151
|
DeMattos RB, Cirrito JR, Parsadanian M, May PC, O'Dell MA, Taylor JW, Harmony JAK, Aronow BJ, Bales KR, Paul SM, Holtzman DM. ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron 2005; 41:193-202. [PMID: 14741101 DOI: 10.1016/s0896-6273(03)00850-x] [Citation(s) in RCA: 325] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apolipoprotein E (apoE) and clusterin can influence structure, toxicity, and accumulation of the amyloid-beta (Abeta) peptide in brain. Both molecules may also be involved in Abeta metabolism prior to its deposition. To assess this possibility, we compared PDAPP transgenic mice that develop age-dependent Abeta accumulation in the absence of apoE or clusterin as well as in the absence of both proteins. apoE(-/-) and clusterin(-/-) mice accumulated similar Abeta levels but much less fibrillar Abeta. In contrast, apoE(-/-)/clusterin(-/-) mice had both earlier onset and markedly increased Abeta and amyloid deposition. Both apoE(-/-) and apoE(-/-)/clusterin(-/-) mice had elevated CSF and brain interstitial fluid Abeta, as well as significant differences in the elimination half-life of interstitial fluid Abeta measured by in vivo microdialysis. These findings demonstrate additive effects of apoE and clusterin on influencing Abeta deposition and that apoE plays an important role in regulating extracellular CNS Abeta metabolism independent of Abeta synthesis.
Collapse
Affiliation(s)
- Ronald B DeMattos
- Neuroscience Discovery Research, Lilly Research Laboratories, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
Improved understanding of the molecular mechanisms that mediate cancer progression and therapeutic resistance has identified many therapeutic gene targets that regulate apoptosis, proliferation and cell signalling. Antisense oligonucleotides offer one approach to target genes involved in cancer progression, especially those that are not amenable to small-molecule or antibody inhibition. Better chemical modifications of antisense oligonucleotides increase resistance to nuclease digestion, prolong tissue half-lives and improve scheduling. Indeed, recent clinical trials confirm the ability of this class of drugs to significantly suppress target-gene expression. The current status and future directions of several antisense drugs that have potential clinical use in cancer are reviewed.
Collapse
Affiliation(s)
- Martin E Gleave
- The Prostate Centre at Vancouver General Hospital, and Division of Urology, University of British Columbia D9, Canada, V5Z 355.
| | | |
Collapse
|
153
|
Janig E, Stumptner C, Fuchsbichler A, Denk H, Zatloukal K. Interaction of stress proteins with misfolded keratins. Eur J Cell Biol 2005; 84:329-39. [PMID: 15819411 DOI: 10.1016/j.ejcb.2004.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Misfolded and aggregated proteins are a characteristic feature of a variety of chronic diseases. Examples include neurofibrillary tangles in Alzheimer disease, Lewy bodies in Parkinson disease and Mallory bodies (MBs) in chronic liver diseases, particularly alcoholic and non-alcoholic steatohepatitis (ASH and NASH). MB formation is at least in part the result of chronic oxidative cell stress in hepatocytes and can be induced in mice by long-term intoxication with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Proteomic analysis revealed that MBs consist of ubiquitinated keratins and the stress proteins Hsp70, Hsp25, and p62. Furthermore, marked overexpression of clusterin, which shares functional properties with small heat shock proteins, was identified by gene expression profiling of DDC-treated mice livers. To investigate whether clusterin has a function in the stress response to misfolded keratins, we performed transfection studies utilizing expression constructs encoding ubiquitin, p62, Hsp27, clusterin, keratin 8, and keratin 18. Ubiquitin was found in a strong and constant association with keratin aggregates, whereas binding of p62 to keratin was variable. Hsp27 did not colocalize with keratin aggregates under these experimental conditions. In contrast, clusterin associated with misfolded keratin only if its signal peptide was deleted and its secretion inhibited. This suggests that clusterin has ability to bind misfolded proteins, including keratins but its physiological function is restricted to the extracellular space. The extracellular localization of clusterin was underlined by immunohistochemical studies in Alzheimer disease brains, where clusterin was constantly found in association with amyloid plaques; in contrast, cytoplasmic inclusions such as neurofibrillary tangles as well as MBs in ASH were negative. Furthermore, we found clusterin in association with elastic fibers in the extracellular matrix in several chronic liver diseases, including ASH and alpha1-antitrypsin deficiency, implying a possible role of clusterin in liver fibrosis.
Collapse
Affiliation(s)
- Elke Janig
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | | | | | | | | |
Collapse
|
154
|
Trougakos IP, Lourda M, Agiostratidou G, Kletsas D, Gonos ES. Differential effects of clusterin/apolipoprotein J on cellular growth and survival. Free Radic Biol Med 2005; 38:436-49. [PMID: 15649646 DOI: 10.1016/j.freeradbiomed.2004.10.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 08/10/2004] [Accepted: 10/28/2004] [Indexed: 10/26/2022]
Abstract
The secreted clusterin/apolipoprotein J (CLU) protein form is a ubiquitously expressed heterodimeric glycoprotein which is differentially regulated in many severe physiological disturbance states including cell death, ageing, cancer progression, and various neurological diseases. Despite extensive efforts CLU function remains an enigma, the main cause being the intriguingly distinct and usually opposed functions in various cell types and tissues. In the current report we investigated the effects of CLU on cellular growth and survival in three human osteosarcoma (OS) cell lines, namely KH OS, Sa OS, and U-2 OS that express very low, moderate, and high endogenous steady-state CLU amounts, respectively. We found that exposure of these established OS cell lines or primary OS cells to genotoxic stress results in CLU gene induction at distinct levels that correlate negatively to CLU endogenous amounts. Following CLU-forced overexpression by means of an artificial transgene, we found that although extracellular CLU inhibits cell death in all three OS cell lines, intracellular CLU has different effects on cellular proliferation and survival in these cell lines. Transgenic KH OS cell lines adapted to moderate intracellular CLU levels were growth-retarded and became resistant to genotoxic and oxidative stress. In contrast, transgenic Sa OS and U2 OS cell lines adapted to high intracellular CLU amounts were sensitive to genotoxic and oxidative stress. In these two cell lines, the proapoptotic CLU function could be rescued by caspase inhibition. To monitor the immediate effects of heterologous CLU overexpression prior to cell adaptation, we performed transient transfections in all three OS cell lines. We found that induction of high intracellular CLU amounts increases spontaneous apoptosis in KH OS cells and reduces DNA synthesis in all three cell lines assayed. On the basis of these novel findings we propose that although extracellular CLU as well as intracellular CLU at low/moderate levels is cytoprotective, CLU may become highly cytostatic and/or cytotoxic if it accumulates intracellularly in high amounts either by direct synthesis or by uptake from the extracellular milieu.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Laboratory of Molecular & Cellular Aging, Institute of Biological Research & Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | | | | | | | | |
Collapse
|
155
|
So A, Gleave M, Hurtado-Col A, Nelson C. Mechanisms of the development of androgen independence in prostate cancer. World J Urol 2005. [PMID: 15770516 DOI: 10.1007/s00345-004-] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The effectiveness of androgen ablation in the management of advanced prostate cancer is of limited duration, with the median length of response being only 18-24 months. The transition of the prostate cancer cell to an androgen independent phenotype is a complex process that involves selection and outgrowth of pre-existing clones of androgen-independent cells (clonal selection) as well as adaptive up-regulation of genes that help the cancer cells survive and grow after androgen ablation (adaptation). These two mechanisms share an important pre-requisite characteristic: prostate cancers are heterogeneous tumours comprised of various subpopulations of cells that respond differently to androgen withdrawal therapy. This tumour heterogeneity may reflect either a multifocal origin, adaptation to environmental stimuli, and/or genetic instability of the initial cancer. This review will reexamine the different mechanisms that enable prostate cancer cells to proliferate in an androgen depleted environment.
