151
|
Makadzange AT, Gundidza P, Lau C, Beta N, Myburgh N, Elose N, James W, Stanberry L, Ndhlovu C. Vaccine Adverse Events Following COVID-19 Vaccination with Inactivated Vaccines in Zimbabwe. Vaccines (Basel) 2022; 10:1767. [PMID: 36298632 PMCID: PMC9610510 DOI: 10.3390/vaccines10101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vaccination is one of the most effective methods for preventing morbidity and mortality from COVID-19. Vaccine hesitancy has led to a decrease in vaccine uptake; driven by misinformation, fear, and misperceptions of vaccine safety. Whole inactivated vaccines have been used in one-fifth of the vaccine recipients in Africa, however there are limited real-world data on their safety. We evaluated the reported adverse events and factors associated with reported adverse events following vaccination with whole inactivated COVID-19 vaccines-BBiBP-CorV (Sinopharm) and CoronaVac (Sinovac). A quantitative survey evaluating attitudes and adverse events from vaccination was administered to 1016 adults presenting at vaccination centers. Two follow-up telephone interviews were conducted to determine adverse events after the first and second vaccination dose. Overall, the vaccine was well tolerated; 26.0% and 14.4% reported adverse events after the first and second dose, respectively. The most frequent local and systemic adverse events were pain at the injection site and headaches, respectively. Most symptoms were mild, and no participants required hospitalization. Participants who perceived COVID-19 vaccines as safe or had a personal COVID-19 experience were significantly less likely to report adverse events. Our findings provide data on the safety and tolerability of whole inactivated COVID-19 vaccines in an African population, providing the necessary data to create effective strategies to increase vaccination and support vaccination campaigns.
Collapse
Affiliation(s)
| | - Patricia Gundidza
- Charles River Medical Group, 155 King George Avenue, Avondale, Harare, Zimbabwe
| | - Charles Lau
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, Research Triangle, NC 27709, USA
| | - Norest Beta
- Charles River Medical Group, 155 King George Avenue, Avondale, Harare, Zimbabwe
| | - Nellie Myburgh
- Wits Vaccines & Infectious Diseases Analytics (VIDA) Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Nyasha Elose
- Charles River Medical Group, 155 King George Avenue, Avondale, Harare, Zimbabwe
| | - Wilmot James
- Institute for Social and Economic Research and Policy, Columbia University, IAB 118th Street, New York, NY 10025, USA
| | - Lawrence Stanberry
- Vaccine Information Network, Columbia University, 533 W 218th Street, New York, NY 10032, USA
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Chiratidzo Ndhlovu
- Charles River Medical Group, 155 King George Avenue, Avondale, Harare, Zimbabwe
- Internal Medicine Unit, Department of Primary Health Care Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Avondale, Harare P.O. Box A178, Zimbabwe
| |
Collapse
|
152
|
Tulimilli SV, Dallavalasa S, Basavaraju CG, Kumar Rao V, Chikkahonnaiah P, Madhunapantula SV, Veeranna RP. Variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Vaccine Effectiveness. Vaccines (Basel) 2022; 10:1751. [PMID: 36298616 PMCID: PMC9607623 DOI: 10.3390/vaccines10101751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The incidence and death toll due to SARS-CoV-2 infection varied time-to-time; and depended on several factors, including severity (viral load), immune status, age, gender, vaccination status, and presence of comorbidities. The RNA genome of SARS-CoV-2 has mutated and produced several variants, which were classified by the SARS-CoV-2 Interagency Group (SIG) into four major categories. The first category; “Variant Being Monitored (VBM)”, consists of Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Epsilon (B.1.427, B.1.429), Eta (B.1.525), Iota (B.1.526), Kappa (B.1.617.1), Mu (B.1.621), and Zeta (P.2); the second category; “Variants of Concern” consists of Omicron (B.1.1.529). The third and fourth categories include “Variants of Interest (VOI)”, and “Variants of High Consequence (VOHC)”, respectively, and contain no variants classified currently under these categories. The surge in VBM and VOC poses a significant threat to public health globally as they exhibit altered virulence, transmissibility, diagnostic or therapeutic escape, and the ability to evade the host immune response. Studies have shown that certain mutations increase the infectivity and pathogenicity of the virus as demonstrated in the case of SARS-CoV-2, the Omicron variant. It is reported that the Omicron variant has >60 mutations with at least 30 mutations in the Spike protein (“S” protein) and 15 mutations in the receptor-binding domain (RBD), resulting in rapid attachment to target cells and immune evasion. The spread of VBM and VOCs has affected the actual protective efficacy of the first-generation vaccines (ChAdOx1, Ad26.COV2.S, NVX-CoV2373, BNT162b2). Currently, the data on the effectiveness of existing vaccines against newer variants of SARS-CoV-2 are very scanty; hence additional studies are immediately warranted. To this end, recent studies have initiated investigations to elucidate the structural features of crucial proteins of SARS-CoV-2 variants and their involvement in pathogenesis. In addition, intense research is in progress to develop better preventive and therapeutic strategies to halt the spread of COVID-19 caused by variants. This review summarizes the structure and life cycle of SARS-CoV-2, provides background information on several variants of SARS-CoV-2 and mutations associated with these variants, and reviews recent studies on the safety and efficacy of major vaccines/vaccine candidates approved against SARS-CoV-2, and its variants.
Collapse
Affiliation(s)
- SubbaRao V. Tulimilli
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
| | - Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
| | - Chaithanya G. Basavaraju
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
| | - Vinay Kumar Rao
- Department of Medical Genetics, JSS Medical College & Hospital, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India
| | - Prashanth Chikkahonnaiah
- Department of Pulmonary Medicine, Mysore Medical College and Research Institute, Mysuru 570001, Karnataka, India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
| | - Ravindra P. Veeranna
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India
| |
Collapse
|
153
|
Importance of the COVID-19 Vaccine Booster Dose in Protection and Immunity. Vaccines (Basel) 2022; 10:vaccines10101708. [PMID: 36298573 PMCID: PMC9610198 DOI: 10.3390/vaccines10101708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background: There is debate on the necessity of booster doses of COVID-19 vaccination, especially in countries with limited resources. Methods: This cross-sectional study was conducted in a referral laboratory in Tehran, Iran. The level of COVID-19 antibodies was measured and compared between individuals regarding the number of COVID-19 vaccine shots. Results: In this study, 176 individuals with a mean age of 36.3 (±11.7) years participated. A total of 112 individuals received two doses of the COVID-19 vaccine, and 64 individuals received three doses. Level of all antibodies was higher in those who received three doses than in those who received two doses of the COVID-19 vaccine. Considering the SARS-CoV-2 Spike IgG, the difference was not statistically significant but for the SARS-CoV-2 RBD IgG and SARS-CoV-2 NAB the difference was statistically significant. Regarding to the background variables, receiving influenza vaccine in the past year, history of autoimmune diseases and past medical history of chicken pox showed a significant association with the number of vaccine doses received. Their effects on the outcome variables assessed with multivariate logistic regression analysis. Conclusion: The results of our study show that a booster dose of the COVID-19 vaccine enhances the antibody response.
Collapse
|
154
|
Jin J, Wang X, Carapito R, Moog C, Su B. Advances in Research on COVID-19 Vaccination for People Living with HIV. INFECTIOUS DISEASES & IMMUNITY 2022; 2:213-218. [PMID: 37520898 PMCID: PMC9612416 DOI: 10.1097/id9.0000000000000065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 01/24/2023]
Affiliation(s)
- Junyan Jin
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Raphael Carapito
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg 67000, France
| | - Christiane Moog
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg 67000, France
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
155
|
Fakhari MS, Poorsaadat L, Mahmoodiyeh B. Guillain-Barré syndrome following COVID-19 vaccine: A case report. Clin Case Rep 2022; 10:e6451. [PMID: 36254149 PMCID: PMC9558586 DOI: 10.1002/ccr3.6451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
Coronavirus disease is a viral infection affecting different organs with various morbidities and mortality. Vaccines are used to control the disease. COVID-19 vaccines have brought many benefits but their adverse effects should not be ignored. Here, we report a case of Guillain-Barré Syndrome Following Sinopharm COVID-19 Vaccine.
Collapse
Affiliation(s)
| | - Leila Poorsaadat
- Department of Neurology, School of MedicineArak University of Medical SciencesArakIran
| | - Behnam Mahmoodiyeh
- Department of Anesthesiology, School of MedicineArak University of Medical SciencesArakIran
| |
Collapse
|
156
|
Park T, Hwang H, Moon S, Kang SG, Song S, Kim YH, Kim H, Ko EJ, Yoon SD, Kang SM, Hwang HS. Vaccines against SARS-CoV-2 variants and future pandemics. Expert Rev Vaccines 2022; 21:1363-1376. [PMID: 35924678 PMCID: PMC9979704 DOI: 10.1080/14760584.2022.2110075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/02/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Vaccination continues to be the most effective method for controlling COVID-19 infectious diseases. Nonetheless, SARS-CoV-2 variants continue to evolve and emerge, resulting in significant public concerns worldwide, even after more than 2 years since the COVID-19 pandemic. It is important to better understand how different COVID-19 vaccine platforms work, why SARS-CoV-2 variants continue to emerge, and what options for improving COVID-19 vaccines can be considered to fight against SARS-CoV-2 variants and future pandemics. AREA COVERED Here, we reviewed the innate immune sensors in the recognition of SARS-CoV-2 virus, innate and adaptive immunity including neutralizing antibodies by different COVID-19 vaccines. Efficacy comparison of the several COVID-19 vaccine platforms approved for use in humans, concerns about SARS-CoV-2 variants and breakthrough infections, and the options for developing future COIVD-19 vaccines were also covered. EXPERT OPINION Owing to the continuous emergence of novel pathogens and the reemergence of variants, safer and more effective new vaccines are needed. This review also aims to provide the knowledge basis for the development of next-generation COVID-19 and pan-coronavirus vaccines to provide cross-protection against new SARS-CoV-2 variants and future coronavirus pandemics.
Collapse
Affiliation(s)
- Taeyoung Park
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Hyogyeong Hwang
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Suhyeong Moon
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Sang Gu Kang
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Seunghyup Song
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Young Hun Kim
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Hanbi Kim
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Eun-Ju Ko
- College of Veterinary Medicine and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Soon-Do Yoon
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, South Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Hye Suk Hwang
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| |
Collapse
|
157
|
Morajkar RV, Kumar AS, Kunkalekar RK, Vernekar AA. Advances in nanotechnology application in biosafety materials: A crucial response to COVID-19 pandemic. BIOSAFETY AND HEALTH 2022; 4:347-363. [PMID: 35765656 PMCID: PMC9225943 DOI: 10.1016/j.bsheal.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 11/07/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has adversely affected the public domain causing unprecedented cases and high mortality across the globe. This has brought back the concept of biosafety into the spotlight to solve biosafety problems in developing diagnostics and therapeutics to treat COVID-19. The advances in nanotechnology and material science in combination with medicinal chemistry have provided a new perspective to overcome this crisis. Herein, we discuss the efforts of researchers in the field of material science in developing personal protective equipment (PPE), detection devices, vaccines, drug delivery systems, and medical equipment. Such a synergistic approach of disciplines can strengthen the research to develop biosafety products in solving biosafety problems.
Collapse
Affiliation(s)
- Rasmi V Morajkar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Akhil S Kumar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Rohan K Kunkalekar
- School of Chemical Sciences, Goa University, Taleigao Plateau 403206, Goa, India
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| |
Collapse
|
158
|
He M, Huang Y, Wang Y, Liu J, Han M, Xiao Y, Zhang N, Gui H, Qiu H, Cao L, Jia W, Huang S. Metabolomics-based investigation of SARS-CoV-2 vaccination (Sinovac) reveals an immune-dependent metabolite biomarker. Front Immunol 2022; 13:954801. [PMID: 36248825 PMCID: PMC9554639 DOI: 10.3389/fimmu.2022.954801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
SARS-CoV-2 and its mutant strains continue to rapidly spread with high infection and fatality. Large-scale SARS-CoV-2 vaccination provides an important guarantee for effective resistance to existing or mutated SARS-CoV-2 virus infection. However, whether the host metabolite levels respond to SARS-CoV-2 vaccine-influenced host immunity remains unclear. To help delineate the serum metabolome profile of SARS-CoV-2 vaccinated volunteers and determine that the metabolites tightly respond to host immune antibodies and cytokines, in this study, a total of 59 sera samples were collected from 30 individuals before SARS-CoV-2 vaccination and from 29 COVID-19 vaccines 2 weeks after the two-dose vaccination. Next, untargeted metabolomics was performed and a distinct metabolic composition was revealed between the pre-vaccination (VB) group and two-dose vaccination (SV) group by partial least squares-discriminant and principal component analyses. Based on the criteria: FDR < 0.05, absolute log2 fold change greater than 0.25, and VIP >1, we found that L-glutamic acid, gamma-aminobutyric acid (GABA), succinic acid, and taurine showed increasing trends from SV to VB. Furthermore, SV-associated metabolites were mainly annotated to butanoate metabolism and glutamate metabolism pathways. Moreover, two metabolite biomarkers classified SV from VB individuals with an area under the curve (AUC) of 0.96. Correlation analysis identified a positive association between four metabolites enriched in glutamate metabolism and serum antibodies in relation to IgG, IgM, and IgA. These results suggest that the contents of gamma-aminobutyric acid and indole in serum could be applied as biomarkers in distinguishing vaccinated volunteers from the unvaccinated. What’s more, metabolites such as GABA and taurine may serve as a metabolic target for adjuvant vaccines to boost the ability of the individuals to improve immunity.
Collapse
Affiliation(s)
- Maozhang He
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yixuan Huang
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yun Wang
- Department of Nosocomial Infection Control, Anhui No.2 Provincial People’s Hospital, Hefei, China
| | - Jiling Liu
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Maozhen Han
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Yixuan Xiao
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Na Zhang
- Department of Nosocomial Infection Control, Anhui No.2 Provincial People’s Hospital, Hefei, China
| | - Hongya Gui
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Huan Qiu
- School of Nursing, Anhui Medical University, Hefei, China
| | - Liqing Cao
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Weihua Jia
- School of Life Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Shenghai Huang, ; Weihua Jia,
| | - Shenghai Huang
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Life Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Shenghai Huang, ; Weihua Jia,
| |
Collapse
|
159
|
Role of Nanomaterials in COVID-19 Prevention, Diagnostics, Therapeutics, and Vaccine Development. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Facing the deadly pandemic caused by the SARS-CoV-2 virus all over the globe, it is crucial to devote efforts to fighting and preventing this infectious virus. Nanomaterials have gained much attention after the approval of lipid nanoparticle-based COVID-19 vaccines by the United States Food and Drug Administration (USFDA). In light of increasing demands for utilizing nanomaterials in the management of COVID-19, this comprehensive review focuses on the role of nanomaterials in the prevention, diagnostics, therapeutics, and vaccine development of COVID-19. First, we highlight the variety of nanomaterials usage in the prevention of COVID-19. We discuss the advantages of nanomaterials as well as their uses in the production of diagnostic tools and treatment methods. Finally, we review the role of nanomaterials in COVID-19 vaccine development. This review offers direction for creating products based on nanomaterials to combat COVID-19.
