and potential needs for building cell-based therapies that interface with host physiology in a manner that is robust - a phrase we use in this context to describe the achievement of therapeutic efficacy across a range of patients and implementations. We first review the portfolio of sensors and outputs currently available for use in cell-based therapies by highlighting key advancements and current gaps. Then, we propose a conceptual framework for evaluating and pursuing robust clinical performance of engineered cell-based therapies.
Collapse
|
1872
|
S Franco S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, Dinnyés A. In vitro models of cancer stem cells and clinical applications. BMC Cancer 2016; 16:738. [PMID: 27766946 PMCID: PMC5073996 DOI: 10.1186/s12885-016-2774-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer cells, stem cells and cancer stem cells have for a long time played a significant role in the biomedical sciences. Though cancer therapy is more effective than it was a few years ago, the truth is that still none of the current non-surgical treatments can cure cancer effectively. The reason could be due to the subpopulation called “cancer stem cells” (CSCs), being defined as those cells within a tumour that have properties of stem cells: self-renewal and the ability for differentiation into multiple cell types that occur in tumours. The phenomenon of CSCs is based on their resistance to many of the current cancer therapies, which results in tumour relapse. Although further investigation regarding CSCs is still needed, there is already evidence that these cells may play an important role in the prognosis of cancer, progression and therapeutic strategy. Therefore, long-term patient survival may depend on the elimination of CSCs. Consequently, isolation of pure CSC populations or reprogramming of cancer cells into CSCs, from cancer cell lines or primary tumours, would be a useful tool to gain an in-depth knowledge about heterogeneity and plasticity of CSC phenotypes and therefore carcinogenesis. Herein, we will discuss current CSC models, methods used to characterize CSCs, candidate markers, characteristic signalling pathways and clinical applications of CSCs. Some examples of CSC-specific treatments that are currently in early clinical phases will also be presented in this review.
Collapse
Affiliation(s)
- Sara S Franco
- Szent István University, Gödöllö, Hungary.,Biotalentum Ltd., Gödöllö, Hungary
| | | | - Maria S Iliou
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ali Mobasheri
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - András Dinnyés
- Szent István University, Gödöllö, Hungary. .,Biotalentum Ltd., Gödöllö, Hungary. .,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
1873
|
Xu W, Yang Z, Lu N. From pathogenesis to clinical application: insights into exosomes as transfer vectors in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:156. [PMID: 27686593 PMCID: PMC5043625 DOI: 10.1186/s13046-016-0429-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022]
Abstract
Exosomes are nanoscale extracellular membrane vesicles that are created by the fusion of an intracellular multivesicular body with the cell membrane. They are widely distributed in serum, urine, saliva and other biological fluids. As important transfer vectors for intercellular communication and genetic material, exosomes can stimulate target cells directly via receptor-mediated interactions or via the transfer of various bioactive molecules, such as cell membrane receptors, proteins, mRNAs and microRNAs, thus exerting their biological functions. This review focuses on the biological characteristics of exosomes, as well as their role and underlying mechanisms of action in the evolution of tumor formation, metastasis, drug resistance and other malignant behaviors. Additionally, this review emphasizes the potential applications of exosomes in the treatment of tumors. Further research may provide new ideas and methods to establish effective, exosome-based strategies for the early diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 YongWaizheng Street, Nanchang, Jiangxi, 330006, China
| | - Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 YongWaizheng Street, Nanchang, Jiangxi, 330006, China.
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 YongWaizheng Street, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
1874
|
Jin Y, Chen K, Wang Z, Wang Y, Liu J, Lin L, Shao Y, Gao L, Yin H, Cui C, Tan Z, Liu L, Zhao C, Zhang G, Jia R, Du L, Chen Y, Liu R, Xu J, Hu X, Wang Y. DNA in serum extracellular vesicles is stable under different storage conditions. BMC Cancer 2016; 16:753. [PMID: 27662833 PMCID: PMC5035490 DOI: 10.1186/s12885-016-2783-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022] Open
Abstract
Background Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, can be secreted by most cell types and released in perhaps all biological fluids. EVs contain multiple proteins, specific lipids and several kinds of nucleic acids such as RNAs and DNAs. Studies have found that EVs contain double-stranded DNA and that genetic information has a certain degree of consistency with tumor DNA. Therefore, if genes that exist in exosomes are stable, we may be able to use EVs genetic testing as a new means to monitor gene mutation. Methods In this study, EVs were extracted from serum under various storage conditions (4 °C, room temperature and repeated freeze-thaw). We used western blotting to examine the stability of serum EVs. Then, we extracted DNA from EVs and tested the concentration changing under different conditions. We further assessed the stability of EVs DNA s using polymerase chain reaction (PCR) and Sanger sequencing. Results EVs is stable under the conditions of 4 °C (for 24 h, 72 h, 168 h), room temperature (for 6 h, 12 h, 24 h, 48 h) and repeated freeze-thaw (after one time, three times, five times). Also, serum DNA is mainly present in EVs, especially in exosomes, and that the content and function of DNA in EVs is stable whether in a changing environment or not. We showed that EVs DNA stayed stable for 1 week at 4 °C, 1 day at room temperature and after repeated freeze-thaw cycles (less than three times). However, DNA from serum EVs after 2 days at room temperature or after five repeated freeze-thaw cycles could be used for PCR and sequencing. Conclusions Serum EVs and EVs DNA can remain stable under different environments, which is the premise that EVs could serve as a novel means for genetic tumor detection and potential biomarkers for cancer diagnostics and prognostics.