Collapse
Affiliation(s)
- Alan So
- The Prostate Centre, Vancouver General Hospital, University of British Columbia, 2660 Oak Street, BC V6H 3Z6, Vancouver, Canada.
| | | | | | | |
Collapse
|
156
|
So A, Gleave M, Hurtado-Col A, Nelson C. Mechanisms of the development of androgen independence in prostate cancer. World J Urol 2005; 23:1-9. [PMID: 15770516 DOI: 10.1007/s00345-004-0473-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 11/01/2004] [Indexed: 12/27/2022] Open
Abstract
The effectiveness of androgen ablation in the management of advanced prostate cancer is of limited duration, with the median length of response being only 18-24 months. The transition of the prostate cancer cell to an androgen independent phenotype is a complex process that involves selection and outgrowth of pre-existing clones of androgen-independent cells (clonal selection) as well as adaptive up-regulation of genes that help the cancer cells survive and grow after androgen ablation (adaptation). These two mechanisms share an important pre-requisite characteristic: prostate cancers are heterogeneous tumours comprised of various subpopulations of cells that respond differently to androgen withdrawal therapy. This tumour heterogeneity may reflect either a multifocal origin, adaptation to environmental stimuli, and/or genetic instability of the initial cancer. This review will reexamine the different mechanisms that enable prostate cancer cells to proliferate in an androgen depleted environment.
Collapse
Affiliation(s)
- Alan So
- The Prostate Centre, Vancouver General Hospital, University of British Columbia, 2660 Oak Street, BC V6H 3Z6, Vancouver, Canada.
| | | | | | | |
Collapse
|
157
|
Gleave M, Miyake H. Use of antisense oligonucleotides targeting the cytoprotective gene, clusterin, to enhance androgen- and chemo-sensitivity in prostate cancer. World J Urol 2005; 23:38-46. [PMID: 15770517 DOI: 10.1007/s00345-004-0474-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 11/01/2004] [Indexed: 01/13/2023] Open
Abstract
The discovery and targeting of genes mediating androgen-independence may lead to the development of novel therapies that delay progression of hormone refractory prostate cancer (HRPC). Clusterin is a stress-associated cell survival gene that increases after androgen ablation. Here, we review clusterin's functional role in apoptosis and the use of antisense oligonucleotides (ASOs) against clusterin to enhance apoptosis in prostate cancer models. Immunostaining of tissue microarrays constructed from untreated and post-hormone treated radical prostatectomy specimens confirm that clusterin is highly expressed in virtually all HRPC cells, 80% of prostate cancer cells after neoadjuvant hormone therapy, but is low or absent (<20%) in untreated specimens. Overexpression of clusterin in LNCaP cells confers resistance to both androgen ablation and chemotherapy. Clusterin ASOs reduced clusterin levels in a dose-dependent and sequence-specific manner. Adjuvant treatment with murine clusterin ASOs after castration of mice bearing Shionogi tumors decreased clusterin levels, accelerated apoptotic tumor regression, and significantly delayed the recurrence of androgen-independent tumors. A human clusterin ASO targeting the translation initiation site and incorporating MOE-gapmer backbone (OGX-011) synergistically enhanced the cytotoxic effects of paclitaxel in human xenografts of prostate, renal cell, bladder, and lung cancer. Clusterin, is an anti-apoptosis protein upregulated in an adaptive cell survival manner by androgen ablation and chemotherapy that confers resistance to various cell death triggers. Suppression of clusterin levels using ASOs enhances cell death following treatment with androgen ablation, radiation, and chemotherapy.
Collapse
Affiliation(s)
- Martin Gleave
- Division of Urology, University of British Columbia, D-9, 2733 Heather Street, Vancouver, British Columbia , V5Z 3J5, Canada.
| | | |
Collapse
|
158
|
Abstract
Interest in the beta amyloid (Abeta) peptides continues to grow due to their known accumulation in the brains of patients with Alzheimer's disease and recent tantalising evidence that reducing such accumulations can reverse disease-associated functional deficits. Abeta peptides are naturally produced in every cell by proteolytic cleavage of the amyloid precursor protein with two main alloforms (40 or 42 amino acids) both of which are disease associated. The identification that genetic mutations causing Alzheimer's disease impact on Abeta production and clearance have allowed for the manipulation of these pathways in cellular and animal models. These studies show that the amount and type of Abeta in the brain has significant consequences on neural function. However, there have been significant difficulties in the conversion of these findings into successful treatments in humans. In this review we concentrate on data from human studies to determine any comparative differences in Abeta production and clearance that may assist with better treatment design and delivery. Abeta40 is the dominant peptide species in human cerebrospinal fluid accounting for approximately 90% of total Abeta under normal conditions. However, similar studies using disease free human brain tissue do not correlate with these findings. In these studies, concentrations of Abeta40 are low with Abeta42 often identified as the dominant species. The data suggest preferential brain tissue utilisation and/or clearance of Abeta40 compared with Abeta42, findings which may have been predicted by their physiochemical differences. In Alzheimer's disease this equilibrium is disrupted significantly increasing Abeta peptide levels in brain tissue. The disease-specific increase in Abeta40 brain tissue levels in Alzheimer's disease appears to be an important though overlooked pathological change compared with the well-documented Abeta42 change observed both in the aged and in Alzheimer's disease. These findings are discussed in association with Abeta peptide function and a model of toxicity developed.
Collapse
Affiliation(s)
- Gillian C Gregory
- Prince of Wales Medical Research Institute and the University of New South Wales, Sydney, Australia
| | | |
Collapse
|
159
|
Patel NV, Wei M, Wong A, Finch CE, Morgan TE. Progressive changes in regulation of apolipoproteins E and J in glial cultures during postnatal development and aging. Neurosci Lett 2004; 371:199-204. [PMID: 15519757 DOI: 10.1016/j.neulet.2004.08.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 08/19/2004] [Accepted: 08/29/2004] [Indexed: 11/23/2022]
Abstract
Apolipoprotein (Apo) E and ApoJ are lipid- and cholesterol-carriers in the central nervous system and are implicated in age-related neurodegenerative diseases. The primary source of secreted ApoE and ApoJ (clusterin) in the brain is glia. Regulation of these apolipoproteins in mixed glial cultures from rat cerebral cortex differed most strongly between neonatal- and adult-derived glia. Basal secretion of ApoJ was two-fold greater in neonatal than adult glia. Responses to cytokines also differed by donor age. In adult glia, IL-6 increased ApoE secretion, but slightly decreased ApoJ. Both IL-1 beta and TNFalpha treatments increased ApoJ secretion from adult glia, with little effect on ApoE. In contrast to adult glia, neonatal ApoJ secretion did not respond to IL-1 beta, IL-6, or TNFalpha, and ApoE secretion from neonatal glia was slightly increased by IL-6. These differences may contribute to age-related neuroinflammatory processes, and are pertinent to the general use of neonatal-derived primary glia in models for neurodegenerative disease.