Collapse
|
160
|
Duan LJ, Jiang WG, Wang ZY, Yao L, Zhu KL, Meng QC, Wang BS, Li LB, Wang GL, Ma MJ. Neutralizing immunity against SARS-CoV-2 Omicron BA.1 by infection and vaccination. iScience 2022; 25:104886. [PMID: 35966041 PMCID: PMC9359924 DOI: 10.1016/j.isci.2022.104886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
The emergence of the SARS-CoV-2 Omicron BA.1 (B.1.1.529) variant has raised questions regarding resistance to neutralizing antibodies elicited by natural infection or immunization. We examined the neutralization activity of sera collected from previously SARS-CoV-2-infected individuals and SARS-CoV-2 naive individuals who received BBIBP-CorV or CoronaVac to BA.1 and the earlier variants Alpha, Beta, and Delta. Both sera from convalescent patients over three months after infection and two-dose BBIBP-CorV or CoronaVac vaccine recipients barely inhibited BA.1, less effectively neutralized Beta and Delta, and moderately neutralized Alpha. However, administering a single dose of BBIBP-CorV or CoronaVac in previously infected individuals or a third dose booster vaccination of BBIBP-CorV or CoronaVac in previously vaccinated individuals enhances neutralizing activity against BA.1 and other variants, albeit with a lower antibody titer for BA.1. Our data suggest that a booster vaccination is important to broaden neutralizing antibody responses against the variants. Limited duration of antibody response against BA.1 in convalescent individuals Infection before BBIBP-CorV or CoronaVac vaccination boosts neutralization Two doses of BBIBP-CorV or CoronaVac elicit limited neutralizing activity against VOCs Neutralization breadth for BA.1 is boosted by a third dose of BBIBP-CorV or CoronaVac
Collapse
Affiliation(s)
- Li-Jun Duan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wen-Guo Jiang
- Jining Center for Disease Control and Prevention, Jining, China
| | - Zhuang-Ye Wang
- Dezhou Center for Disease Control and Prevention, Dezhou, China
| | - Lin Yao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ka-Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qing-Chuan Meng
- Ningjin County Community Health Service Center, Dezhou, China
| | - Bao-Shan Wang
- Decheng District Center for Disease Control and Prevention, Dezhou, China
| | - Li-Bo Li
- Jining Center for Disease Control and Prevention, Jining, China
| | - Guo-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mai-Juan Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
161
|
Xu Z, Wu Y, Lin Y, Cao M, Liang Z, Li L, Lin J, Chen Q, Liu J, Liu H. Effect of inactivated COVID-19 vaccination on intrauterine insemination cycle success: A retrospective cohort study. Front Public Health 2022; 10:966826. [PMID: 36172215 PMCID: PMC9510616 DOI: 10.3389/fpubh.2022.966826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/23/2022] [Indexed: 01/24/2023] Open
Abstract
Background Vaccine hesitancy was found in couples seeking artificial reproductive technology (ART) services. As the main vaccine used in China, investigations into the influence of inactivated coronavirus disease 2019 (COVID-19) vaccines on human fertility is needed. Methods This retrospective cohort study included data on COVID-19 vaccination, clinical characteristics, and reproductive outcome of 1,000 intrauterine insemination (IUI) cycles in 653 couples from March 2021 to March 2022 in a single university hospital-based center for reproductive medicine. The IUI cycles were divided into two categories based on sperm source, including 725 cycles in 492 women undergoing artificial insemination with their husband's sperm (AIH) and 275 cycles in 161 women undergoing artificial insemination with donor sperm (AID). Women were then divided into two groups. The vaccine exposed group included women vaccinated prior to insemination and the unexposed group included women who were not vaccinated or vaccinated after insemination. Reproductive outcomes including ongoing pregnancy rate, clinical pregnancy rate, and miscarriage rate were assessed. Results Inactivated COVID-19 vaccinated women prior to intrauterine insemination in AIH cycles have comparable ongoing pregnancy rate (11.1 vs. 10.3%, P = 0.73), clinical pregnancy rate (12.5 vs. 11.3%, P = 0.60) as compared with unvaccinated counterparts. Similarly, there were no significant differences in ongoing pregnancy rate (20.9 vs. 28.1%, P = 0.17), clinical pregnancy rate (21.7 vs. 28.8%, P = 0.19) between vaccine exposed and unexposed groups in AID cycles. Multivariable logistic regression analyses showed that inactivated COVID-19 vaccination status cannot independently influence the reproductive outcomes of AIH and AID cycles. Subgroup analysis of vaccine exposed cycles showed that doses of vaccination and Interval between the last dose of vaccination and insemination have no influence on the reproductive outcomes of AIH cycles. Conclusions No negative effects were found on female fertility in IUI cycles following exposure to the inactivated COVID-19 vaccine. These findings indirectly reflect the safety of inactivated COVID-19 vaccine toward reproductive health and help to mitigate vaccine hesitancy among people planning to conceive.
Collapse
Affiliation(s)
- Zijin Xu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yixuan Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanshan Lin
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingzhu Cao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhu Liang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiali Lin
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Jianqiao Liu
| | - Haiying Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Haiying Liu
| |
Collapse
|
162
|
Analysis of Adverse Effects of COVID-19 Vaccines Experienced by Healthcare Workers at Guizhou Provincial Staff Hospital, China. Vaccines (Basel) 2022; 10:vaccines10091449. [PMID: 36146526 PMCID: PMC9502548 DOI: 10.3390/vaccines10091449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Objective: A retrospective survey was conducted of adverse events following immunization (AEFI) experienced by health care workers (HCWs) in a relatively remote ethnic region in southwest China (Guizhou Province) who received COVID-19 vaccines. Methods: From 18 January 2021 to 21 January 2022, all HCWs of Guizhou Provincial Staff Hospital, China, who received at least one dose of inactivated COVID-19 vaccine (Vero cell), recombinant novel coronavirus vaccine (CHO cell), or one dose of adenovirus type-5 (Ad5) vectored COVID-19 vaccine were asked to complete a self-report questionnaire to provide information on any adverse events that may have occurred in the first 3 days after injection. The frequency of AEFI corresponding to the three types of vaccines were compared and the potential risks of AEFI due to the three different vaccines were predicted by multivariate logistic regression analysis. Results: Of the 904 HCWs who completed the survey, the rates of AEFI were 10.1% (80/794) due to Vero cell, 16.3% (13/80) due to CHO cell, and 46.67% (14/30) due to Ad5 vectored vaccines, and the rates were significantly different (χ2 = 38.7, p < 001) between the three vaccines. Multivariate logistic regression models predict that (1) compared to the Ad 5 vectored group, the risk of AEFI occurrence in the Vero cell group was reduced by about 85.9% (OR = 0.141, 95% CI: 0.065−0.306, p < 0.001) and in the CHO cell group by about 72.1% (OR = 0.279, 95% CI: 0.107−0.723, p = 0.009), (2) the odds for women experiencing AEFI were about 2.1 (OR = 2.093, 95% CI: 1.171−3.742, p = 0.013) times as high as those of men, and (3) the risk of AEFI for HCWs with a Bachelor’s degree or above was about 2.2 (OR = 2.237, 95% CI: 1.434−3.489, p = 0.001) times higher than in HCWs who do not have a Bachelor’s degree. Conclusions: 1. The inactivated COVID-19 vaccine (Vero cell), recombinant novel coronavirus vaccine (CHO cell), and adenovirus type-5 (Ad5) vectored COVID-19 vaccine made in China are safe and relatively broad-spectrum. 2. The prevalence of AEFI is more common in women healthcare workers. 3. The risk of AEFI was higher in those with a Bachelor’s degree or above and may be related to the psychological and social effects triggered by the global COVID-19 pandemic.
Collapse
|
163
|
Toubasi AA, Al‐Sayegh TN, Obaid YY, Al‐Harasis SM, AlRyalat SAS. Efficacy and safety of COVID-19 vaccines: A network meta-analysis. J Evid Based Med 2022; 15:245-262. [PMID: 36000160 PMCID: PMC9538745 DOI: 10.1111/jebm.12492] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/27/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Several vaccines showed a good safety profile and significant efficacy against COVID-19. Moreover, in the absence of direct head to head comparison between COVID-19 vaccines, a network meta-analysis that indirectly compares between them is needed. METHODS Databases PubMed, CENTRAL, medRxiv, and clinicaltrials.gov were searched. Studies were included if they were placebo-controlled clinical trials and reported the safety profile and/or effectiveness of COVID-19 vaccines. The quality of the included studies was assessed using the Revised Cochrane risk-of-bias tool for randomized trials and the Revised Cochrane risk-of-bias tool for nonrandomized trials. RESULTS Forty-nine clinical trials that included 421,173 participants and assessed 28 vaccines were included in this network meta-analysis. The network meta-analysis showed that Pfizer is the most effective in preventing COVID-19 infection whereas the Sputnik Vaccine was the most effective in preventing severe COVID-19 infection. In terms of the local and systemic side, the Sinopharm and V-01 vaccines were the safest. CONCLUSION We found that almost all of the vaccines included in this study crossed the threshold of 50% efficacy. However, some of them did not reach the previously mentioned threshold against the B.1.351 variant while the remainder have not yet investigated vaccine efficacy against this variant. Since each vaccine has its own strong and weak points, we strongly advocate continued vaccination efforts in individualized manner that recommend the best vaccine for each group in the community which is abundantly required to save lives and to avert the emergence of future variants.
Collapse
|
164
|
Yu S, Wei Y, Liang H, Ji W, Chang Z, Xie S, Wang Y, Li W, Liu Y, Wu H, Li J, Wang H, Yang X. Comparison of Physical and Biochemical Characterizations of SARS-CoV-2 Inactivated by Different Treatments. Viruses 2022; 14:v14091938. [PMID: 36146745 PMCID: PMC9503440 DOI: 10.3390/v14091938] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 12/02/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused huge social and economic distress. Given its rapid spread and the lack of specific treatment options, SARS-CoV-2 needs to be inactivated according to strict biosafety measures during laboratory diagnostics and vaccine development. The inactivation method for SARS-CoV-2 affects research related to the natural virus and its immune activity as an antigen in vaccines. In this study, we used size exclusion chromatography, western blotting, ELISA, an electron microscope, dynamic light scattering, circular dichroism, and surface plasmon resonance to evaluate the effects of four different chemical inactivation methods on the physical and biochemical characterization of SARS-CoV-2. Formaldehyde and β-propiolactone (BPL) treatment can completely inactivate the virus and have no significant effects on the morphology of the virus. None of the four tested inactivation methods affected the secondary structure of the virus, including the α-helix, antiparallel β-sheet, parallel β-sheet, β-turn, and random coil. However, formaldehyde and long-term BPL treatment (48 h) resulted in decreased viral S protein content and increased viral particle aggregation, respectively. The BPL treatment for 24 h can completely inactivate SARS-CoV-2 with the maximum retention of the morphology, physical properties, and the biochemical properties of the potential antigens of the virus. In summary, we have established a characterization system for the comprehensive evaluation of virus inactivation technology, which has important guiding significance for the development of vaccines against SARS-CoV-2 variants and research on natural SARS-CoV-2.
Collapse
Affiliation(s)
- Shouzhi Yu
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Yangyang Wei
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Hongyang Liang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Wenheng Ji
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Zhen Chang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Siman Xie
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Yichuan Wang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Wanli Li
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Yingwei Liu
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Hao Wu
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Jie Li
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
| | - Hui Wang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China
- Correspondence: (H.W.); (X.Y.)
| | - Xiaoming Yang
- China National Biotec Group Company Limited, Beijing 100024, China
- Correspondence: (H.W.); (X.Y.)
| |
Collapse
|
165
|
Elhabak DM, Abdelsamie RA, Shams GM. COVID-19 vaccination and male fertility issues: Myth busted. Is taking COVID-19 vaccine the best choice for semen protection and male fertility from risky infection hazards? Andrologia 2022; 54:e14574. [PMID: 36038521 PMCID: PMC9539224 DOI: 10.1111/and.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/12/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
The emerging coronavirus illness (COVID‐19) pandemic is posing a global health hazard, with men being at a larger risk than women. There have been few publications on the andrological consequences of COVID‐19 and its vaccines so far. To assuage vaccine fear stemming from concerns about fertility, the effect of inactivated whole‐virus and viral vector vaccines on semen quality was investigated in 100 Egyptian men. The safety of COVID‐19 vaccines on semen parameters was validated with no significant change in pre‐ and post‐vaccination semen analyses in either type of vaccine. Following COVID‐19 vaccination, we can declare male semen parameters as unaffected.
Collapse
Affiliation(s)
- Doaa M Elhabak
- Dermatology, Venereology and Andrology, Faculty of Medicine, Benha University, Banha, Egypt
| | - Riham A Abdelsamie
- Dermatology, Venereology and Andrology, Faculty of Medicine, Benha University, Banha, Egypt
| | - Ghada M Shams
- Dermatology, Venereology and Andrology, Faculty of Medicine, Benha University, Banha, Egypt
| |
Collapse
|
166
|
Plasma metabolome and cytokine profile reveal glycylproline modulating antibody fading in convalescent COVID-19 patients. Proc Natl Acad Sci U S A 2022; 119:e2117089119. [PMID: 35943976 PMCID: PMC9407385 DOI: 10.1073/pnas.2117089119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The COVID-19 pandemic has incurred tremendous costs worldwide and is still threatening public health in the "new normal." The association between neutralizing antibody levels and metabolic alterations in convalescent patients with COVID-19 is still poorly understood. In the present work, we conducted absolutely quantitative profiling to compare the plasma cytokines and metabolome of ordinary convalescent patients with antibodies (CA), convalescents with rapidly faded antibodies (CO), and healthy subjects. As a result, we identified that cytokines such as M-CSF and IL-12p40 and plasma metabolites such as glycylproline (gly-pro) and long-chain acylcarnitines could be associated with antibody fading in COVID-19 convalescent patients. Following feature selection, we built machine-learning-based classification models using 17 features (six cytokines and 11 metabolites). Overall accuracies of more than 90% were attained in at least six machine-learning models. Of note, the dipeptide gly-pro, a product of enzymatic peptide cleavage catalyzed by dipeptidyl peptidase 4 (DPP4), strongly accumulated in CO individuals compared with the CA group. Furthermore, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination experiments in healthy mice demonstrated that supplementation of gly-pro down-regulates SARS-CoV-2-specific receptor-binding domain antibody levels and suppresses immune responses, whereas the DPP4 inhibitor sitagliptin can counteract the inhibitory effects of gly-pro upon SARS-CoV-2 vaccination. Our findings not only reveal the important role of gly-pro in the immune responses to SARS-CoV-2 infection but also indicate a possible mechanism underlying the beneficial outcomes of treatment with DPP4 inhibitors in convalescent COVID-19 patients, shedding light on therapeutic and vaccination strategies against COVID-19.