Collapse
Affiliation(s)
- Yang Jin
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China.,Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Keyan Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - Zongying Wang
- Department of Ultrasonics, People's Hospital, Donggang District, Rizhao, Shandong Province, China
| | - Yan Wang
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Jianzhi Liu
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Li Lin
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Yong Shao
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - Lihua Gao
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - Huihui Yin
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - Cong Cui
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China.,Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Zhaoli Tan
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China.,Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Liejun Liu
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Chuanhua Zhao
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Gairong Zhang
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Ru Jia
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Lijuan Du
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Yuling Chen
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Rongrui Liu
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Jianming Xu
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China.
| | - Xianwen Hu
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China.
| | - Youliang Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China.
| |
Collapse
|
1875
|
Nguyen HPT, Simpson RJ, Salamonsen LA, Greening DW. Extracellular Vesicles in the Intrauterine Environment: Challenges and Potential Functions. Biol Reprod 2016; 95:109. [PMID: 27655784 PMCID: PMC5333933 DOI: 10.1095/biolreprod.116.143503] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/08/2016] [Accepted: 09/13/2016] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes (30–150 nm) and microvesicles (100–1500 nm), play important roles in mediating cell-cell communication. Such particles package distinct cargo elements, including lipids, proteins, mRNAs, microRNAs, and DNA, that vary depending on the cell of origin and its phenotype. This cargo can be horizontally transferred to target cells where its components can reprogram the recipient cell to modify its function. EVs have been identified within the uterine cavity of women, sheep, and mice, where they contribute to the microenvironment of sperm transport, and of blastocyst and endometrial preparation for implantation. It is likely that exosomes and microvesicles carry different cargo and coordinate different roles in this intrauterine environment. Understanding and defining these subtypes of EVs is important for future functional studies and clinical translation. Here we critically review the various purification and validation procedures for extracellular vesicle analysis and discuss what is known of endometrial-derived exosome cargo and of their hormonal regulation. The current knowledge of the functions of uterine exosomes, with respect to sperm transport and function, and of their actions on trophectodermal cells to promote implantation are summarized and evaluated in their physiological context. Given the potential importance of this form of cell-cell interactions within the reproductive tract, the critical issues discussed will guide new insights in this rapidly expanding field.
Collapse
Affiliation(s)
- Hong P T Nguyen
- Hudson Institute of Medical Research (previously Prince Henry's Institute), Clayton, Victoria, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research (previously Prince Henry's Institute), Clayton, Victoria, Australia
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
1876
|
Li J, Chen X, Yi J, Liu Y, Li D, Wang J, Hou D, Jiang X, Zhang J, Wang J, Zen K, Yang F, Zhang CY, Zhang Y. Identification and Characterization of 293T Cell-Derived Exosomes by Profiling the Protein, mRNA and MicroRNA Components. PLoS One 2016; 11:e0163043. [PMID: 27649079 PMCID: PMC5029934 DOI: 10.1371/journal.pone.0163043] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
Cell-derived exosomes are leading candidates for in vivo drug delivery carriers. In particular, exosomes derived from 293T cells are used most frequently, although exosome dosing has varied greatly among studies. Considering their biological origin, it is crucial to characterize the molecular composition of exosomes if large doses are to be administered in clinical settings. In this study, we present the first comprehensive analysis of the protein, messenger RNA and microRNA profiles of 293T cell-derived exosomes; then, we characterized these data using Gene Ontology annotation and Kyoto Encyclopedia for Genes and Genomes pathway analysis. Our study will provide the basis for the selection of 293T cell-derived exosome drug delivery systems. Profiling the exosomal signatures of 293T cells will lead to a better understanding of 293T exosome biology and will aid in the identification of any harmful factors in exosomes that could cause adverse clinical effects.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiao Yi
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yuchen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Dameng Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongxia Hou
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaohong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (YZ); (CZ); (FY)
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (YZ); (CZ); (FY)
| | - Yujing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (YZ); (CZ); (FY)
| |
Collapse
|
1877
|
Zhong Y, Macgregor-Das A, Saunders T, Whittle MC, Makohon-Moore A, Kohutek ZA, Poling J, Herbst BT, Javier BM, Cope L, Leach SD, Hingorani SR, Iacobuzio-Donahue CA. Mutant p53 Together with TGFβ Signaling Influence Organ-Specific Hematogenous Colonization Patterns of Pancreatic Cancer. Clin Cancer Res 2016; 23:1607-1620. [PMID: 27637888 DOI: 10.1158/1078-0432.ccr-15-1615] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 12/24/2022]
Abstract
Purpose: TP53 and the TGFβ pathway are major mediators of pancreatic cancer metastasis. The mechanisms by which they cause hematogenous metastasis have not been fully explored.Experimental Design:KPC (LSL-KRASG12D/+;LSL-Trp53R172H/+; Ptf1aCre/+) mice were generated, and the frequency and morphology of organ-specific hematogenous metastases compared with that seen in KPTC and KTC littermates (Tgfbr2+/-). Key findings were validated in primary cells from each genotype and samples of human pancreatic cancer liver metastases.Results: The frequency of hematogenous metastasis in KPTC mice was significantly lower than for KPC mice (41% vs. 68%, P < 0.05), largely due to a reduction in liver metastases. No differences were found between KPC and KPTC lung metastases, whereas liver metastases in KPTC mice showed a profound extravasation deficiency characterized by sinusoidal growth and lack of desmoplastic stroma. Analogous findings were confirmed in liver samples from patients indicating their clinical relevance. Portal vein colonization as a direct mode of access to the liver was observed in both mice and humans. Secretome analyses of KPC cells revealed an abundance of secreted prometastatic mediators including Col6A1 and Lcn2 that promoted early steps of metastatic colonization. These mediators were overexpressed in primary tumors but not metastases, suggesting that the ability to colonize is, in part, developed within the primary site, a phenomenon we refer to as the "Cinderella effect."Conclusions: These findings establish a novel paradigm for understanding pancreatic cancer metastasis and the observed clinical latencies of liver versus lung metastases specifically. Clin Cancer Res; 23(6); 1607-20. ©2016 AACR.
