151
|
Donmez HG, Sahal G, Beksac MS. Microbial cell-type-based grouping model as a potential indicator of cervicovaginal flora prone to biofilm formation. Biotech Histochem 2025; 100:17-22. [PMID: 39688594 DOI: 10.1080/10520295.2024.2439447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Cervicovaginal (CV) microbiota is critical for the well-being of host. We investigated the relationship between the ratio of Lactobacilli (LB) and cocci/coccobacilli (C/CB)-type microbial cells with biofilm formation of CV mixed cultures of women with no inflammation/infection or any epithelial abnormalities in Pap-stained smears Group 1 (G1) corresponds to the flora with LB-type cells alone, whereas G2 corresponds to the LB-dominated flora. G3 contains balanced LB and C/CB cells and G4 is dominated with C/CB. G5 corresponds to a flora with C/CB-type cells alone. Biofilm formation of CV mixed cultures was assessed by crystal violet binding assay and optical density (OD)≥0.8 were defined as biofilm producers. G1 and G3 exist in higher frequencies compared to the other smear groups. However, although the frequency of G5 dominated with C/CB-type cells were the lowest (4%); biofilm formation in that group was observed in the highest frequency (42.9%). The least biofilm formation frequency was observed in G3 smears with balanced flora (1%). Biofilm formation in healthy CV flora increases when there becomes an imbalance between LB and C/CB-type cells and an increase in C/CB-type cells. Our approach may enable early detection of vaginal dysbiosis in healthy flora prone to biofilm-associated CV infections such as bacterial vaginosis (BV).
Collapse
Affiliation(s)
- Hanife Guler Donmez
- Department of Biology, Faculty of Science, Hacettepe University, Ankara 06800, Turkey
| | - Gulcan Sahal
- Department of Biology, Faculty of Science, Hacettepe University, Ankara 06800, Turkey
| | - Mehmet Sinan Beksac
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
152
|
Roque‐Borda CA, Primo LMDG, Medina‐Alarcón KP, Campos IC, Nascimento CDF, Saraiva MMS, Berchieri Junior A, Fusco‐Almeida AM, Mendes‐Giannini MJS, Perdigão J, Pavan FR, Albericio F. Antimicrobial Peptides: A Promising Alternative to Conventional Antimicrobials for Combating Polymicrobial Biofilms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410893. [PMID: 39530703 PMCID: PMC11714181 DOI: 10.1002/advs.202410893] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Polymicrobial biofilms adhere to surfaces and enhance pathogen resistance to conventional treatments, significantly contributing to chronic infections in the respiratory tract, oral cavity, chronic wounds, and on medical devices. This review examines antimicrobial peptides (AMPs) as a promising alternative to traditional antibiotics for treating biofilm-associated infections. AMPs, which can be produced as part of the innate immune response or synthesized therapeutically, have broad-spectrum antimicrobial activity, often disrupting microbial cell membranes and causing cell death. Many specifically target negatively charged bacterial membranes, unlike host cell membranes. Research shows AMPs effectively inhibit and disrupt polymicrobial biofilms and can enhance conventional antibiotics' efficacy. Preclinical and clinical research is advancing, with animal studies and clinical trials showing promise against multidrug-resistant bacteria and fungi. Numerous patents indicate increasing interest in AMPs. However, challenges such as peptide stability, potential cytotoxicity, and high production costs must be addressed. Ongoing research focuses on optimizing AMP structures, enhancing stability, and developing cost-effective production methods. In summary, AMPs offer a novel approach to combating biofilm-associated infections, with their unique mechanisms and synergistic potential with existing antibiotics positioning them as promising candidates for future treatments.
Collapse
Affiliation(s)
- Cesar Augusto Roque‐Borda
- Department of Biological SciencesSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
- iMed.ULisboa–Institute for Medicines ResearchFaculty of PharmacyUniversity of LisbonLisbon1649004Portugal
- Vicerrectorado de InvestigaciónUniversidad Católica de Santa MaríaArequipa04000Peru
| | - Laura Maria Duran Gleriani Primo
- Department of Biological SciencesSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Kaila Petronila Medina‐Alarcón
- Department of Clinical AnalysisSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Isabella C. Campos
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Camila de Fátima Nascimento
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Mauro M. S. Saraiva
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Angelo Berchieri Junior
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Ana Marisa Fusco‐Almeida
- Department of Clinical AnalysisSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Maria José Soares Mendes‐Giannini
- Department of Clinical AnalysisSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - João Perdigão
- iMed.ULisboa–Institute for Medicines ResearchFaculty of PharmacyUniversity of LisbonLisbon1649004Portugal
| | - Fernando Rogério Pavan
- Department of Biological SciencesSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Fernando Albericio
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalDurban4001South Africa
- CIBER‐BBNNetworking Centre on BioengineeringBiomaterials and Nanomedicineand Department of Organic ChemistryUniversity of BarcelonaBarcelona08028Spain
| |
Collapse
|
153
|
Wurlina W, Mustofa I, Meles DK, Khairullah AR, Akintunde AO, Rachmawati K, Suwasanti N, Putra DMS, Mulyati S, Utama S, Khoiriyah U, Tyarraushananda Defvyanto BR, Heriana SF, Riwu KHP, Ahmad RZ, Riwu AG. Restoration of sperm quality in lead acetate-induced rats via treatment with Moringa oleifera leaf extract. Open Vet J 2025; 15:416-427. [PMID: 40092212 PMCID: PMC11910306 DOI: 10.5455/ovj.2025.v15.i1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/31/2024] [Indexed: 04/11/2025] Open
Abstract
Background Lead intoxication triggers testicular toxicity via oxidative stress. Aim This study aimed to explore the antioxidant potential of Moringa oleifera leaf extract (MOLE) in enhancing the semen quality of rats exposed to lead acetate. Methods Twenty-five healthy rats were randomly and equally divided into five groups. Group C served as the negative control, whereas group C+ was exposed to lead acetate at 50-mg/kg body weight (BW)/day without MOLE. The T1, T2, and T3 groups were exposed to lead acetate at 50-mg/kg BW and concurrently received MOLE at doses of 200-, 316-, and 500-mg/kg BW/day, respectively, for 20 days. On the 21st day, all rats were euthanized for blood collection and testicle harvesting. Results The result showed that exposure to lead acetate at 50-mg/kg BW/day in group C+ led to significant decreases (p < 0.05) in superoxide dismutase (SOD) levels, plasma membrane integrity, Leydig and Sertoli cell counts, spermatozoa numbers, sperm motility, and live spermatozoa, as well as significant increases (p < 0.05) in malondialdehyde levels and apoptotic and necrotic sperm, compared with control group C-. The administration of MOLE to rats exposed to lead acetate resulted in improvement in all of these variables. However, SOD and testosterone levels, as well as spermatozoa numbers, viability, apoptosis, and necrosis, did not recover in group T3 (p < 0.05) compared with control group C-. Conclusion MOLE effectively restores sperm quality in lead acetate-induced rats.
Collapse
Affiliation(s)
- Wurlina Wurlina
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Dewa Ketut Meles
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Adeyinka Oye Akintunde
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan Remo, Nigeria
| | - Kadek Rachmawati
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Niluh Suwasanti
- Department of Clinical Pathology, Faculty of Medicine, Universitas Katolik Widya Mandala Surabaya, Surabaya, Indonesia
| | | | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ulul Khoiriyah
- Profession Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Sila Faredy Heriana
- Profession Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Audrey Gracelia Riwu
- Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Indonesia
| |
Collapse
|
154
|
Costa B, Coelho J, Silva V, Shahrour H, Costa NA, Ribeiro AR, Santos SG, Costa F, Martínez-de-Tejada G, Monteiro C, Martins MCL. Dhvar5- and MSI78-coated titanium are bactericidal against methicillin-resistant Staphylococcus aureus, immunomodulatory and osteogenic. Acta Biomater 2025; 191:98-112. [PMID: 39542199 DOI: 10.1016/j.actbio.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Infection is one of the major issues associated with the failure of orthopedic devices, mainly due to implant bacterial colonization, biofilm formation, and associated antibiotic resistance. Antimicrobial peptides (AMP) are a promising alternative to conventional antibiotics given their broad-spectrum of activity, low propensity to induce bacterial resistance, and ability to modulate host immune responses. Dhvar5 (LLLFLLKKRKKRKY) and MSI78 (GIGKFLKKAKKFGKAFVKILKK) are two AMP with broad-spectrum activity against bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), one of the most problematic etiologic agents in Orthopedic Devices-Related Infections (ODRI). This work aims to evaluate the bactericidal, immunomodulatory and osteogenic potential of Dhvar5- and MSI78-coated titanium surfaces (AMP-Ti). Two AMP-Ti surfaces were successfully obtained by grafting Dhvar5 (0.8 ± 0.1 µM/mm2) or MSI78 (0.5 ± 0.3 µM/mm2) onto titanium substrates through a polydopamine layer. Both AMP-Ti were bactericidal against MRSA, eradicating bacteria upon contact for 6 h in a culture medium supplemented with human plasma proteins. The AMP-Ti immunomodulatory potential was evaluated using human primary macrophages, by assessing surfaces capacity to induce pro-/anti-inflammatory (M1/M2) markers and cytokines. While in naïve conditions both AMP-Ti surfaces slightly promoted the M2 marker CD163, in response to LPS and IFN-γ (simulating a bacterial infection), both AMP increased the M1 marker CCR7 and enhanced macrophage secretion of pro-inflammatory IL-6 and TNF-α cytokines, particularly for Ti-MSI78 surfaces. Additionally, both AMP-Ti surfaces were cytocompatible and promoted osteoblastic cell differentiation. This proof-of-concept study demonstrated the high potential of Dhvar5- and MSI78-Ti as antimicrobial coatings for ODRI prevention. STATEMENT OF SIGNIFICANCE: This study investigates the bactericidal effects of the antimicrobial peptides Dhvar5 and MSI78, immobilized on titanium (Ti) surfaces through a polydopamine coating, aiming at the prevention of Orthopedic-Device Related Infections (ODRIs). The developed coatings displayed MRSA-sterilizing activity, while revealing an immunomodulatory potential towards macrophages and promoting osteoblastic cell differentiation. This strategy allows a quick and easy immobilization of high quantities of AMP, unlike most other approaches, thus favoring its clinical translation.
Collapse
Affiliation(s)
- B Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - J Coelho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - V Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Colégio Internato dos Carvalhos (CIC), Porto, Portugal
| | - H Shahrour
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - N A Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, Porto, Portugal; UNESP - Universidade Estadual Paulista, Faculdade de Ciências, Bauru, SP 17033-360, Brazil
| | - A R Ribeiro
- NanoSafety Group, International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - S G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - F Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - G Martínez-de-Tejada
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - C Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M C L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
155
|
Oh J, Kim H, Lee J, Kim S, Shin S, Kim YE, Park S, Lee S. Korean Red ginseng enhances ZBP1-mediated cell death to suppress viral protein expression in host defense against Influenza A virus. J Microbiol 2025; 63:e.2409007. [PMID: 39895072 DOI: 10.71150/jm.2409007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/22/2024] [Indexed: 02/04/2025]
Abstract
Korean Red ginseng has emerged as a potent candidate in the fight against various viral infections, demonstrating significant efficacy both in vitro and in vivo, particularly against influenza A viruses. Despite substantial evidence of its antiviral properties, the detailed molecular mechanisms through which it reduces viral lethality remain insufficiently understood. Our investigations have highlighted the superior effectiveness of Korean Red ginseng against influenza viruses, outperforming its effects on numerous other viral strains. We aim to uncover the specific mechanisms by which Korean Red ginseng exerts its antiviral effects, focusing on influenza A viruses. Our prior studies have identified the role of Z-DNA-binding protein 1 (ZBP1), a signaling complex involved in inducing programmed cell death in response to influenza virus infection. Given the critical role of ZBP1 as a sensor for viral nucleic acid, we hypothesize that Korean Red ginseng may modulate the ZBP1-derived cell death pathway. This interaction is anticipated to enhance cell death while concurrently suppressing viral protein expression, offering novel insights into the antiviral mechanism of Korean Red ginseng against influenza A viruses.
