151
|
Neves LL, Hair AB, Preidis GA. A systematic review of associations between gut microbiota composition and growth failure in preterm neonates. Gut Microbes 2023; 15:2190301. [PMID: 36927287 PMCID: PMC10026866 DOI: 10.1080/19490976.2023.2190301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Growth failure is among the most prevalent and devastating consequences of prematurity. Up to half of all extremely preterm neonates struggle to grow despite modern nutrition practices. Although elegant preclinical models suggest causal roles for the gut microbiome, these insights have not yet translated into biomarkers that identify at-risk neonates or therapies that prevent or treat growth failure. This systematic review aims to identify features of the neonatal gut microbiota that are positively or negatively associated with early postnatal growth. We identified 860 articles, of which 14 were eligible for inclusion. No two studies used the same definitions of growth, ages at stool collection, and statistical methods linking microbiota to metadata. In all, 58 different taxa were associated with growth, with little consensus among studies. Two or more studies reported positive associations with Enterobacteriaceae, Bacteroides, Bifidobacterium, Enterococcus, and Veillonella, and negative associations with Citrobacter, Klebsiella, and Staphylococcus. Streptococcus was positively associated with growth in five studies and negatively associated with growth in three studies. To gain insight into how the various definitions of growth could impact results, we performed an exploratory secondary analysis of 245 longitudinally sampled preterm infant stools, linking microbiota composition to multiple clinically relevant definitions of neonatal growth. Within this cohort, every definition of growth was associated with a different combination of microbiota features. Together, these results suggest that the lack of consensus in defining neonatal growth may limit our capacity to detect consistent, meaningful clinical associations that could be leveraged into improved care for preterm neonates.
Collapse
Affiliation(s)
- Larissa L. Neves
- Division of Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Amy B. Hair
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Geoffrey A. Preidis
- Division of Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
152
|
Huang Z, Li Y, Park H, Ho M, Bhardwaj K, Sugimura N, Lee HW, Meng H, Ebert MP, Chao K, Burgermeister E, Bhatt AP, Shetty SA, Li K, Wen W, Zuo T. Unveiling and harnessing the human gut microbiome in the rising burden of non-communicable diseases during urbanization. Gut Microbes 2023; 15:2237645. [PMID: 37498052 PMCID: PMC10376922 DOI: 10.1080/19490976.2023.2237645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
The world is witnessing a global increase in the urban population, particularly in developing Asian and African countries. Concomitantly, the global burden of non-communicable diseases (NCDs) is rising, markedly associated with the changing landscape of lifestyle and environment during urbanization. Accumulating studies have revealed the role of the gut microbiome in regulating the immune and metabolic homeostasis of the host, which potentially bridges external factors to the host (patho-)physiology. In this review, we discuss the rising incidences of NCDs during urbanization and their links to the compositional and functional dysbiosis of the gut microbiome. In particular, we elucidate the effects of urbanization-associated factors (hygiene/pollution, urbanized diet, lifestyles, the use of antibiotics, and early life exposure) on the gut microbiome underlying the pathogenesis of NCDs. We also discuss the potential and feasibility of microbiome-inspired and microbiome-targeted approaches as novel avenues to counteract NCDs, including fecal microbiota transplantation, diet modulation, probiotics, postbiotics, synbiotics, celobiotics, and precision antibiotics.
Collapse
Affiliation(s)
- Ziyu Huang
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue Li
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Heekuk Park
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Centre, New York, NY, USA
| | - Martin Ho
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Kanchan Bhardwaj
- Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Haryana, India
| | - Naoki Sugimura
- Gastrointestinal Centre and Institute of Minimally-Invasive Endoscopic Care (iMEC), Sano Hospital, Kobe, Japan
| | - Hye Won Lee
- Institute of Gastroenterology and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Huicui Meng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, China
| | - Matthias P. Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, Mannheim, Germany
- Mannheim Cancer Centre (MCC), University Medical Centre Mannheim, Mannheim, Germany
| | - Kang Chao
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Aadra P. Bhatt
- Department of Medicine, Centre for Gastrointestinal Biology and Disease, and the Lineberger Comprehensive Cancer Centre, University of North Carolina, Chapel Hill, NC, USA
| | - Sudarshan A. Shetty
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, The Netherlands
| | - Kai Li
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiping Wen
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
153
|
Ouyang R, Ding J, Huang Y, Zheng F, Zheng S, Ye Y, Li Q, Wang X, Ma X, Zou Y, Chen R, Zhuo Z, Li Z, Xin Q, Zhou L, Lu X, Ren Z, Liu X, Kovatcheva-Datchary P, Xu G. Maturation of the gut metabolome during the first year of life in humans. Gut Microbes 2023; 15:2231596. [PMID: 37424334 PMCID: PMC10334852 DOI: 10.1080/19490976.2023.2231596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
The gut microbiota is involved in the production of numerous metabolites that maintain host wellbeing. The assembly of the gut microbiome is highly dynamic, and influenced by many postnatal factors, moreover, little is known about the development of the gut metabolome. We showed that geography has an important influence on the microbiome dynamics in the first year of life based on two independent cohorts from China and Sweden. Major compositional differences since birth were the high relative abundance of Bacteroides in the Swedish cohort and Streptococcus in the Chinese cohort. We analyzed the development of the fecal metabolome in the first year of life in the Chinese cohort. Lipid metabolism, especially acylcarnitines and bile acids, was the most abundant metabolic pathway in the newborn gut. Delivery mode and feeding induced particular differences in the gut metabolome since birth. In contrast to C-section newborns, medium- and long-chain acylcarnitines were abundant at newborn age only in vaginally delivered infants, associated by the presence of bacteria such as Bacteroides vulgatus and Parabacteroides merdae. Our data provide a basis for understanding the maturation of the fecal metabolome and the metabolic role of gut microbiota in infancy.
Collapse
Affiliation(s)
- Runze Ouyang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Juan Ding
- Department of Quality Control, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Huang
- University of Chinese Academy of Sciences, Beijing, China
| | - Fujian Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Yaorui Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Xiao Ma
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuxin Zou
- Department of Pediatrics, Liaocheng People’s Hospital, Liaocheng, China
| | - Rong Chen
- Department of Respiratory Medicine, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, China
| | - Zhihong Zhuo
- Department of Pediatric, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Xin
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Petia Kovatcheva-Datchary
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Molecular Infection Biology, University of Wurzburg, Wurzburg, Germany
- Department of Pediatrics, University of Wurzburg, Wurzburg, Germany
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| |
Collapse
|
154
|
Dilemmas in initiation of very preterm infant enteral feeds-when, what, how? J Perinatol 2023; 43:108-113. [PMID: 36447040 DOI: 10.1038/s41372-022-01564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
With limited clinical evidence available to guide common nutritional decisions, significant variation exists in approaches to enteral feeding for very preterm infants, specifically when feedings are initiated, what is fed, and the method used for feedings. Preclinical studies have highlighted the benefits associated with avoiding nil per os and providing early-stage mother's own milk or colostrum. However, these recommended approaches are often mutually exclusive due to the delays in lactation associated with very preterm delivery, resulting in uncertainty regarding which approach should be prioritized. Few studies have evaluated feeding frequency in preterm infants, with limited generalizability to extremely preterm infants. Therefore, even evidence-based approaches to very preterm infant feed initiation can differ. Future research is needed to identify optimal strategies for enteral nutrition in very preterm infants, but, until then, evidence-informed approaches may vary depending on each neonatal intensive care unit's assessment of risk and benefit.
Collapse
|
155
|
Lin Y, Li D, Ma Z, Che L, Feng B, Fang Z, Xu S, Zhuo Y, Li J, Hua L, Wu D, Zhang J, Wang Y. Maternal tributyrin supplementation in late pregnancy and lactation improves offspring immunity, gut microbiota, and diarrhea rate in a sow model. Front Microbiol 2023; 14:1142174. [PMID: 37168115 PMCID: PMC10165498 DOI: 10.3389/fmicb.2023.1142174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/15/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Several studies have evaluated the effects of tributyrin on sow reproductive performance; however, none of these studies have investigated the effects of tributyrin on sow gut microbiota and its potential interactions with immune systems and milk composition. Therefore, we speculated that tributyrin, the combination of butyrate and mono-butyrin without odor, would reach the hindgut and affect the intestinal microbiota composition and play a better role in regulating sow reproductive performance, gut flora, and health. Methods Thirty sows (Landrace × Yorkshire) were randomly divided into two groups: the control group (CON) and the tributyrin group (TB), which received basal diet supplemented with 0.05% tributyrin. The experimental period lasted for 35 days from late pregnancy to lactation. Results The results showed that TB supplementation significantly shortened the total parturition time and reduced the diarrhea rate in suckling piglets. On day 20 of lactation, the milk fat and protein levels increased by 9 and 4%, respectively. TB supplementation significantly improved the digestibility of dry material, gross energy, and crude fat in the sow diet, but had no significant effect on crude protein digestibility. Furthermore, TB supplementation increased the levels of IL-10, IL-6, and IgA in the blood of weaned piglets, but had no effect on maternal immunity. Analysis of the fecal microbial composition revealed that the addition of TB during late gestation and lactation increased the microbiota diversity in sows and piglets. At the phylum level, sows in the TB group had a slight increase in the relative abundance of Bacteroidota and Spirochaetota and a decrease in Firmicutes. At the order level, the relative abundance of Lactobacillales was increased in piglets and sows, and the TB group showed increased relative abundance of Enterobacterales and significantly decreased relative abundance of Oscillospirales in piglets. At family level, the relative abundance of Lactobacillaceae, Oscillospiraceae, and Christensenellaceae increased in sows, and the relative abundance of Enterobacteriaceae and Lactobacillaceae increased in piglets. At genus level, the relative abundance of Lactobacillus increased in sows and piglets, but the relative abundance of Subdoligranulum and Eubacterium_fissicatena_group decreased in piglets in the TB group. Discussion In conclusion, tributyrin supplementation shortened the farrowing duration and reduced the diarrhea rate of piglets by improving the inflammatory response and composition of gut microbiota in piglets and sows.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
- *Correspondence: Yan Lin,
| | - Dan Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Zhao Ma
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Lun Hua
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yuanxiao Wang
- Perstorp (Shanghai) Chemical Trading Co., Ltd., Shanghai, China
| |
Collapse
|
156
|
Lundgren SN, Madan JC, Karagas MR, Morrison HG, Christensen BC, Hoen AG. Human milk-associated bacterial communities associate with the infant gut microbiome over the first year of life. Front Microbiol 2023; 14:1164553. [PMID: 37138613 PMCID: PMC10149717 DOI: 10.3389/fmicb.2023.1164553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Microbial communities inhabiting the human infant gut are important for immune system development and lifelong health. One critical exposure affecting the bacterial colonization of the infant gut is consumption of human milk, which contains diverse microbial communities and prebiotics. We hypothesized that human milk-associated microbial profiles are associated with those of the infant gut. Methods Maternal-infant dyads enrolled in the New Hampshire Birth Cohort Study (n = 189 dyads) contributed breast milk and infant stool samples collected approximately at 6 weeks, 4 months, 6 months, 9 months, and 12 months postpartum (n = 572 samples). Microbial DNA was extracted from milk and stool and the V4-V5 region of the bacterial 16S rRNA gene was sequenced. Results Clustering analysis identified three breast milk microbiome types (BMTs), characterized by differences in Streptococcus, Staphylococcus, Pseudomonas, Acinetobacter, and microbial diversity. Four 6-week infant gut microbiome types (6wIGMTs) were identified, differing in abundances of Bifidobacterium, Bacteroides, Clostridium, Streptococcus, and Escherichia/Shigella, while two 12-month IGMTs (12mIGMTs) differed primarily by Bacteroides presence. At 6 weeks, BMT was associated with 6wIGMT (Fisher's exact test value of p = 0.039); this association was strongest among infants delivered by Cesarean section (Fisher's exact test value of p = 0.0028). The strongest correlations between overall breast milk and infant stool microbial community structures were observed when comparing breast milk samples to infant stool samples collected at a subsequent time point, e.g., the 6-week breast milk microbiome associated with the 6-month infant gut microbiome (Mantel test Z-statistic = 0.53, value of p = 0.001). Streptoccous and Veillonella species abundance were correlated in 6-week milk and infant stool, and 4- and 6-month milk Pantoea species were associated with infant stool Lachnospiraceae genera at 9 and 12 months. Discussion We identified clusters of human milk and infant stool microbial communities that were associated in maternal-infant dyads at 6 weeks of life and found that milk microbial communities were more strongly associated with infant gut microbial communities in infants delivered operatively and after a lag period. These results suggest that milk microbial communities have a long-term effect on the infant gut microbiome both through sharing of microbes and other molecular mechanisms.