Collapse
Affiliation(s)
- Yi Zhong
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anne Macgregor-Das
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Graduate Program in Pathobiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Tyler Saunders
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Martin C Whittle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alvin Makohon-Moore
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Graduate Program in Pathobiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Zachary A Kohutek
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Justin Poling
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Brian T Herbst
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Breanna M Javier
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Leslie Cope
- Department of Oncology Biostatistics, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Steven D Leach
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sunil R Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Christine A Iacobuzio-Donahue
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
1878
|
Patel SJ, Darie CC, Clarkson BD. Exosome mediated growth effect on the non-growing pre-B acute lymphoblastic leukemia cells at low starting cell density. Am J Transl Res 2016; 8:3614-3629. [PMID: 27725845 PMCID: PMC5040663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
Tumors contain heterogeneous cell populations and achieve dominance by functioning as collective systems. The mechanisms underlying the aberrant growth and interactions between cells are not very well understood. The pre-B acute lymphoblastic leukemia cells we studied were obtained directly from a patient with Ph+ ALL. A new Ph+ ALL cell line (ALL3) was established from the leukemic cells growing as ascitic cells in his pleural fluid. The patient died of his disease shortly after the cells were obtained. ALL3 cells grow well at high cell densities (HD), but not at low cell densities. ALL3 cells are very sensitive to potent tyrosine kinase inhibitors (TKIs) such as Dasatinib and PD166325, but less sensitive to AMN 107, Imatinib, and BMS 214662 (a farnesyl transferase inhibitor). Here, we show that the growth of the LD ALL3 cells can be stimulated to grow in the presence of diffusible, soluble factors secreted by ALL3 cells themselves growing at high density. We also show that exosomes, part of the secretome components, are also able to stimulate the growth of the non-growing LD ALL3 cells and modulate their proliferative behavior. Characterization of the exosome particles also showed that the HD ALL3 cells are able to secret them in large quantities and that they are capable of inducing the growth of the LD ALL3 cells without which they will not survive. Direct stimulation of non-growing LD ALL3 cells using purified exosomes shows that the ALL3 cells can also communicate with each other by means of exchange of exosomes independently of direct cell-cell contacts or diffusible soluble stimulatory factors secreted by HD ALL3 cells.
Collapse
Affiliation(s)
- Sapan J Patel
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program1275 York Avenue, Box #96, New York, NY 10065, USA
- Clarkson University, Biochemistry and Proteomics Group, Department of Chemistry and Bio-molecular Science, Clarkson University8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Costel C Darie
- Clarkson University, Biochemistry and Proteomics Group, Department of Chemistry and Bio-molecular Science, Clarkson University8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Bayard D Clarkson
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program1275 York Avenue, Box #96, New York, NY 10065, USA
| |
Collapse
|
1879
|
Yu S, Cao H, Shen B, Feng J. Tumor-derived exosomes in cancer progression and treatment failure. Oncotarget 2016; 6:37151-68. [PMID: 26452221 PMCID: PMC4741921 DOI: 10.18632/oncotarget.6022] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Exosomes have diameter within the range of 30-100 nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materials are biochemically and functionally distinct and can be transferred to a recipient cell where they regulate protein expression and signaling pathways. Recently, exosomes are demonstrated to have a close relationship with tumor development and metastasis. Exosomes influence therapeutic effect in cancer patients. In this review, we describe the biogenesis, composition, and function of exosomes. The mechanism on how tumor-derived exosomes contribute to cancer progression and clinical treatment failure is also described, with special focus on their potential applications in cancer therapy.
Collapse
Affiliation(s)
- Shaorong Yu
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| | - Haixia Cao
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| | - Bo Shen
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| | - Jifeng Feng
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| |
Collapse
|
1880
|
Bigagli E, Luceri C, Guasti D, Cinci L. Exosomes secreted from human colon cancer cells influence the adhesion of neighboring metastatic cells: Role of microRNA-210. Cancer Biol Ther 2016; 17:1062-1069. [PMID: 27611932 PMCID: PMC5079399 DOI: 10.1080/15384047.2016.1219815] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cancer-secreted exosomes influence tumor microenvironment and support cancer growth and metastasis. MiR-210 is frequently up-regulated in colorectal cancer tissues and correlates with metastatic disease. We investigated whether exosomes are actively released by HCT-8 colon cancer cells, the role of exosomal miR-210 in the cross-talk between primary cancer cells and neighboring metastatic cells and its contribution in regulating epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). After 7 d of culture, a subpopulation of viable HCT-8 cells detached the monolayer and started to grow in suspension, suggesting anoikis resistance and a metastatic potential. The expression of key proteins of EMT revealed that these cells were E-cadherin negative and vimentin positive further confirming their metastatic phenotype and the acquisition of anoikis resistance. Metastatic cells, in the presence of adherently growing HCT-8, continued to grow in suspension whereas only if seeded in cell-free wells, were able to adhere again and to form E-cadherin positive and vimentin negative new colonies, suggesting the occurrence of MET. The chemosensitivity to 5 fluorouracil and to FOLFOX-like treatment of metastatic cells was significantly diminished compared to adherent HCT-8 cells. Of note, adherent new colonies undergoing MET, were insensitive to both chemotherapeutic strategies. Electron microscopy analysis demonstrated that adherently growing HCT-8, actually secreted exosomes and that exosomes in turn were taken up by metastatic cells. When exosomes secreted by adherently growing HCT-8 were administered to metastatic cells, MET was significantly inhibited. miR-210 was significantly upregulated in exosomes compared to its intracellular levels in adherently growing HCT-8 cells and correlated to anoikis resistance and EMT markers. Exosomes containing miR-210 might be considered as EMT promoting signals that preserve the local cancer-growth permissive milieu and also guide metastatic cells to free, new sites of dissemination.