Collapse
|
167
|
Wang X, Deng Y, Zhao L, Wang L, Fu Z, Tang L, Ye F, Liu Q, Wang W, Wang S, Hu B, Guan X, Han Z, Tong Y, Rodewald LE, Yin Z, Tan W, Wang F, Huang B. Safety, immunogenicity, and immune persistence of two inactivated COVID-19 vaccines replacement vaccination in China: An observational cohort study. Vaccine 2022; 40:5701-5708. [PMID: 36031501 PMCID: PMC9393163 DOI: 10.1016/j.vaccine.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022]
Abstract
Background To mitigate a national shortage of WIBP-CorV COVID-19 vaccine, China’s regulator approved administering BBIBP-CorV after WIBP-CorV for completion of a primary series. In a pragmatic observational study, we compared immunogenicity and safety of a primary series of WIBP-CorV followed by BBIBP-CorV with a primary series of two doses of BBIBP-CorV. Methods We invited healthy 18–59-years-old adults who had already received either WIBP-CorV or BBIBP-CorV as their first dose in a primary series to participate in this observational cohort study. Subjects who had received WIBP-CorV as their first dose became the observation group; subjects who had received BBIBP-CorV as their first dose became the control group. All participants received BBIBP-CorV as their second dose. We obtained sera 1, 2, and 6 months after second doses for nAb titer measurement by micro-neutralization cytopathic effect assay with SARS-CoV-2 strain HB01, standardized with WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Safety was assessed for the 7 days after administration of second doses. Results Between March and December 2021, 275 subjects were included in the observation group and 133 in the control group. Neutralizing seropositivity (≥1:4) rates were 98.91 % and 99.25 % at 1 month and 53.16 % and 70.69 % at 6 months. One-month geometric mean titers (GMTs) were 21.33 and 22.45; one-month geometric mean concentrations (GMCs) were 227.71 IU/mL and 273.27 IU/mL. One to two months after vaccination, observation group seropositivity rates and titers were not significantly different to the control group’s. Adverse reaction rates were 11.27 % and 18.80 %, all mild or moderate in severity. Conclusions Both primary series were immunogenic; immunogenicity of WIBP-CorV followed by BBIBP-CorV was not different than immunogenicity following two doses of BBIBP-CorV for two months after vaccination; safety profiles were acceptable for both regimens. BBIBP-CorV can be used to complete a primary series that started with WIBP-CorV.
Collapse
Affiliation(s)
- Xiaoqi Wang
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yao Deng
- NHC Key Laboratory of Biosafety, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Zhao
- NHC Key Laboratory of Biosafety, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Wang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Zhenwang Fu
- Hainan Provincial Center for Disease Control and Prevention, China
| | - Lin Tang
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fei Ye
- NHC Key Laboratory of Biosafety, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qianqian Liu
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenling Wang
- NHC Key Laboratory of Biosafety, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Siquan Wang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Bo Hu
- Danzhou Center for Disease Control and Prevention, China
| | - Xuhua Guan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Zhuling Han
- Wenchang Center for Disease Control and Prevention, China
| | - Yeqing Tong
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Lance E Rodewald
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zundong Yin
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fuzhen Wang
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
168
|
Zhang Y, Belayachi J, Yang Y, Fu Q, Rodewald L, Li H, Yan B, Wang Y, Shen Y, Yang Q, Mu W, Tang R, Su C, Xu T, Obtel M, Mhayi A, Razine R, Abouqal R, Zhang Y, Yang X. Real-world study of the effectiveness of BBIBP-CorV (Sinopharm) COVID-19 vaccine in the Kingdom of Morocco. BMC Public Health 2022; 22:1584. [PMID: 35987605 PMCID: PMC9392069 DOI: 10.1186/s12889-022-14016-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background The Kingdom of Morocco approved BBIBP-CorV (Sinopharm) COVID-19 vaccine for emergency use on 22 January 2021 in a two-dose, three-to-four-week interval schedule. We conducted a retrospective cohort study to determine real-world BBIBP-CorV vaccine effectiveness (VE) against serious or critical hospitalization of individuals RT-PCR-positive for SARS-CoV-2 during the first five months of BBIBP-CorV use in Morocco. Methods The study was conducted among adults 18–99 years old who were tested by RT-PCR for SARS-CoV-2 infection between 1 February and 30 June 2021. RT-PCR results were individually linked with outcomes from the COVID-19 severe or critical hospitalization dataset and with vaccination histories from the national vaccination registration system. Individuals with partial vaccination (< 2 weeks after dose two) or in receipt of any other COVID-19 vaccine were excluded. Unadjusted and adjusted VE estimates against hospitalization for serious or critical illness were made by comparing two-dose vaccinated and unvaccinated individuals in logistic regression models, calculated as (1-odds ratio) * 100%. Results There were 348,190 individuals able to be matched across the three databases. Among these, 140,892 were fully vaccinated, 206,149 were unvaccinated, and 1,149 received homologous BBIBP-CorV booster doses. Unadjusted, full-series, unboosted BBIBP-CorV VE against hospitalization for serious or critical illness was 90.2% (95%CI: 87.8—92.0%). Full-series, unboosted VE, adjusted for age, sex, and calendar day of RT-PCR test, was 88.5% (95%CI: 85.8—90.7%). Calendar day- and sex-adjusted VE was 96.4% (95%CI: 94.6—97.6%) for individuals < 60 years, and was 53.3% (95%CI: 39.6—63.9%) for individuals 60 years and older. There were no serious or critical illnesses among BBIBP-CorV-boosted individuals. Conclusions Effectiveness of Sinopharm’s BBIBP-CorV was consistent with phase III clinical trial results. Two doses of BBIBP-CorV was highly protective against COVID-19-associated serious or critical hospitalization in working-age adults under real-world conditions and moderately effective in older adults. Booster dose vaccination was associated with complete protection, regardless of age, although only a small proportion of subjects received booster doses.
Collapse
|
169
|
Zhao W, Li Y, Xie R, Dong Y, Wei Y, Cheng C, Lowe S, Sun C, Wang C, Gao J. Real-World Evidence for COVID-19 Delta Variant's Effects on the Digestive System and Protection of Inactivated Vaccines from a Medical Center in Yangzhou, China: A Retrospective Observational Study. Int J Clin Pract 2022; 2022:7405448. [PMID: 36052305 PMCID: PMC9417746 DOI: 10.1155/2022/7405448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is rapidly disseminated worldwide, and it continues to threaten global public health. Recently, the Delta variant has emerged as the most dreaded variant worldwide. COVID-19 predominantly affects the respiratory tract, and studies have reported the transient effects of COVID-19 on digestive system function. However, the relationship between the severity of the Delta variant and digestive system function remains to be investigated. Additionally, data on the ability of the inactive Chinese vaccines (Sinovac or Sinopharm) to protect against the Delta variant or COVID-19-induced gastrointestinal symptoms in the real world are insufficient. Thus, the present retrospective observational study first attempted to use the total gastrointestinal symptom rating scale scores (GSRS) to quantify the possible changes in digestive system functions following the Delta variant infection in the early stage. In addition, the study discusses the potential of inactivated vaccines in preventing severe or critical symptoms or Delta variant-induced digestive system dysfunction. Methods To evaluate the difference between mild illness group, moderate illness group, and severe or critical illness group, analysis of variance (ANOVA) was employed to compare the three groups' total gastrointestinal symptom rating scale scores (GSRS). A chi-squared test was used to compare the differences in the ratio of the abnormal biochemical measurements among the three groups first. Then, the percentage of the vaccinated population was compared among the three groups. Additionally, the ratio of the abnormal serum markers between the vaccinated and nonvaccinated cohorts was compared. A P value < 0.05 was considered statistically significant. Results Significant differences were observed in the abnormal ratio of alanine aminotransferase (ALT), total bilirubin (TBIL), direct bilirubin (DBIL), lactate dehydrogenase (LDH), and Interleukin 6 (IL-6) ratio among the three groups (P < 0.05). Additionally, no significant difference was observed in the abnormal serum markers ratio between day 14 and day 21 after treatment (P > 0.05). A significant difference was observed in the total GSRS scores among the three groups and the ratio of the vaccinated population among the three groups (P < 0.05). A significant difference was observed in the ratio of the abnormal serum ALT and AST levels between the vaccinated and nonvaccinated cohorts (P < 0.05). Conclusions In summary, serum AST, DBIL, LDH, and IL-6 levels are potential markers for distinguishing severe or critical patients in the early stage of the Delta variant infection. Additionally, changes in the levels of these serum makers are transient, and the levels can return to normal after treatment. Furthermore, severe gastrointestinal discomfort was significantly more prevalent in patients with severe or critical diseases and should thus be considered in patients diagnosed with Delta variant infection. Finally, inactivated vaccines may prevent severe or critical symptoms and Delta variant-induced liver dysfunction. Vaccination programs must be promoted to protect public health.
Collapse
Affiliation(s)
- Wenjing Zhao
- Affiliated Northern Jiangsu People's Hospital of Yangzhou University, Yangzhou, China
| | - Yong Li
- Affiliated Northern Jiangsu People's Hospital of Yangzhou University, Yangzhou, China
| | - Ruijin Xie
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuying Dong
- Center for Disease Control and Prevention, Yangzhou, China
| | - Yan Wei
- Affiliated Northern Jiangsu People's Hospital of Yangzhou University, Yangzhou, China
| | - Ce Cheng
- The University of Arizona College of Medicine, Tucson, ARI, USA
| | - Scott Lowe
- Kansas City University, College of Osteopathic Medicine, Kansas, MO, USA
| | - Chenyu Sun
- Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, USA
| | - Cunjin Wang
- Affiliated Northern Jiangsu People's Hospital of Yangzhou University, Yangzhou, China
| | - Ju Gao
- Affiliated Northern Jiangsu People's Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
170
|
Vaccines platforms and COVID-19: what you need to know. Trop Dis Travel Med Vaccines 2022; 8:20. [PMID: 35965345 PMCID: PMC9537331 DOI: 10.1186/s40794-022-00176-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/22/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The novel SARS-CoV-2, responsible for the COVID-19 pandemic, is the third zoonotic coronavirus since the beginning of the 21 first century, and it has taken more than 6 million human lives because of the lack of immunity causing global economic losses. Consequently, developing a vaccine against the virus represents the fastest way to finish the threat and regain some "normality." OBJECTIVE Here, we provide information about the main features of the most important vaccine platforms, some of them already approved, to clear common doubts fostered by widespread misinformation and to reassure the public of the safety of the vaccination process and the different alternatives presented. METHODS Articles published in open access databases until January 2022 were identified using the search terms "SARS-CoV-2," "COVID-19," "Coronavirus," "COVID-19 Vaccines," "Pandemic," COVID-19, and LMICs or their combinations. DISCUSSION Traditional first-generation vaccine platforms, such as whole virus vaccines (live attenuated and inactivated virus vaccines), as well as second-generation vaccines, like protein-based vaccines (subunit and viral vector vaccines), and third-generation vaccines, such as nanoparticle and genetic vaccines (mRNA vaccines), are described. CONCLUSIONS SARS-CoV-2 sequence information obtained in a record time provided the basis for the fast development of a COVID-19 vaccine. The adaptability characteristic of the new generation of vaccines is changing our capability to react to emerging threats to future pandemics. Nevertheless, the slow and unfair distribution of vaccines to low- and middle-income countries and the spread of misinformation are a menace to global health since the unvaccinated will increase the chances for resurgences and the surge of new variants that can escape the current vaccines.
Collapse
|
171
|
SARS-CoV-2 Viroporins: A Multi-Omics Insight from Nucleotides to Amino Acids. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
COVID-19 is caused by SARS-CoV-2 which has so far affected more than 500 million people worldwide and killed over 6 million as of 1 May 2022. The approved emergency-use vaccines were lifesaving in such a devastating pandemic. Inflammation-related pathways have been well documented to be upregulated in the case of SARS-CoV-2 in rodents, non-human primates and human samples. We reanalysed a previously published dataset to understand if certain molecular components of inflammation could be higher in infected samples. Mechanistically, viroporins are important players in the life cycle of SARS-CoV-2 and are primary to its pathogenesis. We studied the two prominent viroporins of SARS-CoV-2 (i) Orf3a and (ii) envelope (E) protein from a sequence and structural point of view. Orf3a is a cation-selective viral ion channel which has been shown to disrupt the endosomal pathways. E protein is one of the most conserved proteins among the SARS-CoV proteome which affects the ERGIC-related pathways. The aqueous medium through the viroporins mediates the non-selective translocation of cations, affecting ionic homeostasis in the host cellular compartments. We hypothesize a possible mechanistic approach whereby the ionic imbalance caused by viroporin action could potentially be one of the major pathogenic drivers leading to the increased inflammatory response in the host cell. Our results shed light into the transcriptomic, genomic and structural proteomics aspects of widely studied SARS-CoV-2 viroporins, which can be potentially leveraged for the development of antiviral therapeutics.
Collapse
|
172
|
Peng M, Dou X, Zhang X, Yan M, Xiong D, Jiang R, Ou T, Tang A, Yu X, Zhu F, Li W. Protective antigenic epitopes revealed by immunosignatures after three doses of inactivated SARS-CoV-2 vaccine. Front Immunol 2022; 13:938378. [PMID: 36016943 PMCID: PMC9397116 DOI: 10.3389/fimmu.2022.938378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has infected millions of people around the world. Vaccination is a pillar in the strategy to control transmission of the SARS-CoV-2 spread. Immune responses to vaccination require elucidation. Methods The immune responses to vaccination with three doses of inactivated SARS-CoV-2 vaccine were followed in a cohort of 37 healthy adults (18–59 years old). Blood samples were collected at multiple time points and submitted to peptide array, machine learning modeling, and sequence alignment analyses, the results of which were used to generate vaccine-induced antibody-binding region (VIABR) immunosignatures (Registration number: ChiCTR2200058571). Results Antibody spectrum signals showed vaccination stimulated antibody production. Sequence alignment analyses revealed that a third vaccine dose generated a new highly represented VIABR near the A570D mutation, and the whole process of inoculation enhanced the VIABR near the N501Y mutation. In addition, the antigen conformational epitopes varied between short- and long-term samples. The amino acids with the highest scores in the short-term samples were distributed primarily in the receptor binding domain (RBD) and N-terminal domain regions of spike (S) protein, while in the long-term samples (12 weeks after the 2nd dose), some new conformational epitopes (CEs) were localized to crevices within the head of the S protein trimer. Conclusion Protective antigenic epitopes were revealed by immunosignatures after three doses of inactivated SARS-CoV-2 vaccine inoculation. A third dose results in a new top-10 VIABR near the A570D mutation site of S protein, and the whole process of inoculation enhanced the VIABR near the N501Y mutation, thus potentially providing protection from strains that have gained invasion and immune escape abilities through these mutation.
