151
|
Palmqvist S, Tideman P, Cullen N, Zetterberg H, Blennow K, Dage JL, Stomrud E, Janelidze S, Mattsson-Carlgren N, Hansson O. Prediction of future Alzheimer's disease dementia using plasma phospho-tau combined with other accessible measures. Nat Med 2021; 27:1034-1042. [PMID: 34031605 DOI: 10.1038/s41591-021-01348-z] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/12/2021] [Indexed: 02/04/2023]
Abstract
A combination of plasma phospho-tau (P-tau) and other accessible biomarkers might provide accurate prediction about the risk of developing Alzheimer's disease (AD) dementia. We examined this in participants with subjective cognitive decline and mild cognitive impairment from the BioFINDER (n = 340) and Alzheimer's Disease Neuroimaging Initiative (ADNI) (n = 543) studies. Plasma P-tau, plasma Aβ42/Aβ40, plasma neurofilament light, APOE genotype, brief cognitive tests and an AD-specific magnetic resonance imaging measure were examined using progression to AD as outcome. Within 4 years, plasma P-tau217 predicted AD accurately (area under the curve (AUC) = 0.83) in BioFINDER. Combining plasma P-tau217, memory, executive function and APOE produced higher accuracy (AUC = 0.91, P < 0.001). In ADNI, this model had similar AUC (0.90) using plasma P-tau181 instead of P-tau217. The model was implemented online for prediction of the individual probability of progressing to AD. Within 2 and 6 years, similar models had AUCs of 0.90-0.91 in both cohorts. Using cerebrospinal fluid P-tau, Aβ42/Aβ40 and neurofilament light instead of plasma biomarkers did not improve the accuracy significantly. The clinical predictions by memory clinic physicians had significantly lower accuracy (4-year AUC = 0.71). In summary, plasma P-tau, in combination with brief cognitive tests and APOE genotyping, might greatly improve the diagnostic prediction of AD and facilitate recruitment for AD trials.
Collapse
Affiliation(s)
- Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden. .,Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| | - Pontus Tideman
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Nicholas Cullen
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | | | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden. .,Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
152
|
Franzmeier N, Ossenkoppele R, Brendel M, Rubinski A, Smith R, Kumar A, Mattsson-Carlgren N, Strandberg O, Duering M, Buerger K, Dichgans M, Hansson O, Ewers M. The BIN1 rs744373 Alzheimer's disease risk SNP is associated with faster Aβ-associated tau accumulation and cognitive decline. Alzheimers Dement 2021; 18:103-115. [PMID: 34060233 DOI: 10.1002/alz.12371] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/16/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The BIN1 rs744373 single nucleotide polymorphism (SNP) is a key genetic risk locus for Alzheimer's disease (AD) associated with tau pathology. Because tau typically accumulates in response to amyloid beta (Aβ), we tested whether BIN1 rs744373 accelerates Aβ-related tau accumulation. METHODS We included two samples (Alzheimer's Disease Neuroimaging Initiative [ADNI], n = 153; Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably [BioFINDER], n = 63) with longitudinal 18 F-Flortaucipir positron emission tomography (PET), Aβ biomarkers, and longitudinal cognitive assessments. We assessed whether BIN1 rs744373 was associated with faster tau-PET accumulation at a given level of Aβ and whether faster BIN1 rs744373-associated tau-PET accumulation mediated cognitive decline. RESULTS BIN1 rs744373 risk-allele carriers showed faster global tau-PET accumulation (ADNI/BioFINDER, P < .001/P < .001). We found significant Aβ by rs744373 interactions on global tau-PET change (ADNI: β/standard error [SE] = 0.42/0.14, P = 0.002; BioFINDER: β/SE = -0.35/0.15, P = .021), BIN1 risk-allele carriers showed accelerated tau-PET accumulation at higher Aβ levels. In ADNI, rs744373 effects on cognitive decline were mediated by faster global tau-PET accumulation (β/SE = 0.20/0.07, P = .005). DISCUSSION BIN1-associated AD risk is potentially driven by accelerated tau accumulation in the face of Aβ.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anna Rubinski
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Atul Kumar
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Marco Duering
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,Medical Image Analysis Center (MIAC AG), Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | |
Collapse
|
153
|
Campbell MR, Ashrafzadeh‐Kian S, Petersen RC, Mielke MM, Syrjanen JA, van Harten AC, Lowe VJ, Jack CR, Bornhorst JA, Algeciras‐Schimnich A. P-tau/Aβ42 and Aβ42/40 ratios in CSF are equally predictive of amyloid PET status. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12190. [PMID: 34027020 PMCID: PMC8129859 DOI: 10.1002/dad2.12190] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Measurement of amyloid beta (Aβ40 and Aβ42) and tau (phosphorylated tau [p-tau] and total tau [t-tau]) in cerebrospinal fluid (CSF) can be utilized to differentiate clinical and preclinical Alzheimer's disease dementia (AD) from other neurodegenerative processes. METHODS CSF biomarkers were measured in 150 participants from the Mayo Clinic Study of Aging and the Alzheimer's Disease Research Center. P-tau/Aβ42 (Roche Elecsys, Fujirebio LUMIPULSE) and Aβ42/40 (Fujirebio LUMIPULSE) ratios were compared to one another and to amyloid positron emission tomography (PET) classification. RESULTS Strong correlation was observed between LUMIPULSE p-tau/Aβ42 and Aβ42/40, as well as Elecsys and LUMIPULSE p-tau/Aβ42 and Aβ42/40 (Spearman's ρ = -0.827, -0.858, and 0.960, respectively). Concordance between LUMIPULSE p-tau/Aβ42 and Aβ42/40 was 96% and between Elecsys p-tau/Aβ42 and both LUMIPULSE ratios was 97%. All ratios had > 94% overall, positive, and negative percent agreement with amyloid PET classification. DISCUSSION These data suggest that p-tau/Aβ42 and Aβ42/40 ratios provide similar clinical information in the assessment of amyloid pathology.