Collapse
Affiliation(s)
- Elisabetta Bigagli
- a Department of Neuroscience, Psychology , Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence , Florence , Italy
| | - Cristina Luceri
- a Department of Neuroscience, Psychology , Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence , Florence , Italy
| | - Daniele Guasti
- b Department of Experimental and Clinical Medicine - Research Unit of Histology and Embryology , University of Florence , Florence , Italy
| | - Lorenzo Cinci
- a Department of Neuroscience, Psychology , Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence , Florence , Italy
| |
Collapse
|
1881
|
Greening DW, Ji H, Chen M, Robinson BWS, Dick IM, Creaney J, Simpson RJ. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo. Sci Rep 2016; 6:32643. [PMID: 27605433 PMCID: PMC5015102 DOI: 10.1038/srep32643] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets.
Collapse
Affiliation(s)
- David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Hong Ji
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Maoshan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Bruce W. S. Robinson
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, 6009, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, 6009, Australia
| | - Ian M. Dick
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, 6009, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, 6009, Australia
- Australian Mesothelioma Tissue Bank, Sir Charles Gairdner Hospital, Perth, Western Australia, 6009, Australia
| | - Richard J. Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
1882
|
Autophagy in cancer metastasis. Oncogene 2016; 36:1619-1630. [PMID: 27593926 PMCID: PMC5337449 DOI: 10.1038/onc.2016.333] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 07/25/2016] [Accepted: 07/31/2016] [Indexed: 02/07/2023]
Abstract
Autophagy is a highly conserved self-degradative process that has a key role in cellular stress responses and survival. Recent work has begun to explore the function of autophagy in cancer metastasis, which is of particular interest given the dearth of effective therapeutic options for metastatic disease. Autophagy is induced upon progression of various human cancers to metastasis and together with data from genetically engineered mice and experimental metastasis models, a role for autophagy at nearly every phase of the metastatic cascade has been identified. Specifically, autophagy has been shown to be involved in modulating tumor cell motility and invasion, cancer stem cell viability and differentiation, resistance to anoikis, epithelial-to-mesenchymal transition, tumor cell dormancy and escape from immune surveillance, with emerging functions in establishing the pre-metastatic niche and other aspects of metastasis. In this review, we provide a general overview of how autophagy modulates cancer metastasis and discuss the significance of new findings for disease management.
Collapse
|
1883
|
Fiskaa T, Knutsen E, Nikolaisen MA, Jørgensen TE, Johansen SD, Perander M, Seternes OM. Distinct Small RNA Signatures in Extracellular Vesicles Derived from Breast Cancer Cell Lines. PLoS One 2016; 11:e0161824. [PMID: 27579604 PMCID: PMC5006963 DOI: 10.1371/journal.pone.0161824] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/14/2016] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a heterogeneous disease, and different subtypes of breast cancer show distinct cellular morphology, gene expression, metabolism, motility, proliferation, and metastatic potential. Understanding the molecular features responsible for this heterogeneity is important for correct diagnosis and better treatment strategies. Extracellular vesicles (EVs) and their associated molecules have gained much attention as players in intercellular communication, ability to precondition specific organs for metastatic invasion, and for their potential role as circulating cancer biomarkers. EVs are released from the cells and contain proteins, DNA, and long and small RNA species. Here we show by high-throughput small RNA-sequencing that EVs from nine different breast cancer cell lines share common characteristics in terms of small RNA content that are distinct from their originating cells. Most strikingly, a highly abundant small RNA molecule derived from the nuclear 28S rRNA is vastly enriched in EVs. The miRNA profiles in EVs correlate with the cellular miRNA expression pattern, but with a few exceptions that includes miR-21. This cancer-associated miRNA is retained in breast cancer cell lines. Finally, we report that EVs from breast cancer cell lines cluster together based on their small RNA signature when compared to EVs derived from other cancer cell lines. Altogether, our data demonstrate that breast cancer cell lines manifest a specific small RNA signature in their released EVs. This opens up for further evaluation of EVs as breast cancer biomarkers.