Collapse
Affiliation(s)
- Jueun Oh
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hayeon Kim
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jihye Lee
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Suhyun Kim
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seyun Shin
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Young-Eui Kim
- Division of Acute Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju 28159, Republic of Korea
| | - Sehee Park
- Division of Acute Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju 28159, Republic of Korea
| | - SangJoon Lee
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Health Science and Technology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
156
|
Cheng D, Guo Y, Lyu J, Liu Y, Xu W, Zheng W, Wang Y, Qiao P. Advances and challenges in preparing membrane proteins for native mass spectrometry. Biotechnol Adv 2025; 78:108483. [PMID: 39571766 DOI: 10.1016/j.biotechadv.2024.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Native mass spectrometry (nMS) is becoming a crucial tool for analyzing membrane proteins (MPs), yet challenges remain in solubilizing and stabilizing their native conformations while resolving and characterizing the heterogeneity introduced by post-translational modifications and ligand binding. This review highlights recent advancements and persistent challenges in preparing MPs for nMS. Optimizing detergents and additives can significantly reduce sample heterogeneity and surface charge, enhancing MP signal quality and structural preservation in nMS. A strategic workflow incorporating affinity capture, stabilization agents, and size-exclusion chromatography to remove unfolded species demonstrates success in improving nMS characterization. Continued development of customized detergents and reagents tailored for specific MPs may further minimize heterogeneity and boost signals. Instrumental advances are also needed to elucidate more dynamically complex and labile MPs. Effective sample preparation workflows may provide insights into MP structures, dynamics, and interactions underpinning membrane biology. With ongoing methodological innovation, nMS shows promise to complement biophysical studies and facilitate drug discovery targeting this clinically important yet technically demanding protein class.
Collapse
Affiliation(s)
- Di Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yi Guo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Yang Liu
- Regenxbox In., Rockville, MD 20850, USA
| | - Wenhao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Weiyi Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuchen Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
157
|
Wāng Y. Ambient fine particulate matter provokes multiple modalities of cell death via perturbation of subcellular structures. ENVIRONMENT INTERNATIONAL 2025; 195:109193. [PMID: 39721566 DOI: 10.1016/j.envint.2024.109193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
Fine particulate matter (PM2.5) is increasingly recognized for its detrimental effects on human health, with substantial evidence linking exposure to various forms of cell death and dysfunction across multiple organ systems. This review examines key cell death mechanisms triggered by PM2.5, including PANoptosis, necroptosis, autophagy, and ferroptosis, while other forms such as oncosis, paraptosis, and cuprotosis remain unreported in relation to PM2.5 exposure. Mitochondria, endoplasmic reticulum, and lysosomes emerge as pivotal organelles in the disruption of cellular homeostasis, with mitochondrial dysfunction particularly implicated in metabolic dysregulation and the activation of pro-apoptotic pathways. Although PM2.5 primarily affects the nucleus, cytoskeleton, mitochondria, endoplasmic reticulum, and lysosomes, other organelles like ribosomes, Golgi apparatus, and peroxisomes have received limited attention. Interactions between these organelles, such as endoplasmic reticulum-associated mitochondrial membranes, lysosome-associated mitophagy, and mitochondria-nuclei retro-signaling may significantly contribute to the cytotoxic effects of PM2.5. The mechanisms of PM2.5 toxicity, encompassing oxidative stress, inflammatory responses, and metabolic imbalances, are described in detail. Notably, PM2.5 activates the NLRP3 inflammasome, amplifying inflammatory responses and contributing to chronic diseases. Furthermore, PM2.5 exposure disrupts genetic and epigenetic regulation, often resulting in cell cycle arrest and exacerbating cellular damage. The composition, concentration, and seasonal variability of PM2.5 modulate these effects, underscoring the complexity of PM2.5-induced cellular dysfunction. Despite significant advances in understanding these pathways, further research is required to elucidate the long-term effects of chronic PM2.5 exposure, the role of epigenetic regulation, and potential strategies to mitigate its harmful impact on human health.
Collapse
Affiliation(s)
- Yán Wāng
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
158
|
Mahur P, Singh AK, Muthukumaran J, Jain M. Targeting MurG enzyme in Klebsiella pneumoniae: An in silico approach to novel antimicrobial discovery. Res Microbiol 2025; 176:104257. [PMID: 39515627 DOI: 10.1016/j.resmic.2024.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/06/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Antibiotic resistance poses a global crisis fuelled by widespread antibiotic use, particularly against Gram-negative bacteria like Klebsiella pneumoniae, a leading cause of hospital-acquired infections with high mortality rates. Urgent identification of effective drug targets is imperative, with a focus on metabolic pathways to inhibit bacterial growth. Targeting the crucial metabolic pathways of K. pneumoniae would be a more efficient way to prevent its growth and the diseases that it causes. The present study focused on inhibiting the UDP-N-acetylglucosamine--N-acetylmuramyl-(pentapeptide)pyrophosphoryl-undecaprenol N-acetylglucosamine transferase (MurG) enzyme, which is a key enzyme in peptidoglycan biosynthesis pathway. A high throughput virtual screening was used to find possible lead molecules from Enamine -High-Throughput Screening Center library. The resulting high binding affinity ligands were further assessed for their drug-likeness and other pharmacokinetic properties. Based on these analyses, the three ligands Z95813755_1, Z324718246_1 and Z324718246_2 were selected for further molecular dynamic simulation studies. The molecular dynamic simulation results and MM/PBSA analysis predicted that both Z95813755_1 and Z324718246_2, molecules show higher binding affinity towards MurG. For the first time we are reporting potential candidate inhibitors against MurG from K. pneumoniae, providing new insights in management of multi drug resistant K. pneumoniae infections.
Collapse
Affiliation(s)
- Pragati Mahur
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Monika Jain
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
159
|
Pallathadka H, Jabir M, Rasool KH, Hanumanthaiah M, Sharma N, Pramanik A, Rab SO, Jawad SF, Oghenemaro EF, Mustafa YF. siRNA-based therapy for overcoming drug resistance in human solid tumours; molecular and immunological approaches. Hum Immunol 2025; 86:111221. [PMID: 39700968 DOI: 10.1016/j.humimm.2024.111221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
RNA interference (RNAi) is a primordial biological process that protects against external intrusion. SiRNA has the potential to selectively silence disease-related genes in a sequence-specific way, thus offering a promising therapeutic approach. The efficacy of siRNA-based therapies in cancer treatment has gained significant recognition due to multiple studies demonstrating its ability to effectively suppress cancer cells' growth and multiplication. Moreover, siRNA-based medicines have shown considerable promise in enhancing the sensitivity of cancer cells to chemotherapy and other treatment methods by suppressing genes that play a role in the development of drug resistance. Exploring and identifying functional genes linked to cancer cell characteristics and drug resistance is crucial for developing effective siRNAs for cancer treatment and advancing targeted and personalized therapeutics. Targeting and silencing genes in charge of resistance mechanisms, such as those involved in drug efflux, cell survival, or DNA repair, is possible with siRNA therapy in the context of drug resistance, especially cancer. Through inhibiting these genes, siRNA therapy can prevent resistance and restore the efficacy of traditional medications. This review addresses the potential of siRNAs in addressing drug resistance in human tumours, opening up new possibilities in cancer therapy. This review article offers a non-systematic summary of how different siRNA types contribute to cancer cells' treatment resistance. Using pertinent keywords, sources were chosen from reliable databases, including PubMed, Scopus, and Google Scholar. The review covered essential papers in this area and those that mainly addressed the function of siRNA in drug resistance. The articles examined in connection with the title of this review were primarily published from 2020 onward and are based on in vitro studies. Furthermore, this article examines the potential barriers and prospective perspectives of siRNA therapies.
Collapse
Affiliation(s)
| | - Majid Jabir
- Department of Applied Sciences, University of Technology, Iraq
| | | | - Malathi Hanumanthaiah
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri - 140307, Mohali, Punjab, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sabrean Farhan Jawad
- Department of Biochemistry, College of Science, Al-Mustaqbal University, 51001 Babil, Iraq.
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Delta State University, Faculty of Pharmacy, PMB 1 Abraka, Delta State, Nigeria
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
160
|
Qin X, Li X, Guo J, Zhou M, Xu Q, Lv Q, Zhu H, Xiao K, Liu Y, Chen S. Necroptosis contributes to deoxynivalenol-induced activation of the hypothalamic-pituitary-adrenal axis in a piglet model. Int Immunopharmacol 2024; 143:113541. [PMID: 39541842 DOI: 10.1016/j.intimp.2024.113541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The mycotoxin deoxynivalenol (DON) is highly prevalent in cereals as an immune stressor. The hypothalamic-pituitary-adrenal (HPA) axis is activated during periods of stress, and the organism is accompanied by inflammation. Necroptosis is a newly identified type of cell death. However, the relationship between necroptosis and HPA axis activation induced by DON is rarely reported. Our study aimed to explore the role played by necroptosis in HPA activation in a stress of piglet model produced by DON. Our results indicated that both feeding with a contaminated-DON diet (4 ppm) and DON injection at 0.8 mg/kg BW increased the concentration of plasma corticotropin-releasing hormone (CRH) and adrenocorticotrophic hormone (ACTH) and the mRNA expression of adrenal steroidogenic acute regulatory protein (StAR). Furthermore, the mRNA expression of pro-inflammatory cytokines and factors related to necroptosis in the hypothalamus, pituitary gland, and adrenal gland were increased. As an inhibitor of necroptosis, necrostatin-1 (Nec-1) inhibited necroptosis through decreasing mRNA expression of necroptosis signal factors in the HPA axis. Nec-1 also reduced the mRNA levels of pro-inflammatory cytokines in the HPA axis. Meanwhile, the activation of the HPA axis was inhibited by Nec-1 as shown by the decrease of plasma CRH and ACTH concentrations and the mRNA expressions of hypothalamus CRH and pituitary POMC. These findings indicated that as a result of necroptosis, the HPA axis was activated by DON. In light of these findings, necroptosis could be considered as an intervention target that alleviates HPA axis activation and stress responses.
Collapse
Affiliation(s)
- Xu Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaotong Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mohan Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qilong Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingqing Lv
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
161
|
Xu H, Yu Z, Zhu J, Liu H, Chen X, Jiang J, Zhu M, Li J. Types of cell death in diabetic cardiomyopathy: insights from animal models. Acta Biochim Biophys Sin (Shanghai) 2024; 57:681-689. [PMID: 39719881 DOI: 10.3724/abbs.2024213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Approximately one-tenth of the global population is affected by diabetes mellitus, and its incidence continues to rise each year. In China, 1.4 million patients die of diabetes-related complications every year. Additionally, approximately 26% of patients with diabetes develop diabetic cardiomyopathy, with heart failure being one of the main causes of death in these patients. However, early detection of diabetic cardiomyopathy has proven to be difficult in a clinical setting; furthermore, there are limited guidelines and targeted means of prevention and treatment for this disease. In recent years, several studies have provided evidence for the occurrence of various forms of regulated cell death in diabetic myocardial cells, including apoptosis, necroptosis, ferroptosis, and cuproptosis, which are closely linked to the pathological progression of diabetic cardiomyopathy. Although most research on diabetic cardiomyopathy is currently in the animal trial phase, the inhibition of these regulatory cell death processes can limit or slow down the progression of diabetic cardiomyopathy. Therefore, this review discusses the appropriate animal experimental models currently available for diabetic cardiomyopathy and evaluates the roles of apoptosis, necroptosis, ferroptosis, and cuproptosis in diabetic cardiomyopathy. We hope to provide new methods and ideas for future research in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Hongjiao Xu
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - Zhuang Yu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Haoran Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiangyuan Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jihong Jiang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Minmin Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
162
|
Franco C, Rezzani R. Methods and Models for Studying Mycobacterium tuberculosis in Respiratory Infections. Int J Mol Sci 2024; 26:18. [PMID: 39795880 PMCID: PMC11719571 DOI: 10.3390/ijms26010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Respiratory infections, including tuberculosis, constitute a major global health challenge. Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the leading causes of mortality worldwide. The disease's complexity is attributed to Mtb's capacity to persist in latent states, evade host immune defenses, and develop resistance to antimicrobial treatments, posing significant challenges for diagnosis and therapy. Traditional models, such as animal studies and two-dimensional (2D) in vitro systems, often fail to accurately recapitulate human-specific immune processes, particularly the formation of granulomas-a defining feature of tubercular infection. These limitations underscore the need for more physiologically relevant models to study TB pathogenesis. Emerging three-dimensional (3D) in vitro systems, including organoids and lung-on-chip platforms, offer innovative approaches to mimic the structural and functional complexity of the human lung. These models enable the recreation of key aspects of the tubercular granulomas, such as cellular interactions, oxygen gradients, and nutrient limitations, thereby providing deeper insights into Mtb pathogenesis. This review aims to elucidate the advantages of 3D in vitro systems in bridging the translational gap between traditional experimental approaches and clinical applications. Particular emphasis is placed on their potential to address challenges related to genetic variability in both the host and pathogen, thereby advancing tubercular research and therapeutic development.