Collapse
Affiliation(s)
| | | | | | - Michelle M. Mielke
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Jeremy A. Syrjanen
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Argonde C. van Harten
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Alzheimer Center and Neurochemical laboratoryAmsterdam UMCAmsterdamthe Netherlands
| | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | - Joshua A. Bornhorst
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
154
|
Marcucci V, Kleiman J. Biomarkers and Their Implications in Alzheimer’s Disease: A Literature Review. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021; 000:000-000. [DOI: 10.14218/erhm.2021.00016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
155
|
Zhang X, Fu Q. [Correlation of cerebrospinal fluid amyloid β-protein 42 and neurofilament light protein levels with postoperative neurocognitive dysfunction in elderly patients]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:574-578. [PMID: 33963718 DOI: 10.12122/j.issn.1673-4254.2021.04.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To detect cerebrospinal fluid levels of amyloid beta- protein 42 (Aβ42) and neurofilament light protein (NFL) and explore their correlation with postoperative neurocognitive dysfunction (PNCD) in elderly patients. OBJECTIVE A total of 90 elderly patients undergoing hip or knee replacement with joint epidural anesthesia in our Hospital between January, 2017 and December, 2018 were recruited in this study. The levels of Aβ42 and NFL in the cerebrospinal fluid were detected using ELISA. Simple cognitive status assessment scale (MMSE) was used to evaluate the cognitive status of the patients 1 day before and 7 days after the surgery. All the patients underwent neurocognitive function tests, and the z-score method was used to determine the occurrence of PNCD. Spearman rank correlation analysis was used to analyze the correlation of Aβ42 and NFL levels in the cerebrospinal fluid with MMSE scores. Receiver operating characteristic curve (ROC) was used to analyze the predictive value of cerebrospinal fluid Aβ42 and NFL levels for PNCD. OBJECTIVE PNCD occurred in 38 of the 90 elderly patients, with an incidence of 42.2%. The level of Aβ42 in the cerebrospinal fluid was significantly lower in PNCD group than in the nonPNCD group (1.96 vs 2.54 ng/mL; t=3.29, P < 0.05); the concentration of NFL in the cerebrospinal fluid was significantly higher in PNCD group than in non- PNCD group (4.59 vs 3.16 ng/mL; t=3.72, P < 0.05). Aβ42 level in the cerebrospinal fluid was positively correlated while NFL was negatively correlated with the MMSE score of the patients (r=-0.659, P < 0.05; r=-0.626, P < 0.05). ROC curve analysis showed that the area under the curve (AUC) of cerebrospinal fluid Aβ42 and NFL levels were 0.744 and 0.768, respectively; the AUC of their combination was 0.847 for prediction of PNCD. OBJECTIVE Elderly patients with PNCD have significantly higher levels of Aβ42 and NFL in the cerebrospinal fluid than those without PNCD. Both Aβ42 and NFL levels in the cerebrospinal fluid can help to predict the occurrence of POCD in elderly patients, and their combination has a higher diagnostic value.