Collapse
Affiliation(s)
- Nilay V Patel
- Department of Biological Sciences, Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | | | | | |
Collapse
|
160
|
Söderberg L, Kakuyama H, Möller A, Ito A, Winblad B, Tjernberg LO, Näslund J. Characterization of the Alzheimer's disease-associated CLAC protein and identification of an amyloid beta-peptide-binding site. J Biol Chem 2004; 280:1007-15. [PMID: 15522881 DOI: 10.1074/jbc.m403628200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid beta-peptide (Abeta) deposition into amyloid plaques is one of the invariant neuropathological features of Alzheimer's disease. Other proteins co-deposit with Abeta in plaques, and one recently identified amyloid-associated protein is the collagen-like Alzheimer amyloid plaque component CLAC. It is not known how CLAC deposition affects Abeta plaque genesis and the progress of the disease. Here, we studied the in vitro properties of CLAC purified from a mammalian expression system. CLAC displays features characteristic of a collagen protein, e.g. it forms a partly protease-resistant triple-helical structure, exhibits an intermediate affinity for heparin, and is glycosylated. Purified CLAC was also used to investigate the interaction between CLAC and Abeta. Using a solid-phase binding assay, we show that CLAC bound with a similar affinity to aggregates formed by Abeta-(1-40) and Abeta-(1-42) and that the interaction was impaired by increasing salt concentrations. An 8-residue-long sequence located in non-collagenous domain 2 of CLAC was found to be crucial for the interaction with Abeta. These findings may be useful for future therapeutic interventions aimed at finding compounds that modulate the binding of CLAC to Abeta deposits.
Collapse
Affiliation(s)
- Linda Söderberg
- Karolinska Institutet and Sumitomo Pharmaceuticals Alzheimer Center, Neurotec, Novum, SE-141 57 Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|
161
|
Reiss AB, Siller KA, Rahman MM, Chan ESL, Ghiso J, de Leon MJ. Cholesterol in neurologic disorders of the elderly: stroke and Alzheimer’s disease. Neurobiol Aging 2004; 25:977-89. [PMID: 15212822 DOI: 10.1016/j.neurobiolaging.2003.11.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2003] [Revised: 10/10/2003] [Accepted: 11/13/2003] [Indexed: 11/26/2022]
Abstract
Mechanisms for the regulation of intracellular cholesterol levels in various types of brain and vascular cells are of considerable importance in our understanding of the pathogenesis of a variety of diseases, particularly atherosclerosis and Alzheimer's disease (AD). It is increasingly clear that conversion of brain cholesterol into 24-hydroxycholesterol and its subsequent release into the periphery is important for the maintenance of brain cholesterol homeostasis. Recent studies have shown elevated plasma concentrations of 24-hydroxycholesterol in patients with AD and vascular dementia, suggesting increased brain cholesterol turnover during neurodegeneration. The oxygenases involved in the degradation and excretion of cholesterol, including the cholesterol 24-hydroxylase and the 27-hydroxylase, are enzymes of the cytochrome P-450 family. This review focuses on the newly recognized importance of cholesterol and its oxygenated metabolites in the pathogenesis of ischemic stroke and AD. The reduction in stroke and AD risk in patients treated with cholesterol-lowering statins is also discussed.
Collapse
Affiliation(s)
- Allison B Reiss
- Department of Medicine, New York University School of Medicine, New Bellevue 16N1, 550 First Avenue, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|
162
|
Abstract
Patients with hormone refractory prostate cancer have limited treatment options and new therapies are urgently needed. Advances in the understanding of the molecular mechanisms implicated in prostate cancer progression have identified many potential therapeutic gene targets that are involved in apoptosis, growth factors, cell signalling and the androgen receptor (AR). Antisense oligonucleotides are short sequences of synthetic modified DNA that are designed to be complimentary to a selected gene's mRNA and thereby specifically inhibit expression of that gene. The antisense approach continues to hold promise as a therapeutic modality to target genes involved in cancer progression, especially those in which the gene products are not amenable to small molecule inhibition or antibodies. The current status and future direction of a number of antisense oligonucleotides targeting several genes, including BCL-2, BCL-XL, clusterin, the inhibitors of apoptosis (IAP) family, MDM2, protein kinase C-alpha, c-raf, insulin-like growth factor binding proteins and the AR, that have potential clinical use in prostate cancer are reviewed.
Collapse
Affiliation(s)
- Kim N Chi
- BC Cancer Agency, 600 West 10th Avenue, Vancouver, British Columbia, V5Z 4E6, Canada.
| | | |
Collapse
|
163
|
Trougakos IP, Gonos ES. Functional analysis of clusterin/apolipoprotein J in cellular death induced by severe genotoxic stress. Ann N Y Acad Sci 2004; 1019:206-10. [PMID: 15247015 DOI: 10.1196/annals.1297.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Clusterin/apolipoprotein J (CLU) is a secreted heterodimeric glycoprotein that is reportedly upregulated during tumorigenesis, as well as during cell injury or death. Despite extensive efforts, CLU function during cellular death remains largely elusive. We are using as a model system to study CLU function three human osteosarcoma (OS) cell lines, namely, Sa OS, KH OS, and U-2 OS cells, induced to die after exposure to severe genotoxic stress mediated by the chemotherapeutic drug doxorubicin (DXR). We initially applied small interfering RNA (siRNA)-mediated specific knockdown of the CLU protein in OS cells. In all three cell lines, CLU knockdown resulted in increased sensitization to DXR-induced apoptosis. Supportively, moderate levels of forced transgene-mediated CLU stable overexpression in KH OS cells could rescue them from DXR-mediated apoptosis. In contrast, stable overexpression of high CLU levels in Sa OS and U-2 OS cells augmented apoptosis induced by cell exposure to severe DXR-mediated genotoxic stress. In summary, our data provide evidence that, although CLU is essential for cellular homeostasis, it may become highly cytotoxic in certain cellular contexts when it accumulates in high amounts intracellularly either by direct synthesis or by uptake from the extracellular milieu.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Laboratory of Molecular and Cellular Aging, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens 11635, Greece
| | | |
Collapse
|
164
|
Shapiro LA, Marks A, Whitaker-Azmitia PM. Increased clusterin expression in old but not young adult S100B transgenic mice: evidence of neuropathological aging in a model of Down Syndrome. Brain Res 2004; 1010:17-21. [PMID: 15126113 DOI: 10.1016/j.brainres.2003.12.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2003] [Indexed: 10/26/2022]
Abstract
S100B is a calcium-binding protein, localized to astroglial cells, which has a variety of neurotrophic functions, including roles in serotonergic neuronal growth, synaptogenesis dendritic branching and apoptosis. In humans, the gene for S100B is found on chromosome 21, within what is considered the obligate region for Down Syndrome (DS) and levels of S100B are increased in brain of both DS and Alzheimer's Disease (AD). We have been characterizing a transgenic mouse overexpressing this protein and have previously found evidence of pathological changes in brains of the mice. In the current study, we have examined the expression of clusterin, a protein expressed in aging neurons, in the mice at two ages. Our findings show increased clusterin expression in the aged S100B mice compared to their CD-1 controls, a finding we have interpreted as further evidence of pathological brain aging.
Collapse
Affiliation(s)
- Lee A Shapiro
- Department of Psychology, State University of New York at Stony Brook, Stony Brook, NY 11794-2500, USA
| | | | | |
Collapse
|
165
|
Walker PR, Smith B, Liu QY, Famili AF, Valdés JJ, Liu Z, Lach B. Data mining of gene expression changes in Alzheimer brain. Artif Intell Med 2004; 31:137-54. [PMID: 15219291 DOI: 10.1016/j.artmed.2004.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Revised: 07/22/2003] [Accepted: 01/16/2004] [Indexed: 11/28/2022]
Abstract
Genome-wide transcription profiling is a powerful technique for studying the enormous complexity of cellular states. Moreover, when applied to disease tissue it may reveal quantitative and qualitative alterations in gene expression that give information on the context or underlying basis for the disease and may provide a new diagnostic approach. However, the data obtained from high-density microarrays is highly complex and poses considerable challenges in data mining. The data requires care in both pre-processing and the application of data mining techniques. This paper addresses the problem of dealing with microarray data that come from two known classes (Alzheimer and normal). We have applied three separate techniques to discover genes associated with Alzheimer disease (AD). The 67 genes identified in this study included a total of 17 genes that are already known to be associated with Alzheimer's or other neurological diseases. This is higher than any of the previously published Alzheimer's studies. Twenty known genes, not previously associated with the disease, have been identified as well as 30 uncharacterized expressed sequence tags (ESTs). Given the success in identifying genes already associated with AD, we can have some confidence in the involvement of the latter genes and ESTs. From these studies we can attempt to define therapeutic strategies that would prevent the loss of specific components of neuronal function in susceptible patients or be in a position to stimulate the replacement of lost cellular function in damaged neurons. Although our study is based on a relatively small number of patients (four AD and five normal), we think our approach sets the stage for a major step in using gene expression data for disease modeling (i.e. classification and diagnosis). It can also contribute to the future of gene function identification, pathology, toxicogenomics, and pharmacogenomics.