Collapse
Affiliation(s)
- Mian Peng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Critical Care Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaowen Dou
- Medical Laboratory, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiuming Zhang
- Medical Laboratory, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Mingchen Yan
- Department of Artificial Intelligence and Bioinformatics, Shenzhen Digital Life Research Institute, Shenzhen, China
| | - Dan Xiong
- Medical Laboratory, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ruiwei Jiang
- Medical Laboratory, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Tong Ou
- Medical Laboratory, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Aifa Tang
- Science and Education Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiqiu Yu
- Department of Gastroenterology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Feiqi Zhu
- Department of Neurology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Weiqin Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Weiqin Li,
| |
Collapse
|
173
|
Kouhpayeh H, Ansari H. Adverse events following COVID-19 vaccination: A systematic review and meta-analysis. Int Immunopharmacol 2022; 109:108906. [PMID: 35671640 PMCID: PMC9148928 DOI: 10.1016/j.intimp.2022.108906] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND High speed of COVID-19 vaccination has raised some concerns about the safety of the new vaccines. It is of a great importance to perform a review of the safety and efficacy of the COVID-19 vaccines. METHODS Two International electronic databases (PubMed, ISI) were searched for clinical trials reporting efficacy and safety of COVID-19 vaccines compared to control group. Pooled risk ratio (RR) for total, systemic and local adverse events following immunization was calculated for different vaccine modalities. RESULTS The pooled RRs of total adverse reactions for Inactivated, mRNA, and vector vaccines were 1.46 (95% CI: 1.19-1.78), 2.01 (95% CI: 1.82 - 2.23), and 1.65 (95% CI: 1.31 - 2.32) respectively. The pooled RR for occurrence of systemic adverse reactions following immunization for different vaccine modalities was 1.13 (95% CI: 0.79 - 1.61), 1.53 (95% CI 1.08 - 2.16), 1.58 (95% CI: 1.13 - 1.90), 0.72 (95% CI: 0.34 - 1.55), and 1.62 (95% CI: 1.39 - 1.89) for inactivated vaccine, mRNA, vector, DNA, and protein subunit vaccines respectively. The pooled RR of local adverse event following immunization with inactivated vaccine, mRNA vaccine, vector vaccine, DNA vaccine, and protein subunit vaccine was 2.18 (95% CI: 1.32 - 3.59), 4.96 (95% CI: 4.02 - 6.11), 1.48 (95% CI: 0.88-2.50) 1.04 (95% CI: 0.12-8.75), and 4.09 (95% CI: 2.63-6.35) respectively. CONCLUSION mRNA vaccines are associated with greater risk of adverse events following immunization. However, at the present moment the benefits of all types of vaccines approved by WHO, still outweigh the risks of them and vaccination if available, is highly recommended.
Collapse
Affiliation(s)
- Hamidreza Kouhpayeh
- Tropical and Infectious Diseases Department, Zahedan University of Medical Sciences, Zahedan, Iran; Zahedan University of Medical Sciences Research Center, Emam Ali Hospital, Zahedan, Iran.
| | - Hossein Ansari
- Health Promotion Research Center, Department of Epidemiology and Biostatistics, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
174
|
Inchingolo AD, Malcangi G, Ceci S, Patano A, Corriero A, Vimercati L, Azzollini D, Marinelli G, Coloccia G, Piras F, Barile G, Settanni V, Mancini A, De Leonardis N, Garofoli G, Palmieri G, Isacco CG, Rapone B, Scardapane A, Curatoli L, Quaranta N, Ribezzi M, Massaro M, Jones M, Bordea IR, Tartaglia GM, Scarano A, Lorusso F, Macchia L, Larocca AMV, Aityan SK, Tafuri S, Stefanizzi P, Migliore G, Brienza N, Dipalma G, Favia G, Inchingolo F. Effectiveness of SARS-CoV-2 Vaccines for Short- and Long-Term Immunity: A General Overview for the Pandemic Contrast. Int J Mol Sci 2022; 23:8485. [PMID: 35955621 PMCID: PMC9369331 DOI: 10.3390/ijms23158485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The recent COVID-19 pandemic produced a significant increase in cases and an emergency state was induced worldwide. The current knowledge about the COVID-19 disease concerning diagnoses, patient tracking, the treatment protocol, and vaccines provides a consistent contribution for the primary prevention of the viral infection and decreasing the severity of the SARS-CoV-2 disease. The aim of the present investigation was to produce a general overview about the current findings for the COVID-19 disease, SARS-CoV-2 interaction mechanisms with the host, therapies and vaccines' immunization findings. METHODS A literature overview was produced in order to evaluate the state-of-art in SARS-CoV-2 diagnoses, prognoses, therapies, and prevention. RESULTS Concerning to the interaction mechanisms with the host, the virus binds to target with its Spike proteins on its surface and uses it as an anchor. The Spike protein targets the ACE2 cell receptor and enters into the cells by using a special enzyme (TMPRSS2). Once the virion is quietly accommodated, it releases its RNA. Proteins and RNA are used in the Golgi apparatus to produce more viruses that are released. Concerning the therapies, different protocols have been developed in observance of the disease severity and comorbidity with a consistent reduction in the mortality rate. Currently, different vaccines are currently in phase IV but a remarkable difference in efficiency has been detected concerning the more recent SARS-CoV-2 variants. CONCLUSIONS Among the many questions in this pandemic state, the one that recurs most is knowing why some people become more seriously ill than others who instead contract the infection as if it was a trivial flu. More studies are necessary to investigate the efficiency of the treatment protocols and vaccines for the more recent detected SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Luigi Vimercati
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Arnaldo Scardapane
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Luigi Curatoli
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Nicola Quaranta
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Mario Ribezzi
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Maria Massaro
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy;
| | - Megan Jones
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Angela Maria Vittoria Larocca
- Hygiene Complex Operating Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Place Giulio Cesare 11 BARI CAP, 70124 Bari, Italy;
| | | | - Silvio Tafuri
- Department of Biomedical Science and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Pasquale Stefanizzi
- Interdisciplinary Department of Medicine, University Hospital of Bari, 70100 Bari, Italy; (P.S.); (G.M.)
| | - Giovanni Migliore
- Interdisciplinary Department of Medicine, University Hospital of Bari, 70100 Bari, Italy; (P.S.); (G.M.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Gianfranco Favia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| |
Collapse
|
175
|
Tong X, McNamara R, Avendaño M, Serrano E, García-Salum T, Pardo-Roa C, Levican J, Poblete E, Salina E, Muñoz A, Riquelme A, Alter G, Medina R. Waning and boosting of functional humoral immunity to SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.07.22.501163. [PMID: 35923313 PMCID: PMC9347272 DOI: 10.1101/2022.07.22.501163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since the emergence of the SARS-CoV-2 virus, we have witnessed a revolution in vaccine development with the rapid emergence and deployment of both traditional and novel vaccine platforms. The inactivated CoronaVac vaccine and the mRNA-based Pfizer/BNT162b2 vaccine are among the most widely distributed vaccines, both demonstrating high, albeit variable, vaccine effectiveness against severe COVID-19 over time. Beyond the ability of the vaccines to generate neutralizing antibodies, antibodies can attenuate disease via their ability to recruit the cytotoxic and opsinophagocytic functions of the immune response. However, whether Fc-effector functions are induced differentially, wane with different kinetics, and are boostable, remains unknown. Here, using systems serology, we profiled the Fc-effector profiles induced by the CoronaVac and BNT162b2 vaccines, over time. Despite the significantly higher antibody functional responses induced by the BNT162b2 vaccine, CoronaVac responses waned more slowly, albeit still found at levels below those present in the systemic circulation of BNT162b2 immunized individuals. However, mRNA boosting of the CoronaVac vaccine responses resulted in the induction of significantly higher peak antibody functional responses with increased humoral breadth, including to Omicron. Collectively, the data presented here point to striking differences in vaccine platform-induced functional humoral immune responses, that wane with different kinetics, and can be functionally rescued and expanded with boosting.
Collapse
Affiliation(s)
- X. Tong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - R.P. McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - M.J. Avendaño
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - E.F. Serrano
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - T. García-Salum
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - C. Pardo-Roa
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - J. Levican
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - E. Poblete
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - E. Salina
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - A. Muñoz
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - A. Riquelme
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8331010, Chile
| | - G. Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - R.A. Medina
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
176
|
Zhang S, Yang Z, Chen ZL, Yue SJ, Zhang S, Tang YP. Why does COVID-19 continue to spread despite mass vaccination? Front Public Health 2022; 10:938108. [PMID: 35958834 PMCID: PMC9358243 DOI: 10.3389/fpubh.2022.938108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Shuo Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, China
- School of Clinical Medicine (Guang'anmen Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Yang
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Zhen-Lin Chen
- International Programs Office, Shaanxi University of Chinese Medicine, Xi'an, China
- *Correspondence: Zhen-Lin Chen
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Sai Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, China
- Yu-Ping Tang
| |
Collapse
|
177
|
Mei S, Fan Z, Liu X, Zhao F, Huang Y, Wei L, Hu Y, Xie Y, Wang L, Ai B, Liang C, Xu F, Guo F. Immunogenicity of a vaccinia virus-based severe acute respiratory syndrome coronavirus 2 vaccine candidate. Front Immunol 2022; 13:911164. [PMID: 35935962 PMCID: PMC9353262 DOI: 10.3389/fimmu.2022.911164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines provide essential tools for the control of the COVID-19 pandemic. A number of technologies have been employed to develop SARS-CoV-2 vaccines, including the inactivated SARS-CoV-2 particles, mRNA to express viral spike protein, recombinant spike proteins, and viral vectors. Here, we report the use of the vaccinia virus Tiantan strain as a vector to express the SARS-CoV-2 spike protein. When it was used to inoculate mice, robust SARS-CoV-2 spike protein-specific antibody response and T-cell response were detected. Sera from the vaccinated mice showed strong neutralizing activity against the ancestral Wuhan SARS-CoV-2, the variants of concern (VOCs) B.1.351, B.1.617.2, and the emerging B.1.1.529 (omicron). This finding supports the possibility of developing a new type of SARS-CoV-2 vaccine using the vaccinia virus vector.
Collapse
Affiliation(s)
- Shan Mei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhangling Fan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoman Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yamei Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Xie
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liming Wang
- Department of Medical Oncology, Beijing Hospital, Beijing, China
| | - Bin Ai
- Department of Medical Oncology, Beijing Hospital, Beijing, China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Fengwen Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Fengwen Xu, ; Fei Guo,
| | - Fei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Fengwen Xu, ; Fei Guo,
| |
Collapse
|
178
|
Vadrevu KM, Ganneru B, Reddy S, Jogdand H, Raju D, Sapkal G, Yadav P, Reddy P, Verma S, Singh C, Redkar SV, Gillurkar CS, Kushwaha JS, Mohapatra S, Bhate A, Rai SK, Ella R, Abraham P, Prasad S, Ella K. Persistence of immunity and impact of third dose of inactivated COVID-19 vaccine against emerging variants. Sci Rep 2022; 12:12038. [PMID: 35835822 PMCID: PMC9281359 DOI: 10.1038/s41598-022-16097-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/04/2022] [Indexed: 12/30/2022] Open
Abstract
This is a comprehensive report on immunogenicity of COVAXIN® booster dose against ancestral and Variants of Concern (VOCs) up to 12 months. It is well known that neutralizing antibodies induced by COVID-19 vaccines wane within 6 months of vaccination leading to questions on the effectiveness of two-dose vaccination against breakthrough infections. Therefore, we assessed the persistence of immunogenicity up to 6 months after a two or three-dose with BBV152 and the safety of a booster dose in an ongoing phase 2, double-blind, randomized controlled trial (ClinicalTrials.gov: NCT04471519). We report persistence of humoral and cell mediated immunity up to 12 months of vaccination, despite decline in the magnitude of antibody titers. Administration of a third dose of BBV152 increased neutralization titers against both homologous (D614G) and heterologous strains (Alpha, Beta, Delta, Delta Plus and Omicron) with a slight increase in B cell memory responses. Thus, seronversion rate remain high in boosted recipients compared to non-booster, even after 6 months, post third dose against variants. No serious adverse events observed, except pain at the injection site, itching and redness. Hence, these results indicate that a booster dose of BBV152 is safe and necessary to ensure persistent immunity to minimize breakthrough infections of COVID-19, due to newly emerging variants. Trial registration: Registered with the Clinical Trials Registry (India) No. CTRI/2021/04/032942, dated 19/04/2021 and on Clinicaltrials.gov: NCT04471519.