Collapse
Affiliation(s)
- X Zhang
- Department of Anesthesiology, General Hospital of PLA, Beijing 100853, China
| | - Q Fu
- Department of Anesthesiology, General Hospital of PLA, Beijing 100853, China
| |
Collapse
|
156
|
Mielke MM, Przybelski SA, Lesnick TG, Kern S, Zetterberg H, Blennow K, Knopman DS, Graff-Radford J, Petersen RC, Jack CR, Vemuri P. Comparison of CSF neurofilament light chain, neurogranin, and tau to MRI markers. Alzheimers Dement 2021; 17:801-812. [PMID: 33663022 PMCID: PMC8119371 DOI: 10.1002/alz.12239] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION We determined whether cerebrospinal fluid (CSF) neurofilament light (NfL), neurogranin (Ng), and total-tau (t-tau) differentially mapped to magnetic resonance imaging (MRI) measures of cortical thickness, microstructural integrity (corpus callosum and cingulum fractional anisotropy [FA]), and white matter hyperintensities (WMH). METHODS Analyses included 536 non-demented Mayo Clinic Study of Aging participants with CSF NfL, Ng, t-tau, amyloid beta (Aβ)42 and longitudinal MRI scans. Linear mixed models assessed longitudinal associations between CSF markers and MRI changes. RESULTS Higher CSF NfL was associated with decreasing microstructural integrity and WMH. Higher t-tau was associated with decreasing temporal lobe and Alzheimer's disease (AD) meta region of interest (ROI) cortical thickness. There was no association between Ng and any MRI measure. CSF Aβ42 interacted with Ng for declines in temporal lobe and AD meta ROI cortical thickness and cingulum FA. DISCUSSION CSF NfL predicts changes in white matter integrity, t-tau reflects non-specific changes in cortical thickness, and Ng reflects AD-specific synaptic and neuronal degeneration.
Collapse
Affiliation(s)
- Michelle M. Mielke
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Silke Kern
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | | | - Ronald C. Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
157
|
Willemse EAJ, Tijms BM, van Berckel BNM, Le Bastard N, van der Flier WM, Scheltens P, Teunissen CE. Comparing CSF amyloid-beta biomarker ratios for two automated immunoassays, Elecsys and Lumipulse, with amyloid PET status. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12182. [PMID: 33969174 PMCID: PMC8088096 DOI: 10.1002/dad2.12182] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION We evaluated for two novel automated biomarker assays how cerebrospinal fluid (CSF) amyloid beta (Aβ)1- 42-ratios improved the concordance with amyloid positron emission tomography (PET) positivity compared to Aβ1- 42 alone. METHODS We selected 288 individuals from the Amsterdam Dementia Cohort across the Alzheimer's disease clinical spectrum when they had both CSF and amyloid PET visual read available, regardless of diagnosis. CSF Aβ1- 42, phosphorylated tau (p-tau), and total tau (t-tau) were measured with Elecsys and Lumipulse assays, and Aβ1-40 with Lumipulse. CSF cut-points were defined using receiver operating characteristic (ROC) for amyloid PET positivity. RESULTS For both Elecsys and Lumipulse the p-tau/Aβ1- 42, Aβ1- 42/Aβ1- 40, and t-tau/Aβ1- 42 ratios showed similarly good concordance with amyloid PET (Elecsys: 93,90,90%; Lumipulse: 94,92,90%) and were higher than Aβ1- 42 alone (Elecsys 85%; Lumipulse 84%). DISCUSSION Biomarker ratios p-tau/Aβ1- 42, Aβ1- 42/Aβ1- 40, t-tau/Aβ1- 42 on two automated platforms show similar optimal concordance with amyloid PET in a memory clinic cohort.
Collapse
Affiliation(s)
- Eline A. J. Willemse
- Department of Clinical ChemistryNeurochemistry LaboratoryAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | - Betty M. Tijms
- Department of NeurologyAlzheimer CenterAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | - Bart N. M. van Berckel
- Department of Radiology & Nuclear MedicineAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | | | - Wiesje M. van der Flier
- Department of NeurologyAlzheimer CenterAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
- Department of Epidemiology and BiostatisticsAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | - Philip Scheltens
- Department of NeurologyAlzheimer CenterAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | - Charlotte E. Teunissen
- Department of Clinical ChemistryNeurochemistry LaboratoryAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| |
Collapse
|
158
|
Budelier MM, Bateman RJ. Biomarkers of Alzheimer Disease. J Appl Lab Med 2021; 5:194-208. [PMID: 31843944 DOI: 10.1373/jalm.2019.030080] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/31/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Alzheimer disease (AD) was once a clinical diagnosis confirmed by postmortem autopsy. Today, with the development of AD biomarkers, laboratory assays to detect AD pathology are able to complement clinical diagnosis in symptomatic individuals with uncertain diagnosis. A variety of commercially available assays are performed as laboratory-developed tests, and many more are in development for both clinical and research purposes. CONTENT The role of laboratory medicine in diagnosing and managing AD is expanding; thus, it is important for laboratory professionals and ordering physicians to understand the strengths and limitations of both existing and emerging AD biomarker assays. In this review, we will provide an overview of the diagnosis of AD, discuss existing laboratory assays for AD and their recommended use, and examine the clinical performance of emerging AD biomarkers. SUMMARY The field of AD biomarker discovery and assay development is rapidly evolving, with recent studies promising to improve both the diagnosis of symptomatic individuals and enrollment and monitoring of asymptomatic individuals in research studies. However, care must be taken to ensure proper use and interpretation of these assays. For clinical purposes, these assays are meant to aid in diagnosis but are not themselves diagnostic. For individuals without symptoms, AD biomarker tests are still only appropriate for research purposes. Additionally, there are analytical challenges that require careful attention, especially for longitudinal use of AD tests.