Collapse
Affiliation(s)
- P Roy Walker
- NeuroGenomics Group, Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Rd., Ottawa, Ont., Canada K1A 0R6.
| | | | | | | | | | | | | |
Collapse
|
166
|
Navarro A, Del Valle E, Astudillo A, González del Rey C, Tolivia J. Immunohistochemical study of distribution of apolipoproteins E and D in human cerebral beta amyloid deposits. Exp Neurol 2004; 184:697-704. [PMID: 14769361 DOI: 10.1016/s0014-4886(03)00315-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Revised: 05/28/2003] [Accepted: 06/04/2003] [Indexed: 11/23/2022]
Abstract
Several molecules are known to be closely associated with amyloid deposits in human brain. Among these, apolipoproteins such as apolipoproteins E (apo E) and J (apo J) have been found in two neuropathological hallmarks of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA): senile plaques (SPs) and cerebrovascular amyloid. These apolipoproteins may be implicated in amyloid fibrillogenesis. Apo D is a multiligand-multifunctional glycoprotein present in SPs, as we previously reported. The aim of this work is to study the link between immunolocalization of apo E and apo D in AD and CAA brains. Both apolipoproteins were found in all types of SPs, but apo E was observed more often than apo D in mature plaques. Whereas apo E is always located overlapping the amyloid core, apo D seems to situate preferably around and near the amyloid. Immunohistochemistry revealed that these apolipoproteins behave differently in cerebral vessels. Apo E labeling in vessels appears mainly linked to amyloid deposits, whereas apo D shows a distribution almost opposite to that of apo E. This could be an indication of the different roles that each apolipoprotein plays in the pathogenesis of amyloid deposition.
Collapse
Affiliation(s)
- Ana Navarro
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Oviedo 33006, Spain
| | | | | | | | | |
Collapse
|
167
|
Trougakos IP, So A, Jansen B, Gleave ME, Gonos ES. Silencing expression of the clusterin/apolipoprotein j gene in human cancer cells using small interfering RNA induces spontaneous apoptosis, reduced growth ability, and cell sensitization to genotoxic and oxidative stress. Cancer Res 2004; 64:1834-42. [PMID: 14996747 DOI: 10.1158/0008-5472.can-03-2664] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Clusterin/Apolipoprotein J (CLU) is a heterodimeric ubiquitously expressed secreted glycoprotein that is implicated in several physiological processes and is differentially expressed in many severe physiological disturbances, including tumor formation and in vivo cancer progression. Despite extensive efforts, clarification of CLU's biological role has been exceptionally difficult and its precise function remains elusive. Short RNA duplexes, referred to as small interfering RNAs (siRNAs), provide a new approach for the elucidation of gene function in human cells. Here, we describe siRNA-mediated CLU gene silencing in osteosarcoma and prostate human cancer cells and illustrate that CLU mRNA is amenable to siRNA-mediated degradation. Our data demonstrate that CLU knockdown in human cancer cells induces significant reduction of cellular growth and higher rates of spontaneous endogenous apoptosis. Moreover, CLU knockdown cancer cells were significantly sensitized to both genotoxic and oxidative stress induced by chemotherapeutic drugs and H(2)O(2), respectively. These effects were more pronounced in cell lines that express high endogenous steady-state levels of the CLU protein and occur through hyperactivation of the cellular apoptotic machinery. Overall, our results reveal that, in the distinct cellular contexts of the osteosarcoma and prostate cancer cells assayed, CLU is a central molecule in cell homeostasis that exerts a cytoprotective function. The described CLU-specific siRNA oligonucleotides that can potently silence CLU gene expression may thus prove valuable agents during antitumor therapy or at other pathological conditions where CLU has been implicated.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Laboratory of Molecular and Cellular Aging, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | |
Collapse
|
168
|
Anderson DH, Talaga KC, Rivest AJ, Barron E, Hageman GS, Johnson LV. Characterization of beta amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 2004; 78:243-56. [PMID: 14729357 DOI: 10.1016/j.exer.2003.10.011] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Recent studies strongly suggest that drusen, the extracellular deposits associated with age-related macular degeneration (AMD), are a manifestation of local inflammatory events. New evidence indicates that substructural elements within drusen contain activated complement components as well as amyloid beta (Abeta), a major pro-inflammatory component of Alzheimer's disease plaques. We characterized the ultrastructural organization and histochemical staining properties of these Abeta-containing elements in order to further assess their significance in drusen formation and AMD pathogenesis. METHODS We used differential interference contrast optics, laser scanning confocal immunofluorescence, and immunogold electron microscopy to characterize the structural properties and molecular composition of Abeta-containing elements in drusen. We obtained estimates of their frequency from montages of electron micrographs gathered from 152 human donor eyes ranging from 9 to 91 years of age. RESULTS Spherical Abeta-containing elements, which are typically organized as concentric ring-like structures, are common substructural components of drusen. They stain with thioflavin T, but are not stained by Congo red; nor do they bind cationic, lipophilic, or nucleic acid-binding fluorescent dyes. Ultrastructurally, they are composed of a central core, one or more concentric inner rings with intervening electron lucent layers, and an electron dense outer shell. Immunogold labeling indicates that most Abeta immunoreactivity is associated with the outer layers that consist of densely-packed spherical subunits. No longitudinally-oriented fibril arrays, characteristic of aggregated amyloid fibrils in the brain, are evident. Other prominent drusen-associated proteins including the terminal complement complex C5b-9, vitronectin, apolipoprotein E, serum amyloid P component, and ubiquitin are excluded from the spheres.Conclusions. These structures embedded in drusen appear to represent a new type of macromolecular assembly that contains Abeta as well as activated complement components. The presence of Abeta in these extracellular deposits is an additional indication that some of the pathogenic pathways that give rise to drusen and AMD may be shared with other neurodegenerative diseases characterized by misfolded protein deposition and aggregation.
Collapse
Affiliation(s)
- Don H Anderson
- Center for the Study of Macular Degeneration, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| | | | | | | | | | | |
Collapse
|
169
|
Scaltriti M, Brausi M, Amorosi A, Caporali A, D'Arca D, Astancolle S, Corti A, Bettuzzi S. Clusterin (SGP-2, ApoJ) expression is downregulated in low- and high-grade human prostate cancer. Int J Cancer 2003; 108:23-30. [PMID: 14618611 DOI: 10.1002/ijc.11496] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Clusterin is overexpressed during tissue and cell involution and downregulated in proliferating cells. Its role in cell survival, cell death and neoplastic transformation remains debated. We studied the expression and distribution of clusterin mRNA and protein in human prostate carcinoma (CaP) specimens of different degrees of malignancy. Fresh CaP specimens were obtained from 25 patients subjected to long-term androgen ablation before surgery. Clusterin expression was studied by Northern and Western analysis, in situ hybridization and immunohistochemistry, in comparison with Gas1 and histone H3 mRNA (markers of cell quiescence and S phase of the cell cycle, respectively). Clusterin is downregulated in CaP in comparison with matched benign controls. In low-grade CaP, clusterin colocalized with Gas1 to the stromal compartment, and in some glands, the basal lamina was heavily stained. In high-grade CaP clusterin stained the remnants of stromal matrix while histone H3 localized to cancer cells, which were very rarely clusterin positive. High clusterin expression was found in the branches of a nerve infiltrated by tumor. The periglandular clusterin expression found in low-grade CaP could result from induction of quiescence and/or apoptosis of prostatic fibroblasts lining those glands in which tumor invasion is at an initial stage, involving basal lamina. In advanced CaP, the staining of the remnants of the extracellular matrix suggests a role for clusterin in the process of dismantling the stromal organization caused by cancer progression.