Collapse
Affiliation(s)
| | - Brunda Ganneru
- Bharat Biotech International Limited, Genome Valley, Hyderabad, 500 078, India
| | - Siddharth Reddy
- Bharat Biotech International Limited, Genome Valley, Hyderabad, 500 078, India
| | - Harsh Jogdand
- Bharat Biotech International Limited, Genome Valley, Hyderabad, 500 078, India
| | - Dugyala Raju
- Bharat Biotech International Limited, Genome Valley, Hyderabad, 500 078, India
| | - Gajanan Sapkal
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Pragya Yadav
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | | | - Savita Verma
- Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, India
| | | | | | | | | | | | | | | | - Raches Ella
- Independent Clinical Development Consultant, Cambridge, USA
| | - Priya Abraham
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Sai Prasad
- Bharat Biotech International Limited, Genome Valley, Hyderabad, 500 078, India
| | - Krishna Ella
- Bharat Biotech International Limited, Genome Valley, Hyderabad, 500 078, India
| |
Collapse
|
179
|
Ren J, Zhang T, Li X, Liu G. Ocular Inflammatory Reactions following an Inactivated SARS-CoV-2 Vaccine: A Four Case Series. Ocul Immunol Inflamm 2022:1-6. [PMID: 35819841 DOI: 10.1080/09273948.2022.2093754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To report a four-case series of ocular adverse events post an inactivated COVID-19 vaccination in China. METHODS The four patients exhibited ocular inflammatory reactions on the same day after receiving an inactivated SARS-CoV-2 vaccine. RESULTS All patients underwent detailed ophthalmic examinations, with the medical diagnosis of Vogt-Koyanagi-Harada, Ponser-Schlossman, secondary post-inflammatory glaucoma, and iridocyclitis, respectively. No patients had any other underlying medical conditions causing the ocular complications. The ocular inflammatory reactions of these four patients were resolved with the administration of oral or topical corticosteroids. CONCLUSION Our cases remind the ophthalmologist that adverse ocular events may happen after the administration of SARS-CoV-2 vaccine. Since the ocular complications could be resolved with the corticosteroid treatment, the events were considered to be inflammatory reactions caused by the SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Junhong Ren
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, Shanghai, China
| | - Tingting Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, Shanghai, China
| | - Xiaoyue Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, Shanghai, China
| | - Guodong Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, Shanghai, China
| |
Collapse
|
180
|
Dadras O, Mehraeen E, Karimi A, Tantuoyir MM, Afzalian A, Nazarian N, Mojdeganlou H, Mirzapour P, Shamsabadi A, Dashti M, Ghasemzadeh A, Vahedi F, Shobeiri P, Pashaei Z, SeyedAlinaghi S. Safety and Adverse Events Related to Inactivated COVID-19 Vaccines and Novavax;a Systematic Review. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2022; 10:e54. [PMID: 36033990 PMCID: PMC9397598 DOI: 10.22037/aaem.v10i1.1585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Introduction Knowledge of the safety of vaccines is crucial, both to prevent and cure them and to decrease the public hesitation in receiving vaccines. Therefore, this study aimed to systematically review the adverse events reported for inactivated vaccines and Novavax. Methods In this systematic review, the databases of PubMed, Scopus, Cochrane, and Web of Science were searched on September 15, 2021. Then we identified the eligible studies using a two-step title/abstract and full-text screening process. Data on the subjects, studies, and types of adverse events were extracted and entered in a word table, including serious, mild, local, and systemic adverse events as well as the timing of side effects' appearance. Results Adverse effects of inactivated coronavirus vaccines side effects were reported from phases 1, 2, and 3 of the vaccine trials. The most common local side effects included injection site pain and swelling, redness, and pruritus. Meanwhile, fatigue, headache, muscle pain, fever, and gastrointestinal symptoms including abdominal pain and diarrhea were among the most common systemic adverse effects. Conclusion This systematic review indicates that inactivated COVID-19 vaccines, including Sinovac, Sinopharm, and Bharat Biotech, as well as the protein subunit vaccines (Novavax) can be considered as safe choices due to having milder side effects and fewer severe life-threatening adverse events.
Collapse
Affiliation(s)
- Omid Dadras
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran. E-mail: , , ,School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand. E-mail:
| | - Esmaeil Mehraeen
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran. E-mail:
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Fax: +98-21-66947984, E-mail: , , ,
| | - Marcarious M. Tantuoyir
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Fax: +98-21-66947984, E-mail: , , , ,Biomedical Engineering Unit, University of Ghana Medical Center (UGMC), Accra, Ghana. E-mail:
| | - Arian Afzalian
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Fax: +98-21-66947984, E-mail: , , ,
| | - Newsha Nazarian
- School of Medicine, Islamic Azad University, Tehran, Iran. E-mail:
| | - Hengameh Mojdeganlou
- Department of Pathology, Urmia University of Medical Sciences,Urmia, Iran. E-mail:
| | - Pegah Mirzapour
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran. E-mail: , ,
| | - Ahmadreza Shamsabadi
- Department of Health Information Technology, Esfarayen Faculty of Medical Sciences, Esfarayen, Iran. E-mail:
| | - Mohsen Dashti
- Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran. E-mail: ,
| | - Afsaneh Ghasemzadeh
- Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran. E-mail: ,
| | - Farzin Vahedi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Fax: +98-21-66947984, E-mail: , , ,
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Fax: +98-21-66947984, E-mail: , , ,
| | - Zahra Pashaei
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran. E-mail: , ,
| | - SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran. E-mail: , , ,Corresponding Author: SeyedAhmad SeyedAlinaghi, Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran. , Tel: 0098 (021) 66581583, ORCID:0000-0003-3210-7905
| |
Collapse
|
181
|
Zou S, Wu M, Ming F, Wu S, Guo W, Marley G, Xing Z, Zhang Z, Zeng M, Sun C, Zhang J, Tang W, Liang K. Immune response and safety to inactivated COVID-19 vaccine: a comparison between people living with HIV and HIV-naive individuals. AIDS Res Ther 2022; 19:33. [PMID: 35791004 PMCID: PMC9253234 DOI: 10.1186/s12981-022-00459-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/16/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Multi-types COVID-19 vaccines have shown safety and efficacy against COVID-19 in adults. Although current guidelines encourage people living with HIV (PLWH) to take COVID-19 vaccines, whether their immune response to COVID-19 vaccines is distinct from HIV-free individuals is still unclear. METHODS Between March to June 2021, 48 PLWH and 40 HNC, aged 18 to 59 years, were enrolled in the study in Wuchang district of Wuhan city. All of them received inactivated COVID-19 vaccine (Sinopharm, WIBP-CorV, Wuhan Institute of Biological Products Co. Ltd) at day 0 and the second dose at day 28. The primary safety outcome was the combined adverse reactions within 7 days after each injection. The primary immunogenicity outcomes were SARS-CoV-2 neutralizing antibodies (nAbs) responses by chemiluminescence and total specific IgM and IgG antibodies responses by ELISA and colloidal gold at baseline (day 0), day 14, day 28, day 42, and day 70. RESULTS In total, the study included 46 PLWH and 38 HNC who finished 70 days' follow-up. The frequency of adverse reactions to the first and second dose was not different between PLWH (30% and 11%) vs. HNC (32% and 24%). NAbs responses among PLWH peaked at day 70, while among HNC peaked at day 42. At day 42, the geometric mean concentration (GMC) and seroconversion rate of nAbs among PLWH were 4.46 binding antibody units (BAU)/mL (95% CI 3.18-5.87) and 26% (95% CI 14-41), which were lower than that among HNC [GMC (18.28 BAU/mL, 95% CI 10.33-32.33), seroconversion rate (63%, 95% CI 44-79)]. IgG responses among both PLWH and HNC peaked at day 70. At day 70, the geometric mean ELISA units (GMEU) and seroconversion rate of IgG among PLWH were 0.193 ELISA units (EU)/mL (95% CI 0.119-0.313) and 51% (95% CI 34-69), which was lower than that among HNC [GMEU (0.379 EU/mL, 95% CI 0.224-0.653), seroconversion rate (86%, 95% CI 64-97)]. There were no serious adverse events. CONCLUSIONS Early humoral immune response to the inactivated COVID-19 vaccine was weaker and delayed among the PLWH population than that among HNC. This observation remained consistent regardless of a high CD4 count with effective antiretroviral therapy.
Collapse
Affiliation(s)
- Shi Zou
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengmeng Wu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fangzhao Ming
- Wuchang District Center for Disease Control and Prevention, Wuhan, China
| | - Songjie Wu
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Guo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Gifty Marley
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhongyuan Xing
- Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Zhiyue Zhang
- Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Minxia Zeng
- Zhuhai Livzon Diagnostics CO, LTD, Zuhai, China
| | - Chao Sun
- Zhuhai Livzon Diagnostics CO, LTD, Zuhai, China
| | | | - Weiming Tang
- Provincial People's Hospital, Guangzhou, China.
- The University of North Carolina at Chapel Hill Project-China, Guangzhou, China.
- Dermatology Hospital, Southern Medical University, Guangzhou, 510095, China.
| | - Ke Liang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China.
| |
Collapse
|
182
|
Mahroum N, Lavine N, Ohayon A, Seida R, Alwani A, Alrais M, Zoubi M, Bragazzi NL. COVID-19 Vaccination and the Rate of Immune and Autoimmune Adverse Events Following Immunization: Insights From a Narrative Literature Review. Front Immunol 2022; 13:872683. [PMID: 35865539 PMCID: PMC9294236 DOI: 10.3389/fimmu.2022.872683] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
Despite their proven efficacy and huge contribution to the health of humankind, vaccines continue to be a source of concern for some individuals around the world. Vaccinations against COVID-19 increased the number of distressed people and intensified their distrust, particularly as the pandemic was still emerging and the populations were encouraged to be vaccinated under various slogans like "back to normal life" and "stop coronavirus", goals which are still to be achieved. As fear of vaccination-related adverse events following immunization (AEFIs) is the main reason for vaccine hesitancy, we reviewed immune and autoimmune AEFIs in particular, though very rare, as the most worrisome aspect of the vaccines. Among others, autoimmune AEFIs of the most commonly administered COVID-19 vaccines include neurological ones such as Guillain-Barre syndrome, transverse myelitis, and Bell's palsy, as well as myocarditis. In addition, the newly introduced notion related to COVID-19 vaccines, "vaccine-induced immune thrombotic thrombocytopenia/vaccine-induced prothrombotic immune thrombotic thrombocytopenia" (VITT/VIPITT)", is of importance as well. Overviewing recent medical literature while focusing on the major immune and autoimmune AEFIs, demonstrating their rate of occurrence, presenting the cases reported, and their link to the specific type of COVID-19 vaccines represented the main aim of our work. In this narrative review, we illustrate the different vaccine types in current use, their associated immune and autoimmune AEFIs, with a focus on the 3 main COVID-19 vaccines (BNT162b2, mRNA-1273, and ChAdOx1). While the rate of AEFIs is extremely low, addressing the issue in this manner, in our opinion, is the best strategy for coping with vaccine hesitancy.
Collapse
Affiliation(s)
- Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel
| | - Noy Lavine
- Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel
- St. George School of Medicine, University of London, London, United Kingdom
| | - Aviran Ohayon
- Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel
- St. George School of Medicine, University of London, London, United Kingdom
| | - Ravend Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Abdulkarim Alwani
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mahmoud Alrais
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Magdi Zoubi
- Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| |
Collapse
|
183
|
Nugraha J, Permatasari CA, Fitriah M, Tambunan BA, Fuadi MR. Kinetics of anti-SARS-CoV-2 responses post complete vaccination with coronavac: A prospective study in 50 health workers. J Public Health Res 2022; 11:22799036221104173. [PMID: 35966047 PMCID: PMC9373131 DOI: 10.1177/22799036221104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/22/2022] [Indexed: 11/27/2022] Open
Abstract
Background COVID-19 pandemic causes severe acute respiratory syndrome and requires rapid action. The development of effective safe vaccines become a global priority for achieving herd immunity. Vaccination is expected to form specific antibodies against the SARS-CoV-2 spike protein which can neutralize the virus, preventing the virus from binding with ACE 2 receptors. Objective Evaluating and to know if there any differences of kinetics antibody levels from recipient's anti-IgG S-RBD and NAb with complete second dose CoronaVac Vaccine, to determine the antibody response in preventing SARS-CoV-2. Method A prospective-cohort study using observational analytics was conducted from January-April 2021 at Dr. Soetomo Hospital, Surabaya. A total of 50 subjects are healthcare workers who received two doses of CoronaVac. The IgG S-RBD and NAb levels were measured on Maglumi 800 device (SNIBE, China). Differences in IgG S-RBD and NAb levels before vaccination and after second dose CoronaVac vaccination on 14th day, on 28th day, ware tested using Friedman and Wilcoxon tests. Result Mean values of IgG S-RBD and NAb have fluctuated. There was a significant difference between IgG S-RBD and NAb levels on day-0 (0.090 vs 18.630; p < 0.001) and day-28 (141.266 vs 116.640; p = 0.037). The median value showed the IgG S-RBD level on day-28 was much better than NAb value (141,266 v 116,640). Conclusion CoronaVac will form persistent antibodies. Despite antibody development, the acquired humoral immunity decreased at 28 days after full CoronaVac immunization. Kinetics of antibody NAb decreased more rapidly than IgG S-RBD.
Collapse
Affiliation(s)
- Jusak Nugraha
- Department of Clinical Pathology,
Faculty of Medicine, Airlangga University, Dr. Soetomo Hospital, Surabaya,
Indonesia
| | - Cynthia Ayu Permatasari
- Clinical Pathology Specialization
Program, Faculty of Medicine Airlangga University, Surabaya, Indonesia
| | - Munawaroh Fitriah
- Clinical Pathology Sub-Specialization
Program, Faculty of Medicine Airlangga University, Surabaya, Indonesia
| | - Betty Agustina Tambunan
- Department of Clinical Pathology,
Faculty of Medicine, Airlangga University, Dr. Soetomo Hospital, Surabaya,
Indonesia
| | - Muhamad Robi’ul Fuadi
- Department of Clinical Pathology,
Faculty of Medicine, Airlangga University, Dr. Soetomo Hospital, Surabaya,
Indonesia
| |
Collapse
|
184
|
Hadj Hassine I. Covid-19 vaccines and variants of concern: A review. Rev Med Virol 2022; 32:e2313. [PMID: 34755408 PMCID: PMC8646685 DOI: 10.1002/rmv.2313] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the outbreak of coronavirus disease 2019 (Covid-19) in December 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the number of confirmed infections has risen to more than 242 million worldwide, with nearly 5 million deaths. Currently, nine Covid-19 vaccine candidates based on the original Wuhan-Hu-1 strain are at the forefront of vaccine research. All nine had an efficacy over 50% against symptomatic Covid-19 disease: NVX-CoV2373 (∼96%), BNT162b2 (∼95%), mRNA-1273 (∼94%), Sputnik V (∼92%), AZD1222 (∼81%), BBIBP-CorV (∼79%), Covaxin (∼78%), Ad26.CoV.S (∼66%) and CoronaVac (∼51%). However, vaccine efficacy (VE) can be jeopardised by the rapid emergence and spread of SARS-CoV-2 variants of concern (VOCs) that could escape from neutralising antibodies and/or cell-mediated immunity. Rare adverse events have also been reported soon after administration of viral vector and mRNA vaccines. Although many Covid-19 vaccines have been developed, additional effective vaccines are still needed to meet the global demand. Promising Covid-19 vaccines such as WIBP-CorV, AD5-nCOV, ZyCoV-D, CVnCoV, EpiVacCorona and ZF2001 have advanced to clinical studies. This review describes the most relevant mutations in the SARS-CoV-2 spike protein, discusses VE against VOCs, presents rare adverse events after Covid-19 vaccination and introduces some promising Covid-19 vaccine candidates.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Unité de Recherche UR17ES30 ‘Génomique, Biotechnologie et Stratégies Antivirales‘Institut Supérieur de Biotechnologie, Université de MonastirMonastirTunisia
| |
Collapse
|
185
|
Xu R, Zhao B, Lan L, Liu Y, Li Y, Jiang L, Dai S. A one-year follow-up study on dynamic changes of leukocyte subsets and virus-specific antibodies of patients with COVID-19 in Sichuan, China. Int J Med Sci 2022; 19:1122-1130. [PMID: 35919814 PMCID: PMC9339420 DOI: 10.7150/ijms.71286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/15/2022] [Indexed: 11/07/2022] Open
Abstract
Background: SARS-CoV-2 infection causes immune response and produces protective antibodies, and these changes may persist after patients discharged from hospital. Methods: This study conducted a one-year follow-up study on patients with COVID-19 to observe the dynamic changes of circulating leukocyte subsets and virus-specific antibodies. Results: A total of 66 patients with COVID-19 and 213 healthy patients with inactivated SARS-CoV-2 vaccination were included. The virus-specific total antibody, IgG and IgM antibody of patients after one year of recovery were higher than those of healthy vaccinated participants (94.13 vs 4.65, 2.67 vs 0.44, 0.09 vs 0.06, respectively) (P < 0.001). Neutrophil count (OR = 1.73, 95% CI: 1.10-2.70, P = 0.016) and neutrophil-to-lymphocyte ratio (OR = 1.59, 95% CI: 1.05-2.41, P = 0.030) at discharge were the influencing factors for the positivity of virus-specific IgG antibody in patients after one year of recovery. The counts of CD4+ and CD8+ T, B and NK cells increased with the time of recovery, and remained basically stable from 9 to 12 months after discharge. After 12 months, the positivity of IgG antibody was 85.3% and IgM was 11.8%, while the virus-specific antibody changed dynamically in patients within one year after discharge. Conclusions: The SARS-CoV-2 specific antibody of recovered patients showed dynamic fluctuation after discharge, while the leukocyte subsets gradually increased and basically stabilized after 9 months.