Collapse
Affiliation(s)
- Melissa M Budelier
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
159
|
Cano A, Turowski P, Ettcheto M, Duskey JT, Tosi G, Sánchez-López E, García ML, Camins A, Souto EB, Ruiz A, Marquié M, Boada M. Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer's disease: from current to future challenges. J Nanobiotechnology 2021; 19:122. [PMID: 33926475 PMCID: PMC8086346 DOI: 10.1186/s12951-021-00864-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing life expectancy has led to an aging population, which has consequently increased the prevalence of dementia. Alzheimer's disease (AD), the most common form of dementia worldwide, is estimated to make up 50-80% of all cases. AD cases are expected to reach 131 million by 2050, and this increasing prevalence will critically burden economies and health systems in the next decades. There is currently no treatment that can stop or reverse disease progression. In addition, the late diagnosis of AD constitutes a major obstacle to effective disease management. Therefore, improved diagnostic tools and new treatments for AD are urgently needed. In this review, we investigate and describe both well-established and recently discovered AD biomarkers that could potentially be used to detect AD at early stages and allow the monitoring of disease progression. Proteins such as NfL, MMPs, p-tau217, YKL-40, SNAP-25, VCAM-1, and Ng / BACE are some of the most promising biomarkers because of their successful use as diagnostic tools. In addition, we explore the most recent molecular strategies for an AD therapeutic approach and nanomedicine-based technologies, used to both target drugs to the brain and serve as devices for tracking disease progression diagnostic biomarkers. State-of-the-art nanoparticles, such as polymeric, lipid, and metal-based, are being widely investigated for their potential to improve the effectiveness of both conventional drugs and novel compounds for treating AD. The most recent studies on these nanodevices are deeply explained and discussed in this review.
Collapse
Affiliation(s)
- Amanda Cano
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades, International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain.
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College of London, London, UK
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Umberto Veronesi Foundation, 20121, Milano, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Maria Luisa García
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades, International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades, International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades, International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
160
|
Hou XH, Xu W, Bi YL, Shen XN, Ma YH, Dong Q, Tan L, Yu JT. Associations of healthy lifestyles with cerebrospinal fluid biomarkers of Alzheimer's disease pathology in cognitively intact older adults: the CABLE study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:81. [PMID: 33875016 PMCID: PMC8056495 DOI: 10.1186/s13195-021-00822-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/06/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We aimed to investigate the associations between healthy lifestyles and Alzheimer's disease (AD) biomarkers in cerebrospinal fluid (CSF). METHODS A total of 1108 cognitively intact individuals from Chinese Alzheimer's Biomarker and LifestylE (CABLE) study were examined to evaluate the associations of AD biomarkers with healthy lifestyle factors, including no current smoking, no harmful drinking, absence of social isolation, and regular physical activity. The participants were categorized into groups of favorable, intermediate, and unfavorable lifestyles according to the lifestyle factors. The associations between overall lifestyle and CSF biomarkers were also analyzed. RESULTS Among cognitively intact older adults, those having more social engagement had lower CSF tau (p = 0.009) and p-tau (p < 0.001) than those who had social isolation. Regular physical activity was associated with higher CSF Aβ42 (p = 0.013) and lower levels of CSF tau (p = 0.036) and p-tau (p = 0.007). However, no significant associations were found of smoking status or alcohol intake with CSF biomarkers. When the overall lifestyle of the participants was evaluated by all the four lifestyle factors, favorable lifestyle profiles were related to lower levels of CSF tau (p < 0.001) and p-tau (p < 0.001). CONCLUSIONS These findings suggest that healthy lifestyles had a beneficial effect on AD pathology among cognitively intact elders.