Collapse
Affiliation(s)
- Sara N. Lundgren
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Juliette C. Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Department of Pediatrics, Children’s Hospital at Dartmouth, Lebanon, NH, United States
- Department of Psychiatry, Children’s Hospital at Dartmouth, Lebanon, NH, United States
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Hilary G. Morrison
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- *Correspondence: Brock C. Christensen,
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
157
|
Sindi AS, Cheema AS, Trevenen ML, Geddes DT, Payne MS, Stinson LF. Characterisation of human milk bacterial DNA profiles in a small cohort of Australian women in relation to infant and maternal factors. PLoS One 2023; 18:e0280960. [PMID: 36696407 PMCID: PMC9876237 DOI: 10.1371/journal.pone.0280960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Human milk is composed of complex microbial and non-microbial components that shape the infant gut microbiome. Although several maternal and infant factors have been associated with human milk microbiota, no study has investigated this in an Australian population. Therefore, we aimed to investigate associations between human milk bacterial composition of Australian women and maternal factors (body mass index (BMI), mode of delivery, breast pump use, allergy, parity) and infant factors (sex, mode of feeding, pacifier use, and introduction of solids). Full-length 16S rRNA gene sequencing was used to characterise milk bacterial DNA profiles. Milk from mothers with a normal BMI had a higher relative abundance of Streptococcus australis than that of underweight mothers, while milk from overweight mothers had a higher relative abundance of Streptococcus salivarius compared with underweight and obese mothers. Mothers who delivered vaginally had a higher relative abundance of Streptococcus mitis in their milk compared to those who delivered via emergency caesarean section. Milk of mothers who used a breast pump had a higher relative abundance of Staphylococcus epidermidis and Streptococcus parasanguinis. Milk of mothers whose infants used a pacifier had a higher relative abundance of S. australis and Streptococcus gwangjuense. Maternal BMI, mode of delivery, breast pump use, and infant pacifier use are associated with the bacterial composition of human milk in an Australian cohort. The data from this pilot study suggests that both mother and infant can contribute to the human milk microbiome.
Collapse
Affiliation(s)
- Azhar S Sindi
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ali S Cheema
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Michelle L Trevenen
- Centre for Applied Statistics, The University of Western Australia, Perth, Western Australia, Australia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Women and Infants Research Foundation, Perth, Western Australia, Australia
| | - Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
158
|
Ye Z, Du J, Li K, Zhang Z, Xiao P, Yan T, Han B, Zuo G. Coupled Gold Nanoparticles with Aptamers Colorimetry for Detection of Amoxicillin in Human Breast Milk Based on Image Preprocessing and BP-ANN. Foods 2022; 11:4101. [PMID: 36553847 PMCID: PMC9778062 DOI: 10.3390/foods11244101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Antibiotic residues in breast milk can have an impact on the intestinal flora and health of babies. Amoxicillin, as one of the most used antibiotics, affects the abundance of some intestinal bacteria. In this study, we developed a convenient and rapid process that used a combination of colorimetric methods and artificial intelligence image preprocessing, and back propagation-artificial neural network (BP-ANN) analysis to detect amoxicillin in breast milk. The colorimetric method derived from the reaction of gold nanoparticles (AuNPs) was coupled to aptamers (ssDNA) with different concentrations of amoxicillin to produce different color results. The color image was captured by a portable image acquisition device, and image preprocessing was implemented in three steps: segmentation, filtering, and cropping. We decided on a range of detection from 0 µM to 3.9 µM based on the physiological concentration of amoxicillin in breast milk and the detection effect. The segmentation and filtering steps were conducted by Hough circle detection and Gaussian filtering, respectively. The segmented results were analyzed by linear regression and BP-ANN, and good linear correlations between the colorimetric image value and concentration of target amoxicillin were obtained. The R2 and MSE of the training set were 0.9551 and 0.0696, respectively, and those of the test set were 0.9276 and 0.1142, respectively. In prepared breast milk sample detection, the recoveries were 111.00%, 98.00%, and 100.20%, and RSDs were 6.42%, 4.27%, and 1.11%. The result suggests that the colorimetric process combined with artificial intelligence image preprocessing and BP-ANN provides an accurate, rapid, and convenient way to achieve the detection of amoxicillin in breast milk.
Collapse
Affiliation(s)
- Ziqian Ye
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jinglong Du
- Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Keyu Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zhilun Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Peng Xiao
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Taocui Yan
- Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Baoru Han
- Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Guowei Zuo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
159
|
Human Milk Microbiome and Microbiome-Related Products: Potential Modulators of Infant Growth. Nutrients 2022; 14:nu14235148. [PMID: 36501178 PMCID: PMC9737635 DOI: 10.3390/nu14235148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Infant growth trajectory may influence later-life obesity. Human milk provides a wide range of nutritional and bioactive components that are vital for infant growth. Compared to formula-fed infants, breastfed infants are less likely to develop later-onset obesity, highlighting the potential role of bioactive components present in human milk. Components of particular interest are the human milk microbiota, human milk oligosaccharides (HMOs), short-chain fatty acids (SCFAs), and antimicrobial proteins, each of which influence the infant gut microbiome, which in turn has been associated with infant body composition. SCFAs and antimicrobial proteins from human milk may also systemically influence infant metabolism. Although inconsistent, multiple studies have reported associations between HMOs and infant growth, while studies on other bioactive components in relation to infant growth are sparse. Moreover, these microbiome-related components may interact with each other within the mammary gland. Here, we review the evidence around the impact of human milk microbes, HMOs, SCFAs, and antimicrobial proteins on infant growth. Breastfeeding is a unique window of opportunity to promote optimal infant growth, with aberrant growth trajectories potentially creating short- and long-term public health burdens. Therefore, it is important to understand how bioactive components of human milk influence infant growth.
Collapse
|
160
|
Sangiuolo K, Cheng E, Terala A, Dubrosa F, Milanaik RL. The gut microbiome: an overview of current trends and risks for paediatric populations. Curr Opin Pediatr 2022; 34:634-642. [PMID: 36226734 DOI: 10.1097/mop.0000000000001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW Gut health is an increasingly popular topic of discussion among scientists and the general population alike. As interest surrounding the gut microbiome grows, the accessibility to misinformation and unfounded gut health trends to youth is likely to emerge as a public health concern. The purpose of this review is to provide paediatricians with current information about the gut microbiome, as well as explanations and possible risks of the multitude of gut health trends that adolescents may be exposed to. RECENT FINDINGS The gut microbiome is implicated in overall health by playing roles in digestion, immunity and mental health. Novel microbiome-related therapies, such as faecal microbiota transplants, and the gut-brain link show the therapeutic potential of the gut microbiome. However, unproven dietary fads and trends on social media are rampant as well, such as ginger juice shots. In addition, paediatric supplements meant to target gut health are unregulated, yet are highly marketed. Improperly applying these trends and diets may result in risks of malnutrition and body image issues for impressionable children. SUMMARY Increased familiarity regarding the types of gut health trends and diets among young people will allow paediatricians to more effectively advise their patients about potential risks and good gut health practices. Paediatricians and caregivers serve as role models and educators with regard to children's perceptions and management of their gut and overall health.
Collapse
Affiliation(s)
- Kara Sangiuolo
- Division of Developmental and Behavioral Pediatrics, Steven and Alexandra Cohen Children's Medical Center of New York, Lake Success, New York, USA
| | | | | | | | | |
Collapse
|
161
|
Got milk? Maternal immune activation during the mid-lactational period affects nutritional milk quality and adolescent offspring sensory processing in male and female rats. Mol Psychiatry 2022; 27:4829-4842. [PMID: 36056174 PMCID: PMC9771965 DOI: 10.1038/s41380-022-01744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 01/14/2023]
Abstract
Previous studies have underscored the importance of breastfeeding and parental care on offspring development and behavior. However, their contribution as dynamic variables in animal models of early life stress are often overlooked. In the present study, we investigated how lipopolysaccharide (LPS)-induced maternal immune activation (MIA) on postnatal day (P)10 affects maternal care, milk, and offspring development. MIA was associated with elevated milk corticosterone concentrations on P10, which recovered by P11. In contrast, both milk triglyceride and percent creamatocrit values demonstrated a prolonged decrease following inflammatory challenge. Adolescent MIA offspring were heavier, which is often suggestive of poor early life nutrition. While MIA did not decrease maternal care quality, there was a significant compensatory increase in maternal licking and grooming the day following inflammatory challenge. However, this did not protect against disrupted neonatal huddling or later-life alterations in sensorimotor gating, conditioned fear, mechanical allodynia, or reductions in hippocampal parvalbumin expression in MIA offspring. MIA-associated changes in brain and behavior were likely driven by differences in milk nutritional values and not by direct exposure to LPS or inflammatory molecules as neither LPS binding protein nor interleukin-6 milk levels differed between groups. These findings reflected comparable microbiome and transcriptomic patterns at the genome-wide level. Animal models of early life stress can impact both parents and their offspring. One mechanism that can mediate the effects of such stressors is changes to maternal lactation quality which our data show can confer multifaceted and compounding effects on offspring physiology and behavior.
Collapse
|
162
|
Gonzalez-Visiedo M, Kulis MD, Markusic DM. Manipulating the microbiome to enhance oral tolerance in food allergy. Cell Immunol 2022; 382:104633. [PMID: 36347161 DOI: 10.1016/j.cellimm.2022.104633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 01/13/2023]
Abstract
Loss of oral tolerance (OT) to food antigens results in food allergies. One component of achieving OT is the symbiotic microorganisms living in the gut (microbiota). The composition of the microbiota can drive either pro-tolerogenic or pro-inflammatory responses against dietary antigens though interactions with the local immune cells within the gut. Products from bacterial fermentation, such as butyrate, are one of the main communication molecules involved in this interaction, however, this is released by a subset of bacterial species. Thus, strategies to specifically expand these bacteria with protolerogenic properties have been explored to complement oral immunotherapy in food allergy. These approaches either provide digestible biomolecules to induce beneficial bacteria species (prebiotics) or the direct administration of live bacteria species (probiotics). While this combined therapy has shown positive outcomes in clinical trials for cow's milk allergy, more research is needed to determine if this therapy can be extended to other food allergens.
Collapse
Affiliation(s)
- Miguel Gonzalez-Visiedo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael D Kulis
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - David M Markusic
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
163
|
Tonelli Enrico V, Vo N, Methe B, Morris A, Sowa G. An unexpected connection: A narrative review of the associations between Gut Microbiome and Musculoskeletal Pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:3603-3615. [PMID: 36308543 PMCID: PMC9617047 DOI: 10.1007/s00586-022-07429-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Multiple diverse factors contribute to musculoskeletal pain, a major cause of physical dysfunction and health-related costs worldwide. Rapidly growing evidence demonstrates that the gut microbiome has overarching influences on human health and the body's homeostasis and resilience to internal and external perturbations. This broad role of the gut microbiome is potentially relevant and connected to musculoskeletal pain, though the literature on the topic is limited. Thus, the literature on the topic of musculoskeletal pain and gut microbiome was explored. METHODS This narrative review explores the vast array of reported metabolites associated with inflammation and immune-metabolic response, which are known contributors to musculoskeletal pain. Moreover, it covers known modifiable (e.g., diet, lifestyle choices, exposure to prescription drugs, pollutants, and chemicals) and non-modifiable factors (e.g., gut architecture, genetics, age, birth history, and early feeding patterns) that are known to contribute to changes to the gut microbiome. Particular attention is devoted to modifiable factors, as the ultimate goal of researching this topic is to implement gut microbiome health interventions into clinical practice. RESULTS Overall, numerous associations exist in the literature that could converge on the gut microbiome's pivotal role in musculoskeletal health. Particularly, a variety of metabolites that are either directly produced or indirectly modulated by the gut microbiome have been highlighted. CONCLUSION The review highlights noticeable connections between the gut and musculoskeletal health, thus warranting future research to focus on the gut microbiome's role in musculoskeletal conditions.
Collapse
Affiliation(s)
- Valerio Tonelli Enrico
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA.
- Department of Physical Therapy, University of Pittsburgh, 100 Technology Dr, Pittsburgh, PA, 15219, USA.
| | - Nam Vo
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
| | - Barbara Methe
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Alison Morris
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Gwendolyn Sowa
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, Kaufmann Medical Building, Suite 910, 3471 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
164
|
D'Aloisio LD, Shetty V, Ballal M, Gibson DL. Following the Indian Immigrant: adoption of westernization results in a western gut microbiome and an increased risk of inflammatory bowel diseases. FEMS Microbiol Ecol 2022; 98:6825449. [PMID: 36370451 DOI: 10.1093/femsec/fiac133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Indians who migrate to westernized countries such as Canada, the USA, and the UK are at an increased risk of developing inflammatory bowel disease (IBD). While the underlying aetiology of IBD remains unclear, a gut microbiome, i.e. no longer symbiotic with its host, is a major player. Increasing IBD incidence in Indian immigrants may be due to the adoption of western practices that result in loss of tolerance of a symbiotic community in the gut and its underlying immune responses. However, little is known about the microbial changes in the Indian gut, including shifts in the microbiome when they migrate to westernized countries. In this Current Opinion, we discuss what is known about the Indian gut microbiome and how living in a westernized environment may be impeding what was once a symbiotic relationship with their gut microbiome and intestinal mucosae, which may be the driving factor in their increased risk of IBD.