Collapse
Affiliation(s)
- Renjie Xu
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bennan Zhao
- Department of Comprehensive Internal Medicine, the Public and Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Lijuan Lan
- Department of Comprehensive Internal Medicine, the Public and Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Yaling Liu
- Department of Comprehensive Internal Medicine, the Public and Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liangshuang Jiang
- Department of Comprehensive Internal Medicine, the Public and Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Shuiping Dai
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
186
|
Wu S, Zou S, Ming F, Wu M, Guo W, Xing Z, Zhang Z, Liu J, Tang W, Liang K. Humoral Immune Response to Inactivated COVID-19 Vaccination at the 3rd Month among People Living with HIV. RESEARCH SQUARE 2022:rs.3.rs-1750225. [PMID: 35794897 PMCID: PMC9258300 DOI: 10.21203/rs.3.rs-1750225/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background: Research on the immune response to inactivated COVID-19 vaccination among people living with HIV (PLWH) is limited, especially among those with low CD4+ T lymphocyte (CD4 cell) count. This cross-sectional study aimed to assess the humoral immune response to inactivated COVID-19 vaccination among PLWH compared to HIV negative controls (HNC) and to determine the impact of CD4 cell count on vaccine response among PLWH. Methods: The neutralizing antibodies (nAbs) and the specific IgM and IgG-binding antibody responses to the inactivated COVID-19 vaccine at the third month after the second dose of inactivated COVID-19 vaccination were measured among 138 PLWH and 35 HNC. Multivariable logistic regression and multiple linear regression models were conducted to identify factors associated with the seroconversion rate of antibodies and the magnitude of anti-SARS-CoV-2 antibody titers, respectively. Results: At the end of the third month after two doses of vaccination, the seroconversion rates of IgG were comparable between PLWH (8.7%; 95%CI, 3.9-13.5%) and HNC (11.4%; 95%CI, 0.3-22.5%), respectively. The median titers and seroconversion rate of nAbs among PLWH were 0.57 (IQR: 0.30-1.11) log 10 BAU/mL and 29.0% (95%CI: 21.3-36.8%), respectively, both lower than those in HNC ( P <0.05). After adjusting for age, sex, comorbidities, and CD4 cell count, the titers and seroconversion rate of nAbs were comparable between PLWH and HNC (P>0.05). Multivariable regression analyses showed that CD4 cell count<200 /μL was independently associated with lower titers and seroconversion rate of nAbs among PLWH ( P <0.05). A positive correlation was observed between the CD4 cell count and nAbs titers in PLWH (Spearman'sρ=0.25, P =0.034). Conclusion: Our study concluded that the immune response to inactivated COVID-19 vaccination among PLWH was independently associated with CD4 cell count, PLWH with lower CD4 cell count showed a weaker humoral immune response, especially those with CD4 cell count<200 /μL. This finding suggests that expanding COVID-19 vaccination coverage among PLWH is impendency. In addition, aggressive ART should be carried out for PLWH, especially for those with low CD4 cell count, to improve the immune response to vaccines.
Collapse
Affiliation(s)
| | - Shi Zou
- Zhongnan Hospital of Wuhan University
| | - Fangzhao Ming
- Wuchang District Center for Disease Control and Prevention
| | | | | | | | | | | | - Weiming Tang
- The University of North Carolina at Chapel Hill Project-China
| | - Ke Liang
- Zhongnan Hospital of Wuhan University
| |
Collapse
|
187
|
Xia S, Duan K, Zhang Y, Zeng X, Zhao D, Zhang H, Xie Z, Li X, Peng C, Zhang W, Yang Y, Chen W, Gao X, You W, Wang X, Wang Z, Shi Z, Wang Y, Yang X, Li Q, Huang L, Wang Q, Lu J, Yang Y, Guo J, Zhou W, Wan X, Wu C, Wang W, Huang S, Du J, Nian X, Deng T, Yuan Z, Shen S, Guo W, Liu J, Yang X. Safety and Immunogenicity of an Inactivated COVID-19 Vaccine, WIBP-CorV, in Healthy Children: Interim Analysis of a Randomized, Double-Blind, Controlled, Phase 1/2 Trial. Front Immunol 2022; 13:898151. [PMID: 35812412 PMCID: PMC9265248 DOI: 10.3389/fimmu.2022.898151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/02/2022] [Indexed: 01/14/2023] Open
Abstract
Safe and effective vaccines against SARS-CoV-2 for children are urgently needed. Here we aimed to assess the safety and immunogenicity of an inactivated COVID-19 vaccine candidate, WIBP-CorV, in participants aged 3-17 years. A randomized, double-blind, placebo-controlled, phase 1/2 clinical trial was conducted in Henan Province, China, in healthy children aged 3-17 years. 240 participants in phase 1 trial and 576 participants in phase 2 trial were randomly assigned to vaccine or control with an age de-escalation in three cohorts (3-5, 6-12 and 13-17 years) and dose-escalation in three groups (2.5, 5.0 and 10.0μg/dose), and received 3 intramuscular injections at day 0, 28, and 56. WIBP-CorV showed a promising safety profile with approximately 17% adverse reactions within 30 days after injection and no grade 3 or worse adverse events. The most common adverse reaction was injection site pain, followed by fever, which were mild and self-limiting. The geometric mean titers of neutralizing antibody ranged from 102.2 to 1065.5 in vaccinated participants at 28 days after the third vaccination, and maintained at a range of 14.3 to 218.2 at day 180 after the third vaccination. WIBP-CorV elicited significantly higher titers of neutralizing antibody in the cohort aged 3-5 years than the other two cohorts. There were no detectable antibody responses in all alum-only groups. Taken together, our data demonstrate that WIBP-CorV is safe and well tolerated at all tested doses in participants aged 3-17 years, and elicited robust humoral responses against SARS-CoV-2 lasted for at least 6 months after the third vaccination. This study is ongoing and is registered with www.chictr.org.cn, ChiCTR2000031809.
Collapse
Affiliation(s)
- Shengli Xia
- Vaccine Clinical Research Center, Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
| | - Yuntao Zhang
- Clinical Medical Center, China National Biotec Group Company Limited, Beijing, China
| | - Xiaoqing Zeng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongyang Zhao
- Vaccine Clinical Research Center, Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Huajun Zhang
- Chinese Academy of Sciences Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhiqiang Xie
- Vaccine Clinical Research Center, Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
| | - Cheng Peng
- Chinese Academy of Sciences Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Wei Zhang
- Vaccine Clinical Research Center, Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Yunkai Yang
- Clinical Medical Center, China National Biotec Group Company Limited, Beijing, China
| | - Wei Chen
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
| | - Xiaoxiao Gao
- Chinese Academy of Sciences Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Wangyang You
- Vaccine Clinical Research Center, Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Xuewei Wang
- Clinical Medical Center, China National Biotec Group Company Limited, Beijing, China
| | - Zejun Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
| | - Zhengli Shi
- Chinese Academy of Sciences Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yanxia Wang
- Vaccine Clinical Research Center, Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Xuqin Yang
- Clinical Medical Center, China National Biotec Group Company Limited, Beijing, China
| | - Qingliang Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
| | - Lili Huang
- Vaccine Clinical Research Center, Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Qian Wang
- Clinical Medical Center, China National Biotec Group Company Limited, Beijing, China
| | - Jia Lu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jing Guo
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
| | - Wei Zhou
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
| | - Xin Wan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
| | - Cong Wu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
| | - Wenhui Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
| | - Jianhui Du
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
| | - Tao Deng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
| | - Zhiming Yuan
- Chinese Academy of Sciences Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Shuo Shen
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
| | - Wanshen Guo
- Vaccine Clinical Research Center, Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiaoming Yang, ; Jia Liu,
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co Ltd, Wuhan, China
- Clinical Medical Center, China National Biotec Group Company Limited, Beijing, China
- *Correspondence: Xiaoming Yang, ; Jia Liu,
| |
Collapse
|
188
|
Sripongpun P, Pinpathomrat N, Bruminhent J, Kaewdech A. Coronavirus Disease 2019 Vaccinations in Patients With Chronic Liver Disease and Liver Transplant Recipients: An Update. Front Med (Lausanne) 2022; 9:924454. [PMID: 35814781 PMCID: PMC9257133 DOI: 10.3389/fmed.2022.924454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a current global pandemic associated with an increased mortality, particularly in patients with comorbidities. Patients with chronic liver disease (CLD) and liver transplant (LT) recipients are at higher risk of morbidity and mortality after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Many liver societies have recommended that these patients should receive COVID-19 vaccinations, although there are limited studies assessing risks and benefits in this population. In addition, two doses of mRNA vaccines may not provide sufficient immune response, and booster dose(s) may be necessary, especially in LT recipients. Notably, variants of concern have recently emerged, and it remains unclear whether currently available vaccines provide adequate and durable protective immunity against these novel variants. This review focuses on the role of COVID-19 vaccinations in CLD and LT recipients.
Collapse
Affiliation(s)
- Pimsiri Sripongpun
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Nawamin Pinpathomrat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jackrapong Bruminhent
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Ramathibodi Excellence Center for Organ Transplantation, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Apichat Kaewdech
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- *Correspondence: Apichat Kaewdech,
| |
Collapse
|
189
|
Ma J, Cheng ZJ, Xue M, Huang H, Li S, Fang Y, Zeng Y, Lin R, Liang Z, Liang H, Deng Y, Cheng Y, Huang S, Wang Q, Niu X, Li S, Zheng P, Sun B. Investigation of Antibody Levels During Three Doses of Sinopharm/BBIBP Vaccine Inoculation. Front Immunol 2022; 13:913732. [PMID: 35812449 PMCID: PMC9256989 DOI: 10.3389/fimmu.2022.913732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Levels of neutralizing antibodies (NAb) after vaccine against coronavirus disease 2019 (COVID-19) can be detected using a variety of methods. A critical challenge is how to apply simple and accurate methods to assess vaccine effect. In a population inoculated with three doses of the inactivated Sinopharm/BBIBP vaccine, we assessed the performance of chemiluminescent immunoassay (CLIA) in its implementation to detect severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) specific antibodies, as well as the antibody kinetics of healthcare workers throughout the course of vaccination. The antibody levels of NAb, the receptor-binding-domain (RBD) antibodies and IgG peaked one month after the second and remained at a relatively high level for over three months after the booster injection, while IgM and IgA levels remained consistently low throughout the course of vaccination. The production of high-level neutralizing antibodies is more likely when the inoculation interval between the first two doses is within the range of one to two months, and that between the first and booster dose is within 230 days. CLIA showed excellent consistency and correlation between NAb, RBD, and IgG antibodies with the cytopathic effect (CPE) conventional virus neutralization test (VNT). Receiver operating characteristic (ROC) analysis revealed that the optimal cut-off levels of NAb, RBD and IgG were 61.77 AU/ml, 37.86 AU/ml and 4.64 AU/ml, with sensitivity of 0.833, 0.796 and 0.944, and specificity of 0.768, 0.750 and 0.625, respectively, which can be utilized as reliable indicators of COVID-19 vaccination immunity detection.
Collapse
Affiliation(s)
- Jing Ma
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhangkai J. Cheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingshan Xue
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huimin Huang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyun Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanting Fang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifeng Zeng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Runpei Lin
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiman Liang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Liang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yijun Deng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyi Cheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuangshuang Huang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Wang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuefeng Niu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Baoqing Sun, ; Peiyan Zheng, ; Siping Li, ; Xuefeng Niu,
| | - Siping Li
- Clinical Laboratory, Dongguan Eighth People’s Hospital, Dongguan, China
- *Correspondence: Baoqing Sun, ; Peiyan Zheng, ; Siping Li, ; Xuefeng Niu,
| | - Peiyan Zheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Baoqing Sun, ; Peiyan Zheng, ; Siping Li, ; Xuefeng Niu,
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Baoqing Sun, ; Peiyan Zheng, ; Siping Li, ; Xuefeng Niu,
| |
Collapse
|
190
|
Cao Y, Feng J, Duan S, Yang Y, Zhang Y. SARS-CoV-2-inactivated vaccine hesitancy and the safety in inflammatory bowel disease patients: a single-center study. Therap Adv Gastroenterol 2022; 15:17562848221101722. [PMID: 35706827 PMCID: PMC9189530 DOI: 10.1177/17562848221101722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/03/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccine is thought to be the most effective preventive method of controlling the coronavirus disease 2019 (COVID-19) epidemic. Some patients with immune-related diseases, including inflammatory bowel disease (IBD) patients, however, may hesitate to be vaccinated for various reasons. Although several guidelines recommend vaccinating all IBD patients with inactivated SARS-CoV-2 vaccines, there is still a lack of real-world data on the safety of inactivated SARS-CoV-2 vaccines and COVID-19 vaccination rate in IBD patients. In this study, we investigated the reasons for hesitancy in COVID-19 vaccination, the COVID-19 vaccination rate, and the safety of SARS-CoV-2-inactivated vaccination in patients with IBD. METHODS This was a retrospective study. A total of 418 participants with IBD were enrolled to calculate the vaccination rates. A total of 232 patients with IBD who did not receive SARS-CoV-2 vaccination were recruited to investigate the reasons for hesitation. A follow-up survey of 151 IBD patients and 188 healthy participants who had received the SARS-CoV-2-inactivated vaccination was conducted to analyze adverse reactions. RESULTS The COVID-19 vaccination rate was 49.3% and almost half of the participants were 'Concerned about the safety of the vaccine (such as adverse reactions) due to IBD'. After SARS-CoV-2 vaccination, adverse reactions were mild or moderate. The adverse reactions in the IBD and non-IBD populations were roughly the same, and IBD medications did not increase the risk of adverse reactions. CONCLUSION SARS-CoV-2-inactivated vaccination rates in IBD patients are still low and a significant proportion of patients are hesitant about the vaccine because of safety concerns. SARS-CoV-2-inactivated vaccination in patients with IBD appears to be safe.