Collapse
Affiliation(s)
- Maurizio Scaltriti
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Tabira T. Alzheimer's disease: Mechanisms and development of therapeutic strategies. Geriatr Gerontol Int 2003. [DOI: 10.1111/j.1444-1586.2003.00082.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
171
|
Thomas EA, Laws SM, Sutcliffe JG, Harper C, Dean B, McClean C, Masters C, Lautenschlager N, Gandy SE, Martins RN. Apolipoprotein D levels are elevated in prefrontal cortex of subjects with Alzheimer's disease: no relation to apolipoprotein E expression or genotype. Biol Psychiatry 2003; 54:136-41. [PMID: 12873803 DOI: 10.1016/s0006-3223(02)01976-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Apolipoprotein E (apoE) has been implicated in the pathology of AD ever since inheritance of the epsilon4 allele was shown to be an important risk factor for the development of AD. Apolipoprotein D (apoD) is elevated in association with several central nervous system disorders, including Alzheimer's disease (AD), and has been proposed to be an especially robust marker for brain regions specifically affected by particular neuropathologies. Progressive cognitive decline is the core clinical feature of AD and is associated with disturbances in the prefrontal cortex. METHODS We measured apoD levels in prefrontal cortex samples obtained postmortem from 20 autopsy-confirmed AD subjects and 40 control subjects. RESULTS Enzyme-linked immunosorbent assay analysis revealed a significant increase in apoD expression in AD subjects compared with control subjects (.218+/-.029 microg/mg protein vs.117+/-.011 microg/mg protein; p=0003). There was no significant difference in apoD expression between early-onset and late-onset Alzheimer's subjects. Apolipoprotein D expression levels were not correlated with apoE levels, nor were they correlated with inheritance of the APOE epsilon4 allele. CONCLUSIONS These findings suggest that apoD may be related to the cognitive decline observed in AD patients and that apoD and apoE likely play different roles in the pathogenesis of AD.
Collapse
Affiliation(s)
- Elizabeth A Thomas
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Bachurin SO. Medicinal chemistry approaches for the treatment and prevention of Alzheimer's disease. Med Res Rev 2003; 23:48-88. [PMID: 12424753 DOI: 10.1002/med.10026] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which is characterised by progressive deterioration of memory and higher cortical functions that ultimately result in total degradation of intellectual and mental activities. Modern strategies in the search of new therapeutic approaches are based on the morphological and biochemical characteristics of AD, and focused on following directions: agents that compensate the hypofunction of cholinergic system, agents that interfere with the metabolism of beta-amyloid peptide, agents that protect nerve cells from toxic metabolites formed in neurodegenerative processes, agents that activate other neurotransmitter systems that indirectly compensate for the deficit of cholinergic functions, agents that affect the process of the formation of neurofibrillary tangles, anti-inflammatory agents that prevent the negative response of nerve cells to the pathological process. The goal of the present review is the validation and an analysis from the point of view of medicinal chemistry of the principles of the directed search of drugs for the treatment and prevention of AD and related neurodegenerative disorders. It is based on systematization of the data on biochemical and structural similarities in the interaction between physiologically active compounds and their biological targets related to the development of such pathologies. The main emphasis is on cholinomimetic, anti-amyloid and anti-metabolic agents, using the data that were published during the last 3 to 4 years, as well as the results of clinical trials presented on corresponding websites.
Collapse
Affiliation(s)
- S O Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Moscow region, Russia.
| |
Collapse
|
173
|
Abstract
Clusterin/Apolipoprotein J (ApoJ) is a heterodimeric highly conserved secreted glycoprotein being expressed in a wide variety of tissues and found in all human fluids. Despite being cloned since 1989, no genuine function has been attributed to ApoJ so far. The protein has been reportedly implicated in several diverse physiological processes such as sperm maturation, lipid transportation, complement inhibition, tissue remodeling, membrane recycling, cell-cell and cell-substratum interactions, stabilization of stressed proteins in a folding-competent state and promotion or inhibition of apoptosis. ApoJ gene is differentially regulated by cytokines, growth factors and stress-inducing agents, while another defining prominent and intriguing ApoJ feature is its upregulation in many severe physiological disturbances states and in several neurodegenerative conditions mostly related to advanced aging. Moreover, ApoJ accumulates during the viable growth arrested cellular state of senescence, that is thought to contribute to aging and to tumorigenesis suppression; paradoxically ApoJ is also upregulated in several cases of in vivo cancer progression and tumor formation. This review focuses on the reported data related to ApoJ cell-type and signal specific regulation, function and site of action in normal and cancer cells. We discuss the role of ApoJ during cellular senescence and tumorigenesis, especially under the light of the recently demonstrated various ApoJ intracellular protein forms and their interaction with molecules involved in signal transduction and DNA repair, raising the possibility that its overexpression during cellular senescence might cause a predisposition to cancer.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Laboratory of Molecular & Cellular Aging, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, 48 Vas Constantinou Avenue, Athens 11635, Greece
| | | |
Collapse
|
174
|
Trougakos IP, Poulakou M, Stathatos M, Chalikia A, Melidonis A, Gonos ES. Serum levels of the senescence biomarker clusterin/apolipoprotein J increase significantly in diabetes type II and during development of coronary heart disease or at myocardial infarction. Exp Gerontol 2002; 37:1175-87. [PMID: 12470829 DOI: 10.1016/s0531-5565(02)00139-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Clusterin/apolipoprotein J (hereafter ApoJ) is a conserved secreted glycoprotein expressed by a wide array of tissues and being implicated in several physiological processes. ApoJ has been shown to associate with both normal in vitro aging, namely replicative senescence, as well as with stress induced premature senescence. In vivo, the protein is up-regulated in many severe physiological disturbances that relate to advanced aging, including accumulation in the artery wall during the development of atherosclerosis. In the current report we have expanded our previous studies that focus in the biological role of ApoJ during aging by addressing two interrelated issues: (a) we have examined the potential ApoJ association with in vivo aging and (b) we have studied whether its accumulation in the artery wall during the development of atherosclerosis is combined with a measurable increase of its serum levels, as well as, whether a similar effect occurs in diseases, such as diabetes type II, known to represent major risk factors of atherosclerosis. By combining a sandwich ELISA assay and immunoblotting analysis we demonstrate a measurable increase of ApoJ serum levels with age in males and provide evidence that, as compared to healthy donors, the serum ApoJ amount increases significantly in diabetic type II patients and in patients suffering from either a developing coronary heart disease, or myocardial infarction. The highest serum ApoJ levels were found during myocardial infarction but no correlation was observed with the number of vessels with documented atherosclerotic damage. In conclusion, this report illustrates that ApoJ accumulation in serum is probably coupled to a generalized stress mediated induction mechanism that is specifically related to certain diseases; moreover these data raise the possibility that elevated ApoJ levels in serum may represent a strong indication of vascular damage.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Laboratory of Molecular and Cellular Ageing, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, Athens 11635, Greece
| | | | | | | | | | | |
Collapse
|
175
|
Affiliation(s)
- Nanette H Bishopric
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, PO Box 016189 (R-189), Miami, FL 33101, USA.