Collapse
Affiliation(s)
- Tonje Fiskaa
- Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, MH-building Breivika, Tromsø, N-9037, Norway
- Department of Pharmacy, Faculty of Health Sciences, UiT–The Arctic University of Norway, MH-building Breivika, Tromsø, N-9037, Norway
- * E-mail:
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, MH-building Breivika, Tromsø, N-9037, Norway
| | - Marlen Aas Nikolaisen
- Department of Pharmacy, Faculty of Health Sciences, UiT–The Arctic University of Norway, MH-building Breivika, Tromsø, N-9037, Norway
| | - Tor Erik Jørgensen
- Marine Genomics group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Steinar Daae Johansen
- Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, MH-building Breivika, Tromsø, N-9037, Norway
- Marine Genomics group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Maria Perander
- Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, MH-building Breivika, Tromsø, N-9037, Norway
| | - Ole Morten Seternes
- Department of Pharmacy, Faculty of Health Sciences, UiT–The Arctic University of Norway, MH-building Breivika, Tromsø, N-9037, Norway
| |
Collapse
|
1884
|
Naito Y, Yoshioka Y, Yamamoto Y, Ochiya T. How cancer cells dictate their microenvironment: present roles of extracellular vesicles. Cell Mol Life Sci 2016; 74:697-713. [PMID: 27582126 PMCID: PMC5272899 DOI: 10.1007/s00018-016-2346-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/16/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022]
Abstract
Intercellular communication plays an important role in cancer initiation and progression through secretory molecules, including growth factors and cytokines. Recent advances have revealed that small membrane vesicles, termed extracellular vesicles (EVs), served as a regulatory agent in the intercellular communication of cancer. EVs enable the transfer of functional molecules, including proteins, mRNA and microRNAs (miRNAs), into recipient cells. Cancer cells utilize EVs to dictate the unique phenotype of surrounding cells, thereby promoting cancer progression. Against such "education" by cancer cells, non-tumoral cells suppress cancer initiation and progression via EVs. Therefore, researchers consider EVs to be important cues to clarify the molecular mechanisms of cancer biology. Understanding the functions of EVs in cancer progression is an important aspect of cancer biology that has not been previously elucidated. In this review, we summarize experimental data that indicate the pivotal roles of EVs in cancer progression.
Collapse
Affiliation(s)
- Yutaka Naito
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
1885
|
Liver metastatic disease: new concepts and biomarker panels to improve individual outcomes. Clin Exp Metastasis 2016; 33:743-755. [PMID: 27541751 DOI: 10.1007/s10585-016-9816-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
Abstract
Liver cancer, one of the leading causes of all cancer related deaths, belongs to the most malignant cancer types. In fact, the secondary hepatic malignancies (liver metastases) are more common than the primary ones. Almost all solid malignancies can metastasise to the liver. It is well justified that the "treat and wait" approach in the overall management of the liver cancer is not up-to-date and so creation of complex individual patient profiles is needed. This review is specifically focused on the liver metastases originating from the colorectum, breast and prostate cancer. Innovative multilevel diagnostics may procure specific panels of validated biomarkers for predisposition, development and progression of metastatic disease. Creation of the patient specific "molecular portrait" is an essential part of the diagnostic strategy. Contextually, analysis of molecular and cellular patterns in blood samples as the minimally invasive diagnostic tool and construction of diagnostic windows based on individual patient profiling is highly recommended for patient cohorts predisposed to and affected by the liver metastatic disease. Summarised information on risk assessment, predictive and prognostic panels for diagnosis and treatments of the liver metastatic disease in colorectal, breast and prostate cancer is provided.
Collapse
|
1886
|
Abstract
Pre-Metastatic Niches (PMNs) result from communications between primary tumors and the microenvironment of future distant metastasis via tumor-derived factors. In this issue of Cancer Cell, Liu et al. show that TLR3 activation in lung epithelial cells by tumor exosomal RNAs triggers neutrophil recruitment, which contributes to PMN formation and metastasis.
Collapse
Affiliation(s)
- Candia M Kenific
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Laura Nogués
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
1887
|
Schwartz H, Blacher E, Amer M, Livneh N, Abramovitz L, Klein A, Ben-Shushan D, Soffer S, Blazquez R, Barrantes-Freer A, Müller M, Müller-Decker K, Stein R, Tsarfaty G, Satchi-Fainaro R, Umansky V, Pukrop T, Erez N. Incipient Melanoma Brain Metastases Instigate Astrogliosis and Neuroinflammation. Cancer Res 2016; 76:4359-71. [PMID: 27261506 DOI: 10.1158/0008-5472.can-16-0485] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/02/2016] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is the deadliest of skin cancers. Melanoma frequently metastasizes to the brain, resulting in dismal survival. Nevertheless, mechanisms that govern early metastatic growth and the interactions of disseminated metastatic cells with the brain microenvironment are largely unknown. To study the hallmarks of brain metastatic niche formation, we established a transplantable model of spontaneous melanoma brain metastasis in immunocompetent mice and developed molecular tools for quantitative detection of brain micrometastases. Here we demonstrate that micrometastases are associated with instigation of astrogliosis, neuroinflammation, and hyperpermeability of the blood-brain barrier. Furthermore, we show a functional role for astrocytes in facilitating initial growth of melanoma cells. Our findings suggest that astrogliosis, physiologically instigated as a brain tissue damage response, is hijacked by tumor cells to support metastatic growth. Studying spontaneous melanoma brain metastasis in a clinically relevant setting is the key to developing therapeutic approaches that may prevent brain metastatic relapse. Cancer Res; 76(15); 4359-71. ©2016 AACR.