Collapse
Affiliation(s)
- Yubin Cao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, P.R. China,West China School of Medicine, Sichuan University, Chengdu, P.R. China
| | - Jiaming Feng
- West China School of Medicine, Sichuan University, Chengdu, P.R. China
| | - Shihao Duan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, P.R. China,West China School of Medicine, Sichuan University, Chengdu, P.R. China
| | - Yi Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, P.R. China,West China School of Medicine, Sichuan University, Chengdu, P.R. China
| | | |
Collapse
|
191
|
Wang XY, Mahmood SF, Jin F, Cheah WK, Ahmad M, Sohail MA, Ahmad W, Suppan VK, Sayeed MA, Luxmi S, Teo AH, Lee LY, Qi YY, Pei RJ, Deng W, Xu ZH, Yang JM, Zhang Y, Guan WX, Yu X. Efficacy of heterologous boosting against SARS-CoV-2 using a recombinant interferon-armed fusion protein vaccine (V-01): a randomized, double-blind and placebo-controlled phase III trial. Emerg Microbes Infect 2022; 11:1910-1919. [PMID: 35686572 PMCID: PMC9347473 DOI: 10.1080/22221751.2022.2088406] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Waning of neutralizing titres along with decline of protection efficacy after the second dose of COVID-19 vaccines was observed, including China-made inactivated vaccines. Efficacy of a heterologous boosting using one dose of a recombinant SARS-CoV-2 fusion protein vaccine (V-01) in inactivated vaccine-primed population was studied, aimed to restore the immunity. A randomized, double-blind and placebo-controlled phase III trial was conducted in healthy people aged 18 years or older in Pakistan and Malaysia. Each eligible participant received one dose of the V-01 vaccine developed by Livzon Mabpharm Inc. or placebo within the 3-6 months after the two-dose primary regimen, and was monitored for safety and efficacy. The primary endpoint was protection against confirmed symptomatic SARS-CoV-2 infection. A total of 10,218 participants were randomly assigned to receive a vaccine or placebo. Virus-neutralizing antibodies were assessed in 419 participants. A dramatic increase (11.3-fold; 128.3–1452.8) of neutralizing titres was measured in the V-01 group at 14 days after the booster. Over two months of surveillance, vaccine efficacy was 47.8% (95%CI: 22.6–64.7) according to the intention-to-treat principle. The most common adverse events were transient, mild-to-moderate pain at the injection site, fever, headache, and fatigue. Serious adverse events occurred almost equally in V-01 (0.12%) and placebo (0.16%) groups. The heterologous boosting with the V-01 vaccine was safe and efficacious, which could elicit robust humoral immunity under the epidemic of the Omicron variant. Trial registration:ClinicalTrials.gov identifier: NCT05096832.
Collapse
Affiliation(s)
- Xuan-Yi Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology of MoE & MoH, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Children's Hospital, Fudan University, Shanghai, China
| | | | - Fang Jin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China.,Guangzhou Joincare Respiratory Medicine Co., Ltd, Guangzhou, China
| | - Wee Kooi Cheah
- Department of Medicine and Clinical Research Centre, Taiping Hospital, Perak, Malaysia
| | - Muhammad Ahmad
- Pulmonology & Critical care, Central Park Teaching Hospital, Lahore, Pakistan
| | | | | | - Vijaya K Suppan
- Clinical Research Center, Sultan Abdul Halim Hospital, Kedah, Malaysia
| | - Muneeba Ahsan Sayeed
- Department of Infectious Diseases, Sindh Infectious Diseases Hospital and Research Centre, Dow University of Health Sciences, Karachi, Pakistan
| | - Shobha Luxmi
- Dow University of Health Sciences, Karachi, Pakistan
| | - Aik-Howe Teo
- Penang General Hospital and Info Kinetics Clinical Research Centre, Pulau Pinang, Malaysia
| | | | - Yang-Yang Qi
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology of MoE & MoH, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Rong-Juan Pei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Deng
- Guangzhou Joincare Respiratory Medicine Co., Ltd, Guangzhou, China
| | | | | | | | - Wu-Xiang Guan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiong Yu
- Joincare Pharmaceutical Group Industry Co., Ltd., Shenzhen, China
| |
Collapse
|
192
|
Immunological Study of Combined Administration of SARS-CoV-2 DNA Vaccine and Inactivated Vaccine. Vaccines (Basel) 2022; 10:vaccines10060929. [PMID: 35746536 PMCID: PMC9228235 DOI: 10.3390/vaccines10060929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Objective: We constructed two DNA vaccines containing the receptor-binding domain (RBD) genes of multiple SARS-CoV-2 variants and used them in combination with inactivated vaccines in a variety of different protocols to explore potential novel immunization strategies against SARS-CoV-2 variants. Methods: Two DNA vaccine candidates with different signal peptides (namely, secreted and membrane signal peptides) and RBD protein genes of different SARS-CoV-2 strains (Wuhan-Hu-1, B.1.351, B.1.617.2, C.37) were used. Four different combinations of DNA and inactivated vaccines were tested, namely, Group A: three doses of DNA vaccine; B: three doses of DNA vaccine and one dose of inactivated vaccine; C: two doses of inactivated vaccine and one dose of DNA vaccine; and D: coadministration of DNA and inactivated vaccines in two doses. Subgroups were grouped according to the signal peptide used (subgroup 1 contained secreted signal peptides, and subgroup 2 contained membrane signal peptides). The in vitro expression of the DNA vaccines, the humoral and cellular immunity responses of the immunized mice, the immune cell population changes in local lymph nodes, and proinflammatory cytokine levels in serum samples were evaluated. Results: The antibody responses and cellular immunity in Group A were weak for all SARS-CoV-2 strains; for Group B, there was a great enhancement of neutralizing antibody (Nab) titers against the B.1.617.2 variant strain. Group C showed a significant increase in antibody responses (NAb titers against the Wuhan-Hu-1 strain were 768 and 1154 for Group C1 and Group C2, respectively, versus 576) and cellular immune responses, especially for variant B.1.617.2 (3240 (p < 0.001) and 2430 (p < 0.05) for Group C1 and Group C2, versus 450); Group D showed an improvement in immunogenicity. Group C induced higher levels of multiple cytokines. Conclusion: The DNA vaccine candidates we constructed, administered as boosters, could enhance the humoral and cellular immune responses of inactivated vaccines against COVID-19, especially for B.1.617.2.
Collapse
|
193
|
Roongpiboonsopit D, Nithisathienchai C, Akarathanawat W, Lertutsahakul K, Tantivattana J, Viswanathan A, Suwanwela NC. Inactivated COVID-19 vaccine induced acute stroke-like focal neurologic symptoms: a case series. BMC Neurol 2022; 22:210. [PMID: 35672709 PMCID: PMC9170873 DOI: 10.1186/s12883-022-02739-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background A subgroup of individuals experienced stroke-like symptoms after receiving an inactivated COVID-19 vaccine. We present clinical characteristics, neuroimaging, and outcome of these patients. Methods Medical personals who had neurological symptoms after receiving inactivated COVID-19 vaccine were enrolled. Clinical, laboratory investigation and neuroimaging were collected. Subjects were prospectively followed-up on clinical and neuroimaging to detect brain parenchymal or cerebrovascular abnormality. Results Nineteen out of 385 subjects (4.9%) developed neurological symptoms after vaccination. There was a female predominance (89.5%) with mean age of 34 ± 7.5 years. Majority of patients (52.6%) had symptoms within 60 min after vaccination. The most common neurological symptoms were numbness (94.7%) followed by headache (52.6%) and weakness (47.4%). The most common neurological signs were sensory deficit (79%) followed by motor weakness (52.6%) and tongue deviation (26.3%). Recurrent headache was observed in most patients (89.5%) during followed up. Serial brain imaging was done in all patients with median follow-up interval of 18 days. There was no evidence of acute brain infarction in any of the patients, 84.2% had no vascular abnormality, 15.8% had transient focal narrowing of cerebral vessels. Outcome was favorable, modified ranking scale 0–1 for all patients at 4 weeks after vaccination. Conclusions Transient focal neurological symptoms and deficits can be found after COVID-19 vaccination. However, benefit to stop COVID-19 pandemic by vaccination is outweighed by these seemingly reversible side effects. The pathophysiology underlined these phenomena should be further investigated. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02739-6.
Collapse
Affiliation(s)
- Duangnapa Roongpiboonsopit
- Division of Neurology, Department of Medicine, Faculty of Medicine, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok, 65000, Thailand.
| | - Chichaya Nithisathienchai
- Division of Neurology, Department of Medicine, Faculty of Medicine, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok, 65000, Thailand
| | - Wasan Akarathanawat
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Chulalongkorn Comprehensive Stroke Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Jarturon Tantivattana
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anand Viswanathan
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Nijasri Charnnarong Suwanwela
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Chulalongkorn Comprehensive Stroke Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
194
|
Yang Z, Hua L, Yang M, Li W, Ren Z, Zheng X, Chen H, Long Q, Bai H, Huang W, Ma Y. Polymerized porin as a novel delivery platform for coronavirus vaccine. J Nanobiotechnology 2022; 20:260. [PMID: 35672856 PMCID: PMC9171476 DOI: 10.1186/s12951-022-01469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), seriously threatens human life and health. The correct folding and polymerization of the receptor-binding domain (RBD) protein of coronavirus in Escherichia coli may reduce the cost of SARS-CoV-2 vaccines. In this study, we constructed this nanopore by using the principle of ClyA porin polymerization triggered by the cell membrane. We used surfactants to "pick" the ClyA-RBD nanopore from the bacterial outer membrane. More importantly, the polymerized RBD displayed on the ClyA-RBD polymerized porin (RBD-PP) already displays some correct spatial conformational epitopes that can induce neutralizing antibodies. The nanostructures of RBD-PP can target lymph nodes and promote antigen uptake and processing by dendritic cells, thereby effectively eliciting the production of anti-SARS-CoV-2 neutralizing antibodies, systemic cellular immune responses, and memory T cells. We applied this PP-based vaccine platform to fabricate an RBD-based subunit vaccine against SARS-CoV-2, which will provide a foundation for the development of inexpensive coronavirus vaccines. The development of a novel vaccine delivery system is an important part of innovative drug research. This novel PP-based vaccine platform is likely to have additional applications, including other viral vaccines, bacterial vaccines, tumor vaccines, drug delivery, and disease diagnosis.
Collapse
Affiliation(s)
- Zhongqian Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Liangqun Hua
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
- Yunnan University, Kunming, 650091, China
| | - Mengli Yang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Zhaoling Ren
- The Second Affiliated Hospital of Kunming Medical University, Kunming, 650033, China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
- Yunnan University, Kunming, 650091, China
| | - Haoqian Chen
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
- Yunnan Minzu University, Kunming, 650504, China
| | - Qiong Long
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China.
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China.
| |
Collapse
|
195
|
Fava VM, Bourgey M, Nawarathna PM, Orlova M, Cassart P, Vinh DC, Cheng MP, Bourque G, Schurr E, Langlais D. A systems biology approach identifies candidate drugs to reduce mortality in severely ill patients with COVID-19. SCIENCE ADVANCES 2022; 8:eabm2510. [PMID: 35648852 PMCID: PMC9159580 DOI: 10.1126/sciadv.abm2510] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/12/2022] [Indexed: 05/14/2023]
Abstract
Despite the availability of highly efficacious vaccines, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lacks effective drug treatment, which results in a high rate of mortality. To address this therapeutic shortcoming, we applied a systems biology approach to the study of patients hospitalized with severe COVID. We show that, at the time of hospital admission, patients who were equivalent on the clinical ordinal scale displayed significant differential monocyte epigenetic and transcriptomic attributes between those who would survive and those who would succumb to COVID-19. We identified messenger RNA metabolism, RNA splicing, and interferon signaling pathways as key host responses overactivated by patients who would not survive. Those pathways are prime drug targets to reduce mortality of critically ill patients with COVID-19, leading us to identify tacrolimus, zotatifin, and nintedanib as three strong candidates for treatment of severely ill patients at the time of hospital admission.
Collapse
Affiliation(s)
- Vinicius M. Fava
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
| | - Mathieu Bourgey
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
| | - Pubudu M. Nawarathna
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
| | - Marianna Orlova
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
| | - Pauline Cassart
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
| | - Donald C. Vinh
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Infectious Diseases and Division of Medical Microbiology, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Matthew Pellan Cheng
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Infectious Diseases and Division of Medical Microbiology, McGill University Health Center, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Guillaume Bourque
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montreal, QC, Canada
| | - Erwin Schurr
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montreal, QC, Canada
| | - David Langlais
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, Montreal, QC, Canada
| |
Collapse
|
196
|
Das S, Kar SS, Samanta S, Banerjee J, Giri B, Dash SK. Immunogenic and reactogenic efficacy of Covaxin and Covishield: a comparative review. Immunol Res 2022; 70:289-315. [PMID: 35192185 PMCID: PMC8861611 DOI: 10.1007/s12026-022-09265-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is an RNA virus that was identified for the first time in December 2019 in Wuhan, China. The World Health Organization (WHO) labeled the novel coronavirus (COVID-19) outbreak a worldwide pandemic on March 11, 2020, due to its widespread infectivity pattern. Because of the catastrophic COVID-19 outbreak, the development of safe and efficient vaccinations has become a key priority in every health sector throughout the globe. On the 13th of January 2021, the vaccination campaign against SARS-CoV-2 was launched in India and started the administration of two types of vaccines known as Covaxin and Covishield. Covishield is an adenovirus vector-based vaccine, and Covaxin was developed by a traditional method of vaccine formulation, which is composed of adjuvanted inactivated viral particles. Each vaccine's utility or efficiency is determined by its formulation, adjuvants, and mode of action. The efficacy of the vaccination depends on numeral properties like generation antibodies, memory cells, and cell-mediated immunity. According to the third-phase experiment, Covishield showed effectiveness of nearly 90%, whereas Covaxin has an effectiveness of about 80%. Both vaccination formulations in India have so far demonstrated satisfactory efficacy against numerous mutant variants of SARS-CoV-2. The efficacy of Covishield may be diminished if the structure of spike (S) protein changes dramatically in the future. In this situation, Covaxin might be still effective for such variants owing to its ability to produce multiple antibodies against various epitopes. This study reviews the comparative immunogenic and therapeutic efficacy of Covaxin and Covishield and also discussed the probable vaccination challenges in upcoming days.