Collapse
Affiliation(s)
- Leah D D'Aloisio
- Department of Biology, University of British Columbia- Okanagan Campus, V1V 1V7 Kelowna, Canada
| | - Vignesh Shetty
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, 576104 Manipal, India.,Department of Medicine, University of Cambridge, CB2 2QQ Cambridge, United Kingdom
| | - Mamatha Ballal
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, 576104 Manipal, India
| | - Deanna L Gibson
- Department of Biology, University of British Columbia- Okanagan Campus, V1V 1V7 Kelowna, Canada.,Department of Medicine, University of British Columbia- Okanagan Campus, V1V 1V7 Kelowna, Canada
| |
Collapse
|
165
|
Banić M, Butorac K, Čuljak N, Leboš Pavunc A, Novak J, Bellich B, Kazazić S, Kazazić S, Cescutti P, Šušković J, Zucko J, Kos B. The Human Milk Microbiota Produces Potential Therapeutic Biomolecules and Shapes the Intestinal Microbiota of Infants. Int J Mol Sci 2022; 23:ijms232214382. [PMID: 36430861 PMCID: PMC9699365 DOI: 10.3390/ijms232214382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Human milk not only provides a perfect balance of nutrients to meet all the needs of the infant in the first months of life but also contains a variety of bacteria that play a key role in tailoring the neonatal faecal microbiome. Microbiome analysis of human milk and infant faeces from mother-breastfed infant pairs was performed by sequencing the V1-V3 region of the 16S rRNA gene using the Illumina MiSeq platform. According to the results, there is a connection in the composition of the microbiome in each mother-breastfed infant pair, supporting the hypothesis that the infant's gut is colonised with bacteria from human milk. MiSeq sequencing also revealed high biodiversity of the human milk microbiome and the infant faecal microbiome, whose composition changes during lactation and infant development, respectively. A total of 28 genetically distinct strains were selected by hierarchical cluster analysis of RAPD-PCR (Random Amplified Polymorphic DNA-Polymerase Chain Reaction) electrophoresis profiles of 100 strains isolated from human milk and identified by 16S RNA sequencing. Since certain cellular molecules may support their use as probiotics, the next focus was to detect (S)-layer proteins, bacteriocins and exopolysaccharides (EPSs) that have potential as therapeutic biomolecules. SDS-PAGE (Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis) coupled with LC-MS (liquid chromatography-mass spectrometry) analysis revealed that four Levilactobacillus brevis strains expressed S-layer proteins, which were identified for the first time in strains isolated from human milk. The potential biosynthesis of plantaricin was detected in six Lactiplantibacillus plantarum strains by PCR analysis and in vitro antibacterial studies. 1H NMR (Proton Nuclear Magnetic Resonance) analysis confirmed EPS production in only one strain, Limosilactobacillus fermentum MC1. The overall microbiome analysis suggests that human milk contributes to the establishment of the intestinal microbiota of infants. In addition, it is a promising source of novel Lactobacillus strains expressing specific functional biomolecules.
Collapse
Affiliation(s)
- Martina Banić
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Katarina Butorac
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Nina Čuljak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Andreja Leboš Pavunc
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jasna Novak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Ed. C11, 34127 Trieste, Italy
| | - Saša Kazazić
- The Ruđer Bošković Institute, Laboratory for Mass Spectrometry, Bijenička 54, 10000 Zagreb, Croatia
| | - Snježana Kazazić
- The Ruđer Bošković Institute, Laboratory for Mass Spectrometry, Bijenička 54, 10000 Zagreb, Croatia
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Ed. C11, 34127 Trieste, Italy
| | - Jagoda Šušković
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jurica Zucko
- Laboratory for Bioinformatics, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Blaženka Kos
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
166
|
Ding J, Ouyang R, Zheng S, Wang Y, Huang Y, Ma X, Zou Y, Chen R, Zhuo Z, Li Z, Xin Q, Zhou L, Mei S, Yan J, Lu X, Ren Z, Liu X, Xu G. Effect of Breastmilk Microbiota and Sialylated Oligosaccharides on the Colonization of Infant Gut Microbial Community and Fecal Metabolome. Metabolites 2022; 12:1136. [PMID: 36422276 PMCID: PMC9698434 DOI: 10.3390/metabo12111136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 07/30/2023] Open
Abstract
The complex microbiota and sialylated oligosaccharides in breastmilk are important bioactive components that affect the gut microbiota. However, the effect of breastmilk microbiota and sialylated oligosaccharides on the gut microbiota during the neonatal period has been largely overlooked. Here, 16S rRNA gene sequencing and metabolomics analysis were applied to the breastmilk and feces of 69 newborns to clarify the link between breastmilk components and the newborn gut. Results showed that Staphylococcus, Enterococcus, and Bacteroides were commonly shared and positively correlated between breastmilk and the neonatal intestine and they were the main bacteria of breastmilk that interacted with the newborn fecal metabolome. Breastmilk Staphylococcus mainly interacted with amino acids, whereas Bacteroides was involved in the tryptophan, nucleotide, and vitamin metabolism. Breastmilk sialylated oligosaccharides were related to Bacteroides and amino acids of the newborn fecal metabolites. Moreover, Bacteroides was related to the interaction between breastmilk 3'-sialyllactose and newborn fecal metabolites in the mediation effect models. Finally, we pointed out that breastmilk Bacteroides was important in the milk-gut interaction, and it was negatively associated with waist circumference in infants aged 1 year. Our study provides a scientific basis for understanding the role of breastmilk in the development of newborn gut microbiota and metabolome.
Collapse
Affiliation(s)
- Juan Ding
- Department of Quality Control, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Runze Ouyang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Yanfeng Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Yan Huang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Ma
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuxin Zou
- Liaocheng People’s Hospital, Liaocheng 252000, China
| | - Rong Chen
- Dalian Municipal Women and Children’s Medical Center (Group), Dalian 116011, China
| | - Zhihong Zhuo
- Department of Pediatric, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qi Xin
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingyu Yan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| |
Collapse
|
167
|
Seekatz AM, Safdar N, Khanna S. The role of the gut microbiome in colonization resistance and recurrent Clostridioides difficile infection. Therap Adv Gastroenterol 2022; 15:17562848221134396. [PMID: 36425405 PMCID: PMC9679343 DOI: 10.1177/17562848221134396] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022] Open
Abstract
The species composition of the human gut microbiota is related to overall health, and a healthy gut microbiome is crucial in maintaining colonization resistance against pathogens. Disruption of gut microbiome composition and functionality reduces colonization resistance and has been associated with several gastrointestinal and non-gastrointestinal diseases. One prime example is Clostridioides difficile infection (CDI) and subsequent recurrent infections that occur after the development of systemic antibiotic-related dysbiosis. Standard-of-care antibiotics used for both acute and recurrent infections do not address dysbiosis and often worsen the condition. Moreover, monoclonal antibodies, recommended in conjunction with standard-of-care antibiotics for the prevention of recurrent CDI in patients at high risk of recurrence, reduce recurrences but do not address the underlying dysbiosis. Fecal microbiota transplantation (FMT) is an evolving therapeutic strategy in which microbes are harvested from healthy donor stool and transplanted into the gut of a recipient to restore the gut microbiome. Although effective in the prevention of recurrent CDI, some existing challenges include screening and the standardization of stool acquisition and processing. Recent safety alerts by the US Food and Drug Administration raised concern about the possibility of transmission of multidrug-resistant organisms or severe acute respiratory syndrome coronavirus 2 via FMT. Increased knowledge that microbes are beneficial in restoring the gut microbiome has led to the clinical development of several newer biotherapeutic formulations that are more regulated than FMT, which may allow for improved restoration of the gut microbiome and prevention of CDI recurrence. This review focuses on mechanisms by which gut microbiome restoration could influence colonization resistance against the pathogen C. difficile. Plain language summary The Role of the Gut Microbiome in Clostridioides difficile Infection Introduction: A rich and diverse gut microbiome is key to immune system regulation and colonization resistance against pathogens.A disruption in the gut microbiome composition can make the gut more vulnerable to diseases such as Clostridioides difficile infection (CDI), caused by the bacterium C. difficile.CDI management presents a therapeutic dilemma, as it is usually treated with antibiotics that can treat the infection but also can damage the microbiome.Treatment of CDI using antibiotics can further reduce microbial diversity and deplete beneficial bacteria from the gut leading to a condition called dysbiosis.Antibiotic treatment can be followed by therapies that restore the gut microbiota, boost colonization resistance, and prevent the development of antimicrobial resistance.It is important to evaluate treatment options to determine their safety and effectiveness. Methods: The researchers provided an overview of the mechanisms that the gut microbiome uses to prevent colonization of the gut by pathogens.They subsequently reviewed the efficacy and shortcomings of the following treatments for CDI: - Antibiotics- Monoclonal antibodies- Fecal microbiota transplantation (FMT) Results: Commensal intestinal bacteria prevent colonization of the gut by pathogens using mechanisms such as: - Competition for key nutrients- Production of inhibitory bile acids- Short-chain fatty acid production- Lowering the luminal pH- Production of bacteriocinsAntibiotic therapy is recommended as a standard treatment for CDI. However, patients are vulnerable to recurrent CDI after discontinuation of the therapy.Monoclonal antibodies that inactivate C. difficile toxins may be recommended along with antibiotics to prevent recurrent CDI. However, this approach does not restore the microbiome.FMT is one method of microbial restoration, where stool is harvested from a healthy donor and transplanted into a patient's colon.Although FMT has shown some efficacy in the treatment of recurrent CDI, the procedure is not standardized.Safety concerns have been raised about the possibility of transmission of multidrug-resistant pathogens via FMT. Conclusion: Treatment methods that can efficiently restore the diversity of the gut microbiome are crucial in preventing recurrence of CDI.
Collapse
Affiliation(s)
| | - Nasia Safdar
- University of Wisconsin, Madison, WI, USA
- William S. Middleton Memorial VA Hospital, Madison, WI, USA
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
168
|
Karampatsas K, Faal A, Jaiteh M, Garcia-Perez I, Aller S, Shaw AG, Kopytek A, Witney AA, Le Doare K. Gastrointestinal, vaginal, nasopharyngeal, and breast milk microbiota profiles and breast milk metabolomic changes in Gambian infants over the first two months of lactation: A prospective cohort study. Medicine (Baltimore) 2022; 101:e31419. [PMID: 36401392 PMCID: PMC9678627 DOI: 10.1097/md.0000000000031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Microbiota composition in breast milk affects intestinal and respiratory microbiota colonization and the mucosal immune system's development in infants. The metabolomic content of breast milk is thought to interact with the microbiota and may influence developing infant immunity. One hundred seven Gambian mothers and their healthy, vaginally delivered, exclusively breastfed infants were included in our study. We analyzed 32 breast milk samples, 51 maternal rectovaginal swabs and 30 infants' rectal swabs at birth. We also analyzed 9 breast milk samples and 18 infants' nasopharyngeal swabs 60 days post-delivery. We used 16S rRNA gene sequencing to determine the microbiota composition. Metabolomic profiling analysis was performed on colostrum and mature breast milk samples using a multiplatform approach combining 1-H Nuclear Magnetic Resonance Spectroscopy and Gas Chromatography-Mass Spectrometry. Bacterial communities were distinct in composition and diversity across different sample types. Breast milk composition changed over the first 60 days of lactation. α-1,4- and α-1,3-fucosylated human milk oligosaccharides, and other 33 key metabolites in breast milk (monosaccharides, sugar alcohols and fatty acids) increased between birth and day 60 of life. This study's results indicate that infant gut and respiratory microbiota are unique bacterial communities, distinct from maternal gut and breast milk, respectively. Breast milk microbiota composition and metabolomic profile change throughout lactation. These changes may contribute to the infant's immunological, metabolic, and neurological development and could consist the basis for future interventions to correct disrupted early life microbial colonization.
Collapse
Affiliation(s)
- Konstantinos Karampatsas
- Centre for Neonatal and Paediatric Infection, St George’s, University of London, London, UK
- * Correspondence: Konstantinos Karampatsas, Institute for Infection and Immunity, St George’s, University of London, Jenner Wing, Level 2, SW17 0RE London, UK (e-mail: )
| | - Amadou Faal
- Medical Research Council The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Mustapha Jaiteh
- Medical Research Council The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Isabel Garcia-Perez
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Sean Aller
- Centre for Neonatal and Paediatric Infection, St George’s, University of London, London, UK
| | - Alexander G. Shaw
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Aleksandra Kopytek
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Adam A. Witney
- Centre for Neonatal and Paediatric Infection, St George’s, University of London, London, UK
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infection, St George’s, University of London, London, UK
- Medical Research Council The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Medical Research Council Uganda, Virus Research Institute, Uganda
| |
Collapse
|
169
|
Heisel T, Johnson AJ, Gonia S, Dillon A, Skalla E, Haapala J, Jacobs KM, Nagel E, Pierce S, Fields D, Demerath E, Knights D, Gale CA. Bacterial, fungal, and interkingdom microbiome features of exclusively breastfeeding dyads are associated with infant age, antibiotic exposure, and birth mode. Front Microbiol 2022; 13:1050574. [PMID: 36466688 PMCID: PMC9714262 DOI: 10.3389/fmicb.2022.1050574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
The composition and function of early life gut bacterial communities (microbiomes) have been proposed to modulate health for the long term. In addition to bacteria, fungi (mycobiomes) also colonize the early life gut and have been implicated in health disorders such as asthma and obesity. Despite the potential importance of mycobiomes in health, there has been a lack of study regarding fungi and their interkingdom interactions with bacteria during infancy. The goal of this study was to obtain a more complete understanding of microbial communities thought to be relevant for the early life programming of health. Breastmilk and infant feces were obtained from a unique cohort of healthy, exclusively breastfeeding dyads recruited as part of the Mothers and Infants Linked for Healthy Growth (MILk) study with microbial taxa characterized using amplicon-based sequencing approaches. Bacterial and fungal communities in breastmilk were both distinct from those of infant feces, consistent with niche-specific microbial community development. Nevertheless, overlap was observed among sample types (breastmilk, 1-month feces, 6-month feces) with respect to the taxa that were the most prevalent and abundant. Self-reported antibacterial antibiotic exposure was associated with micro- as well as mycobiome variation, which depended upon the subject receiving antibiotics (mother or infant), timing of exposure (prenatal, peri- or postpartum), and sample type. In addition, birth mode was associated with bacterial and fungal community variation in infant feces, but not breastmilk. Correlations between bacterial and fungal taxa abundances were identified in all sample types. For infant feces, congruency between bacterial and fungal communities was higher for older infants, consistent with the idea of co-maturation of bacterial and fungal gut communities. Interkingdom connectedness also tended to be higher in older infants. Additionally, higher interkingdom connectedness was associated with Cesarean section birth and with antibiotic exposure for microbial communities of both breastmilk and infant feces. Overall, these results implicate infant age, birth mode, and antibiotic exposure in bacterial, fungal and interkingdom relationship variation in early-life-relevant microbiomes, expanding the current literature beyond bacteria.