| |
Collapse
|
176
|
DeMattos RB, O'dell MA, Parsadanian M, Taylor JW, Harmony JAK, Bales KR, Paul SM, Aronow BJ, Holtzman DM. Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2002; 99:10843-8. [PMID: 12145324 PMCID: PMC125060 DOI: 10.1073/pnas.162228299] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Studies have shown that clusterin (also called apolipoprotein J) can influence the structure and toxicity of amyloid-beta (Abeta) in vitro. To determine whether endogenous clusterin plays a role in influencing Abeta deposition, structure, and toxicity in vivo, we bred PDAPP mice, a transgenic mouse model of Alzheimer's disease, to clusterin(-/-) mice. By 12 months of age, PDAPP, clusterin(-/-) mice had similar levels of brain Abeta deposition as did PDAPP, clusterin(+/+) mice. Although Abeta deposition was similar, PDAPP, clusterin(-/-) mice had significantly fewer fibrillar Abeta (amyloid) deposits than PDAPP mice expressing clusterin. In the absence of clusterin, neuritic dystrophy associated with the deposited amyloid was markedly reduced, resulting in a dissociation between fibrillar amyloid formation and neuritic dystrophy. These findings demonstrate that clusterin markedly influences Abeta structure and neuritic toxicity in vivo and is likely to play an important role in Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Ronald B DeMattos
- Center for the Study of Nervous System Injury, Alzheimer's Disease Research Center, and Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Morgan C, Bugueño MP, Garrido J, Inestrosa NC. Laminin affects polymerization, depolymerization and neurotoxicity of Abeta peptide. Peptides 2002; 23:1229-40. [PMID: 12128080 DOI: 10.1016/s0196-9781(02)00058-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amyloid deposition in Alzheimer fibrils forms neurotoxic senile plaques in a process that may be modulated by associated proteins. In this work we demonstrate the ability of laminin-1 and laminin-2 to inhibit fibril formation and toxicity on cultured rat hippocampal neurons. We confirm that the laminin-1-derived peptide YFQRYLI inhibits efficiently both fibril formation and neurotoxicity and show that the IKVAV peptide inhibits amyloid neurotoxicity despite its slight inhibition of fibril formation. On other hand, laminin-1 induces disaggregation of preformed fibrils in vitro, characterized as a progressive disassembly of fibrils into protofibrils and further clearance of these latter species, leading to a continual inhibition of amyloid neurotoxicity.
Collapse
Affiliation(s)
- Carlos Morgan
- Departamento de Biología Celular y Molecular, MIFAB, Facultad de Ciencias Biológicas, Centro de Regulación Celular y Patología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | |
Collapse
|
178
|
Hatters DM, Wilson MR, Easterbrook-Smith SB, Howlett GJ. Suppression of apolipoprotein C-II amyloid formation by the extracellular chaperone, clusterin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2789-94. [PMID: 12047389 DOI: 10.1046/j.1432-1033.2002.02957.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of the extracellular chaperone, clusterin, on amyloid fibril formation by lipid-free human apolipoprotein C-II (apoC-II) was investigated. Sub-stoichiometric levels of clusterin, derived from either plasma or semen, potently inhibit amyloid formation by apoC-II. Inhibition is dependent on apoC-II concentration, with more effective inhibition by clusterin observed at lower concentrations of apoC-II. The average sedimentation coefficient of apoC-II fibrils formed from apoC-II (0.3 mg.mL-1) is reduced by coincubation with clusterin (10 microg x mL(-1)). In contrast, addition of clusterin (0.1 mg x mL(-1)) to preformed apoC-II amyloid fibrils (0.3 mg x mL(-1)) does not affect the size distribution after 2 days. This sedimentation velocity data suggests that clusterin inhibits fibril growth but does not promote fibril dissociation. Electron micrographs indicate similar morphologies for amyloid fibrils formed in the presence or absence of clusterin. The substoichiometric nature of the inhibition suggests that clusterin interacts with transient amyloid nuclei leading to dissociation of the monomeric subunits. We propose a general role for clusterin in suppressing the growth of extracellular amyloid.
Collapse
Affiliation(s)
- Danny M Hatters
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
179
|
Gleave ME, Zellweger T, Chi K, Miyake H, Kiyama S, July L, Leung S. Targeting anti-apoptotic genes upregulated by androgen withdrawal using antisense oligonucleotides to enhance androgen- and chemo-sensitivity in prostate cancer. Invest New Drugs 2002; 20:145-58. [PMID: 12099575 DOI: 10.1023/a:1015694802521] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The main obstacle to improved survival of advanced prostate cancer is our failure to prevent its progression to its lethal and untreatable stage of androgen independence. New therapeutic strategies designed to prevent androgen-independent (AI) progression must be developed before significant impact on survival can be achieved. Characterization of changes in gene expression profiles after androgen ablation and during progression to androgen-independence suggest that the various therapies used to kill neoplastic cells may precipitate changes in gene expression that lead to the resistant phenotype. Castration-induced increases in antiapoptosis genes, Bcl-2 and clusterin, help create a resistant phenotype, while antisense oligonucleotides can inhibit these adaptive cell survival mechanisms and enhance both hormone and chemotherapy. Ongoing efforts are necessary to identify additional molecular pathways mediating AI progression and chemoresistance, since complexities of tumor heterogeneity and adaptability dictate that optimal control over tumor progression will require multi-target systemic therapies.
Collapse
Affiliation(s)
- Martin E Gleave
- The Prostate Centre, Vancouver General Hospital, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
180
|
Poon S, Treweek TM, Wilson MR, Easterbrook-Smith SB, Carver JA. Clusterin is an extracellular chaperone that specifically interacts with slowly aggregating proteins on their off-folding pathway. FEBS Lett 2002; 513:259-66. [PMID: 11904161 DOI: 10.1016/s0014-5793(02)02326-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Clusterin is an extracellular mammalian chaperone protein which inhibits stress-induced precipitation of many different proteins. The conformational state(s) of proteins that interact with clusterin and the stage(s) along the folding and off-folding (precipitation-bound) pathways where this interaction occurs were previously unknown. We investigated this by examining the interactions of clusterin with different structural forms of alpha-lactalbumin, gamma-crystallin and lysozyme. When assessed by ELISA and native gel electrophoresis, clusterin did not bind to various stable, intermediately folded states of alpha-lactalbumin nor to the native form of this protein, but did bind to and inhibit the slow precipitation of reduced alpha-lactalbumin. Reduction-induced changes in the conformation of alpha-lactalbumin, in the absence and presence of clusterin, were monitored by real-time (1)H NMR spectroscopy. In the absence of clusterin, an intermediately folded form of alpha-lactalbumin, with some secondary structure but lacking tertiary structure, aggregated and precipitated. In the presence of clusterin, this form of alpha-lactalbumin was stabilised in a non-aggregated state, possibly via transient interactions with clusterin prior to complexation. Additional experiments demonstrated that clusterin potently inhibited the slow precipitation, but did not inhibit the rapid precipitation, of lysozyme and gamma-crystallin induced by different stresses. These results suggest that clusterin interacts with and stabilises slowly aggregating proteins but is unable to stabilise rapidly aggregating proteins. Collectively, our results suggest that during its chaperone action, clusterin preferentially recognises partly folded protein intermediates that are slowly aggregating whilst venturing along their irreversible off-folding pathway towards a precipitated protein.