Collapse
Affiliation(s)
- Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
161
|
Xu W, Feng W, Shen XN, Bi YL, Ma YH, Li JQ, Dong Q, Tan L, Yu JT. Amyloid Pathologies Modulate the Associations of Minimal Depressive Symptoms With Cognitive Impairments in Older Adults Without Dementia. Biol Psychiatry 2021; 89:766-775. [PMID: 32980133 DOI: 10.1016/j.biopsych.2020.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The relationship between depression and Alzheimer's disease (AD) is complex and still not well understood. We aimed to examine the roles of the AD core pathologies in modulating the associations of minimal depressive symptoms (MDSs) with cognitive impairments. METHODS A total of 721 participants who had measures of cognition, depressive symptoms, and cerebrospinal fluid AD biomarkers were included from the CABLE (Chinese Alzheimer's Biomarker and LifestylE) study. Causal mediation analyses with 10,000 bootstrapped iterations were conducted to explore the mediation effects of AD pathologies on cognition. The ADNI (Alzheimer's Disease Neuroimaging Initiative) was used 1) to replicate the mediation effects and 2) to examine the longitudinal relationships of MDSs with amyloid pathology and incident AD risk. RESULTS In CABLE, MDSs were associated with poorer global cognition (p = .006) and higher amyloid burden as indicated by cerebrospinal fluid amyloid markers (p < .0001). The influence of MDSs on cognition was partially mediated by amyloid pathology (a maximum of 85%). The mediation effects were replicated in 725 elderly persons without dementia (age, mean ± SD = 73.5 ± 6.9 years; 301 female subjects [42%]) in ADNI, such that the mediation percentage varied from 10% to 30% for general cognition, memory, and executive functions. Longitudinal analyses revealed a bidirectional relationship between MDSs and amyloid pathology (p = .01). MDSs were associated with 83% increased risk of developing AD dementia (hazard ratio = 1.83, p < .01). CONCLUSIONS Overall, amyloid pathology might partially mediate and magnify the influences of MDSs on cognitive impairments and AD risk.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Feng
- Department of Psychological Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jie-Qiong Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | | | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
162
|
Baiardi S, Pizza F, Polischi B, Moresco M, Abu-Rumeileh S, Plazzi G, Parchi P. Cerebrospinal fluid biomarkers of neurodegeneration in narcolepsy type 1. Sleep 2021; 43:5573415. [PMID: 31552425 DOI: 10.1093/sleep/zsz215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/27/2019] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES To measure the levels of five neurodegenerative biomarkers in the cerebrospinal fluid (CSF) of patients with narcolepsy type 1 (NT1) with variable disease duration. METHODS Following a standardized protocol of CSF collection and storage, we measured CSF total- and phosphorylated-tau, amyloid-beta 1-40 and 1-42, and neurofilament light chain (NfL) proteins in 30 nonneurological controls and 36 subjects with NT1, including 14 patients with recent disease onset (i.e. ≤12 months, short disease duration group). RESULTS CSF levels of all biomarkers were similar in NT1 subjects and controls. The comparison between NT1 with short and long disease duration only revealed slightly higher levels of CSF amyloid-beta 1-40 in the former group (median 9,549.5, interquartile range [IQR] 7,064.2-11,525.0 vs. 6,870.0, IQR 5,133.7-9,951.2, p = 0.043). CSF storage time did not influence the levels of the tested biomarkers. CONCLUSIONS The measurement of CSF total-tau, phosphorylated-tau, amyloid-beta 1-40 and 1-42, and NfL proteins is not informative in NT1.