Collapse
Affiliation(s)
- Timothy Heisel
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Abigail J. Johnson
- School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Sara Gonia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Abrielle Dillon
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Emily Skalla
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Jacob Haapala
- School of Public Health, University of Minnesota, Minneapolis, MN, United States,HealthPartners Institute, Minneapolis, MN, United States
| | - Katherine M. Jacobs
- Department of Obstetrics, Gynecology, and Women’s Health, University of Minnesota, Minneapolis, MN, United States
| | - Emily Nagel
- School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Stephanie Pierce
- College of Medicine, University of Oklahoma, Oklahoma City, OK, United States
| | - David Fields
- College of Medicine, University of Oklahoma, Oklahoma City, OK, United States
| | - Ellen Demerath
- School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Cheryl A. Gale
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,*Correspondence: Cheryl A. Gale,
| |
Collapse
|
170
|
Edwards CA, Van Loo-Bouwman CA, Van Diepen JA, Schoemaker MH, Ozanne SE, Venema K, Stanton C, Marinello V, Rueda R, Flourakis M, Gil A, Van der Beek EM. A systematic review of breast milk microbiota composition and the evidence for transfer to and colonisation of the infant gut. Benef Microbes 2022; 13:365-382. [PMID: 36377578 DOI: 10.3920/bm2021.0098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The intestinal microbiota plays a major role in infant health and development. However, the role of the breastmilk microbiota in infant gut colonisation remains unclear. A systematic review was performed to evaluate the composition of the breastmilk microbiota and evidence for transfer to/colonisation of the infant gut. Searches were performed using PUBMED, OVID, LILACS and PROQUEST from inception until 18th March 2020 with a PUBMED update to December 2021. 88 full texts were evaluated before final critique based on study power, sample contamination avoidance, storage, purification process, DNA extraction/analysis, and consideration of maternal health and other potential confounders. Risk of skin contamination was reduced mainly by breast cleaning and rejecting the first milk drops. Sample storage, DNA extraction and bioinformatics varied. Several studies stored samples under conditions that may selectively impact bacterial DNA preservation, others used preculture reducing reliability. Only 15 studies, with acceptable sample size, handling, extraction, and bacterial analysis, considered transfer of bacteria to the infant. Three reported bacterial transfer from infant to breastmilk. Despite consistent evidence for the breastmilk microbiota, and recent studies using improved methods to investigate factors affecting its composition, few studies adequately considered transfer to the infant gut providing very little evidence for effective impact on gut colonisation.
Collapse
Affiliation(s)
- C A Edwards
- Human Nutrition, School of Medicine, Dentistry, and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, 84 Castle St, Glasgow G4 0SF, United Kingdom
| | - C A Van Loo-Bouwman
- Yili Innovation Center Europe, Bronland 12 E-1, 6708 WH Wageningen, the Netherlands
| | - J A Van Diepen
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Middenkampweg 2, 6545 CJ Nijmegen, the Netherlands
| | - M H Schoemaker
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Middenkampweg 2, 6545 CJ Nijmegen, the Netherlands
| | - S E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, P.O. Box 289, Cambridge CB2 0QQ, United Kingdom
| | - K Venema
- Department of Human Biology, Centre for Healthy Eating & Food Innovation, Maastricht University - Campus Venlo, P.O. Box 8, 5900 AA Venlo, the Netherlands
| | - C Stanton
- Teagasc Moorepark Food Research Centre, and APC Microbiome Ireland, Cork, Ireland
| | - V Marinello
- Human Nutrition, School of Medicine, Dentistry, and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, 84 Castle St, Glasgow G4 0SF, United Kingdom
| | - R Rueda
- R&D Department, Abbott Nutrition, Cam. de Purchil, 68, 18004 Granada, Spain
| | - M Flourakis
- ILSI Europe a.i.s.b.l., E. Mounierlaan 83, 1200 Brussels, Belgium; correspondence has been taken over by C.-Y. Chang of ILSI Europe
| | - A Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Institute of Nutrition and Food Technology 'José Mataix,' Biomedical Research Centre, University of Granada, and Instituto de Investigación Biosanitaria ibs Granada, Avda. del Conocimiento s/n, 18100, Armilla, Grenada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - E M Van der Beek
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, Postbus 30.001, 9700 RB Groningen, the Netherlands
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
171
|
Liu B, Zhao J, Liu Y, Qiao W, Jiang T, Chen L. Diversity and temporal dynamics of breast milk microbiome and its influencing factors in Chinese women during the first 6 months postpartum. Front Microbiol 2022; 13:1016759. [DOI: 10.3389/fmicb.2022.1016759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Human breast milk (HBM) plays an important role in providing nutrients, beneficial microorganisms and bioactive components for infants, helping maturation of their immune system and gastrointestinal development. Here, we present a study aiming to investigate the diversity and temporal dynamics of the milk microbiome across the first 6 month postpartum in Chinese healthy breastfeeding women, and to investigate to what extent other variables (e.g., sampling location, infant sex, and mode of delivery) might also be related to variations in the human milk microbiome, and the association with maternal diet and nutrients. Fifty-three healthy pregnant women from four cities were recruited from a China Maternal and Infant Health Cohort Study and breast milk samples were collected and analyzed using 16S rRNA metagenomic sequencing. We illustrated the diversity and temporal dynamics during lactation (Adonis p-value = 3e–04). Firmicutes and Proteobacteria were the most abundant phyla, and Streptococcus, Staphylococcus, Serratia, and Corynebacterium were the core genera. Partitioning around medoids clustering identified two major internal clusters of breast milk microbiota. Cluster 1 was dominated by Acinetobacter and Pseudomonas, while Cluster 2 was dominated by Streptococcus and Staphylococcus. Among other environmental variables, sampling location showed significant influence on breast milk microbiome (Adonis p-value = 4e–04), while infant sex (Adonis p-value = 0.33) and mode of delivery (Adonis p-value = 0.19) were less related to variations in the human milk microbiome. Maternal diet such as tuber was significantly correlated with the relative abundance of Neisseria (rho = 0.34, adjusted p-value = 0.01) and Cutibacterium (rho = −0.35, adjusted p-value = 0.01), and nutrients such as carbohydrates were significantly correlated with the relative abundance of Aquabacterium (rho = −0.39, adjusted p-value = 0.0027), and vitamin B12 was significantly correlated with the relative abundance of Coprococcus (rho = 0.40, adjusted p-value = 0.0018), etc. These results illustrated the dynamic changes of composition and diversity during the lactation phases of the Chinese breast milk microbiome and addressed the importance of geographic location on milk microbiota, and associations with maternal diet consumption, which have potential benefits on the establishment and future health of breastfeeding infants.
Collapse
|
172
|
Wang S, Zhang R, Li X, Gao Y, Dai N, Wei Y, Liu L, Xing Y, Li Z. Relationship between maternal-infant gut microbiota and infant food allergy. Front Microbiol 2022; 13:933152. [PMID: 36419421 PMCID: PMC9676664 DOI: 10.3389/fmicb.2022.933152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/10/2022] [Indexed: 08/26/2023] Open
Abstract
The gut microbiota plays a crucial role in food allergies. We sought to identify characteristics of the maternal gut microbiota in the third trimester and the infant gut microbiota in early life and the association of these microbiotas with infant food allergy. A total of 68 healthy pregnant women and their full-term newborns were selected from a cohort of 202 mother-infant pairs; among them, 24 infants had been diagnosed with food allergy within 1 year of age, whereas 44 infants were healthy without allergic symptoms. We collected 65 maternal fecal samples before delivery and 253 infant fecal samples at five time points following birth. Fecal samples were microbiologically analyzed using 16S rRNA gene sequencing. Holdemania abundance in the maternal gut microbiota in the third trimester was significantly higher in the non-allergy group than in the food allergy group (P = 0.036). In the infant gut microbiota, Holdemania was only found in meconium samples; its abundance did not differ significantly between the two groups. The change in the abundance of Actinobacteria over time differed between the non-allergy and food allergy groups (FA, P = 0.013; NA, P = 9.8 × 10-5), and the change in the abundance of Firmicutes over time differed significantly in the non-allergy group (P = 0.023). The abundances of genera Anaerotruncus, Roseburia, Ruminococcus, and Erysipelotricaceae were significantly different between the non-allergy and food allergy groups at different time points. Our results showed that maternal carriage of Holdemania during the third trimester strongly predicted the absence of food allergies in infants; there was no correlation between the presence of food allergies and the abundance of Holdemania in the infant gut microbiota. More dynamic fluctuations in phyla Actinobacteria and Firmicutes early in life protect against food allergy. Thus, the enrichment of the infant gut microbiota early in life with short-chain fatty acid-producing bacteria may be beneficial in preventing the development of food allergies in infants.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Rui Zhang
- Department of Pediatrics, Fujian Provincial Maternity and Children Hospital, Fuzhou, China
| | - Xinyue Li
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Yajuan Gao
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Nini Dai
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Luyan Liu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yan Xing
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Zailing Li
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
173
|
Shenker NS, Perdones-Montero A, Burke A, Stickland S, McDonald JAK, Cameron SJS. Human Milk from Tandem Feeding Dyads Does Not Differ in Metabolite and Metataxonomic Features When Compared to Single Nursling Dyads under Six Months of Age. Metabolites 2022; 12:metabo12111069. [PMID: 36355152 PMCID: PMC9696481 DOI: 10.3390/metabo12111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Given the long-term advantages of exclusive breastfeeding to infants and their mothers, there is both an individual and public health benefit to its promotion and support. Data on the composition of human milk over the course of a full period of lactation for a single nursling is sparse, but data on human milk composition during tandem feeding (feeding children of different ages from different pregnancies) is almost entirely absent. This leaves an important knowledge gap that potentially endangers the ability of parents to make a fully informed choice on infant feeding. We compared the metataxonomic and metabolite fingerprints of human milk samples from 15 tandem feeding dyads to that collected from ten exclusively breastfeeding single nursling dyads where the nursling is under six months of age. Uniquely, our cohort also included three tandem feeding nursling dyads where each child showed a preferential side for feeding-allowing a direct comparison between human milk compositions for different aged nurslings. Across our analysis of volume, total fat, estimation of total microbial load, metabolite fingerprinting, and metataxonomics, we showed no statistically significant differences between tandem feeding and single nursling dyads. This included comparisons of preferential side nurslings of different ages. Together, our findings support the practice of tandem feeding of nurslings, even when feeding an infant under six months.
Collapse
Affiliation(s)
- Natalie S. Shenker
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Alvaro Perdones-Montero
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Adam Burke
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Sarah Stickland
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Julie A. K. McDonald
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Simon J. S. Cameron
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
- Correspondence: ; Tel.: +44-(0)28-9097-6421
| |
Collapse
|
174
|
Tandon P, Lee E, Jogendran R, Kroeker KI, Dieleman LA, Halloran B, Wong K, Berga KA, Huang V. Breastfeeding Patterns in Mothers with Inflammatory Bowel Disease: A Pilot Prospective Longitudinal Study. Inflamm Bowel Dis 2022; 28:1717-1724. [PMID: 35099541 DOI: 10.1093/ibd/izab354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Breastfeeding practices in patients with inflammatory bowel disease (IBD) remain unknown. We aimed to characterize these practices and describe factors that may lead to early discontinuation. METHODS This was a pilot, prospective, longitudinal study enrolling mothers with IBD from 2014 to 2017. Patients completed surveys on breastfeeding at time of delivery and up to 12 months postpartum. Breastfeeding discontinuation rates were reported for all patients with IBD and compared between patients with ulcerative colitis and Crohn's disease. Reproductive knowledge was defined using the Crohn's and Colitis Pregnancy Knowledge score. The Mann-Whitney U test assessed for differences between continuous variables, whereas categorical variables were compared using the chi-square test. RESULTS A total of 74 mothers with IBD were included, 47 with ulcerative colitis and 27 with Crohn's disease. Breastfeeding rates in mothers with IBD was 94.6% at delivery, 73.9% at 3 months postpartum, 55.2% at 6 months postpartum, and 30.1% at 12 months postpartum. The most common reasons for discontinuing breastfeeding before 6 months postpartum included perceived insufficient milk production and concerns of infant medication exposure through breast milk. Compared with those who continued breastfeeding beyond 6 months postpartum, those who discontinued had lower median Crohn's and Colitis Pregnancy Knowledge scores (14.0 vs 9.0; P = .04). CONCLUSIONS Though most mothers with IBD initiate breastfeeding at time of delivery, about half continue beyond 6 months postpartum. Common reasons for this include perceived insufficient milk production and medication concerns. Larger studies are required to validate our findings in more generalizable settings such as primary and secondary care.