Collapse
Affiliation(s)
- Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale–SISDO), 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
163
|
Miranda VDSC, Falcão LFM, Fuzii HT, Carvalho MLG, Lopes JDC, Filho AJM, Cruz ACR, Azevedo RDSDS, de Sousa JR, Wakimoto MD, Vasconcelos PFDC, Quaresma JAS. Analysis of MLKL, RIP1 and RIP3 Immunostaining Markers in Human Liver Tissue from Fatal Yellow Fever Cases: Insights into Necroptosis. Viruses 2024; 17:3. [PMID: 39861792 PMCID: PMC11768900 DOI: 10.3390/v17010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Necroptosis is a regulated form of cell death implicated in several pathological conditions, including viral infections. In this study, we investigated the expression and correlation of necroptosis markers MLKL, RIP1 and RIP3 in human liver tissue from fatal cases of yellow fever (YF) using immunohistochemistry (IHC). The liver samples were obtained from 21 YF-positive individuals and five flavivirus-negative controls with preserved liver parenchymal architecture. The cases underwent histopathological analysis, followed by tissue immunostaining with the immunohistochemical method of streptavidin-biotin peroxidase. Using the in situ method, we evaluated the centrilobular zone (Z3), midzonal zone (Z2), periportal zone and portal tract (PT) of human liver parenchyma with markers for necroptosis, RIPK1, RIPK3 and MLKL. A quantitative analysis revealed a significantly higher expression of MLKL, RIP1 and RIP3 in the liver parenchyma of YF cases compared to controls in different zones (Z3, Z2, Z1) and portal tracts (PTs) of the liver, especially in zone 2. Immunostaining confirmed the localization of MLKL, RIP1 and RIP3 in hepatocytes and inflammatory infiltrates, highlighting their involvement in the pathogenesis of YF. A Pearson correlation analysis demonstrated significant correlations among necroptosis markers, which indicates their coordinated regulation during YF-induced liver injury.
Collapse
Affiliation(s)
- Vanessa do Socorro Cabral Miranda
- Departmento of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil; (V.d.S.C.M.); (M.L.G.C.); (J.d.C.L.); (A.J.M.F.); (A.C.R.C.); (R.d.S.d.S.A.); (J.R.d.S.); (P.F.d.C.V.)
| | | | - Hellen Thais Fuzii
- Tropical Medicine Center, Federal University of Para, Belem 66055-240, PA, Brazil;
| | - Marcos Luiz Gaia Carvalho
- Departmento of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil; (V.d.S.C.M.); (M.L.G.C.); (J.d.C.L.); (A.J.M.F.); (A.C.R.C.); (R.d.S.d.S.A.); (J.R.d.S.); (P.F.d.C.V.)
| | - Jeferson da Costa Lopes
- Departmento of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil; (V.d.S.C.M.); (M.L.G.C.); (J.d.C.L.); (A.J.M.F.); (A.C.R.C.); (R.d.S.d.S.A.); (J.R.d.S.); (P.F.d.C.V.)
| | - Arnaldo Jorge Martins Filho
- Departmento of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil; (V.d.S.C.M.); (M.L.G.C.); (J.d.C.L.); (A.J.M.F.); (A.C.R.C.); (R.d.S.d.S.A.); (J.R.d.S.); (P.F.d.C.V.)
| | - Ana Cecilia Ribeiro Cruz
- Departmento of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil; (V.d.S.C.M.); (M.L.G.C.); (J.d.C.L.); (A.J.M.F.); (A.C.R.C.); (R.d.S.d.S.A.); (J.R.d.S.); (P.F.d.C.V.)
| | - Raimunda do Socorro da Silva Azevedo
- Departmento of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil; (V.d.S.C.M.); (M.L.G.C.); (J.d.C.L.); (A.J.M.F.); (A.C.R.C.); (R.d.S.d.S.A.); (J.R.d.S.); (P.F.d.C.V.)
| | - Jorge Rodrigues de Sousa
- Departmento of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil; (V.d.S.C.M.); (M.L.G.C.); (J.d.C.L.); (A.J.M.F.); (A.C.R.C.); (R.d.S.d.S.A.); (J.R.d.S.); (P.F.d.C.V.)
- Departmento of Pathology, State University of Para, Belem 66050-540, PA, Brazil;
- Tropical Medicine Center, Federal University of Para, Belem 66055-240, PA, Brazil;
| | - Mayumi Duarte Wakimoto
- Evandro Chagas National Institute of Infectious Diseases (INI-FIOCRUZ), Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Pedro Fernando da Costa Vasconcelos
- Departmento of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil; (V.d.S.C.M.); (M.L.G.C.); (J.d.C.L.); (A.J.M.F.); (A.C.R.C.); (R.d.S.d.S.A.); (J.R.d.S.); (P.F.d.C.V.)
- Departmento of Pathology, State University of Para, Belem 66050-540, PA, Brazil;
| | - Juarez Antônio Simões Quaresma
- Departmento of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil; (V.d.S.C.M.); (M.L.G.C.); (J.d.C.L.); (A.J.M.F.); (A.C.R.C.); (R.d.S.d.S.A.); (J.R.d.S.); (P.F.d.C.V.)
- Departmento of Pathology, State University of Para, Belem 66050-540, PA, Brazil;
- Tropical Medicine Center, Federal University of Para, Belem 66055-240, PA, Brazil;
- Evandro Chagas National Institute of Infectious Diseases (INI-FIOCRUZ), Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil;
- Department of Infectious Disease, School of Medicine, Sao Paulo University, Sao Paulo 01246-930, SP, Brazil
| |
Collapse
|
164
|
Lim T, Ham S, Kim HS, Yang JE, Lim H, Park HD, Byun Y. Developing Gingerol-Based Analogs against Pseudomonas aeruginosa Infections. ACS OMEGA 2024; 9:50281-50299. [PMID: 39741820 PMCID: PMC11683490 DOI: 10.1021/acsomega.4c06281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a Gram-negative opportunistic pathogen, produces virulent factors and forms biofilms through a quorum sensing (QS) mechanism. Modulating QS networks is considered an effective strategy for treating P. aeruginosa infections. Particularly, the rhl system, one of the QS networks, can be a potential target in treating patients with chronic infections. We previously discovered that gingerol acts as a RhlR antagonist of P. aeruginosa. Based on the chemical structure of gingerol, we have designed and synthesized gingerol derivatives by introducing various functional groups in the middle and tail regions. A comprehensive structure-activity relationship study showed that compound 5a substituted with phenyl group in the tail region was the most potent in various biological assessments, such as RhlR binding affinity, rhl gene expression, and virulence factor production of P. aeruginosa. Furthermore, compound 5a decreased the biofilm formation and pathogenicity of P. aeruginosa. Interestingly, compound 5a also influenced las system in addition to the rhl system. Taken together, compound 5a can be utilized as a potent compound for controlling P. aeruginosa infection.
Collapse
Affiliation(s)
- Taehyeong Lim
- College
of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic
of Korea
| | - Soyoung Ham
- School
of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic
of Korea
- Department
of Geoscience, University of Tuebingen, Schnarrenbergstraße 94−96, Tuebingen 72076, Germany
| | - Han-Shin Kim
- Division
of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Ji-Eun Yang
- College
of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic
of Korea
| | - Hyunwoong Lim
- College
of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic
of Korea
| | - Hee-Deung Park
- School
of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic
of Korea
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, 145
Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Youngjoo Byun
- College
of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic
of Korea
- Biomedical
Research Center, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| |
Collapse
|
165
|
Santhosh PB, Hristova-Panusheva K, Petrov T, Stoychev L, Krasteva N, Genova J. Femtosecond Laser-Induced Photothermal Effects of Ultrasmall Plasmonic Gold Nanoparticles on the Viability of Human Hepatocellular Carcinoma HepG2 Cells. Cells 2024; 13:2139. [PMID: 39768227 PMCID: PMC11675025 DOI: 10.3390/cells13242139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Laser-induced photothermal therapy using gold nanoparticles (AuNPs) has emerged as a promising approach to cancer therapy. However, optimizing various laser parameters is critical for enhancing the photothermal conversion efficacy of plasmonic nanomaterials. In this regard, the present study investigates the photothermal effects of dodecanethiol-stabilized hydrophobic ultrasmall spherical AuNPs (TEM size 2.2 ± 1.1 nm), induced by a 343 nm wavelength ultrafast femtosecond-pulse laser with a low intensity (0.1 W/cm2) for 5 and 10 min, on the cell morphology and viability of human hepatocellular carcinoma (HepG2) cells treated in vitro. The optical microscopy images showed considerable alteration in the overall morphology of the cells treated with AuNPs and irradiated with laser light. Infrared thermometer measurements showed that the temperature of the cell medium treated with AuNPs and exposed to the laser increased steadily from 22 °C to 46 °C and 48.5 °C after 5 and 10 min, respectively. The WST-1 assay results showed a significant reduction in cell viability, demonstrating a synergistic therapeutic effect of the femtosecond laser and AuNPs on HepG2 cells. The obtained results pave the way to design a less expensive, effective, and minimally invasive photothermal approach to treat cancers with reduced side effects.
Collapse
Affiliation(s)
- Poornima Budime Santhosh
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria; (P.B.S.); (T.P.); (L.S.)
- Central Laboratory of Solar Energy and New Energy Sources, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Kamelia Hristova-Panusheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria (N.K.)
| | - Todor Petrov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria; (P.B.S.); (T.P.); (L.S.)
- Faculty of Applied Mathematics and Informatics, Technical University of Sofia, 8, Kliment Ohridski St, 1000 Sofia, Bulgaria
| | - Lyubomir Stoychev
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria; (P.B.S.); (T.P.); (L.S.)
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria (N.K.)
| | - Julia Genova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria; (P.B.S.); (T.P.); (L.S.)
| |
Collapse
|
166
|
Xia S, Gu X, Wang G, Zhong Y, Ma F, Liu Q, Xie J. Regulated Cell Death of Alveolar Macrophages in Acute Lung Inflammation: Current Knowledge and Perspectives. J Inflamm Res 2024; 17:11419-11436. [PMID: 39722732 PMCID: PMC11669335 DOI: 10.2147/jir.s497775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common and serious clinical lung disease characterized by extensive alveolar damage and inflammation leading to impaired gas exchange. Alveolar macrophages (AMs) maintain homeostatic properties and immune defenses in lung tissues. Several studies have reported that AMs are involved in and regulate ALI/ARDS onset and progression via different regulated cell death (RCD) programs, such as pyroptosis, apoptosis, autophagic cell death, and necroptosis. Notably, the effects of RCD in AMs in disease are complex and variable depending on the environment and stimuli. In this review, we provide a comprehensive perspective on how regulated AMs death impacts on ALI/ARDS and assess its potential in new therapeutic development. Additionally, we describe the crosstalk between different RCD types in ALI, and provide new perspectives for the treatment of ALI/ARDS and other severe lung diseases.
Collapse
Affiliation(s)
- Siwei Xia
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaoyan Gu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Gaojian Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yizhi Zhong
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Fengjie Ma
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qinxue Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Junran Xie
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
167
|
Yu J, An N, Zhu J, Zhu B, Zhang G, Chen K, Zhou Y, Ye T, Li G. AVL-armed oncolytic vaccinia virus promotes viral replication and boosts antitumor immunity via increasing ROS levels in pancreatic cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200878. [PMID: 39431173 PMCID: PMC11488421 DOI: 10.1016/j.omton.2024.200878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024]
Abstract
Pancreatic malignant neoplasm is an extremely deadly malignancy well known for its resistance to traditional therapeutic approaches. Enhanced treatments are imperative for individuals diagnosed with pancreatic cancer (PC). Recent investigations have shed light on the wide-ranging anticancer properties of genetic therapy facilitated by oncolytic vaccinia virus. To illuminate the precise impacts of Aphrocallistes vastus lectin-armed oncolytic vaccinia virus (oncoVV-AVL) on PC, AsPC-1 and PANC-1 cells underwent treatment with oncoVV-AVL. Our findings revealed that oncoVV-AVL possesses the capacity to heighten oncolytic effects on PC cells and incite the production of diverse cytokines like tumor necrosis factor-α, interleukin-6 (IL-6), IL-8, and interferon-I (IFN-I), without triggering antiviral responses. Additionally, oncoVV-AVL can significantly elevate the levels of ROS in PC cells, initiating an oxidative stress response that promotes viral replication, apoptosis, and autophagy. Moreover, in xenograft tumor models, oncoVV-AVL notably restrained PC growth, enhanced IFN-γ levels in the bloodstream, and reprogrammed macrophages. Our investigation indicates that oncoVV-AVL boosts the efficacy of antitumor actions against PC tumors by orchestrating reactive oxygen species-triggered viral replication, fostering M1 polarization, and reshaping the tumor microenvironment to transform cold PC tumors into hot ones. These findings imply that oncoVV-AVL could present a novel therapeutic approach for treating PC tumors.