Collapse
Affiliation(s)
- Hila Schwartz
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Blacher
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Malak Amer
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Livneh
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Abramovitz
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Klein
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Soffer
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raquel Blazquez
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | | | - Meike Müller
- Tumor Models Unit, German Cancer Research Center, Heidelberg, Germany
| | | | - Reuven Stein
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tsarfaty
- Department of Diagnostic Imaging, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany. Department of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
1888
|
Zhang X, Khan S, Jiang H, Antonyak MA, Chen X, Spiegelman NA, Shrimp JH, Cerione RA, Lin H. Identifying the functional contribution of the defatty-acylase activity of SIRT6. Nat Chem Biol 2016; 12:614-20. [PMID: 27322069 PMCID: PMC4955683 DOI: 10.1038/nchembio.2106] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/30/2016] [Indexed: 01/30/2023]
Abstract
Mammalian sirtuin 6 (SIRT6) exhibits many pivotal functions and multiple enzymatic activities, but the contribution of each activity to the various functions is unclear. We identified a SIRT6 mutant (G60A) that possesses efficient defatty-acylase activity but has substantially decreased deacetylase activity in vitro and no detectable deacetylase activity in cells. The G60A mutant has a decreased ability to bind NAD(+), but the presence of fatty-acyl lysine peptides restores NAD(+) binding, explaining the retention of the defatty-acylase activity. Using this mutant, we found that the defatty-acylase activity of SIRT6 regulates the secretion of numerous proteins. Notably, many ribosomal proteins were secreted via exosomes from Sirt6 knockout mouse embryonic fibroblasts, and these exosomes increased NIH 3T3 cell proliferation compared with control exosomes. Our data indicate that distinct activities of SIRT6 regulate different pathways and that the G60A mutant is a useful tool to study the contribution of defatty-acylase activity to SIRT6's various functions.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Saba Khan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Hong Jiang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Marc A. Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Xiao Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Nicole A. Spiegelman
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jonathan H. Shrimp
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Richard A. Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
1889
|
Exosomes in carcinogenesis: molecular palkis carry signals for the regulation of cancer progression and metastasis. J Cell Commun Signal 2016; 10:241-249. [PMID: 27473382 DOI: 10.1007/s12079-016-0338-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/19/2016] [Indexed: 12/16/2022] Open
Abstract
Exosomes, which act as biological cargo vessels, are cell-released, phospholipid-enclosed vesicles. In eukaryotic cells, exosomes carry and exchange biological materials or signals for the benefit or detriment to the cells. Thereby, we consider exosomes to be molecular Palkis (carriers). Although exosomes are currently one of the most popularly researched cellular entities, they have remained largely enigmatic and warrant continued investigation into their structure and functions. These membraned vesicles are between 30 and 150 nm in diameter and are actively secreted by all cell types. While initially considered cellular "trash bags," recent years have revealed exosomes to be dynamic and multi-functional vesicles that may play a crucial role in cancer development, progression and metastasis. Thereby, they have the potential to be used in development of therapeutic modalities for cancer and other diseases. As more research studies emerge, it's becoming evident that exosomes are released by cells with a purpose and are representatives of certain cell types and disease conditions. Hence, they may also be used as biomarkers for the detection of cancer initiation, progression and organotropic metastatic growth of cancer cells. This review will focus on the recent developments achieved in identifying the role of exosomes in cancer development and progression as well as therapeutic implications. The review will also discuss the pitfalls of methodologies used for the extraction of exosomes.
Collapse
|
1890
|
Guo D, Guo J, Yao J, Jiang K, Hu J, Wang B, Liu H, Lin L, Sun W, Jiang X. D-dopachrome tautomerase is over-expressed in pancreatic ductal adenocarcinoma and acts cooperatively with macrophage migration inhibitory factor to promote cancer growth. Int J Cancer 2016; 139:2056-67. [PMID: 27434219 DOI: 10.1002/ijc.30278] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/25/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022]
Abstract
Previous studies have established the important role of MIF in the development of pancreatic ductal adenocarcinoma (PDAC) for both therapeutic and diagnostic perspectives, but little is known about the expression and function of D-dopachrome tautomerase (DDT), a functional homolog of MIF, in PDAC. In the present study, we demonstrated that DDT was over-expressed in PDAC tissues in a pattern correlated with MIF. In the pancreatic cancer cell lines, PANC-1, BXPC-3 and ASPC-1, both DDT and MIF were expressed and co-localized with each other in the endosomal compartments and plasma membrane. Knockdown of DDT and MIF in PANC-1 cells cooperatively inhibited ERK1/2 and AKT phosphorylation, increased p53 expression, and reduced cell proliferation, invasion and tumor formation. These effects were rescued by the re-expression of MIF or DDT, but not by the forced expression of the tautomerase-deficient mutants of DDT and MIF, P1G-DDT and P1G-MIF. Finally, we observed that 4-iodo-6-phenylpyrimidine (4-IPP), a covalent tautomerase inhibitor of both DDT and MIF, attenuated PANC-1 cell proliferation and colony formation in vitro and tumor growth in vivo. Thus, targeting the tautomerase sites of both MIF and DDT may offer more efficient therapeutic benefits to PDAC patients.
Collapse
Affiliation(s)
- Dawei Guo
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Jinshuai Guo
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Junchao Yao
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Kun Jiang
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Jianhua Hu
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Wang
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Haiyang Liu
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Lin Lin
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Wenyu Sun
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaofeng Jiang
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
1891
|
Strandmann EPV, Müller R. Shipping Drug Resistance: Extracellular Vesicles in Ovarian Cancer. Trends Mol Med 2016; 22:741-743. [PMID: 27474394 DOI: 10.1016/j.molmed.2016.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Ovarian cancer is a deadly disease, largely because of relapse and chemotherapy resistance. Common genetic mechanisms causing drug resistance have not been identified. A recent study unravels a novel and unexpected pathway involving the transfer of microvesicle-encapsulated miRNA from omental adipocytes and fibroblasts, to cancer cells.
Collapse
Affiliation(s)
- Elke Pogge von Strandmann
- Innate Immunity Group, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology, and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany.