Collapse
Affiliation(s)
- Stephen Poon
- Department of Chemistry, University of Wollongong, Northfields Avenue, 2522, Wollongong, NSW, Australia
| | | | | | | | | |
Collapse
|
181
|
Thomas EA, Sautkulis LN, Criado JR, Games D, Sutcliffe JG. Apolipoprotein D mRNA expression is elevated in PDAPP transgenic mice. J Neurochem 2001; 79:1059-64. [PMID: 11739619 DOI: 10.1046/j.1471-4159.2001.00654.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apolipoprotein D (apoD) expression is known to be elevated in select regions of rodent and human brain in association with different types of CNS pathology. To investigate a potential role for apoD in the neuropathology of Alzheimer's disease, we have measured apoD mRNA expression in transgenic mice expressing mutated human amyloid precursor protein under control of platelet-derived growth factor promoter (PDAPP mice). In situ hybridization analysis revealed increased apoD mRNA expression in brains of aged (26 months) PDAPP transgenic mice compared to aged littermate controls. These increases were most prominent in the hippocampal fimbria, corpus callosum and other white matter tracts. No substantial increases in expression were observed in white matter regions in young (6 months) PDAPP transgenic mice compared to young controls. Comparison between aged and young control mice revealed increased apoD expression in similar white matter regions of the aged animals. These findings suggest that, although increases in apoD expression are a normal feature of brain aging, super-increases may represent a glial cell compensatory response to beta-amyloid deposition in Alzheimer's disease.
Collapse
Affiliation(s)
- E A Thomas
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
182
|
DeMattos RB, Brendza RP, Heuser JE, Kierson M, Cirrito JR, Fryer J, Sullivan PM, Fagan AM, Han X, Holtzman DM. Purification and characterization of astrocyte-secreted apolipoprotein E and J-containing lipoproteins from wild-type and human apoE transgenic mice. Neurochem Int 2001; 39:415-25. [PMID: 11578777 DOI: 10.1016/s0197-0186(01)00049-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The varepsilon4 allele of apolipoprotein E (apoE) is a genetic risk factor for Alzheimer's disease (AD). In order to gain a better understanding of the molecular mechanisms by which apoE and possibly other apolipoproteins produced in the central nervous system (CNS) influence AD pathogenesis, we have purified and characterized the two most abundant apolipoproteins produced in the CNS, apoE and apoJ. We purified apoE and apoJ from primary cultures of mouse astrocytes, which were derived from transgenic mice expressing human apoE isoforms in the absence of mouse apoE. Utilizing antibody affinity columns, we were able to purify both human apoE3 and apoE4, as well as mouse apoJ-containing lipoproteins. Astrocyte-secreted human apoE was present in high density-like lipoproteins of three predominant sizes ranging from 8 to 15 nm in diameter. Mouse apoJ was in particles between 10 and 17 nm in diameter with a peak size range of approximately 11 nm. ApoE and apoJ were in distinct lipoproteins. Utilization of quick-freeze, deep-etch electron microscopy revealed the apoE particles were discs while the apoJ particles were smaller and more irregular in appearance. The lipid composition of apoE particles was very different from those containing apoJ. ApoE-particles contained a similar mass of apoE and lipid, with cholesterol and phospholipid being about equal in mass per particle. ApoJ-particles were relatively lipid poor (three parts protein, one part lipid), with phospholipids being much more abundant than cholesterol. Detailed characterization of phospholipid composition by electrospray ionization mass spectrometry analysis revealed ethanolamine glycerophospholipids to be the most abundant phospholipid present in both apoE and apoJ particles. Analysis of cerebrospinal fluid from apoE3 and apoE4 transgenic mice revealed that human and mouse apoE were in particles the same size as those secreted by astrocytes. Further use of physiological preparations of CNS-derived lipoproteins may allow for a detailed understanding of the role of these molecules in the normal brain and in diseases such as AD.
Collapse
Affiliation(s)
- R B DeMattos
- Center for the Study of Nervous System Injury, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Leskov KS, Criswell T, Antonio S, Li J, Yang CR, Kinsella TJ, Boothman DA. When X-ray-inducible proteins meet DNA double strand break repair. Semin Radiat Oncol 2001; 11:352-72. [PMID: 11677660 DOI: 10.1053/srao.2001.26912] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cellular responses to ionizing radiation (IR) include (a) activation of signal transduction enzymes; (b) stimulation of DNA repair, most notably DNA double strand break (DSB) repair by homologous or nonhomologous recombinatorial pathways; (c) activation of transcription factors and subsequent IR-inducible transcript and protein changes; (d) cell cycle checkpoint delays in G(1), S, and G(2) required for repair or for programmed cell death of severely damaged cells; (e) activation of zymogens needed for programmed cell death (although IR is a poor inducer of such responses in epithelial cells); and (f) stimulation of IR-inducible proteins that may mediate bystander effects influencing signal transduction, DNA repair, angiogenesis, the immune response, late responses to IR, and possibly adaptive survival responses. The overall response to IR depends on the cell's inherent genetic background, as well as its ability to biochemically and genetically respond to IR-induced damage. To improve the anti-tumor efficacy of IR, our knowledge of these pleiotropic responses must improve. The most important process for the survival of a tumor cell following IR is the repair of DNA double strand breaks (DSBs). Using yeast two-hybrid analyses along with other molecular and cellular biology techniques, we cloned transcripts/proteins that are involved in, or presumably affect, nonhomologous DNA double strand break end-joining (NHEJ) repair mediated by the DNA-PK complex. Using Ku70 as bait, we isolated a number of Ku-binding proteins (KUBs). We identified the first X-ray-inducible transcript/protein (xip8, Clusterin (CLU)) that associates with DNA-PK. A nuclear form of CLU (nCLU) prevented DNA-PK-mediated end joining, and stimulated cell death in response to IR or when overexpressed in the absence of IR. Structure-function analyses using molecular and cellular (including green fluorescence-tagged protein trafficking) biology techniques showed that nCLU appears to be an inactive protein residing in the cytoplasm of epithelial cells. Following IR injury, nCLU levels increase and an as yet undefined posttranslational modification appears to alter the protein, exposing nuclear localization sequences (NLSs) and coiled-coil domains. The modified protein translocates to the nucleus and triggers cell death, presumably through its interaction specifically with Ku70. Understanding nCLU responses, as well as the functions of the KUBs, will be important for understanding DSB repair. Knowledge of DSB repair may be used to improve the antitumor efficacy of IR, as well as other chemotherapeutic agents.
Collapse
Affiliation(s)
- K S Leskov
- Department of Human Oncology, University of Wisconsin-Madison, 53792, USA
| | | | | | | | | | | | | |
Collapse
|
184
|
Warskulat U, Kreuels S, Müller HW, Häussinger D. Identification of osmosensitive and ammonia-regulated genes in rat astrocytes by Northern blotting and differential display reverse transcriptase-polymerase chain reaction. J Hepatol 2001; 35:358-66. [PMID: 11592597 DOI: 10.1016/s0168-8278(01)00149-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS The hepatic encephalopathy (HE) is in part the result of astrocyte swelling with alterations of glial function. Detoxification of ammonia may be one mechanism by which astrocyte swelling is triggered in HE. METHODS The differential display polymerase chain reaction (DDRT-PCR) and Northern blot analysis were used for study the functional consequence of cell volume changes and ammonia on gene expression in primary rat astrocytes. RESULTS Differentially expressed cDNA products were identified with about 92% homology to genes coding for mouse proline rich protein expressed in brain (PRTB), rat clusterin, elongin, and human Kelch motif containing protein. As shown by Northern blot analysis, PRTB and clusterin mRNA levels were upregulated by 19-64% after 4-8 h by both ammonia and hypoosmolarity. Elongin mRNA expression increased by 97% in response to ammonia but slightly by hypoosmolarity. Further, hypoosmotic exposure for 1-24 hours but not ammonia led to an increase of 80% in KMCP mRNA levels. CONCLUSIONS The identification of these genes offers the opportunity to identify unrecognized molecular mechanisms of HE. The finding that several genes are induced by both, hypoosmolarity and ammonia, supports the view that astrocyte swelling is a major, but not the only pathogenetic event in HE.