Collapse
Affiliation(s)
- Parul Tandon
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Gastroenterology and Hepatology, University of Toronto, Toronto, ON, Canada
| | - Eugenia Lee
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rohit Jogendran
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Gastroenterology and Hepatology, University of Toronto, Toronto, ON, Canada
| | - Karen I Kroeker
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | - Levinus A Dieleman
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | - Brendan Halloran
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | - Karen Wong
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | - Keri-Ann Berga
- Department of Nursing, MacEwan University, Edmonton, AB, Canada
| | - Vivian Huang
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Gastroenterology and Hepatology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
175
|
Fabozzi G, Rebuzzini P, Cimadomo D, Allori M, Franzago M, Stuppia L, Garagna S, Ubaldi FM, Zuccotti M, Rienzi L. Endocrine-Disrupting Chemicals, Gut Microbiota, and Human (In)Fertility-It Is Time to Consider the Triad. Cells 2022; 11:3335. [PMID: 36359730 PMCID: PMC9654651 DOI: 10.3390/cells11213335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 07/29/2023] Open
Abstract
The gut microbiota (GM) is a complex and dynamic population of microorganisms living in the human gastrointestinal tract that play an important role in human health and diseases. Recent evidence suggests a strong direct or indirect correlation between GM and both male and female fertility: on the one hand, GM is involved in the regulation of sex hormone levels and in the preservation of the blood-testis barrier integrity; on the other hand, a dysbiotic GM is linked to the onset of pro-inflammatory conditions such as endometriosis or PCOS, which are often associated with infertility. Exposure to endocrine-disrupting chemicals (EDCs) is one of the main causes of GM dysbiosis, with important consequences to the host health and potential transgenerational effects. This perspective article aims to show that the negative effects of EDCs on reproduction are in part due to a dysbiotic GM. We will highlight (i) the link between GM and male and female fertility; (ii) the mechanisms of interaction between EDCs and GM; and (iii) the importance of the maternal-fetal GM axis for offspring growth and development.
Collapse
Affiliation(s)
- Gemma Fabozzi
- B-Woman, Via dei Monti Parioli 6, 00197 Rome, Italy
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
| | - Paola Rebuzzini
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Danilo Cimadomo
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
| | | | - Marica Franzago
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | | | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Laura Rienzi
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via Sant’Andrea 34, 61029 Urbino, Italy
| |
Collapse
|
176
|
Kaplina A, Zaikova E, Ivanov A, Volkova Y, Alkhova T, Nikiforov V, Latypov A, Khavkina M, Fedoseeva T, Pervunina T, Skorobogatova Y, Volkova S, Ulyantsev V, Kalinina O, Sitkin S, Petrova N. Intestinal microbiome changes in an infant with right atrial isomerism and recurrent necrotizing enterocolitis: A case report and review of literature. World J Clin Cases 2022; 10:10583-10599. [PMID: 36312470 PMCID: PMC9602219 DOI: 10.12998/wjcc.v10.i29.10583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 08/17/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a multifactorial disease that predominantly affects premature neonates. Intestinal dysbiosis plays a critical role in NEC pathogenesis in premature neonates. The main risk factor for NEC in term infants is mesenteric hypoperfusion associated with ductal-dependent congenital heart disease (CHD) that eventually leads to intestinal ischemia. The incidence of NEC in neonates with critical CHD is 6.8%-13%. However, the role of the intestinal microbiome in NEC pathogenesis in infants with ductal-dependent CHD remains unclear.
CASE SUMMARY A male term neonate with right atrial isomerism underwent modified Blalock-Taussig shunt placement on the 14th day of life and had persistent mesenteric hypoperfusion after surgery. The patient had episodes of NEC stage IIA on the 1st and 28th days after cardiac surgery. Fecal microbial composition was analyzed before and after cardiac surgery by sequencing region V4 of the 16S rRNA gene. Before surgery, species belonging to genera Veillonella and Clostridia and class Gammaproteobacteria were detected, Bifidobacteriaceae showed a low abundance. The first NEC episode was associated with postoperative hemodynamic instability, intestinal ischemia-reperfusion injury during cardiopulmonary bypass, and a high abundance of Clostridium paraputrificum (Clostridium sensu stricto I) (56.1%). Antibacterial therapy after the first NEC episode resulted in increased abundance of Gammaproteobacteria, decreased abundance of Firmicutes, and low alpha diversity. These changes in the microbial composition promoted the growth of Clostridium sensu stricto I (72.0%) before the second NEC episode.
CONCLUSION A high abundance of Clostridium sensu stricto I and mesenteric hypoperfusion may have contributed to NEC in the present case.
Collapse
Affiliation(s)
- Aleksandra Kaplina
- Research Laboratory of Physiology and Diseases of Newborns, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Ekaterina Zaikova
- Research Laboratory of Autoimmune and Autoinflammatory Diseases, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Artem Ivanov
- International Laboratory of Computer Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Yulia Volkova
- Department of Cardiovascular Surgery for Children, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Tatiana Alkhova
- Department of Neonatal Physiology with an ICU Ward, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Vladimir Nikiforov
- Pediatric Cardiac Intensive Care Unit, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Alexander Latypov
- Department of Cardiovascular Surgery for Children, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Marina Khavkina
- Neonatal and Preterm Special Care Unit (2nd Stage Care), Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Tatiana Fedoseeva
- Research Laboratory of Physiology and Diseases of Newborns, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Tatiana Pervunina
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Yulia Skorobogatova
- Express Laboratory of Perinatal Centre, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Svetlana Volkova
- Clinical Diagnostic Laboratory, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Vladimir Ulyantsev
- International Laboratory of Computer Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Olga Kalinina
- Research Laboratory of Autoimmune and Autoinflammatory Diseases, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Stanislav Sitkin
- Epigenetics and Metagenomics Group, Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg 191015, Russia
| | - Natalia Petrova
- Research Laboratory of Physiology and Diseases of Newborns, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| |
Collapse
|
177
|
Maternal weight status and the composition of the human milk microbiome: A scoping review. PLoS One 2022; 17:e0274950. [PMID: 36191014 PMCID: PMC9529148 DOI: 10.1371/journal.pone.0274950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
The human milk microbiome is thought to partly contribute to the assembly of the infant gut microbiome, a microbial community with important implications for infant health and development. While obesity has well-established links with the adult gut microbiome, less is known about how it affects the human milk microbiome. In this scoping review, we synthesize the current literature on the microbial composition of human milk by maternal weight status, defined broadly as BMI (prepregnancy and postpartum) and gestational weight gain (GWG). This study followed the a priori protocol published in Prospero (registration #: CRD42020165633). We searched the following databases for studies reporting maternal weight status and a characterization of milk microbiota through culture-dependent and culture-independent methods: MEDLINE, Embase, Web of Science, CINAHL, and Scopus. After screening 6,365 studies, we found 20 longitudinal and cross-sectional studies investigating associations between maternal weight status and the composition of the milk microbiome. While some studies reported no associations, many others reported that women with a pre-pregnancy or postpartum BMI characterized as overweight or obese, or with excessive GWG, had higher abundances of the genus Staphylococcus, lower Bifidobacterium abundance, and lower alpha diversity (within-sample diversity). This review suggests that maternal weight status is minorly associated with the composition of the milk microbiome in various ways. We offer potential explanations for these findings, as well as suggestions for future research.
Collapse
|
178
|
Du Y, Qiu Q, Cheng J, Huang Z, Xie R, Wang L, Wang X, Han Z, Jin G. Comparative study on the microbiota of colostrum and nipple skin from lactating mothers separated from their newborn at birth in China. Front Microbiol 2022; 13:932495. [PMID: 36262322 PMCID: PMC9574262 DOI: 10.3389/fmicb.2022.932495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing studies have found breast milk (BM) contains its own microbiota. However, the route through which microbes enter the BM is still unclear. In order to verify the entero-mammary pathway of BM, we designed a rigorous study that prevented oral bacteria from contaminating the breast and nipple skin (NS) during baby nursing. Thirty-one healthy, postpartum mothers living in southern China who were immediately separated from their newborn after delivery were enrolled in this study. Using an aseptic protocol for sampling, sterile water was used to wash the NS and was then collected. Then the first drop of BM was discarded and colostrum was collected manually. Amplicon sequencing was performed targeting the V3–V4 region of the bacterial 16S rRNA gene, and the differences between the microbiota of the colostrum and NS were analyzed. Additionally, the effects of environmental factors, such as the delivery mode and intrapartum antibiotic exposure, on the diversity of the colostrum microbiota were also analyzed. We found significant differences in the α diversity and richness between the BM and NS as evidenced by richness, Chao1, and Simpson indices. There were 170 operational taxonomic units (OTUs) shared by colostrum and NS, while 111 and 87 OTUs were unique, respectively, as well as a clear distinction in OTUs was observed by unifrac binary analysis between them. Linear discriminant analysis effect size analysis found that anaerobes, such as Bifidobacterium and Pantoea at the genus level and enterobacteria including Enterobacteriaceae at the family level, were predominant in the colostrum, while the predominant bacteria on the NS were Bacteroides, Staphylococcus, and Parabacteroides at the genus level. BM is colonized by bacteria prior to baby suckling, and the diversity of the colostrum microbiota differs from that of the NS. The predominant microbiota taxa in BM indicated that they were likely to be transferred to the breast through the intestinal tract. Our study provides direct evidence for the revolutionary active migration hypothesis. Additionally, factors like intrapartum antibiotic exposure did not significantly affect the diversity of the microbiota in the BM. Therefore, it is suggested that mothers continue to provide BM for their newborns during separation.
Collapse
Affiliation(s)
- Yanli Du
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, China
| | - Qing Qiu
- Department of Women Health Care, Shenzhen Luohu Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Jing Cheng
- Department of Obstetrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhili Huang
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, China
| | - Ruixia Xie
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, China
| | - Lu Wang
- Delivery Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Xiangyu Wang
- Shenzhen Second People’s Hospital, Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Xiangyu Wang,
| | - Zongli Han
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Zongli Han,
| | - Gang Jin
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, China
- Gang Jin,
| |
Collapse
|
179
|
Merlino Barr S, Groh-Wargo S. Targeted fortification with human milk analysis: An opportunity for innovation. Semin Fetal Neonatal Med 2022; 27:101392. [PMID: 36137922 DOI: 10.1016/j.siny.2022.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human milk's variable macronutrient composition is a necessary consideration when caring for very low birthweight infants. Targeted fortification is the practice of fortifying human milk using its known composition from human milk analysis, rather than its assumed macronutrient values. Utilization of human milk analyzers to measure the protein, fat, lactose, and energy composition within human milk samples has allowed the translation of this practice into the clinical setting. This review discusses the rationale of why targeted fortification is an important practice, what barriers exist in its implementation in the clinical setting, and what research gaps remain to be addressed.
Collapse
Affiliation(s)
- Stephanie Merlino Barr
- Division of Neonatology, Department of Pediatrics, MetroHealth Medical Center, Cleveland, OH, USA.
| | - Sharon Groh-Wargo
- Division of Neonatology, Department of Pediatrics, MetroHealth Medical Center, Cleveland, OH, USA; Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
180
|
Chen H, Yi B, Qiao Y, Peng K, Zhang J, Li J, Zheng KW, Ning P, Li W. Diversity-scaling analysis of human breast milk microbiomes from population perspective. Front Microbiol 2022; 13:940412. [PMID: 36225365 PMCID: PMC9549050 DOI: 10.3389/fmicb.2022.940412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Quantitative measuring the population-level diversity-scaling of human microbiomes is different from conventional approach to traditional individual-level diversity analysis, and it is of obvious significance. For example, it is well known that individuals are of significant heterogeneity with their microbiome diversities, and the population-level analysis can effectively capture such kind of individual differences. Here we reanalyze a dozen datasets of 2,115 human breast milk microbiome (BMM) samples with diversity-area relationship (DAR) to tackle the previous questions. Our focus on BMM is aimed to offer insights for supplementing the gut microbiome research from nutritional perspective. DAR is an extension to classic species-area relationship, which was discovered in the 19th century and established as one of a handful fundamental laws in community ecology. Our DAR modeling revealed the following numbers, all approximately: (i) The population-level potential diversity of BMM is 1,108 in terms of species richness (number of total species), and 67 in terms of typical species. (ii) On average, an individual carry 17% of population-level diversity in terms of species richness, and 61% in terms of typical species. (iii) The similarity (overlap) between individuals according to pair-wise diversity overlap (PDO) should be approximately 76% in terms of total species, and 92% in terms of typical species, which symbolizes the inter-individual heterogeneity. (iv) The average individual (alpha-) diversity of BMM is approximately 188 (total-species) and 37 (typical-species). (v) To deal with the potential difference among 12 BMM datasets, we conducted DAR modeling separately for each dataset, and then performed permutation tests for DAR parameters. It was found that the DAR scaling parameter that measures inter-individual heterogeneity in diversity is invariant (constant), but the population potential diversity is different among 30% of the pair-wise comparison between 12 BMM datasets. These results offer comprehensive biodiversity analyses of the BMM from host individual, inter-individual, and population level perspectives.