Collapse
Affiliation(s)
- Jianlei Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Nan An
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jili Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Borong Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guohui Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kan Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanrong Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Gongchu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
168
|
Liu H, Fan Z, Tong N, Lin J, Huang Y, Duan Y, Zhu X. The exploration of high production of tiancimycins in Streptomyces sp. CB03234-S revealed potential influences of universal stress proteins on secondary metabolisms of streptomycetes. Microb Cell Fact 2024; 23:337. [PMID: 39702388 DOI: 10.1186/s12934-024-02613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Universal stress proteins (USPs) are prevalent in various bacteria to cope with different adverse stresses, while their possible effects on secondary metabolisms of hosts are unclear. Tiancimycins (TNMs) are ten-membered endiynes possessing excellent potential for development of anticancer antibody-drug conjugates. During our efforts to improve TNMs titer, a high-producing strain Streptomyces sp. CB03234-S had been obtained and its possible high yield mechanism is being continuously explored to further enhance TNMs production. RESULTS In this work, the whole-genome resequencing and analysis results revealed a notable 583 kb terminal deletion containing 8 highly expressed usp genes in the genome of CB03234-S. The individual complementation of lost USPs in CB03234-S all showed differential effects on secondary metabolism, especially TNMs production. Among them, the overexpression of USP3 increased TNMs titer from 12.8 ± 0.2 to 31.1 ± 2.3 mg/L, while the overexpression of USP8 significantly reduced TNMs titer to only 1.0 ± 0.1 mg/L, but activated the production of porphyrin-type compounds. Subsequent genetic manipulations on USP3/USP8 orthologs in Streptomyces. coelicolor A3(2) and Streptomyces sp. CB00271 also presented clear effects on the secondary metabolisms of hosts. Further sequence similarity network analysis and Streptomyces-based pan‑genomic analysis suggested that the USP3/USP8 orthologs are widely distributed across Streptomyces. CONCLUSION Our studies shed light on the potential effects of USPs on secondary metabolisms of streptomycetes for the first time, and USPs could become novel targets for exploring and exploiting natural products in streptomycetes.
Collapse
Affiliation(s)
- Huiming Liu
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan, 410013, China
| | - Zhiying Fan
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan, 410013, China
| | - Nian Tong
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan, 410013, China
| | - Jing Lin
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan, 410013, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan, 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410013, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan, 410013, China.
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan, 410013, China.
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410013, China.
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan, 410013, China.
- Center for Future Foods, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan, 450016, China.
- Nanyang Westlake-Muyuan Institute of Synthetic Biology, Nanyang, Henan, 473000, China.
| |
Collapse
|
169
|
Hu R, Liu Z, Hou H, Li J, Yang M, Feng P, Wang X, Xu D. Identification of key necroptosis-related genes and immune landscape in patients with immunoglobulin A nephropathy. BMC Nephrol 2024; 25:459. [PMID: 39696012 PMCID: PMC11653910 DOI: 10.1186/s12882-024-03885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is a major cause of chronic kidney disease (CKD) and kidney failure. Necroptosis is a novel type of programmed cell death that has been proved to be associated with the pathogenesis of infectious disease, cardiovascular disease, neurological disorders and so on. However, the role of necroptosis in IgAN remains unclear. METHODS In this study, we explored the role of necroptosis-related genes in the pathogenesis of IgAN using a comprehensive bioinformatics method. Microarray datasets GSE93798 and GSE115857 were downloaded from Gene Expression Omnibus (GEO). "limma" package of R software was employed to identify necroptosis-related differentially expressed genes (NRDEGs) between IgAN and healthy controls. GO and KEGG functional enrichment analysis was performed by Clusterprofiler. Least absolute shrinkage and selection operator (LASSO) regression analysis identified hub NRDEGs. We further established a diagnostic model consisting of 7 diagnostic hub NRDEGs and validated the efficacy by an external dataset. The expression of hub genes was confirmed in sc-RNA dataset GSE171314. Immune infiltration, gene set enrichment analysis and transcription factor binding motifs enrichment analysis were conducted to further uncover their roles. RESULTS 1076 differentially expressed genes were identified between healthy individuals and IgAN patients from RNA-seq dataset GSE9379. Then we cross-linked them with necroptosis-related genes to obtain 9 NRDEGs. LASSO regression analysis screened out 7 hub genes (JUN, CD274, SERTAD1, NFKBIA, H19, UCHL1 and EZH2) of IgAN. We further conducted functional enrichment analysis and constructed the diagnostic model based on dataset GSE93798. GSE115857 was used as the independent validation cohort and indicated a great predictive efficacy. Immune infiltration, gene set enrichment analysis and transcription factor binding motifs enrichment analysis revealed their potential function. Finally, we screened out four drugs that were predicted to have therapeutic value of IgAN. CONCLUSIONS In summary, we identified 7 hub necroptosis-associated genes, which can be used as potential genetic biomarkers for IgAN prediction and treatment. Four drugs were predicted as the potential therapeutic solutions. Collectively, we provided insights into the necroptosis-related mechanisms and treatment of IgAN at the transcriptome level.
Collapse
Affiliation(s)
- Ruikun Hu
- Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Ziyu Liu
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Huihui Hou
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Jingyu Li
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ming Yang
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Panfeng Feng
- Department of Pharmacy, The First People's Hospital of Nantong city, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Xiaorong Wang
- Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Dechao Xu
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
170
|
Omwenga EO, Awuor SO. The Bacterial Biofilms: Formation, Impacts, and Possible Management Targets in the Healthcare System. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:1542576. [PMID: 39717533 PMCID: PMC11666319 DOI: 10.1155/cjid/1542576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024]
Abstract
Introduction: The persistent increase in multidrug-resistant pathogens has catalyzed the creation of novel strategies to address antivirulence and anti-infective elements. Such methodologies aim to diminish the selective pressure exerted on bacterial populations, decreasing the likelihood of resistance emergence. This review explores the role of biofilm formation as a significant virulence factor and its impact on the development of antimicrobial resistance (AMR). Case Presentation: The ability of bacteria to form a superstructure-biofilm-has made resistance cases in the microbial world a big concern to public health and other sectors as it is a crucial virulence factor that causes difficulties in the management of infections, hence enhancing chronic infection occurrence. Biofilm formation dates to about 3.4 billion years when prokaryotes were discovered to be forming them and since then due to evolution and growth in science, they are more understood. Management and Outcome: The unique microenvironments within bacterial biofilms diminish antibiotic effectiveness and help bacteria evade the host immune system. Biofilm production is a widespread capability among diverse bacterial species. Biofilm formation is enhanced by quorum sensing (QS), reduction of nutrients, or harsh environments for the bacteria. Conclusion: The rise of severe, treatment-resistant biofilm infections poses major challenges in medicine and agriculture, yet much about how these biofilms form remains unknown.
Collapse
Affiliation(s)
- Eric Omori Omwenga
- Department of Medical Microbiology & Parasitology, School of Health Sciences, Kisii University, Kisii, Kenya
| | - Silas Onyango Awuor
- Department of Applied Health Sciences, School of Health Sciences, Kisii University, Kisii, Kenya
- Department of Medical Microbiology, Jaramogi Oginga Odinga Teaching and Referral Hospital, Kisumu, Kenya
| |
Collapse
|
171
|
Ntanzi N, Khan RB, Nxumalo MB, Kumalo HM. Mechanisms of H2pmen-Induced cell death: Necroptosis and apoptosis in MDA cells, necrosis in MCF7 cells. Heliyon 2024; 10:e40654. [PMID: 39660197 PMCID: PMC11629215 DOI: 10.1016/j.heliyon.2024.e40654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Breast cancer is the second leading cause of cancer-related deaths in women around the world. Several cancer therapeutics have already been discovered and are being used to treat breast cancer. However, most of them cause severe side effects. H2pmen, a tetradentate ligand, was used in this study to investigate its cytotoxic effects on growth, viability, and induction of cell death in MCF7 and MDA cells. The cell viability was determined by treating cells with different concentrations of H2pmen. MTT assay was used to obtain an IC50, and the cells were then assayed for membrane damage, apoptotic induction, and metabolism. Protein expression of Bax, p53, Bcl2, and xIAP was identified using Western blot analysis. The gene expression of RIPK1, RIPK3, and MKLK was determined using qPCR. In MDA cells, H2pmen increases cytotoxicity, as evidenced by upregulated LDH and JC-10, and enhances apoptosis, indicated by upregulated caspase-3/7 and Bax. In contrast, MCF7 cells exhibit a more stable profile with downregulated LDH and Annexin V Activity. MCF7 cells also show reduced necroptosis and increased necrosis. These findings highlight that H2pmen induces varied cytotoxic effects across MDA and MCF7 cells, with MDA cells exhibiting more pronounced apoptosis and necroptosis alongside complex anti-apoptotic responses.
Collapse
Affiliation(s)
- Nosipho Ntanzi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rene B. Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mthokozisi B. Nxumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hezekiel M. Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
172
|
Han J, Aljahdali N, Zhao S, Tang H, Harbottle H, Hoffmann M, Frye JG, Foley SL. Infection biology of Salmonella enterica. EcoSal Plus 2024; 12:eesp00012023. [PMID: 38415623 PMCID: PMC11636313 DOI: 10.1128/ecosalplus.esp-0001-2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 02/29/2024]
Abstract
Salmonella enterica is the leading cause of bacterial foodborne illness in the USA, with an estimated 95% of salmonellosis cases due to the consumption of contaminated food products. Salmonella can cause several different disease syndromes, with the most common being gastroenteritis, followed by bacteremia and typhoid fever. Among the over 2,600 currently identified serotypes/serovars, some are mostly host-restricted and host-adapted, while the majority of serotypes can infect a broader range of host species and are associated with causing both livestock and human disease. Salmonella serotypes and strains within serovars can vary considerably in the severity of disease that may result from infection, with some serovars that are more highly associated with invasive disease in humans, while others predominantly cause mild gastroenteritis. These observed clinical differences may be caused by the genetic make-up and diversity of the serovars. Salmonella virulence systems are very complex containing several virulence-associated genes with different functions that contribute to its pathogenicity. The different clinical syndromes are associated with unique groups of virulence genes, and strains often differ in the array of virulence traits they display. On the chromosome, virulence genes are often clustered in regions known as Salmonella pathogenicity islands (SPIs), which are scattered throughout different Salmonella genomes and encode factors essential for adhesion, invasion, survival, and replication within the host. Plasmids can also carry various genes that contribute to Salmonella pathogenicity. For example, strains from several serovars associated with significant human disease, including Choleraesuis, Dublin, Enteritidis, Newport, and Typhimurium, can carry virulence plasmids with genes contributing to attachment, immune system evasion, and other roles. The goal of this comprehensive review is to provide key information on the Salmonella virulence, including the contributions of genes encoded in SPIs and plasmids during Salmonella pathogenesis.