Collapse
Affiliation(s)
- Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Barbara Polischi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Monica Moresco
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Samir Abu-Rumeileh
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
163
|
Tzekaki EE, Tsolaki M, Pantazaki ΑA, Geromichalos G, Lazarou E, Kozori M, Sinakos Z. The pleiotropic beneficial intervention of olive oil intake on the Alzheimer's disease onset via fibrinolytic system. Exp Gerontol 2021; 150:111344. [PMID: 33836262 DOI: 10.1016/j.exger.2021.111344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 12/31/2022]
Abstract
The daily consumption of Extra Virgin Olive Oil (EVOO) in Mediterranean nutrition is tightly associated with lower frequency of many diseases' appearance, including Alzheimer's disease (AD). Fibrinolytic system is already assumed to be involved in AD pathophysiology through various factors, especially plasminogen activator inhibitor-1 (PAI-1), a2-antiplasmin (α2ΑP) and tissue plasminogen activator (tPA). We, here, present a biochemical study, as a continuation of a clinical trial of a cohort of 84 participants, focusing on the pleiotropic effect of the annual EVOO consumption on the fibrinolytic factors of Mild Cognitive Impairment (MCI) patients. The levels of all these fibrinolytic factors, measured by Enzyme-Linked Immunosorbent Assay (ELISA) method, were reduced in the serum of MCI patients annually administered with EVOO, versus not treated MCI patients, as well as AD patients. The well-established AD hallmarks (Aβ1-40 and Aβ1-42 species, tau, and p-tau) of MCI patients' group, annually administered with EVOO, were restored to levels equal to those of the cognitively-healthy group; in contrast to those patients not being administered, and their AD hallmarks levels increased at the end of the year. Moreover, one of the EVOO annual consumption multimodal effects on the MCI patients focused on the levels of an oxidative stress trademark, malondialdehyde (MDA), which displayed also a visible quenching; On the other hand, an increase exhibited in the MCI patients not consuming EVOO one year after, was attributed to the lack of the EVOO anti-oxidative properties. These outcomes are exploitable towards the establishment of natural products like EVOO, as a preventive remedy fighting this neurodegenerative disorder, AD. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT03362996 MICOIL gov Identifier: NCT03362996.
Collapse
Affiliation(s)
- Elena E Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Makedonia, Greece
| | - Magda Tsolaki
- 1(st) Department of Neurology, Medical School, "AHEPA" General Hospital Medical School, Aristotle University of Thessaloniki, Faculty of Health Sciences, 54124 Thessaloniki, Makedonia, Greece; Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece.
| | - Αnastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Makedonia, Greece.
| | - George Geromichalos
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Makedonia, Greece
| | - Eftychia Lazarou
- Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece
| | - Mahi Kozori
- Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece
| | - Zacharias Sinakos
- Emeritus Professor of Hematology, Medical School, Aristotle University of Thessaloniki, Faculty of Health Sciences, Greece
| |
Collapse
|
164
|
Mentis AFA, Dardiotis E, Chrousos GP. Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Mol Psychiatry 2021; 26:1075-1097. [PMID: 32355332 PMCID: PMC7985019 DOI: 10.1038/s41380-020-0731-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
The potential existence and roles of the meningeal lymphatic system in normal and pathological brain function have been a long-standing enigma. Recent evidence suggests that meningeal lymphatic vessels are present in both the mouse and human brain; in mice, they seem to play a role in clearing toxic amyloid-beta peptides, which have been connected with Alzheimer disease (AD). Here, we review the evidence linking the meningeal lymphatic system with human AD. Novel findings suggest that the recently described meningeal lymphatic vessels could be linked to, and possibly drain, the efferent paravascular glial lymphatic (glymphatic) system carrying cerebrospinal fluid, after solute and immune cell exchange with brain interstitial fluid. In so doing, the glymphatic system could contribute to the export of toxic solutes and immune cells from the brain (an exported fluid we wish to describe as glymph, similarly to lymph) to the meningeal lymphatic system; the latter, by being connected with downstream anatomic regions, carries the glymph to the conventional cervical lymphatic vessels and nodes. Thus, abnormal function in the meningeal lymphatic system could, in theory, lead to the accumulation, in the brain, of amyloid-beta, cellular debris, and inflammatory mediators, as well as immune cells, resulting in damage of the brain parenchyma and, in turn, cognitive and other neurologic dysfunctions. In addition, we provide novel insights into APOE4-the leading genetic risk factor for AD-and its relation to the meningeal lymphatic system. In this regard, we have reanalyzed previously published RNA-Seq data to show that induced pluripotent stem cells (iPSCs) carrying the APOE4 allele (either as APOE4 knock-in or stemming from APOE4 patients) express lower levels of (a) genes associated with lymphatic markers, and (b) genes for which well-characterized missense mutations have been linked to peripheral lymphedema. Taking into account this evidence, we propose a new conceptual framework, according to which APOE4 could play a novel role in the premature shrinkage of meningeal lymphatic vessels (meningeal lymphosclerosis), leading to abnormal meningeal lymphatic functions (meningeal lymphedema), and, in turn, reduction in the clearance of amyloid-beta and other macromolecules and inflammatory mediators, as well as immune cells, from the brain, exacerbation of AD manifestations, and progression of the disease. Altogether, these findings and their potential interpretations may herald novel diagnostic tools and therapeutic approaches in patients with AD.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Vas. Sofias Avenue 127, 115 21, Athens, Greece.