Collapse
Affiliation(s)
- Hongju Chen
- College of Mathematics, Honghe University, Mengzi, China
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Bin Yi
- College of Mathematics, Honghe University, Mengzi, China
| | - Yuting Qiao
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Kunbao Peng
- Department of Endocrinology, Yan’an Hospital of Kunming City, Kunming, China
| | - Jianmei Zhang
- Physiatrics Medicine, Yan’an Hospital of Kunming City, Kunming, China
| | - Jinsong Li
- The Yunnan Red-Cross Hospital, Affiliated Hospital of Yunnan University, Kunming, China
| | - Kun-Wen Zheng
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- Kun-Wen Zheng,
| | - Ping Ning
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Ping Ning,
| | - Wendy Li
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Biology, Taiyuan Normal University, Jinzhong, China
- *Correspondence: Wendy Li,
| |
Collapse
|
181
|
Bioprospecting for Novel Probiotic Strains from Human Milk and Infants: Molecular, Biochemical, and Ultrastructural Evidence. BIOLOGY 2022; 11:biology11101405. [PMID: 36290309 PMCID: PMC9598434 DOI: 10.3390/biology11101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Demographic, genetic factors, and maternal lifestyle could modify and alter the microbial diversity of human milk and infants’ gut. We screened human breast milk and infant stool samples from Egyptian sources for possible novel probiotic strains. Forty-one isolates were submitted to the gene bank database, classified, and identified through physiological and biochemical tests. All samples revealed antibiotic resistance, antibacterial activity, and high probiotic features. Six of the isolates revealed less than 95% Average Nucleotide Identity with deposited sequences in the database. Isolate Lactobacillus delbrueckii ASO 100 exhibited the lowest identity ratio with promising probiotic and antibacterial features, enlightening the high probability of being a new probiotic species. Abstract Human milk comprises a diverse array of microbial communities with health-promoting effects, including colonization and development of the infant’s gut. In this study, we characterized the bacterial communities in the Egyptian mother–infant pairs during the first year of life under normal breastfeeding conditions. Out of one hundred isolates, forty-one were chosen for their potential probiotic properties. The selected isolates were profiled in terms of morphological and biochemical properties. The taxonomic evidence of these isolates was investigated based on 16S rRNA gene sequence and phylogenetic trees between the isolates’ sequence and the nearest sequences in the database. The taxonomic and biochemical evidence displayed that the isolates were encompassed in three genera: Lactobacillus, Enterococcus, and Lactococcus. The Lactobacillus was the most common genus in human milk and feces samples with a high incidence of its different species (Lacticaseibacillus paracasei, Lactobacillus delbrueckii, Lactiplantibacillus plantarum, Lactobacillus gasseri, and Lacticaseibacillus casei). Interestingly, BlastN and Jalview alignment results evidenced a low identity ratio of six isolates (less than 95%) with database sequences. This divergence was supported by the unique physiological, biochemical, and probiotic features of these isolates. The isolate L. delbrueckii, ASO 100 exhibited the lowest identity ratio with brilliant probiotic and antibacterial features suggesting the high probability of being a new species. Nine isolates were chosen and subjected to probiotic tests and ultrastructural analysis; these isolates exhibited antibiotic resistance and antibacterial activity with high probiotic characteristics, and high potentiality to be used as prophylactic and therapeutic agents in controlling intestinal pathogens.
Collapse
|
182
|
Stinson LF, Ma J, Sindi AS, Geddes DT. Methodological approaches for studying the human milk microbiome. Nutr Rev 2022; 81:705-715. [PMID: 36130405 DOI: 10.1093/nutrit/nuac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human milk contains a low-biomass, low-diversity microbiome, consisting largely of bacteria. This community is of great research interest in the context of infant health and maternal and mammary health. However, this sample type presents many unique methodological challenges. In particular, there are numerous technical considerations relating to sample collection and storage, DNA extraction and sequencing, viability, and contamination. Failure to properly address these challenges may lead to distortion of bacterial DNA profiles generated from human milk samples, ultimately leading to spurious conclusions. Here, these technical challenges are discussed, and various methodological approaches used to address them are analyzed. Data were collected from studies in which a breadth of methodological approaches were used, and recommendations for robust and reproducible analysis of the human milk microbiome are proposed. Such methods will ensure high-quality data are produced in this field, ultimately supporting better research outcomes for mothers and infants.
Collapse
Affiliation(s)
- Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Jie Ma
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Azhar S Sindi
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Perth, Australia.,is with the College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
183
|
Charton E, Bourgeois A, Bellanger A, Le-Gouar Y, Dahirel P, Romé V, Randuineau G, Cahu A, Moughan PJ, Montoya CA, Blat S, Dupont D, Deglaire A, Le Huërou-Luron I. Infant nutrition affects the microbiota-gut-brain axis: Comparison of human milk vs. infant formula feeding in the piglet model. Front Nutr 2022; 9:976042. [PMID: 36211510 PMCID: PMC9532976 DOI: 10.3389/fnut.2022.976042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Early nutrition plays a dominant role in infant development and health. It is now understood that the infant diet impacts the gut microbiota and its relationship with gut function and brain development. However, its impact on the microbiota-gut-brain axis has not been studied in an integrative way. The objective here was to evaluate the effects of human milk (HM) or cow’s milk based infant formula (IF) on the relationships between gut microbiota and the collective host intestinal-brain axis. Eighteen 10-day-old Yucatan mini-piglets were fed with HM or IF. Intestinal and fecal microbiota composition, intestinal phenotypic parameters, and the expression of genes involved in several gut and brain functions were determined. Unidimensional analyses were performed, followed by multifactorial analyses to evaluate the relationships among all the variables across the microbiota-gut-brain axis. Compared to IF, HM decreased the α-diversity of colonic and fecal microbiota and modified their composition. Piglets fed HM had a significantly higher ileal and colonic paracellular permeability assessed by ex vivo analysis, a lower expression of genes encoding tight junction proteins, and a higher expression of genes encoding pro-inflammatory and anti-inflammatory immune activity. In addition, the expression of genes involved in endocrine function, tryptophan metabolism and nutrient transport was modified mostly in the colon. These diet-induced intestinal modifications were associated with changes in the brain tissue expression of genes encoding the blood-brain barrier, endocrine function and short chain fatty acid receptors, mostly in hypothalamic and striatal areas. The integrative approach underlined specific groups of bacteria (Veillonellaceae, Enterobacteriaceae, Lachnospiraceae, Rikenellaceae, and Prevotellaceae) associated with changes in the gut-brain axis. There is a clear influence of the infant diet, even over a short dietary intervention period, on establishment of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Elise Charton
- STLO, INRAE, Institut Agro, Rennes, France
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | | | | | - Patrice Dahirel
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | - Véronique Romé
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | - Armelle Cahu
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | - Paul J. Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Carlos A. Montoya
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Smart Foods and Bioproducts Innovation Centre of Excellence, AgResearch Limited, Palmerston North, New Zealand
| | - Sophie Blat
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | | | - Isabelle Le Huërou-Luron
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- *Correspondence: Isabelle Le Huërou-Luron,
| |
Collapse
|
184
|
Moschino L, Verlato G, Duci M, Cavicchiolo ME, Guiducci S, Stocchero M, Giordano G, Fascetti Leon F, Baraldi E. The Metabolome and the Gut Microbiota for the Prediction of Necrotizing Enterocolitis and Spontaneous Intestinal Perforation: A Systematic Review. Nutrients 2022; 14:nu14183859. [PMID: 36145235 PMCID: PMC9506026 DOI: 10.3390/nu14183859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is the most devastating gastrointestinal emergency in preterm neonates. Research on early predictive biomarkers is fundamental. This is a systematic review of studies applying untargeted metabolomics and gut microbiota analysis to evaluate the differences between neonates affected by NEC (Bell’s stage II or III), and/or by spontaneous intestinal perforation (SIP) versus healthy controls. Five studies applying metabolomics (43 cases, 95 preterm controls) and 20 applying gut microbiota analysis (254 cases, 651 preterm controls, 22 term controls) were selected. Metabolomic studies utilized NMR spectroscopy or mass spectrometry. An early urinary alanine/histidine ratio >4 showed good sensitivity and predictive value for NEC in one study. Samples collected in proximity to NEC diagnosis demonstrated variable pathways potentially related to NEC. In studies applying untargeted gut microbiota analysis, the sequencing of the V3−V4 or V3 to V5 regions of the 16S rRNA was the most used technique. At phylum level, NEC specimens were characterized by increased relative abundance of Proteobacteria compared to controls. At genus level, pre-NEC samples were characterized by a lack or decreased abundance of Bifidobacterium. Finally, at the species level Bacteroides dorei, Clostridium perfringens and perfringens-like strains dominated early NEC specimens, whereas Clostridium butyricum, neonatale and Propionibacterium acnei those at disease diagnosis. Six studies found a lower Shannon diversity index in cases than controls. A clear separation of cases from controls emerged based on UniFrac metrics in five out of seven studies. Importantly, no studies compared NEC versus SIP. Untargeted metabolomics and gut microbiota analysis are interrelated strategies to investigate NEC pathophysiology and identify potential biomarkers. Expression of quantitative measurements, data sharing via biorepositories and validation studies are fundamental to guarantee consistent comparison of results.
Collapse
Affiliation(s)
- Laura Moschino
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
- Institute of Paediatric Research, Città della Speranza, Laboratory of Mass Spectrometry and Metabolomics, 35127 Padova, Italy
- Correspondence: ; Tel.: +39-049-821-3548
| | - Giovanna Verlato
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Miriam Duci
- Paediatric Surgery, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Maria Elena Cavicchiolo
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Silvia Guiducci
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Matteo Stocchero
- Institute of Paediatric Research, Città della Speranza, Laboratory of Mass Spectrometry and Metabolomics, 35127 Padova, Italy
- Laboratory of Mass Spectrometry and Metabolomics, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Giuseppe Giordano
- Institute of Paediatric Research, Città della Speranza, Laboratory of Mass Spectrometry and Metabolomics, 35127 Padova, Italy
- Laboratory of Mass Spectrometry and Metabolomics, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Francesco Fascetti Leon
- Paediatric Surgery, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
- Institute of Paediatric Research, Città della Speranza, Laboratory of Mass Spectrometry and Metabolomics, 35127 Padova, Italy
| |
Collapse
|
185
|
Urine Metabolomic Profile of Breast- versus Formula-Fed Neonates Using a Synbiotic-Enriched Formula. Int J Mol Sci 2022; 23:ijms231810476. [PMID: 36142388 PMCID: PMC9499619 DOI: 10.3390/ijms231810476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to compare the urine metabolic fingerprint of healthy neonates exclusively breastfed with that of neonates fed with a synbiotic-enriched formula (Rontamil® Complete 1) at four time points (the 3rd and 15th days of life and the 2nd and 3rd months). The determination of urine metabolic fingerprint was performed using NMR metabolomics. Multivariate data analyses were performed with SIMCA-P 15.0 software and R language. Non-distinct profiles for both groups (breastfeeding and synbiotic formula) for the two first time points (3rd and 15th days of life) were detected, whereas after the 2nd month of life, a discrimination trend was observed between the two groups, which was further confirmed at the 3rd month of life. A clear discrimination of the synbiotic formula samples was evident when comparing the metabolites taken in the first days of life (3rd day) with those taken in the 2nd and 3rd months of life. In both cases, OPLS-DA models explained more than 75% of the metabolic variance. Non-distinct metabolomic profiles were obtained between breastfed and synbiotic-formula-fed neonates up to the 15th day of life. Discrimination trends were observed only after the 2nd month of the study, which could be attributed to breastfeeding variations and the consequent dynamic profile of urine metabolites compared to the stable ingredients of the synbiotic formula.
Collapse
|
186
|
Baniel A, Petrullo L, Mercer A, Reitsema L, Sams S, Beehner JC, Bergman TJ, Snyder-Mackler N, Lu A. Maternal effects on early-life gut microbiota maturation in a wild nonhuman primate. Curr Biol 2022; 32:4508-4520.e6. [PMID: 36099914 DOI: 10.1016/j.cub.2022.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Early-life microbial colonization is an important process shaping host physiology,1-3 immunity,4-6 and long-term health outcomes7-10 in humans. However, our understanding of this dynamic process remains poorly investigated in wild animals,11-13 where developmental mechanisms can be better understood within ecological and evolutionarily relevant contexts.11,12 Using one of the largest developmental datasets on a wild primate-the gelada (Theropithecus gelada)-we used 16S rRNA amplicon sequencing to characterize gut microbiota maturation during the first 3 years of life and assessed the role of maternal effects in shaping offspring microbiota assembly. In contrast to recent data on chimpanzees, postnatal microbial colonization in geladas was highly similar to humans:14 microbial alpha diversity increased rapidly following birth, followed by gradual changes in composition until weaning. Dietary changes associated with weaning (from milk- to plant-based diet) were the main drivers of shifts in taxonomic composition and microbial predicted functional pathways. Maternal effects were also an important factor influencing the offspring gut microbiota. During nursing (<12 months), offspring of experienced (multi-time) mothers exhibited faster functional microbial maturation, likely reflecting the general faster developmental pace of infants born to these mothers. Following weaning (>18 months), the composition of the juvenile microbiota tended to be more similar to the maternal microbiota than to the microbiota of other adult females, highlighting that maternal effects may persist even after nursing cessation.15,16 Together, our findings highlight the dynamic nature of early-life gut colonization and the role of maternal effects in shaping this trajectory in a wild primate.