Collapse
Affiliation(s)
- Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nesreen Aljahdali
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Hailin Tang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Heather Harbottle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jonathan G. Frye
- Agricutlutral Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Steven L. Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
173
|
Kim H, Kim KS, Lee YC, Cho JH. Chloroform Extract from Fermented Viola mandshurica Regulates LPS-Induced Inflammation Response in RAW 264.7 Cells by Inhibiting iNOS and COX-2. J Microbiol Biotechnol 2024; 35:e2408047. [PMID: 39849923 PMCID: PMC11813387 DOI: 10.4014/jmb.2408.08047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/12/2024] [Accepted: 11/30/2024] [Indexed: 01/25/2025]
Abstract
Inflammatory is a crucial part of the immune system of body protect it from harmful invaders, such as bacteria, viruses, and other foreign substances. In this study, the effects of chloroform extract of fermented Viola mandshurica (CEFV) on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 macrophages were investigated. The CEFV significantly inhibited NO production and reduced the expression of inducible nitric oxide synthase (iNOS) at both protein and mRNA levels in a dose-dependent manner. Also, CEFV decreased PGE2 production, suppressed COX-2 expression, and inhibited the activation of the ERK and JNK pathways but not the p38 pathway. Taken together, CEFV suppressed NF-κB activation, which is a key regulator in the inflammatory response. The main phenolic compounds identified in CEFV were tectoridin, luteolin, resveratrol, and hesperetin. Therefore, in this study, CEFC exhibits potent anti-inflammatory effects by downregulating the production of pro-inflammatory mediators and inhibiting key inflammatory pathway in RAW264.7 cells.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A
University, Busan 49315, Republic of Korea
| | - Kyoung-Sook Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A
University, Busan 49315, Republic of Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A
University, Busan 49315, Republic of Korea
| | - Jong Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A
University, Busan 49315, Republic of Korea
| |
Collapse
|
174
|
Shahabadi N, Zendehcheshm S, Mahdavi M, Khademi F. Green synthesis of ZnO nanoparticles: in-silico and in-vitro assessment of anticancer and antibacterial activity and biomolecule (DNA) binding analysis. J Biomol Struct Dyn 2024:1-15. [PMID: 39659248 DOI: 10.1080/07391102.2024.2439044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/06/2024] [Indexed: 12/12/2024]
Abstract
The zinc oxide nanoparticles (ZnO NPs) were synthesized by a green chemistry approach utilizing Stachys schtschegleevii Sosn.) S. schtchegleevii (extract, aims to innovate by employing environmentally friendly techniques. The production of ZnO NPs was confirmed by FT-IR, zeta potential, TEM, SEM-EDX, DLS and ultraviolet-visible techniques. The antibacterial potency of the ZnO NPs was evaluated toward pathogenic strains of E. coli and S. aureus. The antibacterial efficacy of this NPs against the selected bacteria followed the sequence: S. aureus > E. coli. The results of the MTT assay indicate that ZnO NPs have significant anticancer potential against the MCF-7 cell line. Furthermore, the synthesized ZnO NPs demonstrate a stronger inhibitory effect compared to the extract on the cancer cell line. To find out the potential of ZnO NPs as therapeutics, interaction process with calf-thymus DNA (ct-DNA) was performed by using absorption, and fluorescence studies. The evaluation of the fluorescence spectra and UV-visible absorption showed a satisfactory association of the ZnO NPs with ct-DNA. Besides, to clarify the binding interactions of ZnO NPs with the enzymes and ct-DNA, molecular docking simulation was performed. The molecular docking' results show a well compromise with our experimental results. In total, the present investigation employs ZnO NPs synthesized through green methods as an efficient strategy for the purpose of the potentiation of anticancer and antibacterial activities in a biocompatible manner.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Saba Zendehcheshm
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Mohammad Mahdavi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Fatemeh Khademi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
175
|
Cusumano JA, Kalogeropoulos AP, Le Provost M, Gallo NR, Levine SM, Inzana T, Papamanoli A. The emerging challenge of Enterococcus faecalis endocarditis after transcatheter aortic valve implantation: time for innovative treatment approaches. Clin Microbiol Rev 2024; 37:e0016823. [PMID: 39235238 PMCID: PMC11629618 DOI: 10.1128/cmr.00168-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
SUMMARYInfective endocarditis (IE) is a life-threatening infection that has nearly doubled in prevalence over the last two decades due to the increase in implantable cardiac devices. Transcatheter aortic valve implantation (TAVI) is currently one of the most common cardiac procedures. TAVI usage continues to exponentially rise, inevitability increasing TAVI-IE. Patients with TAVI are frequently nonsurgical candidates, and TAVI-IE 1-year mortality rates can be as high as 74% without valve or bacterial biofilm removal. Enterococcus faecalis, a historically less common IE pathogen, is the primary cause of TAVI-IE. Treatment options are limited due to enterococcal intrinsic resistance and biofilm formation. Novel approaches are warranted to tackle current therapeutic gaps. We describe the existing challenges in treating TAVI-IE and how available treatment discovery approaches can be combined with an in silico "Living Heart" model to create solutions for the future.
Collapse
Affiliation(s)
- Jaclyn A. Cusumano
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA
| | - Andreas P. Kalogeropoulos
- Renaissance School of Medicine Division of Cardiology, Stony Brook University, Stony Brook, New York, USA
| | - Mathieu Le Provost
- School of Engineering, Computer Science and Artificial Intelligence, Long Island University, Brooklyn, New York, USA
| | - Nicolas R. Gallo
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA
- School of Engineering, Computer Science and Artificial Intelligence, Long Island University, Brooklyn, New York, USA
| | | | - Thomas Inzana
- College of Veterinary Medicine, Long Island University, Brooklyn, New York, USA
| | - Aikaterini Papamanoli
- Division of Infectious Diseases, Stony Brook University Medical Center, Stony Brook, New York, USA
| |
Collapse
|
176
|
Roberts JM, Milo S, Metcalf DG. Harnessing the Power of Our Immune System: The Antimicrobial and Antibiofilm Properties of Nitric Oxide. Microorganisms 2024; 12:2543. [PMID: 39770746 PMCID: PMC11677572 DOI: 10.3390/microorganisms12122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide (NO) is a free radical of the human innate immune response to invading pathogens. NO, produced by nitric oxide synthases (NOSs), is used by the immune system to kill microorganisms encapsulated within phagosomes via protein and DNA disruption. Owing to its ability to disperse biofilm-bound microorganisms, penetrate the biofilm matrix, and act as a signal molecule, NO may also be effective as an antibiofilm agent. NO can be considered an underappreciated antimicrobial that could be levied against infected, at-risk, and hard-to-heal wounds due to the inherent lack of bacterial resistance, and tolerance by human tissues. NO produced within a wound dressing may be an effective method of disrupting biofilms and killing microorganisms in hard-to-heal wounds such as diabetic foot ulcers, venous leg ulcers, and pressure injuries. We have conducted a narrative review of the evidence underlying the key antimicrobial and antibiofilm mechanisms of action of NO for it to serve as an exogenously-produced antimicrobial agent in dressings used in the treatment of hard-to-heal wounds.
Collapse
Affiliation(s)
| | | | - Daniel Gary Metcalf
- Advanced Wound Care Research & Development, Convatec, Deeside Industrial Park, Deeside CH5 2NU, UK; (J.M.R.); (S.M.)
| |
Collapse
|
177
|
Wang M, Wu B, Tang K, Wang X, Liu X, Duan Y, Wang J, Wang X, Wang Y, Li J, Cao C, Ren F, Chang Z. Cell-Cycle-Related and Expression Elevated Protein in Tumor Upregulates the Antioxidant Genes via Activation of NF-κB/Nrf2 in Acute Liver Injury. TOXICS 2024; 12:893. [PMID: 39771108 PMCID: PMC11728809 DOI: 10.3390/toxics12120893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND AND AIMS Cell-cycle-related and expression elevated protein in tumor (CREPT, also named RPRD1B) is highly expressed in tumors and functions to promote tumorigenesis. However, the role of CREPT in the pathophysiology of acute liver injury is limited. Here, we demonstrate that CREPT plays an essential role during acute liver injury. APPROACH AND RESULTS Hepatocyte-specific CREPT knockout (CREPThep-/-) and CREPTflox/flox mice were generated and subjected to the CCl4 challenge for the acute (24 h) liver injury. The acute CCl4 challenge triggered increased inflammation as well as liver injury, associated with stronger apoptotic and necroptotic cell death in CREPThep-/- mice. CREPT knockout down-regulated the expression of different genes involved in cell survival, inflammation and fibrosis under acute CCl4 challenge conditions. Antioxidant enzymes such as superoxide dismutase 2 (Sod2) and ferritin heavy chain 1 (Fth1) are dramatically induced at 24 h post-CCl4 treatment, but this induction is blocked by transcriptional inactivation of NF-κB/Nrf2, indicating that CREPT might promote hepatocyte survival in acute liver injury by participating in the transactivation of antioxidant genes. CONCLUSIONS These results elucidate the role of CREPT in acute liver injury and provide hints for future research on how CREPT might function in hepatocyte renewal.
Collapse
Affiliation(s)
- Minghan Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; (M.W.); (Z.C.)
| | - Bin Wu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China; (B.W.)
| | - Kaiyang Tang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; (M.W.); (Z.C.)
| | - Xuexin Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Xinyan Liu
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Yinan Duan
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; (M.W.); (Z.C.)
| | - Jiayu Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; (M.W.); (Z.C.)
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China; (B.W.)
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; (M.W.); (Z.C.)
| | - Jun Li
- Jinfeng Laboratory, No. 313 Jinyue Road, High-Tech Zone, Chongqing 401329, China
| | - Chenxi Cao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China; (B.W.)
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; (M.W.); (Z.C.)
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; (M.W.); (Z.C.)
| |
Collapse
|
178
|
Srivastava R, Ahmad F, Mishra BN, Mathkor DM, Singh V, Haque S. Terrein: isolation, chemical synthesis, bioactivity and future prospects of a potential therapeutic fungal metabolite. Nat Prod Res 2024:1-13. [PMID: 39641157 DOI: 10.1080/14786419.2024.2436112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The increasing risk of drug-resistant infections and unexpected pandemics like Covid-19 has prompted researchers to explore the area of drug repurposing. Natural products, being a result of the evolutionary optimisation processes can be potential starting points for such drug discovery programs. One such unexplored chemical is terrein, a secondary fungal metabolite. Although discovered in 1935 from Aspergillus terreus, the therapeutic potential of terrein has largely remained undeciphered. Research has primarily been focused on its biosynthetic pathways and its mycotoxic effects. However, in the last two decades, its biological properties including anticancer, anti-inflammatory anti-melanogenic, and bacteriocidal activities have been reported. These reports are preliminary in nature and do not adequately establish its overall therapeutic application. From its structural and therapeutic properties, it can be conjectured that terrein may act as a novel multimodal therapeutic. This comprehensive study reviews the synthesis, production and application aspects of terrein to understand its importance.
Collapse
Affiliation(s)
- Rashi Srivastava
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
179
|
El-Saadony MT, Fang G, Yan S, Alkafaas SS, El Nasharty MA, Khedr SA, Hussien AM, Ghosh S, Dladla M, Elkafas SS, Ibrahim EH, Salem HM, Mosa WFA, Ahmed AE, Mohammed DM, Korma SA, El-Tarabily MK, Saad AM, El-Tarabily KA, AbuQamar SF. Green Synthesis of Zinc Oxide Nanoparticles: Preparation, Characterization, and Biomedical Applications - A Review. Int J Nanomedicine 2024; 19:12889-12937. [PMID: 39651353 PMCID: PMC11624689 DOI: 10.2147/ijn.s487188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 12/11/2024] Open
Abstract
Over the last decade, biomedical nanomaterials have garnered significant attention due to their remarkable biological properties and diverse applications in biomedicine. Metal oxide nanoparticles (NPs) are particularly notable for their wide range of medicinal uses, including antibacterial, anticancer, biosensing, cell imaging, and drug/gene delivery. Among these, zinc oxide (ZnO) NPs stand out for their versatility and effectiveness. Recently, ZnO NPs have become a primary material in various sectors, such as pharmaceutical, cosmetic, antimicrobials, construction, textile, and automotive industries. ZnO NPs can generate reactive oxygen species and induce cellular apoptosis, thus underpinning their potent anticancer and antibacterial properties. To meet the growing demand, numerous synthetic approaches have been developed to produce ZnO NPs. However, traditional manufacturing processes often involve significant economic and environmental costs, prompting a search for more sustainable alternatives. Intriguingly, biological synthesis methods utilizing plants, plant extracts, or microorganisms have emerged as ideal for producing ZnO NPs. These green production techniques offer numerous medicinal, economic, environmental, and health benefits. This review highlights the latest advancements in the green synthesis of ZnO NPs and their biomedical applications, showcasing their potential to revolutionize the field with eco-friendly and cost-effective solutions.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Guihong Fang
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Si Yan
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A El Nasharty
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta, 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21531, Egypt
| | - Soumya Ghosh
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Mthokozisi Dladla
- Human Molecular Biology Unit (School of Biomedical Sciences), Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, Menofia, 32511, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Essam H Ibrahim
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, 12611, Egypt
| | - Heba Mohammed Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
180
|
Park SE, Kwon SJ, Kim SJ, Jeong JB, Kim MJ, Choi SJ, Oh SY, Ryu GH, Jeon HB, Chang JW. Anti-necroptotic effects of human Wharton's jelly-derived mesenchymal stem cells in skeletal muscle cell death model via secretion of GRO-α. PLoS One 2024; 19:e0313693. [PMID: 39621655 PMCID: PMC11611217 DOI: 10.1371/journal.pone.0313693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/29/2024] [Indexed: 01/06/2025] Open
Abstract
Human mesenchymal stem cells (hMSCs) have therapeutic applications and potential for use in regenerative medicine. However, the use of hMSCs in research and clinical medicine is limited by a lack of information pertaining to their donor-specific functional attributes. In this study, we compared the characteristics of same-donor derived placenta (PL) and Wharton's jelly (WJ)-derived hMSCs, we also compared their mechanism of action in a skeletal muscle disease in vitro model. The same-donor-derived hWJ- and hPL-MSCs exhibited typical hMSC characteristics. However, GRO-α was differentially expressed in hWJ- and hPL-MSCs. hWJ-MSCs, which secreted a high amount of GRO-α, displayed a higher ability to inhibit necroptosis in skeletal muscle cells than hPL-MSCs. This demonstrates the anti-necroptotic therapeutic effect of GRO-α in the skeletal muscle cell death model. Furthermore, GRO-α also exhibited the anti-necroptotic effect in a Duchenne muscular dystrophy (DMD) mouse model. Considering their potential to inhibit necroptosis in skeletal muscle cells, hWJ-MSCs and the derived GRO-α are novel treatment options for skeletal muscle diseases such as DMD.