Collapse
Affiliation(s)
- Swarnali Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Suvrendu Sankar Kar
- Department of Medicine, R.G.Kar Medical College, Kolkata, 700004, West Bengal, India
| | - Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India.
| |
Collapse
|
197
|
Wang J, Zhang Q, Ai J, Liu D, Liu C, Xiang H, Gu Y, Guo Y, Lv J, Huang Y, Liu Y, Xu D, Chen S, Li J, Li Q, Liang J, Bian L, Zhang Z, Guo X, Feng Y, Liu L, Zhang X, Zhang Y, Xie F, Jiang S, Qin W, Wang X, Rao W, Zhang Q, Tian Q, Zhu Y, Cong Q, Xu J, Hou Z, Zhang N, Zhang A, Zu H, Wang Y, Yan Z, Du X, Hou A, Yan Y, Qiu Y, Wu H, Hu S, Deng Y, Ji J, Yang J, Huang J, Zhao Z, Zou S, Ji H, Ge G, Zhong L, He S, Yan X, Yangzhen BB, Qu C, Zhang L, Yang S, Gao X, Lv M, Zhu Q, Xu X, Zeng QL, Qi X, Zhang W. Safety and immunogenicity of SARS-CoV-2 vaccines in Chinese patients with cirrhosis: a prospective multicenter study. Hepatol Int 2022; 16:691-701. [PMID: 35403977 PMCID: PMC8995697 DOI: 10.1007/s12072-022-10332-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Data on safety and immunogenicity of coronavirus disease 2019 (COVID-19) vaccination in patients with compensated (C-cirrhosis) and decompensated cirrhosis (D-cirrhosis) are limited. METHODS In this prospective multicenter study, adult participants with C-cirrhosis and D-cirrhosis were enrolled and received two doses of inactivated whole-virion COVID-19 vaccines. Adverse events were recorded within 14 days after any dose of vaccination, and serum samples of enrolled patients were collected and tested for SARS-CoV-2 neutralizing antibodies at least 14 days after the second dose. Risk factors for negative neutralizing antibody were analyzed. RESULTS In total, 553 patients were enrolled from 15 centers in China, including 388 and 165 patients with C-cirrhosis and D-cirrhosis. The vaccines were well tolerated, most adverse reactions were mild and transient, and injection site pain (23/388 [5.9%] vs 9/165 [5.5%]) and fatigue (5/388 [1.3%] vs 3/165 [1.8%]) were the most frequently local and systemic adverse events in both the C-cirrhosis and D-cirrhosis groups. Overall, 4.4% (16/363) and 0.3% (1/363) of patients were reported Grades 2 and 3 alanine aminotransferase (ALT) elevations (defined as ALT > 2 upper limit of normal [ULN] but ≤ 5 ULN, and ALT > 5 ULN, respectively). The positive rates of COVID-19 neutralizing antibodies were 71.6% (278/388) and 66.1% (109/165) in C-cirrhosis and D-cirrhosis groups. Notably, Child-Pugh score of B and C levels was an independent risk factor of negative neutralizing antibody. CONCLUSIONS Inactivated COVID-19 vaccinations are safe with acceptable immunogenicity in cirrhotic patients, and Child-Pugh score of B and C levels is associated with hyporesponsive to COVID-19 vaccination.
Collapse
Affiliation(s)
- Jitao Wang
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
- CHESS-COVID-19 Group, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Qiran Zhang
- Department of Infectious Diseases, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jingwen Ai
- Department of Infectious Diseases, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Dengxiang Liu
- CHESS-COVID-19 Group, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Chuan Liu
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Huiling Xiang
- Department of Hepatology and Gastroenterology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Ye Gu
- CHESS-COVID-19 Group, The Sixth People's Hospital of Shenyang, Shenyang, Liaoning, China
| | - Ying Guo
- Department of Hepatology, The Third People's Hospital of Taiyuan, Taiyuan, Shanxi, China
| | - Jiaojian Lv
- Department of Infectious Diseases, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Yifei Huang
- Institute of Portal Hypertension, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yanna Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Dan Xu
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Shubo Chen
- CHESS-COVID-19 Group, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Jinlong Li
- CHESS-COVID-19 Group, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Qianqian Li
- Department of Hepatology and Gastroenterology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Jing Liang
- Department of Hepatology and Gastroenterology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Li Bian
- CHESS-COVID-19 Group, The Sixth People's Hospital of Shenyang, Shenyang, Liaoning, China
| | - Zhen Zhang
- CHESS-COVID-19 Group, The Sixth People's Hospital of Shenyang, Shenyang, Liaoning, China
| | - Xiaoqing Guo
- Department of Hepatology, The Third People's Hospital of Taiyuan, Taiyuan, Shanxi, China
| | - Yinong Feng
- Department of Hepatology, The Third People's Hospital of Taiyuan, Taiyuan, Shanxi, China
| | - Luxiang Liu
- Department of Infectious Diseases, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Xuying Zhang
- Clinal Laboratory, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Yanliang Zhang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Faren Xie
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shujun Jiang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Qin
- Department of Gastroenterology, Baoding People's Hospital, Baoding, Heibei, China
| | - Xiaodong Wang
- Department of Gastroenterology, Baoding People's Hospital, Baoding, Heibei, China
| | - Wei Rao
- Division of Hepatology, Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qun Zhang
- Division of Hepatology, Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qiuju Tian
- Division of Hepatology, Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ying Zhu
- Department of Infectious Diseases, Liver Disease Center of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qingwei Cong
- Department of Infectious Diseases, Liver Disease Center of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Juan Xu
- Department of Infectious Diseases, Liver Disease Center of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhiyun Hou
- Department of Hepatobiliary Surgery, Jincheng People's Hospital, Jincheng, Shanxi, China
| | - Nina Zhang
- Department of Hepatobiliary Surgery, Jincheng People's Hospital, Jincheng, Shanxi, China
| | - Aiguo Zhang
- Department of Hepatobiliary Surgery, Jincheng People's Hospital, Jincheng, Shanxi, China
| | - Hongmei Zu
- Department of Gastroenterology, The Fourth People's Hospital of Qinghai Province, Xining, Qinghai, China
| | - Yun Wang
- Department of Gastroenterology, The Fourth People's Hospital of Qinghai Province, Xining, Qinghai, China
| | - Zhaolan Yan
- Department of Gastroenterology, The Fourth People's Hospital of Qinghai Province, Xining, Qinghai, China
| | - Xiufang Du
- Department of Liver Diseases, The Third People's Hospital of Linfen City, Linfen, Shanxi, China
| | - Aifang Hou
- Department of Liver Diseases, The Third People's Hospital of Linfen City, Linfen, Shanxi, China
| | - Yan Yan
- CHESS-COVID-19 Group, The Fifth People's Hospital of Wuxi Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yuanwang Qiu
- CHESS-COVID-19 Group, The Fifth People's Hospital of Wuxi Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hangyuan Wu
- CHESS-COVID-19 Group, The Fifth People's Hospital of Wuxi Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Shengjuan Hu
- CHESS-COVID-19 Group, The People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yanhong Deng
- CHESS-COVID-19 Group, The People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Jiansong Ji
- CHESS-COVID-19 Group, Lishui Hospital of Zhejiang University, Lishui, Zhejiang, China
| | - Jie Yang
- CHESS-COVID-19 Group, Lishui Hospital of Zhejiang University, Lishui, Zhejiang, China
| | - Jiansheng Huang
- CHESS-COVID-19 Group, Lishui Hospital of Zhejiang University, Lishui, Zhejiang, China
| | - Zhongwei Zhao
- CHESS-COVID-19 Group, Lishui Hospital of Zhejiang University, Lishui, Zhejiang, China
| | - Shengqiang Zou
- Department of Hepatology, Zhenjiang Third Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hailei Ji
- Department of Hepatology, Zhenjiang Third Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guohong Ge
- Department of Hepatology, Zhenjiang Third Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Zhong
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosong Yan
- CHESS-COVID-19 Group, The Third People's Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, China
| | - Bian Ba Yangzhen
- CHESS-COVID-19 Group, The Third People's Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, China
| | - Ci Qu
- CHESS-COVID-19 Group, The Third People's Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, China
| | - Liting Zhang
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Shiying Yang
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoqin Gao
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Muhan Lv
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qingliang Zhu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xinxin Xu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qing-Lei Zeng
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Xiaolong Qi
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
198
|
Seirafianpour F, Pourriyahi H, Gholizadeh Mesgarha M, Pour Mohammad A, Shaka Z, Goodarzi A. A systematic review on mucocutaneous presentations after COVID-19 vaccination and expert recommendations about vaccination of important immune-mediated dermatologic disorders. Dermatol Ther 2022; 35:e15461. [PMID: 35316551 PMCID: PMC9111423 DOI: 10.1111/dth.15461] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
With dermatologic side effects being fairly prevalent following vaccination against COVID-19, and the multitude of studies aiming to report and analyze these adverse events, the need for an extensive investigation on previous studies seemed urgent, in order to provide a thorough body of information about these post-COVID-19 immunization mucocutaneous reactions. To achieve this goal, a comprehensive electronic search was performed through the international databases including Medline (PubMed), Scopus, Cochrane, Web of science, and Google scholar on July 12, 2021, and all articles regarding mucocutaneous manifestations and considerations after COVID-19 vaccine administration were retrieved using the following keywords: COVID-19 vaccine, dermatology considerations and mucocutaneous manifestations. A total of 917 records were retrieved and a final number of 180 articles were included in data extraction. Mild, moderate, severe and potentially life-threatening adverse events have been reported following immunization with COVID vaccines, through case reports, case series, observational studies, randomized clinical trials, and further recommendations and consensus position papers regarding vaccination. In this systematic review, we categorized these results in detail into five elaborate tables, making what we believe to be an extensively informative, unprecedented set of data on this topic. Based on our findings, in the viewpoint of the pros and cons of vaccination, mucocutaneous adverse events were mostly non-significant, self-limiting reactions, and for the more uncommon moderate to severe reactions, guidelines and consensus position papers could be of great importance to provide those at higher risks and those with specific worries of flare-ups or inefficient immunization, with sufficient recommendations to safely schedule their vaccine doses, or avoid vaccination if they have the discussed contra-indications.
Collapse
Affiliation(s)
- Farnoosh Seirafianpour
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran
| | - Homa Pourriyahi
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran
| | | | - Arash Pour Mohammad
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran
| | - Zoha Shaka
- Faculty of MedicineIran University of Medical SciencesTehranIran
- Systematic Review and Meta‐Analysis Expert Group (SRMEG)Universal Scientific Education and Research NetworkTehranIran
| | - Azadeh Goodarzi
- Department of DermatologyRasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical SciencesTehranIran
| |
Collapse
|
199
|
Chen J, Cai W, Liu T, Zhou Y, Jin Y, Yang Y, Chen S, Tang K, Li C. The COVID-19 vaccine: Attitudes and vaccination in patients with autoimmune inflammatory rheumatic diseases. RHEUMATOLOGY & AUTOIMMUNITY 2022; 2:82-91. [PMID: 35651484 PMCID: PMC9111021 DOI: 10.1002/rai2.12028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022]
Abstract
Background We examined attitudes toward the COVID‐19 vaccine, potential factors underlying these attitudes, and ways to increase vaccination willingness in autoimmune inflammatory rheumatic diseases (AIIRD) patients. Methods A multicenter, web‐based, observational survey using an online questionnaire was conducted among AIIRD patients aged ≥18 years from May 24, 2021, to June 3, 2021. Participants were 3104 AIIRD patients (2921 unvaccinated and 183 vaccinated). Results Of the unvaccinated patients, 32.9% were willing to receive the COVID‐19 vaccine, 45.0% were uncertain, and 14.8% were unwilling. When vaccination was recommended by physicians, patients' willingness increased to 93.8%. Participants' main concerns were that the vaccine may aggravate AIIRD disease (63.0%) and may cause vaccine‐related adverse events (19.9%). Female patients were less likely to be vaccinated. However, patients who had children aged ≤18 years were more willing to be vaccinated. In addition, vaccination willingness was higher in patients with trust in the safety and efficacy of the COVID‐19 vaccine. Notably, 183 (5.9%) patients were vaccinated. The major vaccination side effects were injection reaction, myalgia, and fatigue. At a median follow‐up of 88 (38, 131) days, patients' disease activities were stable. Conclusions The findings show that AIIRD patients were unwilling to receive the COVID‐19 vaccine because of fears of potential disease exacerbation and additional adverse events. Sociodemographic characteristics and concerns about COVID‐19 disease and vaccines had a significant effect on vaccination willingness. The percentage of patients willing to receive the COVID‐19 vaccine greatly increased when vaccination was recommended by a physician. Gender, marital status, age of the patients' children, smoking, trust in the safety and efficacy of the vaccine, and previous vaccinations had significant effects on the willingness of patients with AIIRDs to receive the COVID‐19 vaccine. The data from vaccinated patients indicated no aggravation of AIIRD or additional adverse events.
Collapse
Affiliation(s)
- Jiali Chen
- Department of Rheumatology and Immunology Peking University People's Hospital Beijing China.,Department of Rheumatology and Immunology, The Second Xiangya Hospital Central South University Changsha China
| | - Wenxin Cai
- Department of Rheumatology and Immunology Peking University People's Hospital Beijing China
| | - Tian Liu
- Department of Rheumatology and Immunology Peking University People's Hospital Beijing China
| | - Yunshan Zhou
- Department of Rheumatology and Immunology Peking University People's Hospital Beijing China
| | - Yuebo Jin
- Department of Rheumatology and Immunology Peking University People's Hospital Beijing China
| | - Yue Yang
- Department of Rheumatology and Immunology Peking University People's Hospital Beijing China
| | - Shi Chen
- Department of Rheumatology and Immunology Peking University People's Hospital Beijing China
| | - Kun Tang
- Tsinghua Research Center for Public Health Tsinghua University Beijing China
| | - Chun Li
- Department of Rheumatology and Immunology Peking University People's Hospital Beijing China
| |
Collapse
|
200
|
Short-time Safety of the Sinopharm COVID-19 Vaccine in Patients with Hemophilia. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2022. [DOI: 10.5812/archcid-122097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The COVID-19 pandemic, caused by SARS-Cov-2, has affected the care of patients with hemophilia, indicating the necessity of their vaccination. Nevertheless, there are concerns about using anti-SARS-Cov-2 virus vaccines for hemophilic patients, particularly concerning bleeding adverse events. Methods: Following a cross-sectional design, all adult hemophilic patients who received two doses of Sinopharm anti-SARS-Cov-2 virus vaccine in Afzalipour Hospital, Kerman, Iran, during May and June 2021 were recruited. The participants were followed for two weeks after receiving each dose of vaccine. Results: Fifty-one patients with a mean age of 37.07 ± 11.45 years were included, of whom 27 (61.4 %) patients experienced at least one adverse reaction. Pain was the most frequent local adverse event (occurred in 20 (39.2%) and 15 (29.4%) cases after 1st and 2nd doses, respectively). Menometrorrhagia and epistaxis were reported by two and one patients, respectively. Conclusions: Overall Sinopharm anti-SARS-Cov-2 virus vaccine seems to be safe for patients with hemophilia in the short term.
Collapse
|