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| |
Collapse
|
1892
|
Wilson C, Leiblich A, Goberdhan DCI, Hamdy F. The Drosophila Accessory Gland as a Model for Prostate Cancer and Other Pathologies. Curr Top Dev Biol 2016; 121:339-375. [PMID: 28057306 PMCID: PMC5224695 DOI: 10.1016/bs.ctdb.2016.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human prostate is a gland of the male reproductive tract, which together with the seminal vesicles, is responsible for most seminal fluid production. It is a common site of cancer, and unlike other glands, it typically enlarges in aging men. In flies, the male accessory glands make many major seminal fluid components. Like their human equivalents, they secrete proteins from several conserved families, including proteases, lectins, and cysteine-rich secretory proteins, some of which interact with sperm and affect fertility. A key protein, sex peptide, is not conserved in vertebrates but plays a central role in mediating long-term effects on females after mating. Although postmitotic, one epithelial cell type in the accessory glands, the secondary cell, continues to grow in adults. It secretes microvesicles called exosomes from the endosomal multivesicular body, which, after mating, fuse with sperm. They also appear to affect female postmating behavior. Remarkably, the human prostate epithelium also secretes exosomes, which fuse to sperm in vitro to modulate their activity. Exosomes from prostate and other cancer cells are increasingly proposed to play fundamental roles in modulating the tumor microenvironment and in metastasis. Here we review a diverse accessory gland literature, which highlights functional analogies between the male reproductive glands of flies and humans, and a critical role for extracellular vesicles in allowing seminal fluid to promote male interests within the female. We postulate that secondary cells and prostate epithelial cells use common mechanisms to control growth, secretion, and signaling, which are relevant to prostate and other cancers, and can be genetically dissected in the uniquely tractable fly model.
Collapse
Affiliation(s)
- C Wilson
- University of Oxford, Oxford, United Kingdom.
| | - A Leiblich
- University of Oxford, Oxford, United Kingdom; University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | - F Hamdy
- University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
1893
|
Metabolic reprogramming of bone marrow stromal cells by leukemic extracellular vesicles in acute lymphoblastic leukemia. Blood 2016; 128:453-6. [DOI: 10.1182/blood-2015-12-688051] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
1894
|
Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, Tyska MJ, Weaver AM. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol 2016; 214:197-213. [PMID: 27402952 PMCID: PMC4949450 DOI: 10.1083/jcb.201601025] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites.
Collapse
Affiliation(s)
- Seema Sinha
- Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | | | - Nan Hyung Hong
- Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Kellye C Kirkbride
- Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Motoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Alissa M Weaver
- Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN 37232 Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN 37232 Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
1895
|
Abstract
In order to achieve coordinated growth and patterning during development, cells must communicate with one another, sending and receiving signals that regulate their activities. Such developmental signals can be soluble, bound to the extracellular matrix, or tethered to the surface of adjacent cells. Cells can also signal by releasing exosomes – extracellular vesicles containing bioactive molecules such as RNA, DNA and enzymes. Recent work has suggested that exosomes can also carry signalling proteins, including ligands of the Notch receptor and secreted proteins of the Hedgehog and WNT families. Here, we describe the various types of exosomes and their biogenesis. We then survey the experimental strategies used so far to interfere with exosome formation and critically assess the role of exosomes in developmental signalling.
Collapse
Affiliation(s)
- Ian John McGough
- Laboratory of Epithelial Interactions, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Jean-Paul Vincent
- Laboratory of Epithelial Interactions, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| |
Collapse
|
1896
|
Heiler S, Wang Z, Zöller M. Pancreatic cancer stem cell markers and exosomes - the incentive push. World J Gastroenterol 2016; 22:5971-6007. [PMID: 27468191 PMCID: PMC4948278 DOI: 10.3748/wjg.v22.i26.5971] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/03/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX.
Collapse
|
1897
|
Hurwitz SN, Conlon MM, Rider MA, Brownstein NC, Meckes DG. Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. J Extracell Vesicles 2016; 5:31295. [PMID: 27421995 PMCID: PMC4947197 DOI: 10.3402/jev.v5.31295] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 01/22/2023] Open
Abstract
Background Extracellular vesicles (EVs) are important mediators of cell-to-cell communication in healthy and pathological environments. Because EVs are present in a variety of biological fluids and contain molecular signatures of their cell or tissue of origin, they have great diagnostic and prognostic value. The ability of EVs to deliver biologically active proteins, RNAs and lipids to cells has generated interest in developing novel therapeutics. Despite their potential medical use, many of the mechanisms underlying EV biogenesis and secretion remain unknown. Methods Here, we characterized vesicle secretion across the NCI-60 panel of human cancer cells by nanoparticle tracking analysis. Using CellMiner, the quantity of EVs secreted by each cell line was compared to reference transcriptomics data to identify gene products associated with vesicle secretion. Results Gene products positively associated with the quantity of exosomal-sized vesicles included vesicular trafficking classes of proteins with Rab GTPase function and sphingolipid metabolism. Positive correlates of larger microvesicle-sized vesicle secretion included gene products involved in cytoskeletal dynamics and exocytosis, as well as Rab GTPase activation. One of the identified targets, CD63, was further evaluated for its role in vesicle secretion. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 knockout of the CD63 gene in HEK293 cells resulted in a decrease in small vesicle secretion, suggesting the importance of CD63 in exosome biogenesis. Conclusion These observations reveal new insights into genes involved in exosome and microvesicle formation, and may provide a means to distinguish EV sub-populations. This study offers a foundation for further exploration of targets involved in EV biogenesis and secretion.