- Department of Microbiology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece.
| | - Efthimios Dardiotis
- Department of Neurology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Livadias 8, 115 27, Athens, Greece
- UNESCO Chair on Adolescent Health Care, Athens, Greece
| |
Collapse
|
165
|
Álvarez I, Diez-Fairen M, Aguilar M, González JM, Ysamat M, Tartari JP, Carcel M, Alonso A, Brix B, Arendt P, Pastor P. Added value of cerebrospinal fluid multimarker analysis in diagnosis and progression of dementia. Eur J Neurol 2021; 28:1142-1152. [PMID: 33236496 DOI: 10.1111/ene.14658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Recently, some emerging cerebrospinal fluid (CSF) markers have been proposed as diagnostic tools for Alzheimer disease (AD) that can have an effect on disease progression. We analyze the accuracy of these CSF markers for diagnosis of AD in reference to brain amyloid positron emission tomography (PET). We also investigated whether they help in differentiating AD from other dementias and examined their influence in tracing the progression to dementia. METHODS Amyloid-β (Aβ) 1-42, total tau (t-tau), phosphorylated tau, Aβ40 , Aβ38 , beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1), neurogranin (ng), phosphorylated neurofilament heavy-chain, and α-synuclein (α-syn) CSF levels were analyzed in 319 subjects, among whom 57 also underwent an amyloid PET scan. We also analyzed longitudinal clinical data from 239 subjects. RESULTS Emerging CSF markers, especially ng/BACE-1 ratio (area under the curve = 0.77) and their combinations with core AD CSF markers (all AUCs >0.85), showed high accuracy to discriminate amyloid PET positivity. Subjects with AD had higher CSF BACE-1, ng, and α-syn levels than those with non-AD dementia. CSF t-tau/α-syn ratio was higher in subjects with dementia with Lewy bodies than in those with frontotemporal dementia. Most emerging/core AD ratios predicted a faster conversion from mild cognitive impairment (MCI) stage to AD and appeared to be helpful when core AD CSF markers were discordant. In addition, the rate of cognitive decline was associated with all CSF core AD markers, several emerging/core AD two-marker ratios, and CSF ng levels. CONCLUSIONS These results suggest that emerging biomarkers in conjunction with core AD markers improve diagnosis of AD, are associated with the conversion from MCI into AD, and predict a faster progression of dementia.
Collapse
Affiliation(s)
- Ignacio Álvarez
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Monica Diez-Fairen
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Miquel Aguilar
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Jose Manuel González
- Centre de Tecnologia Diagnòstica, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Montse Ysamat
- Centre de Tecnologia Diagnòstica, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Juan Pablo Tartari
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Maria Carcel
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Britta Brix
- Institute of Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck, Germany
| | - Philipp Arendt
- Institute of Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck, Germany
| | - Pau Pastor
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| |
Collapse
|
166
|
Craft S, Raman R, Chow TW, Rafii MS, Sun CK, Rissman RA, Donohue MC, Brewer JB, Jenkins C, Harless K, Gessert D, Aisen PS. Safety, Efficacy, and Feasibility of Intranasal Insulin for the Treatment of Mild Cognitive Impairment and Alzheimer Disease Dementia: A Randomized Clinical Trial. JAMA Neurol 2021; 77:1099-1109. [PMID: 32568367 DOI: 10.1001/jamaneurol.2020.1840] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Importance Insulin modulates aspects of brain function relevant to Alzheimer disease and can be delivered to the brain using intranasal devices. To date, the use of intranasal insulin to treat persons with mild cognitive impairment and Alzheimer's disease dementia remains to be examined in a multi-site trial. Objective To examine the feasibility, safety, and efficacy of intranasal insulin for the treatment of persons with mild cognitive impairment and Alzheimer disease dementia in a phase 2/3 multisite clinical trial. Design, Setting, and Participants A randomized (1:1) double-blind clinical trial was conducted between 2014 and 2018. Participants received 40 IU of insulin or placebo for 12 months during the blinded phase, which was followed by a 6-month open-label extension phase. The clinical trial was conducted at 27 sites of the Alzheimer's Therapeutic Research Institute. A total of 432 adults were screened, and 144 adults were excluded. Inclusion criteria included adults aged 55 to 85 years with a diagnosis of amnestic mild cognitive impairment or Alzheimer disease (based on National Institute on Aging-Alzheimer Association criteria), a score of 20 or higher on the Mini-Mental State Examination, a clinical dementia rating of 0.5 or 1.0, and a delayed logical memory score within a specified range. A total of 289 participants were randomized. Among the first 49 participants, the first device (device 1) used to administer intranasal insulin treatment had inconsistent reliability. A new device (device 2) was used for the remaining 240 participants, who were designated the primary intention-to-treat