Collapse
Affiliation(s)
- Sang Eon Park
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Soo Jin Kwon
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Sun Jeong Kim
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jang Bin Jeong
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Min-Jeong Kim
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Suk-joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul, Republic of Korea
| | - Soo-young Oh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul, Republic of Korea
| | - Gyu Ha Ryu
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- The Office of R&D Strategy & Planning, Samsung Medical Center, Seoul, Republic of Korea
| | - Hong Bae Jeon
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
| | - Jong Wook Chang
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
181
|
Parappilly SJ, Radhakrishnan EK, George SM. Antibacterial and antibiofilm activity of human gut lactic acid bacteria. Braz J Microbiol 2024; 55:3529-3539. [PMID: 39365429 PMCID: PMC11711747 DOI: 10.1007/s42770-024-01530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
The present study focused on the antibacterial and antibiofilm activity of novel lactic acid bacterial (LAB) strains isolated from the healthy human volunteers of different age groups and their consortium (LABCON), against the enteropathogenic bacteria. From the study, methanolic extract of LAB isolates and their consortia were found to have promising antibacterial activity and antibiofilm activity against Escherichia coli (ATCC 35218) and Staphylococcus aureus (ATCC 25923). The antimicrobial compounds including the DL-3 phenyllactic acid, DL-p-hydroxyphenyllactic acid, and Succinic acid produced by the LAB could be considered to inhibit the growth and biofilm formation by E. coli (ATCC 35218) and S. aureus (ATCC 25923). Detailed insight into the antibiofilm activity could also be demonstrated by Confocal Raman microscopy attached with AFM and Fluorescent microscope. From the results of the study, the consortium LABCON was superior in antimicrobial and antibiofilm activity and can be considered to have promising application in infection control.
Collapse
Affiliation(s)
- Sherin Joy Parappilly
- Post Graduate and Research Department of Microbiology, Sree Sankara College, Kalady, 683574, Kerala, India
| | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Sumi Mary George
- Post Graduate and Research Department of Microbiology, Sree Sankara College, Kalady, 683574, Kerala, India.
| |
Collapse
|
182
|
Sengupta A, Chakraborty S, Biswas S, Patra SK, Ghosh S. S-nitrosoglutathione (GSNO) induces necroptotic cell death in K562 cells: Involvement of p73, TSC2 and SIRT1. Cell Signal 2024; 124:111377. [PMID: 39222864 DOI: 10.1016/j.cellsig.2024.111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Nitric oxide and Reactive Nitrogen Species are known to effect tumorigenicity. GSNO is one of the main NO carrying signalling moiety in cell. In the current study, we tried to delve into the effect of GSNO induced nitrosative stress in three different myelogenous leukemic K562, U937 and THP-1 cell lines. METHOD WST-8 assay was performed to investigate cell viability. RT-PCR and western-blot analysis were done to investigate mRNA and protein expression. Spectrophotometric and fluorimetric assays were done to investigate enzyme activities. RESULT We found that GSNO exposure led to reduced cell viability and the mode of cell death in K562 was non apoptotic in nature. GSNO promoted impaired autophagic flux and necroptosis. GSNO treatment heightened phosphorylation of AMPK and TSC2 and inhibited mTOR pathway. We observed increase in NAD+/ NADH ratio following GSNO treatment. Increase in both SIRT1 m-RNA and protein expression was observed. While total SIRT activity remained unaltered. GSNO increased tumor suppressor TAp73/ oncogenic ∆Np73 ratio in K562 cells which was correlated with cell mortality. Surprisingly, GSNO did not alter cellular redox status or redox associated protein expression. However, steep increase in total SNO and PSNO content was observed. Furthermore, inhibition of autophagy, AMPK phosphorylation or SIRT1 exacerbated the effect of GSNO. Altogether our work gives insights into GSNO mediated necroptotic event in K562 cells which can be excavated to develop NO based anticancer therapeutics. CONCLUSION Our data suggests that GSNO could induce necroptotic cell death in K562 through mitochondrial dysfunctionality and PTM of different cellular proteins.
Collapse
Affiliation(s)
- Ayantika Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Subhamoy Chakraborty
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sanchita Biswas
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sourav Kumar Patra
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
183
|
Shankar G, Akhter Y. Stealing survival: Iron acquisition strategies of Mycobacteriumtuberculosis. Biochimie 2024; 227:37-60. [PMID: 38901792 DOI: 10.1016/j.biochi.2024.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), faces iron scarcity within the host due to immune defenses. This review explores the importance of iron for Mtb and its strategies to overcome iron restriction. We discuss how the host limits iron as an innate immune response and how Mtb utilizes various iron acquisition systems, particularly the siderophore-mediated pathway. The review illustrates the structure and biosynthesis of mycobactin, a key siderophore in Mtb, and the regulation of its production. We explore the potential of targeting siderophore biosynthesis and uptake as a novel therapeutic approach for TB. Finally, we summarize current knowledge on Mtb's iron acquisition and highlight promising directions for future research to exploit this pathway for developing new TB interventions.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| |
Collapse
|
184
|
Elmorsy EA, Saber S, Hamad RS, Abdel-Reheim MA, El-Kott AF, AlShehri MA, Morsy K, Salama SA, Youssef ME. Advances in understanding cisplatin-induced toxicity: Molecular mechanisms and protective strategies. Eur J Pharm Sci 2024; 203:106939. [PMID: 39423903 DOI: 10.1016/j.ejps.2024.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Cisplatin, a widely used chemotherapeutic agent, has proven efficacy against various malignancies. However, its clinical utility is hampered by its dose-limiting toxicities, including nephrotoxicity, ototoxicity, neurotoxicity, and myelosuppression. This review aims to provide a comprehensive overview of cisplatin toxicity, encompassing its underlying mechanisms, risk factors, and emerging therapeutic strategies. The mechanisms of cisplatin toxicity are multifactorial and involve oxidative stress, inflammation, DNA damage, and cellular apoptosis. Various risk factors contribute to the interindividual variability in susceptibility to cisplatin toxicity. The risk of developing cisplatin-induced toxicity could be related to pre-existing conditions, including kidney disease, hearing impairment, neuropathy, impaired liver function, and other comorbidities. Additionally, this review highlights the emerging therapeutic strategies that could be applied to minimize cisplatin-induced toxicities and aid in optimizing cisplatin treatment regimens, improving patient outcomes, and enhancing the overall quality of cancer care.
Collapse
Affiliation(s)
- Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Salama A Salama
- Department of Zoology, Faculty of Science, Damanhour University, Egypt; Department of Biology, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
185
|
Taha M, Abdelbagi O, Baokbah TAS, Bagadood RM, Jalal NA, Obaid R, Al-Hazmi NE, Qusty NF. Insights into the protective effect of omega-3 nanoemulsion against colistin-induced nephrotoxicity in experimental rats: regulation of autophagy and necroptosis via AMPK/mTOR and RIPK1/RIPK3/MLKL signaling pathways. Ren Fail 2024; 46:2429686. [PMID: 39584420 PMCID: PMC11590192 DOI: 10.1080/0886022x.2024.2429686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/24/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024] Open
Abstract
Colistin is considered one of the most effective antibiotics against gram-negative bacteria. However, nephrotoxicity is one of the dose-limiting factors in its treatment. This study aimed to evaluate the outcome of omega-3 nanoemulsion against colistin-induced nephrotoxicity and its possible underlying mechanism. Four rat groups were involved in the present research; each group containing ten rats was divided as follows: Group I (control) rats received normal saline; Group II (omega-3 nanoemulsion) rats received a dose of 500 mg/kg/body weight orally; Group III (colistin) rats received colistin intraperitoneally (300.000 IU/kg/day); and Group IV (colistin/omega-3 nanoemulsion) rats were treated for six days. The results revealed that colistin administration caused deterioration in renal functions such as creatinine, blood urea nitrogen, 24 h proteinuria, and kidney injury molecule-1 with decrease in creatinine clearance, resulting in histological alternation and tubular damage with diffuse interstitial inflammation. Additionally, colistin significantly increased the lipid peroxidation marker malonaldehyde, proinflammatory cytokines tumor necrosis alpha, interleukin-6, interleukin-1 beta. Also, autophagy influx marker microtubule-associated protein light chain 3B, Beclin-1, and necroptotic related proteins, receptor-interacting protein kinase-3 (RIPK-3), RIPK-1, mixed lineage kinase domain-like protein, and autophagy pathway regulatory kinase AMP-activated protein kinase, with a decrease in antioxidant enzymes catalase, superoxide dismutase, and total antioxidant capacity, autophagic marker ubiquitin-binding protein (p62), and regulator Mammalian target of rapamycin. Interestingly, omega-3 nanoemulsion reversed the results above, dramatically improving renal function and histological picture. Thus, omega-3 nanoemulsion provided a notable method for suppressing colistin-induced nephrotoxicity via its antioxidant and anti-inflammatory power, inhibiting pathological autophagy and necroptosis.
Collapse
Affiliation(s)
- Medhat Taha
- Department of Anatomy, Al-Qunfudah Medical College, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Omer Abdelbagi
- Department of Pathology, Qunfudah Faculty of Medicine, Umm-Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Tourki A. S. Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Rehab M. Bagadood
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al–Qura University, Makkah, Saudi Arabia
| | - Naif A. Jalal
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al‐Qura University, Makkah, Saudi Arabia
| | - Rami Obaid
- Department of Medical Genetics, Faculty of Medicine at Al-Qunfudah, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Nawal E. Al-Hazmi
- Department of Chemistry, Division of Biology (Microbiology), University College of Qunfudah, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Naeem F. Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al–Qura University, Makkah, Saudi Arabia
| |
Collapse
|
186
|
Tkachenko A, Havranek O. Erythronecroptosis: an overview of necroptosis or programmed necrosis in red blood cells. Mol Cell Biochem 2024; 479:3273-3291. [PMID: 38427167 DOI: 10.1007/s11010-024-04948-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Necroptosis is considered a programmed necrosis that requires receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and pore-forming mixed lineage kinase domain-like protein (MLKL) to trigger a regulated cell membrane lysis. Membrane rupture in necroptosis has been shown to fuel innate immune response due to release of damage-associated molecular patterns (DAMPs). Recently published studies indicate that mature erythrocytes can undergo necroptosis as well. In this review, we provide an outline of multiple cell death modes occurring in erythrocytes, discuss possible immunological aspects of diverse erythrocyte cell deaths, summarize available evidence related to the ability of erythrocytes to undergo necroptosis, outline key involved molecular mechanisms, and discuss the potential implication of erythrocyte necroptosis in the physiology and pathophysiology. Furthermore, we aim to highlight the interplay between necroptosis and eryptosis signaling in erythrocytes, emphasizing specific characteristics of these pathways distinct from their counterparts in nucleated cells. Thus, our review provides a comprehensive summary of the current knowledge of necroptosis in erythrocytes. To reflect critical differences between necroptosis of nucleated cells and necroptosis of erythrocytes, we suggest a term erythronecroptosis for necroptosis of enucleated cells.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 25250, Vestec, Czech Republic.
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 25250, Vestec, Czech Republic
- First Department of Internal Medicine-Hematology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
187
|
Jørgensen JS, Laulund Siebert AS, Ciofu O, Høiby N, Moser C, Franzyk H. Synergistic combinations of novel polymyxins and rifampicin with improved eradication of colistin-resistant Pseudomonas aeruginosa biofilms. Biofilm 2024; 8:100224. [PMID: 39445123 PMCID: PMC11497480 DOI: 10.1016/j.bioflm.2024.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Background Increased prevalence of antimicrobial resistance coupled with a lack of new antibiotics against Gram-negative bacteria emphasize the imperative for novel therapeutic strategies. Colistin-resistant Pseudomonas aeruginosa constitutes a challenge, where conventional treatment options lack efficacy, in particular for biofilm-associated infections. Previously, synergy of colistin with other antibiotics was explored as an avenue for the treatment of colistin-resistant infections, and recently we reported our efforts towards colistin analogs capable of combating planktonic colistin-resistant strains. Aims The aim of the present study was to investigate whether analogs of polymyxin B with improved potency in wild-type and moderate resistant Gram-negative pathogens would retain similarly increased activity in highly colistin-resistant clinical P. aeruginosa isolates (in planktonic and biofilm growth) when applied alone and in combination with rifampicin. Materials and methods In this in vitro study, we tested three analogs of polymyxin B prepared by solid-phase peptide synthesis. Antimicrobial susceptibility testing was performed by measurement of minimum inhibitory concentrations via the broth microdilution method. Interactions between two antimicrobials was quantified in a checkerboard broth microdilution assay by calculating the fractional inhibitory concentration index for each combination. For testing of antibiofilm activity a previously described model with alginate beads encapsulating a biofilm culture was applied. The minimum biofilm eradication concentrations (MBECs) were evaluated, and the fractional biofilm eradication concentration indices were calculated. Three recently identified colistin analogs (CEP932, CEP936 and CEP938) were tested against three isogenic pairs of colistin-susceptible and colistin-resistant P. aeruginosa clinical isolates as well as the reference strain PAO1. Results For bacteria in planktonic growth CEP938 retained almost full potency in all three resistant isolates, while exhibiting similar activity as colistin in susceptible isolates. Against biofilms CEP938 was slightly more potent against PAO1 as compared to colistin, while also retaining activity against a biofilm of the colistin-resistant strain 41,782/98. Next, synergy between CEP938 and the antibiotic rifampicin was explored. Interestingly, CEP938 did not exhibit synergy with rifampicin in planktonic cultures. Importantly, for colistin-resistant biofilms the CEP938-rifampicin combination demonstrated activity superior to that found for the colistin-rifampicin combination. Conclusions The present study showed in vitro efficacy of CEP938 against both colistin-susceptible and colistin-resistant P. aeruginosa biofilms as well as an ability of CEP938 to synergize with rifampicin in biofilm eradication.