Collapse
Affiliation(s)
- Alice Baniel
- Center for Evolution and Medicine, Arizona State University, E Tyler Mall, Tempe, AZ 85281, USA; School of Life Sciences, Arizona State University, E Tyler Mall, Tempe, AZ 85287, USA.
| | - Lauren Petrullo
- Department of Psychology, University of Michigan, Church St., Ann Arbor, MI 48109, USA
| | - Arianne Mercer
- Department of Psychology, University of Washington, Okanogan Ln., Seattle, WA 98195, USA
| | - Laurie Reitsema
- Department of Anthropology, University of Georgia, Jackson St., Athens, GA 30602, USA
| | - Sierra Sams
- Department of Psychology, University of Washington, Okanogan Ln., Seattle, WA 98195, USA
| | - Jacinta C Beehner
- Department of Psychology, University of Michigan, Church St., Ann Arbor, MI 48109, USA; Department of Anthropology, University of Michigan, S University Ave., Ann Arbor, MI 48109, USA
| | - Thore J Bergman
- Department of Psychology, University of Michigan, Church St., Ann Arbor, MI 48109, USA; Department of Ecology and Evolutionary Biology, University of Michigan, N University Ave., Ann Arbor, MI 48109, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, E Tyler Mall, Tempe, AZ 85281, USA; School of Life Sciences, Arizona State University, E Tyler Mall, Tempe, AZ 85287, USA; Department of Psychology, University of Washington, Okanogan Ln., Seattle, WA 98195, USA; School for Human Evolution and Social Change, Arizona State University, Cady Mall, Tempe, AZ 85287, USA.
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Circle Rd., Stony Brook, NY 11794, USA.
| |
Collapse
|
187
|
Lopez Leyva L, Gonzalez E, Solomons NW, Koski KG. Human milk microbiome is shaped by breastfeeding practices. Front Microbiol 2022; 13:885588. [PMID: 36160202 PMCID: PMC9493375 DOI: 10.3389/fmicb.2022.885588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
There is evidence that breastfeeding practices may impact the milk microbiota diversity and differential abundance at the genera level; however, the possibility that distinct feeding practices, such as exclusive (EBF) and non-exclusive breastfeeding (non-EBF), might alter the milk microbiome at the species level has not been explored. This cross-sectional study analyzed the milk microbiome of 64 Mam-Mayan indigenous mothers from San Juan Ostuncalco in Guatemala. Two breastfeeding practices [exclusive (EBF) vs non-exclusive (non-EBF)] were analyzed at two stages of lactation [early (5–46 days post-partum) vs late (109–184 days post-partum)]. EBF was defined as offering only human milk and non-EBF was defined as feeding the infant herbal teas (agüitas) and/or complementary foods while continuing to breastfeed. Results identified four clusters with distinct microbial communities that segregated bacterial species by both breastfeeding practices and stage of lactation. Comparison among these clusters identified several notable patterns. First, during EBF, the microbiome differed by stage of lactation where there was a shift in differential abundance from Actinobacteria and Firmicutes in early to Bacteroidetes and Proteobacteria species in late lactation. Second, a similar comparison between non-EBF mothers by stage of lactation also identified a higher differential abundance of Actinobacteria and Firmicutes species in early lactation, but only Proteobacteria and not Bacteroidetes in late lactation, indicating a further shift in the milk microbial ecosystem with fewer oral bacteria present in late lactation. Third, comparisons between EBF and non-EBF mothers at both early and late lactation showed that mothers who exclusively breastfed had more differentially abundant species in early (11 vs 1) and late (13 vs 2) lactation. Fourth, EBF at early and late lactation had more commensal and lactic acid bacteria, including Lactobacillus gasseri, Granulicatella elegans, Streptococcus mitis, and Streptococcus parasanguinis, compared to those who did not exclusively breastfeed. Collectively, these results show that EBF has more differentially abundant bacteria, including commensal and lactic acid bacteria, and that the addition of agüitas (herbal teas) and/or complementary foods modify the milk microbiome composition by reducing the oral bacteria and introducing more environmentally sourced bacteria to the ecosystem.
Collapse
Affiliation(s)
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics (C3G), Department of Human Genetics, McGill University, Montréal, QC, Canada
- Microbiome Research Platform, McGill Interdisciplinary Initiative in Infection and Immunity (MI4), Genome Centre, McGill University, Montreal, QC, Canada
| | - Noel W. Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Kristine G. Koski
- School of Human Nutrition, McGill University, Montreal, QC, Canada
- *Correspondence: Kristine G. Koski,
| |
Collapse
|
188
|
The Entero-Mammary Pathway and Perinatal Transmission of Gut Microbiota and SARS-CoV-2. Int J Mol Sci 2022; 23:ijms231810306. [PMID: 36142219 PMCID: PMC9499685 DOI: 10.3390/ijms231810306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 is a severe respiratory disease threatening pregnant women, which increases the possibility of adverse pregnancy outcomes. Several recent studies have demonstrated the ability of SARS-CoV-2 to infect the mother enterocytes, disturbing the gut microbiota diversity. The aim of this study was to characterize the entero-mammary microbiota of women in the presence of the virus during delivery. Fifty mother−neonate pairs were included in a transversal descriptive work. The presence of SARS-CoV-2 RNA was detected in nasopharyngeal, mother rectal swabs (MRS) and neonate rectal swabs (NRS) collected from the pairs, and human colostrum (HC) samples collected from mothers. The microbiota diversity was characterized by high-throughput DNA sequencing of V3-16S rRNA gene libraries prepared from HC, MRS, and NRS. Data were analyzed with QIIME2 and R. Our results indicate that several bacterial taxa are highly abundant in MRS positive for SARS-CoV-2 RNA. These bacteria mostly belong to the Firmicutes phylum; for instance, the families Bifidobacteriaceae, Oscillospiraceae, and Microbacteriaceae have been previously associated with anti-inflammatory effects, which could explain the capability of women to overcome the infection. All samples, both positive and negative for SARS-CoV-2, featured a high abundance of the Firmicutes phylum. Further data analysis showed that nearly 20% of the bacterial diversity found in HC was also identified in MRS. Spearman correlation analysis highlighted that some genera of the Proteobacteria and Actinobacteria phyla were negatively correlated with MRS and NRS (p < 0.005). This study provides new insights into the gut microbiota of pregnant women and their potential association with a better outcome during SARS-CoV-2 infection.
Collapse
|
189
|
Davis EC, Castagna VP, Sela DA, Hillard MA, Lindberg S, Mantis NJ, Seppo AE, Järvinen KM. Gut microbiome and breast-feeding: Implications for early immune development. J Allergy Clin Immunol 2022; 150:523-534. [PMID: 36075638 PMCID: PMC9463492 DOI: 10.1016/j.jaci.2022.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Establishment of the gut microbiome during early life is a complex process with lasting implications for an individual's health. Several factors influence microbial assembly; however, breast-feeding is recognized as one of the most influential drivers of gut microbiome composition during infancy, with potential implications for function. Differences in gut microbial communities between breast-fed and formula-fed infants have been consistently observed and are hypothesized to partially mediate the relationships between breast-feeding and decreased risk for numerous communicable and noncommunicable diseases in early life. Despite decades of research on the gut microbiome of breast-fed infants, there are large scientific gaps in understanding how human milk has evolved to support microbial and immune development. This review will summarize the evidence on how breast-feeding broadly affects the composition and function of the early-life gut microbiome and discuss mechanisms by which specific human milk components shape intestinal bacterial colonization, succession, and function.
Collapse
Affiliation(s)
- Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY
| | | | - David A Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, Mass; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Mass; Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Mass
| | - Margaret A Hillard
- Department of Food Science, University of Massachusetts Amherst, Amherst, Mass; Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Mass
| | - Samantha Lindberg
- Department of Biomedical Sciences, University of Albany, Rensselaer, NY
| | - Nicholas J Mantis
- Division of Infectious Diseases, New York State Department of Health, Albany, NY
| | - Antti E Seppo
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|
190
|
Jeong S. Factors influencing development of the infant microbiota: from prenatal period to early infancy. Clin Exp Pediatr 2022; 65:439-447. [PMID: 34942687 PMCID: PMC9441613 DOI: 10.3345/cep.2021.00955] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/03/2021] [Indexed: 11/27/2022] Open
Abstract
During early life, the gut microbial composition rapidly changes by maternal microbiota composition, delivery mode, infant feeding mode, antibiotic usage, and various environmental factors, such as the presence of pets and siblings. An integrative study on the diet, the microbiota, and genomic activity at the transcriptomic level may give an insight into the role of diet in shaping the human/microbiome relationship. Disruption in the gut microbiota (i.e., gut dysbiosis) has been linked to necrotizing enterocolitis in infancy, as well as some chronic diseases in later, including obesity, diabetes, inflammatory bowel disease, cancer, allergies, and asthma. Therefore, understanding the impact of maternal-to-infant transfer of dysbiotic microbes and then modifying infant early colonization or correcting early-life gut dysbiosis might be a potential strategy to overcome chronic health conditions.
Collapse
Affiliation(s)
- Sujin Jeong
- Division of Gastroenterology and Nutrition of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
191
|
Juarez VM, Montalbine AN, Singh A. Microbiome as an immune regulator in health, disease, and therapeutics. Adv Drug Deliv Rev 2022; 188:114400. [PMID: 35718251 PMCID: PMC10751508 DOI: 10.1016/j.addr.2022.114400] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/11/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022]
Abstract
New discoveries in drugs and drug delivery systems are focused on identifying and delivering a pharmacologically effective agent, potentially targeting a specific molecular component. However, current drug discovery and therapeutic delivery approaches do not necessarily exploit the complex regulatory network of an indispensable microbiota that has been engineered through evolutionary processes in humans or has been altered by environmental exposure or diseases. The human microbiome, in all its complexity, plays an integral role in the maintenance of host functions such as metabolism and immunity. However, dysregulation in this intricate ecosystem has been linked with a variety of diseases, ranging from inflammatory bowel disease to cancer. Therapeutics and bacteria have an undeniable effect on each other and understanding the interplay between microbes and drugs could lead to new therapies, or to changes in how existing drugs are delivered. In addition, targeting the human microbiome using engineered therapeutics has the potential to address global health challenges. Here, we present the challenges and cutting-edge developments in microbiome-immune cell interactions and outline novel targeting strategies to advance drug discovery and therapeutics, which are defining a new era of personalized and precision medicine.
Collapse
Affiliation(s)
- Valeria M Juarez
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Alyssa N Montalbine
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Ankur Singh
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
192
|
Subramanian S, Geng H, Du C, Chou PM, Bu HF, Wang X, Swaminathan S, Tan SC, Ridlon JM, De Plaen IG, Tan XD. Feeding mode influences dynamic gut microbiota signatures and affects susceptibility to anti-CD3 mAb-induced intestinal injury in neonatal mice. Am J Physiol Gastrointest Liver Physiol 2022; 323:G205-G218. [PMID: 35819158 PMCID: PMC9394775 DOI: 10.1152/ajpgi.00337.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 01/31/2023]
Abstract
Feeding modes influence the gut microbiome, immune system, and intestinal barrier homeostasis in neonates; how feeding modes impact susceptibility to neonatal gastrointestinal (GI) diseases is still uncertain. Here, we investigated the impact of dam feeding (DF) and formula feeding (FF) on features of the gut microbiome and physiological inflammation during the first 2 days of postnatal development and on the susceptibility to intestinal injury related to the inflammatory state in neonatal mouse pups. 16S rRNA sequencing data revealed microbiome changes, lower α-diversity, and a distinct pattern of β-diversity including expansion of f_Enterobacteriaceae and f_Enterococcaceae in the ileum of FF pups compared with DF pups by postnatal day (P)2. Together with gut dysbiosis, the FF cohort also had greater ileal mucosa physiological inflammatory activity compared with DF pups by P2 but maintained normal histological features. Interestingly, FF but not DF mouse pups developed necrotizing enterocolitis (NEC)-like intestinal injury within 24 h after anti-CD3 mAb treatment, suggesting that FF influences the susceptibility to intestinal injury in neonates. We further found that NEC-like incidence in anti-CD3 mAb-treated FF neonatal pups was attenuated by antibiotic treatment. Collectively, our data suggest that FF predisposes mouse pups to anti-CD3 mAb-induced intestinal injury due to abnormal f_Enterobacteriaceae and f_Enterococcaceae colonization. These findings advance our understanding of FF-associated microbial colonization and intestinal inflammation, which may help inform the development of new therapeutic approaches to GI diseases like NEC in infants.NEW & NOTEWORTHY This report shows that a feeding mode profoundly affects gut colonization in neonatal mice. Furthermore, our results demonstrate that formula feeding predisposes mouse pups to anti-CD3 mAb-induced necrotizing enterocolitis (NEC)-like intestinal injury upon inadequate microbial colonization. The study suggests the role of the combined presence of formula feeding-associated dysbiosis and mucosal inflammation in the pathogenesis of NEC and provides a new mouse model to study this disease.