Collapse
Affiliation(s)
- U Warskulat
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
185
|
Nakajima T, Matsumoto K, Suto H, Tanaka K, Ebisawa M, Tomita H, Yuki K, Katsunuma T, Akasawa A, Hashida R, Sugita Y, Ogawa H, Ra C, Saito H. Gene expression screening of human mast cells and eosinophils using high-density oligonucleotide probe arrays: abundant expression of major basic protein in mast cells. Blood 2001; 98:1127-34. [PMID: 11493461 DOI: 10.1182/blood.v98.4.1127] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mast cells (MCs) and eosinophils are thought to play important roles in evoking allergic inflammation. Cell-type--specific gene expression was screened among 12,000 genes in human MCs and eosinophils with the use of high-density oligonucleotide probe arrays. In comparison with other leukocytes, MCs expressed 140 cell-type--specific transcripts, whereas eosinophils expressed only 34. Among the transcripts for expected MC-specific proteins such as tryptase, major basic protein (MBP), which had been thought to be eosinophil specific, was ranked fourth in terms of amounts of increased MC-specific messenger RNA. Mature eosinophils were almost lacking this transcript. MCs obtained from 4 different sources (ie, lung, skin, adult peripheral blood progenitor--derived and cord blood progenitor--derived MCs, and eosinophils) were found to have high protein levels of MBP in their granules with the use of flow cytometric and confocal laser scanning microscopic analyses. The present finding that MCs can produce abundant MBP is crucial because many reports regarding allergic pathogenesis have been based on earlier findings that MBP was almost unique to eosinophils and not produced by MCs. (Blood. 2001;98:1127-1134)
Collapse
Affiliation(s)
- T Nakajima
- Department of Allergy & Immunology, National Children's Medical Research Center, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Gleave ME, Miyake H, Zellweger T, Chi K, July L, Nelson C, Rennie P. Use of antisense oligonucleotides targeting the antiapoptotic gene, clusterin/testosterone-repressed prostate message 2, to enhance androgen sensitivity and chemosensitivity in prostate cancer. Urology 2001; 58:39-49. [PMID: 11502446 DOI: 10.1016/s0090-4295(01)01241-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Androgen resistance develops, in part, from upregulation of antiapoptotic genes after androgen withdrawal. Identification and targeting of genes mediating androgen-independent (AI) progression may lead to development of novel therapies that delay hormone-refractory prostate cancer. Clusterin is a cell survival gene, that increases after androgen ablation. Here, we review clusterin's functional role in apoptosis and the ability of antisense oligonucleotides (ASOs) against clusterin to enhance apoptosis in prostate cancer xenograft models. RESULTS Immunostaining of radical prostatectomy specimens confirm that clusterin is highly expressed in 80% prostate cancer cells after neoadjuvant hormone therapy, but is low or absent (<20%) in untreated specimens. Clusterin levels increase >10 fold in regressing Shionogi tumors after castration. Pretreatment of mice bearing androgen-dependent Shionogi tumors with calcium antagonists inhibited castration-induced apoptosis, tumor regression, and clusterin gene upregulation, illustrating that clusterin is an apoptosis-associated gene and not an androgen-repressed gene. Clusterin ASOs reduced clusterin levels in a dose-dependent and sequence-specific manner. Adjuvant treatment with murine clusterin ASOs after castration of mice bearing Shionogi tumors decreased clusterin levels by 70% and resulted in earlier onset and more rapid apoptotic tumor regression, with significant delay in recurrence of AI tumors. Species-specific clusterin ASOs also increased the cytotoxic effects of paclitaxel, reducing the 50% inhibitory concentration (IC(50)) of PC-3 and Shionogi cells by 75% to 90%. Although clusterin ASOs had no effect on the growth of established AI Shionogi or PC-3 tumors, clusterin ASOs synergistically enhanced paclitaxel-induced tumor regression in both Shionogi and PC-3 models. CONCLUSIONS Collectively, these data identify clusterin as an antiapoptosis protein, upregulated in an adaptive cell-survival manner by androgen ablation and chemotherapy, which confers resistance to various cell-death triggers. Inhibition of clusterin upregulation using clusterin ASOs can enhance cell death after treatment with androgen ablation and chemotherapy.
Collapse
Affiliation(s)
- M E Gleave
- Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
187
|
Page NM, Butlin DJ, Lomthaisong K, Lowry PJ. The Human Apolipoprotein L Gene Cluster: Identification, Classification, and Sites of Distribution. Genomics 2001; 74:71-8. [PMID: 11374903 DOI: 10.1006/geno.2001.6534] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the cloning of a new gene family encoding six apolipoprotein L (apoL-I to -VI) proteins. The genes were identified as a cluster spanning a region of 619 kb on chromosome 22. Each apoL was found to share significant identity in its predicted amphipathic alpha helices while phylogenetic tree mapping showed the genes to be evolutionarily conserved. Tissue distribution by semiquantitative PCR revealed expression in all tissues, but consistently higher levels in the placenta were observed, except for apoL-V, which had a restricted expression. A comparison of tissue distribution with apoA-I, the major structural component of high-density lipoprotein, suggests that the apoL proteins may play a general and fundamental role in lipid biochemistry. In situ hybridization for expression of apoL-I in the placenta revealed expression throughout this tissue. The pathological expression of the apolipoproteins during pregnancy is implicated in fetal growth retardation, preeclampsia, and the onset of adult atherosclerosis.
Collapse
MESH Headings
- Amino Acid Sequence
- Apolipoprotein L1
- Apolipoproteins/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 22/genetics
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Evolution, Molecular
- Exons
- Female
- Gene Expression
- Gene Order
- Genes/genetics
- Humans
- Introns
- Lipoproteins, HDL/genetics
- Male
- Molecular Sequence Data
- Multigene Family/genetics
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- N M Page
- School of Animal and Microbial Sciences, The University of Reading, Reading, RG6 6AJ, United Kingdom. sasnpagereading.ac.uk
| | | | | | | |
Collapse
|
188
|
Abstract
The central nervous system accounts for only 2% of the whole body mass but contains almost a quarter of the unesterified cholesterol present in the whole individual. This sterol is largely present in two pools comprised of the cholesterol in the plasma membranes of glial cells and neurons and the cholesterol present in the specialized membranes of myelin. From 0.02% (human) to 0.4% (mouse) of the cholesterol in these pools turns over each day so that the absolute flux of sterol across the brain is only approximately 0.9% as rapid as the turnover of cholesterol in the whole body of these respective species. The input of cholesterol into the central nervous system comes almost entirely from in situ synthesis, and there is currently little evidence for the net transfer of sterol from the plasma into the brain of the fetus, newborn or adult. In the steady state in the adult, an equivalent amount of cholesterol must move out of the brain and this output is partly accounted for by the formation and excretion of 24S-hydroxycholesterol. This cholesterol turnover across the brain is increased in neurodegenerative disorders such as Alzheimer's disease and Niemann-Pick type C disease. Indirect evidence suggests that large amounts of cholesterol also turn over among the glial cells and neurons within the central nervous system during brain growth and neuron repair and remodelling. This internal recycling of sterol may involve ligands such as apolipoproteins E and AI, and one or more membrane transport proteins such as members of the low density lipoprotein receptor family. Changes in cholesterol balance across the whole body may, in some way, cause alterations in sterol recycling and apolipoprotein E expression within the central nervous system, which, in turn, may affect neuron and myelin integrity. Further elucidation of the processes controlling these events is very important to understand a variety of neurodegenerative disorders.
Collapse
Affiliation(s)
- J M Dietschy
- Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8887, USA.
| | | |
Collapse
|