Collapse
Affiliation(s)
- Johan Storm Jørgensen
- Center for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen Ø, Denmark
| | - Anne Sofie Laulund Siebert
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute 24.1, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute 24.1, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute 24.1, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Henrik Franzyk
- Center for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
188
|
Villa J, Cury J, Kessler L, Tan X, Richter CP. Enhancing biocompatibility of the brain-machine interface: A review. Bioact Mater 2024; 42:531-549. [PMID: 39308547 PMCID: PMC11416625 DOI: 10.1016/j.bioactmat.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording. Although some neuroprostheses have achieved clinical success, electrode material properties, inflammatory response, and glial scar formation at the electrode-tissue interfaces affect performance and sustainability. Those challenges can be addressed by improving some of the materials' mechanical, physical, chemical, and electrical properties. This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance.
Collapse
Affiliation(s)
- Jordan Villa
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Joaquin Cury
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Lexie Kessler
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Xiaodong Tan
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
| | - Claus-Peter Richter
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Biomedical Engineering, Northwestern University, USA
| |
Collapse
|
189
|
Sharma N, Changotra H, Kaur M. Molecular epidemiology of human papillomavirus variants in cervical cancer in India. Indian J Med Res 2024; 160:531-551. [PMID: 39913513 PMCID: PMC11801769 DOI: 10.25259/ijmr_212_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/29/2024] [Indexed: 02/11/2025] Open
Abstract
Background & objectives Cervical cancer (CC) has been documented as the fourth most common cancer worldwide. Persistent infections with high-risk human papillomavirus (hr-HPV) have been suggested in the development of CC. Although prophylactic vaccines are available for the prevention of prevalent hr-HPV types, intra-type variations exist within a particular HPV type that has varying oncogenic potential as well as the mechanism of pathogenicity and varying neutralization by antibodies. Therefore, we carried out a systematic review to determine the distribution of HPV intra-typic variations in different geographical locations of India and their reported implications. Methods Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed to retrieve relevant articles from the standard databases using appropriate keywords. Consequently, 17 articles were included in the current review after screening based on inclusion and exclusion criteria. Results The majority of articles included in this review reported variations within the HPV16 E6 gene, followed by the L1 and E7 genes. Analysis of available data indicated the differential regional distribution of some variations. These variations have also been reported to impact the biological functions of various viral proteins. Interpretation & conclusions The distribution of lineages varied with the different genomic regions sequenced. Additionally, there were certain unique and common variations in the HPV genome with respect to geographical regions. Hence, we suggest the identification of region-specific variations for the development of diagnostic and prognostic interventions.
Collapse
Affiliation(s)
- Nita Sharma
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
190
|
Xian C, Liu Y, Zhou L, Ding T, Chen J, Wang T, Gao J, Hao X, Bi L. Optimal ultrasonic treatment frequency and duration parameters were used to detect the pathogenic bacteria of orthopedic implant-associated infection by ultrasonic oscillation. J Infect Chemother 2024; 30:1237-1243. [PMID: 38823678 DOI: 10.1016/j.jiac.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
INTRUDUCTON The most accurate method for detecting the pathogen of orthopedic implant-associated infections (OIAIs) is sonication fluid (SF). However, the frequency and duration of ultrasound significantly influence the number and activity of microorganisms. Currently, there is no consensus on the selection of these two parameters. Through this study, the choice of these two parameters is clarified. METHODS We established five ultrasonic groups (40kHz/10min, 40kHz/5min, 40 kHz/1min, 20kHz/5min, and 10kHz/5min) based on previous literature. OIAIs models were then developed and applied to ultrasound group treatment. Subsequently, we evaluated the efficiency of bacteria removal by conducting SEM and crystal violet staining. The number of live bacteria in the SF was determined using plate colony count and live/dead bacteria staining. RESULTS The results of crystal violet staining revealed that both the 40kHz/5min group and the 40kHz/10min group exhibited a significantly higher bacterial clearance rate compared to the other groups. However, there was no significant difference between the two groups. Additionally, the results of plate colony count and fluorescence staining of live and dead bacteria indicated that the number of live bacteria in the 40kHz/5min SF group was significantly higher than in the other groups. CONCLUSION 40kHz/5min ultrasound is the most beneficial for the detection of pathogenic bacteria on the surface of orthopedic implants.
Collapse
Affiliation(s)
- Chunxing Xian
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China.
| | - Yanwu Liu
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Lei Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Ting Ding
- Department of Clinical Laboratory, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Jingdi Chen
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Taoran Wang
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Jiakai Gao
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Xiaotian Hao
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Long Bi
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China.
| |
Collapse
|
191
|
Selim HMRM, Gomaa FAM, Alshahrani MY, Kamel NA, Aboshanab KM, Elsayed KM. Colistin, doxycycline and Labetalol-meropenem combination are the most active against XDR-Carbapenem-resistant Acinetobacter baumannii: Role of a novel transferrable plasmid conferring carbapenem resistance. Diagn Microbiol Infect Dis 2024; 110:116558. [PMID: 39413660 DOI: 10.1016/j.diagmicrobio.2024.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
This study aimed to evaluate the antimicrobial susceptibility and combination of a beta-blocker, labetalol (LAB) and meropenem (MEM) on Carbapenem-resistant (CR) A. baumannii clinical isolates. A total of 43 CR- A. baumannii were isolated of which 37 (86.6 %) and 28 (65 %) exhibited MDR and XDR phenotypes, respectively. Colistin and doxycycline still retain their activities in 93.1 % and 72.1 % of the isolates, respectively. Combining MEM with LAB at 0.25 mg /mL, decreased MIC values in 91.4 % (32/35) however, at 0.5 mg /mL, it decreased MIC value and restored susceptibility to MEM in 100 % and 91.4 % of the tested isolates, respectively. A novel transferable plasmid pAcbGIM3 harboring aph-3', blaoxa-58,blaGIM3 and blaCTX-M3 and eight mobile genetic elements were successfully isolated from a pan-drug resistant (PDR) isolate. In conclusion, LAB-MEM is a promising combination and should be clinically examined. This is the first report of a transmissible plasmid harboring blaGIM3 gene in Egypt.
Collapse
Affiliation(s)
- Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia
| | - Fatma Alzahraa M Gomaa
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, Al Baha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Noha A Kamel
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), PO:19648, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain shams University, Cairo 11566, Egypt; Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Campus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia.
| | - Khaled M Elsayed
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), PO:19648, Cairo, Egypt
| |
Collapse
|
192
|
Khan M, Huang X, Ye X, Zhang D, Wang B, Xu A, Li R, Ren A, Chen C, Song J, Zheng R, Yuan Y, Lin J. Necroptosis-based glioblastoma prognostic subtypes: implications for TME remodeling and therapy response. Ann Med 2024; 56:2405079. [PMID: 39387496 PMCID: PMC11469424 DOI: 10.1080/07853890.2024.2405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive primary brain tumor with a high recurrence rate and poor prognosis. Necroptosis, a pathological hallmark of GBM, is poorly understood in terms of its role in prognosis, tumor microenvironment (TME) alteration, and immunotherapy. METHODS & RESULTS We assessed the expression of 55 necroptosis-related genes in GBM and normal brain tissues. We identified necroptosis-stratified clusters using Uni-Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression to establish the 10-gene Glioblastoma Necroptosis Index (GNI). GNI demonstrated significant prognostic efficacy in the TCGA dataset (n = 160) and internal validation dataset (n = 345) and in external validation cohorts (n = 591). The GNI-high subgroup displayed a mesenchymal phenotype, lacking the IDH1 mutation, and MGMT methylation. This subgroup was characterized by significant enrichment in inflammatory and humoral immune pathways with prominent cell adhesion molecules (CD44 and ICAM1), inflammatory cytokines (TGFB1, IL1B, and IL10), and chemokines (CX3CL1, CXCL9, and CCL5). The TME in this subgroup showed elevated infiltration of M0 macrophages, neutrophils, mast cells, and regulatory T cells. GNI-related genes appeared to limit macrophage polarization, as confirmed by immunohistochemistry and flow cytometry. The top 30% high-risk score subset exhibited increased CD8 T cell infiltration and enhanced cytolytic activity. GNI showed promise in predicting responses to immunotherapy and targeted treatment. CONCLUSIONS Our study highlights the role of necroptosis-related genes in glioblastoma (GBM) and their effects on the tumor microenvironment and patient prognosis. TheGNI demonstrates potential as a prognostic marker and provides insights into immune characteristics and treatment responsiveness.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiuting Huang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaoxin Ye
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Donghui Zhang
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Baiyao Wang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anan Xu
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Li
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anbang Ren
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Chengcong Chen
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jingjing Song
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, People’s Republic of China
| | - Yawei Yuan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jie Lin
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
193
|
Yadav KS, Pawar S, Datkhile K, Patil SR. Study on the Mobile Colistin Resistance (mcr-1) Gene in Gram-Negative Bacilli in a Rural Tertiary Care Hospital in Western Maharashtra. Cureus 2024; 16:e75569. [PMID: 39803089 PMCID: PMC11724157 DOI: 10.7759/cureus.75569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Colistin, a last-resort antibiotic for treating multidrug-resistant Gram-negative bacterial infections, has increased resistance as a result of the emergence of the mcr-1 gene. The mcr-1gene, which confers colistin resistance, is often carried on plasmids, facilitating its spread by horizontal gene transfer among bacterial populations. The rising prevalence of mcr-1-mediated resistance poses significant challenges for infection control and treatment efficacy. This study aimed to detect and investigate the prevalence of the mcr-1 gene among Gram-negative bacilli isolated from clinical specimens in a rural tertiary care hospital and to analyze the plasmid-mediated mechanisms of colistin resistance. MATERIALS AND METHODS A cross-sectional study was conducted over two years at Krishna Institute of Medical Sciences, Karad. Gram-negative bacilli were isolated from clinical specimens and identified using standard methodology. Antimicrobial susceptibility testing was performed by using the Vitek-2 Compact (bioMerieux, Marcy-l'Étoile, France) method and the colistin-resistance broth microdilution method (BMD). Polymerase chain reaction (PCR) was done for the presence of mcr-1 gene in colistin-resistant isolates. RESULTS Out of 359 Gram-negative bacilli isolates, 93 (25.90%) demonstrated resistance to colistin. Among these resistant strains, the mcr-1 gene was identified in 13 (13.97%) of the isolates. The gene was predominantly found in Pseudomonas aeruginosa (8, 61.53%), followed by Klebsiella pneumoniae (3, 23.07%), Acinetobacter baumannii (2, 15.38%) among the 13 isolates. Out of the various specimens received, mcr-1 gene was found in endotracheal tube (4, 30.76%), urine (4, 30.76%), pus (3, 23.07%), sputum (1, 7.69%), and blood (1, 7.69%). Colistin minimum inhibitory concentration (MIC) value for these resistant isolates ranged from 4 to 16 µg/ml. CONCLUSION The study highlights a significant prevalence of mcr-1 plasmid-mediated colistin resistance gene among Gram-negative bacilli in the hospital. This possibly highlights the frequent misuse of colistin in animal husbandry from this rural area. The findings underscore the importance of monitoring resistance patterns and implementing stringent infection control measures.