Collapse
Affiliation(s)
- Saravanan Subramanian
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hua Geng
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Chao Du
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Pauline M Chou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Heng-Fu Bu
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xiao Wang
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Suchitra Swaminathan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stephanie C Tan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Isabelle G De Plaen
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Division of Neonatology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Xiao-Di Tan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Research and Development, Jesse Brown Department of Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
193
|
Ding M, Chen H, Yu R, Ross RP, Stanton C, Zhang H, Yang B, Chen W. Shared and Non-Shared sIgA-Coated and -Uncoated Bacteria in Intestine of Mother–Infant Pairs. Int J Mol Sci 2022; 23:ijms23179873. [PMID: 36077271 PMCID: PMC9456154 DOI: 10.3390/ijms23179873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
The infant gut microbiota is critical for promoting and maintaining early-life health. The study aimed to analyze the composition of sIgA-coated and sIgA-uncoated bacterial communities at genus level and lactobacilli and bifidobacterial communities at species level in human breast milk (HBM) and infant and maternal feces. Eleven pregnant women were recruited successfully. HBM; infant feces during colostrum, transition, and mature stages; and maternal feces within the mature stage were collected. sIgA-coated and sIgA-uncoated bacteria were separated with magnetic-activated cell sorting. Then, 16S rRNA sequencing, bifidobacterial groEL gene sequencing, and lactobacilli groEL gene sequencing were performed to analyze the bacterial community. PCoA revealed that the compositions of sIgA-coated and sIgA-uncoated bacteria were different among HBM and infant and maternal feces. Higher relative abundance of sIgA-uncoated Bifidobacterium was found in the three lactation stages in infant feces compared to the corresponding HBM, and a higher relative abundance of sIgA-uncoated Faecalibacterium was found in maternal feces compared to HBM and infant feces. For bifidobacterial community, sIgA-coated and sIgA-uncoated B. longum subsp. infantis and B. pseudocatenulatum was dominant in infant feces and maternal feces, respectively. The relative abundance of sIgA-uncoated B. longum subsp. infantis was significantly higher in infant feces compared to that in maternal feces. For the Lactobacillus community, L. paragasseri and L. mucosae were dominant in infant and maternal feces, respectively. HBM and infant and maternal feces showed distinct diversity and composition of both sIgA-coated and sIgA-uncoated bacteria at genus level. Infant and maternal feces showed similar composition of Bifidobacterium at species level. The same Bifidobacterium species could be detected both in sIgA-coated and -uncoated form. This article provided deeper understanding on the microbiota profile in HBM and infant and maternal feces.
Collapse
Affiliation(s)
- Mengfan Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214122, China
- Correspondence: (R.Y.); (B.Y.)
| | - Reynolds Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
- Correspondence: (R.Y.); (B.Y.)
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| |
Collapse
|
194
|
Exploring the Potential of Human Milk and Formula Milk on Infants’ Gut and Health. Nutrients 2022; 14:nu14173554. [PMID: 36079814 PMCID: PMC9460722 DOI: 10.3390/nu14173554] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Early-life gut microbiota plays a role in determining the health and risk of developing diseases in later life. Various perinatal factors have been shown to contribute to the development and establishment of infant gut microbiota. One of the important factors influencing the infant gut microbial colonization and composition is the mode of infant feeding. While infant formula milk has been designed to resemble human milk as much as possible, the gut microbiome of infants who receive formula milk differs from that of infants who are fed human milk. A diverse microbial population in human milk and the microbes seed the infant gut microbiome. Human milk contains nutritional components that promote infant growth and bioactive components, such as human milk oligosaccharides, lactoferrin, and immunoglobulins, which contribute to immunological development. In an attempt to encourage the formation of a healthy gut microbiome comparable to that of a breastfed infant, manufacturers often supplement infant formula with prebiotics or probiotics, which are known to have a bifidogenic effect and can modulate the immune system. This review aims to elucidate the roles of human milk and formula milk on infants’ gut and health.
Collapse
|
195
|
Bailey MJ, Holzhausen EA, Morgan ZEM, Naik N, Shaffer JP, Liang D, Chang HH, Sarnat J, Sun S, Berger PK, Schmidt KA, Lurmann F, Goran MI, Alderete TL. Postnatal exposure to ambient air pollutants is associated with the composition of the infant gut microbiota at 6-months of age. Gut Microbes 2022; 14:2105096. [PMID: 35968805 PMCID: PMC9466616 DOI: 10.1080/19490976.2022.2105096] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Epidemiological studies in adults have shown that exposure to ambient air pollution (AAP) is associated with the composition of the adult gut microbiome, but these relationships have not been examined in infancy. We aimed to determine if 6-month postnatal AAP exposure was associated with the infant gut microbiota at 6 months of age in a cohort of Latino mother-infant dyads from the Southern California Mother's Milk Study (n = 103). We estimated particulate matter (PM2.5 and PM10) and nitrogen dioxide (NO2) exposure from birth to 6-months based on residential address histories. We characterized the infant gut microbiota using 16S rRNA amplicon sequencing at 6-months of age. At 6-months, the gut microbiota was dominated by the phyla Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Our results show that, after adjusting for important confounders, postnatal AAP exposure was associated with the composition of the gut microbiota. As an example, PM10 exposure was positively associated with Dialister, Dorea, Acinetobacter, and Campylobacter while PM2.5 was positively associated with Actinomyces. Further, exposure to PM10 and PM2.5 was inversely associated with Alistipes and NO2 exposure was positively associated with Actinomyces, Enterococcus, Clostridium, and Eubacterium. Several of these taxa have previously been linked with systemic inflammation, including the genera Dialister and Dorea. This study provides the first evidence of significant associations between exposure to AAP and the composition of the infant gut microbiota, which may have important implications for future infant health and development.
Collapse
Affiliation(s)
- Maximilian J. Bailey
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | | | | | - Noopur Naik
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Justin P. Shaffer
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Donghai Liang
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Howard H. Chang
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jeremy Sarnat
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Paige K. Berger
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital of Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Kelsey A. Schmidt
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital of Los Angeles, University of Southern California, Los Angeles, CA, USA
| | | | - Michael I. Goran
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital of Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA,CONTACT Tanya L. Alderete Department of Integrative Physiology, University of Colorado, Boulder, CO80309, USA
| |
Collapse
|
196
|
Pham VT, Greppi A, Chassard C, Braegger C, Lacroix C. Stepwise establishment of functional microbial groups in the infant gut between 6 months and 2 years: A prospective cohort study. Front Nutr 2022; 9:948131. [PMID: 35967780 PMCID: PMC9366138 DOI: 10.3389/fnut.2022.948131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The early intestinal colonization of functional microbial groups plays an essential role in infant gut health, with most studies targeting the initial colonization period from birth to 6 months of age. In a previous report, we demonstrated the metabolic cross-feeding of lactate and identified keystone species specified for lactate utilization in fecal samples of 40 healthy infants. We present here the extension of our longitudinal study for the period from 6 months to 2 years, with a focus on the colonization of functional groups involved in lactate metabolism and butyrate production. We captured the dynamic changes of the gut microbiota and reported a switch in the predominant lactate-producing and lactate-utilizing bacteria, from Veillonella producing propionate in the first year to Anaerobutyrycum hallii producing butyrate in the second year of life. The significant increase in butyrate producers and fecal butyrate concentration was also pinpointed to the weaning period between 6 and 10 months. Correlation analyses further suggested, for the first time, the metabolic cross-feeding of hydrogen in infants. In conclusion, our longitudinal study of 40 Swiss infants provides important insights into the colonization of functional groups involved in lactate metabolism and butyrate production in the first 2 years of life.
Collapse
Affiliation(s)
- Van T Pham
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.,Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, Zurich, Switzerland
| | - Anna Greppi
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Chassard
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christian Braegger
- Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
197
|
Liaqat H, Parveen A, Kim SY. Neuroprotective Natural Products’ Regulatory Effects on Depression via Gut–Brain Axis Targeting Tryptophan. Nutrients 2022; 14:nu14163270. [PMID: 36014776 PMCID: PMC9413544 DOI: 10.3390/nu14163270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
L-tryptophan (Trp) contributes to regulating bilateral communication of the gut–brain axis. It undergoes three major metabolic pathways, which lead to formation of kynurenine, serotonin (5-HT), and indole derivatives (under the control of the microbiota). Metabolites from the principal Trp pathway, kynurenic acid and quinolinic acid, exhibit neuroprotective activity, while picolinic acid exhibits antioxidant activity, and 5-HT modulates appetite, sleep cycle, and pain. Abnormality in Trp plays crucial roles in diseases, including depression, colitis, ulcer, and gut microbiota-related dysfunctions. To address these diseases, the use of natural products could be a favorable alternative because they are a rich source of compounds that can modulate the activity of Trp and combat various diseases through modulating different signaling pathways, including the gut microbiota, kynurenine pathway, and serotonin pathway. Alterations in the signaling cascade pathways via different phytochemicals may help us explore the deep relationships of the gut–brain axis to study neuroprotection. This review highlights the roles of natural products and their metabolites targeting Trp in different diseases. Additionally, the role of Trp metabolites in the regulation of neuroprotective and gastroprotective activities is discussed. This study compiles the literature on novel, potent neuroprotective agents and their action mechanisms in the gut–brain axis and proposes prospective future studies to identify more pharmaceuticals based on signaling pathways targeting Trp.
Collapse
Affiliation(s)
- Humna Liaqat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domzale, Slovenia
| | - Amna Parveen
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| |
Collapse
|
198
|
Litos A, Intze E, Pavlidis P, Lagkouvardos I. Cronos: A Machine Learning Pipeline for Description and Predictive Modeling of Microbial Communities Over Time. FRONTIERS IN BIOINFORMATICS 2022; 2:866902. [PMID: 36304308 PMCID: PMC9580867 DOI: 10.3389/fbinf.2022.866902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial time-series analysis, typically, examines the abundances of individual taxa over time and attempts to assign etiology to observed patterns. This approach assumes homogeneous groups in terms of profiles and response to external effectors. These assumptions are not always fulfilled, especially in complex natural systems, like the microbiome of the human gut. It is actually established that humans with otherwise the same demographic or dietary backgrounds can have distinct microbial profiles. We suggest an alternative approach to the analysis of microbial time-series, based on the following premises: 1) microbial communities are organized in distinct clusters of similar composition at any time point, 2) these intrinsic subsets of communities could have different responses to the same external effects, and 3) the fate of the communities is largely deterministic given the same external conditions. Therefore, tracking the transition of communities, rather than individual taxa, across these states, can enhance our understanding of the ecological processes and allow the prediction of future states, by incorporating applied effects. We implement these ideas into Cronos, an analytical pipeline written in R. Cronos’ inputs are a microbial composition table (e.g., OTU table), their phylogenetic relations as a tree, and the associated metadata. Cronos detects the intrinsic microbial profile clusters on all time points, describes them in terms of composition, and records the transitions between them. Cluster assignments, combined with the provided metadata, are used to model the transitions and predict samples’ fate under various effects. We applied Cronos to available data from growing infants’ gut microbiomes, and we observe two distinct trajectories corresponding to breastfed and formula-fed infants that eventually converge to profiles resembling those of mature individuals. Cronos is freely available at https://github.com/Lagkouvardos/Cronos.
Collapse
Affiliation(s)
- Aristeidis Litos
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Computer Science, Foundation of Research and Technology, Heraklion, Greece
| | - Evangelia Intze
- School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Pavlos Pavlidis
- Institute of Computer Science, Foundation of Research and Technology, Heraklion, Greece
| | - Ilias Lagkouvardos
- Institute of Computer Science, Foundation of Research and Technology, Heraklion, Greece
- Core Facility Microbiome—ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
- *Correspondence: Ilias Lagkouvardos,
| |
Collapse
|
199
|
Xue C, Xie Q, Zhang C, Hu Y, Song X, Jia Y, Shi X, Chen Y, Liu Y, Zhao L, Huang F, Yuan H. Vertical transmission of the gut microbiota influences glucose metabolism in offspring of mice with hyperglycaemia in pregnancy. MICROBIOME 2022; 10:122. [PMID: 35941695 PMCID: PMC9361546 DOI: 10.1186/s40168-022-01318-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/30/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND Hyperglycaemia in pregnancy (HIP) is a common metabolic disorder that not only poses risks to maternal health but also associates with an increased risk of diabetes among offspring. Vertical transmission of microbiota may influence the offspring microbiome and subsequent glucose metabolism. However, the mechanism by which maternal gut microbiota may influence glucose metabolism of the offspring remains unclear and whether intervening microbiota vertical transmission could be used as a strategy to prevent diabetes in the offspring of mothers with HIP has not been investigated. So we blocked vertical transmission to investigate its effect on glucose metabolism in the offspring. RESULTS We established a murine HIP model with a high-fat diet (HFD) and investigated the importance of vertical transmission of gut microbiota on the glucose metabolism of offspring via birth and nursing by blocking these events through caesarean section (C-section) and cross-fostering. After weaning, all offspring were fed a normal diet. Based on multi-omics analysis, biochemical and transcriptional assays, we found that the glucometabolic deficits in the mothers were subsequently 'transmitted' to the offspring. Meanwhile, the partial change in mothers' gut microbial community induced by HIP could be transmitted to offspring, supported by the closed clustering of the microbial structure and composition between the offspring and their mothers. Further study showed that the microbiota vertical transmission was blocked by C-section and cross-fostering, which resulted in improved insulin sensitivity and islet function of the offspring of the mothers with HIP. These effects were correlated with changes in the relative abundances of specific bacteria and their metabolites, such as increased relative abundances of Bifidobacterium and short-chain fatty acids. In particular, gut microbial communities of offspring were closely related to those of their foster mothers but not their biological mothers, and the effect of cross-fostering on the offspring's gut microbiota was more profound than that of C-section. CONCLUSION Our study demonstrates that the gut microbiota transmitted via birth and nursing are important contributors to the glucose metabolism phenotype in offspring. Video Abstract.
Collapse
Affiliation(s)
- Cunxi Xue
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qinyuan Xie
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yimeng Hu
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoting Song
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yifan Jia
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyang Shi
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yiqi Chen
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yalei Liu
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingyun Zhao
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fenglian Huang
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology of Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
200
|
Li P, Chang X, Chen X, Tang T, Liu Y, Shang Y, Qi K. Dynamic colonization of gut microbiota and its influencing factors among the breast-feeding infants during the first two years of life. J Microbiol 2022; 60:780-794. [DOI: 10.1007/s12275-022-1641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022]
|