Collapse
Affiliation(s)
- Stephanie N Hurwitz
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Meghan M Conlon
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Mark A Rider
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Naomi C Brownstein
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA;
| |
Collapse
|
1898
|
DeRita RM, Zerlanko B, Singh A, Lu H, Iozzo RV, Benovic JL, Languino LR. c-Src, Insulin-Like Growth Factor I Receptor, G-Protein-Coupled Receptor Kinases and Focal Adhesion Kinase are Enriched Into Prostate Cancer Cell Exosomes. J Cell Biochem 2016; 118:66-73. [PMID: 27232975 DOI: 10.1002/jcb.25611] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 12/21/2022]
Abstract
It is well known that Src tyrosine kinase, insulin-like growth factor 1 receptor (IGF-IR), and focal adhesion kinase (FAK) play important roles in prostate cancer (PrCa) development and progression. Src, which signals through FAK in response to integrin activation, has been implicated in many aspects of tumor biology, such as cell proliferation, metastasis, and angiogenesis. Furthermore, Src signaling is known to crosstalk with IGF-IR, which also promotes angiogenesis. In this study, we demonstrate that c-Src, IGF-IR, and FAK are packaged into exosomes (Exo), c-Src in particular being highly enriched in Exo from the androgen receptor (AR)-positive cell line C4-2B and AR-negative cell lines PC3 and DU145. Furthermore, we show that the active phosphorylated form of Src (SrcpY416 ) is co-expressed in Exo with phosphorylated FAK (FAKpY861 ), a known target site of Src, which enhances proliferation and migration. We further demonstrate for the first time exosomal enrichment of G-protein-coupled receptor kinase (GRK) 5 and GRK6, both of which regulate Src and IGF-IR signaling and have been implicated in cancer. Finally, SrcpY416 and c-Src are both expressed in Exo isolated from the plasma of prostate tumor-bearing TRAMP mice, and those same mice have higher levels of exosomal c-Src than their wild-type counterparts. In summary, we provide new evidence that active signaling molecules relevant to PrCa are enriched in Exo, and this suggests that the Src signaling network may provide useful biomarkers detectable by liquid biopsy, and may contribute to PrCa progression via Exo. J. Cell. Biochem. 118: 66-73, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rachel M DeRita
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Brad Zerlanko
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amrita Singh
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Huimin Lu
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Departments of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
1899
|
Macklin R, Wang H, Loo D, Martin S, Cumming A, Cai N, Lane R, Ponce NS, Topkas E, Inder K, Saunders NA, Endo-Munoz L. Extracellular vesicles secreted by highly metastatic clonal variants of osteosarcoma preferentially localize to the lungs and induce metastatic behaviour in poorly metastatic clones. Oncotarget 2016; 7:43570-43587. [PMID: 27259278 PMCID: PMC5190045 DOI: 10.18632/oncotarget.9781] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/25/2016] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is the most common pediatric bone tumor and is associated with the emergence of pulmonary metastasis. Unfortunately, the mechanistic basis for metastasis remains unclear. Tumor-derived extracellular vesicles (EVs) have been shown to play critical roles in cell-to-cell communication and metastatic progression in other cancers, but their role in OS has not been explored. We show that EVs secreted by cells derived from a highly metastatic clonal variant of the KHOS cell line can be internalized by a poorly metastatic clonal variant of the same cell line and induce a migratory and invasive phenotype. This horizontal phenotypic transfer is unidirectional and provides evidence that metastatic potential may arise via interclonal co-operation. Proteomic analysis of the EVs secreted by highly metastatic OS clonal variants results in the identification of a number of proteins and G-protein coupled receptor signaling events as potential drivers of OS metastasis and novel therapeutic targets. Finally, multiphoton microscopy with fluorescence lifetime imaging in vivo, demonstrated a preferential seeding of lung tissue by EVs derived from highly metastatic OS clonal variants. Thus, we show that EVs derived from highly metastatic clonal variants of OS may drive metastatic behaviour via interclonal co-operation and preferential colonization of the lungs.
Collapse
Affiliation(s)
- Rebecca Macklin
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Haolu Wang
- Therapeutics Research Centre, School of Medicine, University of Queensland, Brisbane, Australia
| | - Dorothy Loo
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Sally Martin
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Andrew Cumming
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Na Cai
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Rebecca Lane
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Natalia Saenz Ponce
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Eleni Topkas
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Kerry Inder
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Nicholas A Saunders
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Liliana Endo-Munoz
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
1900
|
Torrano V, Royo F, Peinado H, Loizaga-Iriarte A, Unda M, Falcón-Perez JM, Carracedo A. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer. Curr Opin Pharmacol 2016; 29:47-53. [PMID: 27366992 DOI: 10.1016/j.coph.2016.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022]
Abstract
Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data integration in the field. In this review, we provide an updated view of the potential of exosomes and microvesicles as biomarkers and the available technologies for their isolation.
Collapse
Affiliation(s)
- Veronica Torrano
- CIC bioGUNE, Bizkaia Technology Park, 801ª bld., 48160 Derio, Bizkaia, Spain
| | - Felix Royo
- CIC bioGUNE, Bizkaia Technology Park, 801ª bld., 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | | | - Miguel Unda
- Department of Urology, Basurto University Hospital, 48013 Bilbao, Spain
| | - Juan M Falcón-Perez
- CIC bioGUNE, Bizkaia Technology Park, 801ª bld., 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain.
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, 801ª bld., 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain; Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain.
| |
Collapse
|