Collapse
Affiliation(s)
- Kajal S Yadav
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, IND
| | - Satyajeet Pawar
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, IND
| | - Kailas Datkhile
- Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth, Karad, IND
| | - Satish R Patil
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, IND
| |
Collapse
|
194
|
Hushmandi K, Klionsky DJ, Aref AR, Bonyadi M, Reiter RJ, Nabavi N, Salimimoghadam S, Saadat SH. Ferroptosis contributes to the progression of female-specific neoplasms, from breast cancer to gynecological malignancies in a manner regulated by non-coding RNAs: Mechanistic implications. Noncoding RNA Res 2024; 9:1159-1177. [PMID: 39022677 PMCID: PMC11250880 DOI: 10.1016/j.ncrna.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis, a recently identified type of non-apoptotic cell death, triggers the elimination of cells in the presence of lipid peroxidation and in an iron-dependent manner. Indeed, ferroptosis-stimulating factors have the ability of suppressing antioxidant capacity, leading to the accumulation of reactive oxygen species (ROS) and the subsequent oxidative death of the cells. Ferroptosis is involved in the pathophysiological basis of different maladies, such as multiple cancers, among which female-oriented malignancies have attracted much attention in recent years. In this context, it has also been unveiled that non-coding RNA transcripts, including microRNAs, long non-coding RNAs, and circular RNAs have regulatory interconnections with the ferroptotic flux, which controls the pathogenic development of diseases. Furthermore, the potential of employing these RNA transcripts as therapeutic targets during the onset of female-specific neoplasms to modulate ferroptosis has become a research hotspot; however, the molecular mechanisms and functional alterations of ferroptosis still require further investigation. The current review comprehensively highlights ferroptosis and its association with non-coding RNAs with a focus on how this crosstalk affects the pathogenesis of female-oriented malignancies, from breast cancer to ovarian, cervical, and endometrial neoplasms, suggesting novel therapeutic targets to decelerate and even block the expansion and development of these tumors.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
195
|
Pandit S, Kim MA, Jung JE, Choi HM, Jeon JG. Usnic acid brief exposure suppresses cariogenic properties and complexity of Streptococcus mutans biofilms. Biofilm 2024; 8:100241. [PMID: 39698471 PMCID: PMC11652789 DOI: 10.1016/j.bioflm.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Bacterial biofilms are highly structured surface associated architecture of micro-colonies, which are strongly bonded with the exopolymeric matrix of their own synthesis. These exopolymeric substances, mainly exopolysaccharides (EPS) initially assist the bacterial adhesion and finally form a bridge over the microcolonies to protect them from environmental assaults and antimicrobial exposure. Bacterial cells in dental biofilm metabolize dietary carbohydrates and produce organic acids. The blanket of exopolysaccharides over the bacterial communities hinders the buffering by saliva, contributing to the initiation of tooth decay followed by the progression of dental caries. Considering the current interest towards the use of natural antimicrobial agents to disarm the cariogenic properties of dental biofilm, this study evaluated the antimicrobial activity and the effect of twice daily brief exposure (1 min) of usnic acid on acid production, acid tolerance and development of 3-dimensional architecture of Streptococcus mutans biofilm. Herein, biofilms were briefly treated twice daily during biofilm development and biofilms were analyzed by using biochemical, microbiological and microscopic examination. Results obtained in this study showed a significant reduction in virulence properties of biofilm cells treated with usnic acid in compared to non-treated biofilms. Furthermore, twice daily brief exposure of usnic acid significantly disrupted the acid production and reduced the complexity of Streptococcus mutans biofilm by disrupting the EPS production. Brief exposure of usnic acid inhibited the production of glucosyltransferase (GTF) enzymes and their enzymatic activity leading to inhibition in production of EPS on the biofilm matrix. In conclusion, usnic acid treatment reduced the cariogenic properties and complexity of S. mutans biofilm by inhibiting acid production, acid tolerance and disrupting extracellular polysaccharide (EPS) formation, indicating its potential for preventing dental caries.
Collapse
Affiliation(s)
- Santosh Pandit
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Mi-A Kim
- Department of Preventive Dentistry, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Ji-Eun Jung
- Department of Preventive Dentistry, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyeon-Mi Choi
- Department of Dentistry, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Jae-Gyu Jeon
- Department of Preventive Dentistry, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
196
|
Salim A, Sathishkumar P. Therapeutic efficacy of chitosan-based hybrid nanomaterials to treat microbial biofilms and their infections - A review. Int J Biol Macromol 2024; 283:137850. [PMID: 39577523 DOI: 10.1016/j.ijbiomac.2024.137850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
Antimicrobial resistance, the biggest issue facing the global healthcare sector, quickly emerged and spread due to the frequent use of antibiotics in regular treatments. The investigation of polymer-based nanomaterials as possible antibiofilm treatment agents is prompted by the growing ineffectiveness of conventional therapeutic techniques against these resistant bacteria species. So far, several articles have been published on microbial biofilm eradication using various polymer-based nanomaterials due to their therapeutic efficacy and biocompatibility nature. Despite their potential, a comprehensive review of the chitosan-based hybrid nanomaterials to treat microbial biofilms and their infections is lacking. This review provides a comprehensive investigation of the current state of therapeutic efficacy, various nanoformulations, advantages, limitations, and regulations of chitosan-based hybrid nanomaterials for biofilm treatment. Special attention is given to the application of chitosan-based nanomaterials in wound care, urinary tract infections, and dental biofilms are discussed, highlighting their role in managing biofilm-associated complications. Researchers will be better able to comprehend and develop unique, marketable chitosan-based nanomaterials with increased activity to treat biofilm infections in near future with the aid of this review.
Collapse
Affiliation(s)
- Anisha Salim
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, Tamil Nadu, India.
| |
Collapse
|
197
|
Beckers D, Jainarayanan AK, Dustin ML, Capera J. T Cell Resistance: On the Mechanisms of T Cell Non-activation. Immune Netw 2024; 24:e42. [PMID: 39801736 PMCID: PMC11711127 DOI: 10.4110/in.2024.24.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Immunological tolerance is a fundamental arm of any functioning immune system. Not only does tolerance mitigate collateral damage from host immune responses, but in doing so permits a robust response sufficient to clear infection as necessary. Yet, despite occupying such a cornerstone, research aiming to unravel the intricacies of tolerance induction is mired by interchangeable and often misused terminologies, with markers and mechanistic pathways that beg the question of redundancy. In this review we aim to define these boarders by providing new perspectives to long-standing theories of tolerance. Given the central role of T cells in enforcing immune cascades, in this review we choose to explore immunological tolerance through the perspective of T cell 'resistance to activation,' to delineate the contexts in which one tolerance mechanism has evolved over the other. By clarifying the important biological markers and cellular players underpinning T cell resistance to activation, we aim to encourage more purposeful and directed research into tolerance and, more-over, potential therapeutic strategies in autoimmune diseases and cancer. The tolerance field is in much need of reclassification and consideration, and in this review, we hope to open that conversation.
Collapse
Affiliation(s)
- Daniel Beckers
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Ashwin K. Jainarayanan
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Michael L. Dustin
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Jesusa Capera
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
198
|
Abo-Alella D, Abdelmoniem W, Tantawy E, Asaad A. Biofilm-producing and carbapenems-resistant Escherichia coli nosocomial uropathogens: a cross-sectional study. Int Microbiol 2024; 27:1633-1640. [PMID: 38489099 PMCID: PMC11611923 DOI: 10.1007/s10123-024-00495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024]
Abstract
OBJECTIVES This cross-sectional study aims to determine the incidence and potential risk factors associated with biofilm-producing uropathogenic Escherichia coli (UPEC) nosocomial strains from a tertiary care hospital and to examine the prospective correlation between biofilm generation and antibiotic resistance phenotypes and genotypes. METHODS A total of 130 UPEC nosocomial isolates were identified, their biofilm formation was quantified using a modified microtiter plate assay, and their antibiotic susceptibilities were assessed utilizing the disc diffusion method. Isolates were then subjected to PCR assays targeting blaKPC, blaVIM, blaIMP, and blaOXA48 genes. RESULTS Over half of the isolates (n = 76, 58.5%) were biofilm producers. Among 17 carbapenem-resistant isolates, 6 (42.9%) isolates harbored the blaOXA48 gene, and only 1 (9.1%) isolate was positive for the blaVIM gene. Prior antibiotic therapy (aOR 15.782, p 0.000) and diabetes mellitus DM (aOR 11.222, p 0.016) were the significant risk factors associated with biofilm production, as determined by logistic regression analysis of the data. In addition, gentamicin resistance was the only statistically significant antibiotic resistance pattern associated with biofilm production (aOR 9.113, p 0.02). CONCLUSIONS The findings of this study emphasize the significance of implementing proper infection control measures to avoid the horizontal spread of biofilm formation and associated antimicrobial resistance patterns among UPEC nosocomial strains.
Collapse
Affiliation(s)
- Doaa Abo-Alella
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Wessam Abdelmoniem
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Enas Tantawy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Asaad
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
199
|
Kadry MO, Abdel-Megeed RM. Necroptosis and autophagy in cisplatinum-triggered nephrotoxicity: Novel insights regarding their prognostic and diagnostic potential. Toxicol Rep 2024; 13:101807. [PMID: 39606774 PMCID: PMC11600652 DOI: 10.1016/j.toxrep.2024.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Necroptosis is an innovative class of programmed autophagy (Atg) and necrosis; considered as a type of homeostatic housekeeping machinery that have observed an escalating concern due to its power in alleviating Cisplatinum-induced nephrotoxicity. This article elucidated in details the prospective role of both autophagy and necroptosis on Cisplatinum-triggered nephrotoxicity and investigating more potent therapy via lactoferrin and Ti-NPS conjugation. Cisplatinum is a commonly used chemotherapeutic drug; one of the limiting adverse actions of cisplatinum is renal toxicity. Upon cisplatinum administration, autophagy is highly stimulated in the kidney to shield against nephrotoxicity. Atg is a lysosomal degradation process which discards detorirated proteins to retain cell homeostasis. This article summarizes necroptosis progress in reconizing cisplatinum nephrotoxicity and debates how this progress can help in discovering more potent therapy via lactoferrin and Ti-NPS conjugation via monitoring autophagy and apoptotic biomarkers X-box-binding protein 1 (XBP), C/EBP homologous protein (CHOP), hypoxanthine phosphoribosyltransferase-1 (HPRT), FKBP prolyl isomerase 1B (FKBP), Cellular myelocytomatosis oncogene (C-myc), tumor suppressor gene (P53) and tumor necrosis factor (TNF-α). Cisplatinum nephrotoxicity was conducted in rat model via an oral dose of (2 mg/kg BW) for one month furthermore a comparative study was conducted among TiNPs-loaded Cisplatinum and Lactoferrin loaded Cisplatinum. Loaded drug delivery system counteracted Cisplatinum triggered nephrotoxicity via controlling autophagy and apoptotic XBP, CHOP, HPRT, FKBP, C-myc, P53 and TNF-α signaling pathway.
Collapse
Affiliation(s)
- Mai O. Kadry
- National Research Center, Therapeutic chemistry deparment, Al Buhouth Street, Cairo, Egypt
| | - Rehab M. Abdel-Megeed
- National Research Center, Therapeutic chemistry deparment, Al Buhouth Street, Cairo, Egypt
| |
Collapse
|
200
|
Lotfi MS, Rassouli FB. Navigating the complexities of cell death: Insights into accidental and programmed cell death. Tissue Cell 2024; 91:102586. [PMID: 39426124 DOI: 10.1016/j.tice.2024.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Cell death is a critical biological phenomenon that can be categorized into accidental cell death (ACD) and programmed cell death (PCD), each exhibiting distinct signaling, mechanistic and morphological characteristics. This paper provides a comprehensive overview of seven types of ACD, including coagulative, liquefactive, caseous, fat, fibrinoid, gangrenous and secondary necrosis, discussing their pathological implications in conditions such as ischemia and inflammation. Additionally, we review eighteen forms of PCD, encompassing autophagy, apoptosis, necroptosis, pyroptosis, paraptosis, ferroptosis, anoikis, entosis, NETosis, eryptosis, parthanatos, mitoptosis, and newly recognized types such as methuosis, autosis, alkaliptosis, oxeiptosis, cuprotosis and erebosis. The implications of these cell death modalities for cellular processes, development, and disease-particularly in the context of neoplastic and neurodegenerative disorders-are also covered. Furthermore, we explore the crosstalk between various forms of PCD, emphasizing how apoptotic mechanisms can influence pathways like necroptosis and pyroptosis. Understanding this interplay is crucial for elucidating cellular responses to stress, as well as for its potential relevance in clinical applications and therapeutic strategies. Future research should focus on clarifying the molecular mechanisms that govern different forms of PCD and their interactions.
Collapse
Affiliation(s)
- Mohammad-Sadegh Lotfi
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|