population. Data were analyzed from August 2018 to March 2019. Interventions Participants received 40 IU of insulin (Humulin-RU-100; Lilly) or placebo (diluent) daily for 12 months (blinded phase) followed by a 6-month open-label extension phase. Insulin was administered with 2 intranasal delivery devices. Main Outcomes and Measures The primary outcome (mean score change on the Alzheimer Disease Assessment Scale-cognitive subscale 12) was evaluated at 3-month intervals. Secondary clinical outcomes were assessed at 6-month intervals. Cerebrospinal fluid collection and magnetic resonance imaging scans occurred at baseline and 12 months. Results A total of 289 participants (155 men [54.6%]; mean [SD] age, 70.9 [7.1] years) were randomized. Of those, 260 participants completed the blinded phase, and 240 participants completed the open-label extension phase. For the first 49 participants, the first device used to administer treatment had inconsistent reliability. A second device was used for the remaining 240 participants (123 men [51.3%]; mean [SD] age, 70.8 [7.1] years), who were designated the primary intention-to-treat population. No differences were observed between treatment arms for the primary outcome (mean score change on ADAS-cog-12 from baseline to month 12) in the device 2 ITT cohort (0.0258 points; 95% CI, -1.771 to 1.822 points; P = .98) or for the other clinical or cerebrospinal fluid outcomes in the primary (second device) intention-to-treat analysis. No clinically important adverse events were associated with treatment. Conclusions and Relevance In this study, no cognitive or functional benefits were observed with intranasal insulin treatment over a 12-month period among the primary intention-to-treat cohort. Trial Registration ClinicalTrials.gov Identifier: NCT01767909.
Collapse
Affiliation(s)
- Suzanne Craft
- Department of Internal Medicine-Geriatrics, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Rema Raman
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego
| | - Tiffany W Chow
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego
| | - Michael S Rafii
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego
| | - Chung-Kai Sun
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego
| | - Robert A Rissman
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego.,Department of Neurosciences, University of California, San Diego, La Jolla
| | - Michael C Donohue
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego
| | - James B Brewer
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego.,Department of Neurosciences, University of California, San Diego, La Jolla
| | - Cecily Jenkins
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego
| | - Kelly Harless
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego
| | - Devon Gessert
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego
| | - Paul S Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego
| |
Collapse
|
167
|
Rosenberg A, Solomon A, Soininen H, Visser PJ, Blennow K, Hartmann T, Kivipelto M. Research diagnostic criteria for Alzheimer's disease: findings from the LipiDiDiet randomized controlled trial. ALZHEIMERS RESEARCH & THERAPY 2021; 13:64. [PMID: 33766132 PMCID: PMC7995792 DOI: 10.1186/s13195-021-00799-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/23/2021] [Indexed: 12/18/2022]
Abstract
Background To explore the utility of the International Working Group (IWG)-1 criteria in recruitment for Alzheimer’s disease (AD) clinical trials, we applied the more recently proposed research diagnostic criteria to individuals enrolled in a randomized controlled prevention trial (RCT) and assessed their disease progression. Methods The multinational LipiDiDiet RCT targeted 311 individuals with IWG-1 defined prodromal AD. Based on centrally analyzed baseline biomarkers, participants were classified according to the IWG-2 and National Institute on Aging–Alzheimer’s Association (NIA-AA) 2011 and 2018 criteria. Linear mixed models were used to investigate the 2-year change in cognitive and functional performance (Neuropsychological Test Battery NTB Z scores, Clinical Dementia Rating-Sum of Boxes CDR-SB) (criteria × time interactions; baseline score, randomization group, sex, Mini-Mental State Examination (MMSE), and age also included in the models). Cox models adjusted for randomization group, MMSE, sex, age, and study site were used to investigate the risk of progression to dementia over 2 years. Results In total, 88%, 86%, and 69% of participants had abnormal cerebrospinal fluid (CSF) β-amyloid, total tau, and phosphorylated tau, respectively; 64% had an A+T+N+ profile (CSF available for N = 107). Cognitive-functional decline appeared to be more pronounced in the IWG-2 prodromal AD, NIA-AA 2011 high and intermediate AD likelihood, and NIA-AA 2018 AD groups, but few significant differences were observed between the groups within each set of criteria. Hazard ratio (95% CI) for dementia was 4.6 (1.6–13.7) for IWG-2 prodromal AD (reference group no prodromal AD), 7.4 (1.0–54.7) for NIA-AA 2011 high AD likelihood (reference group suspected non-AD pathology SNAP), and 9.4 (1.2–72.7) for NIA-AA 2018 AD (reference group non-Alzheimer’s pathologic change). Compared with the NIA-AA 2011 high AD likelihood group (abnormal β-amyloid and neuronal injury markers), disease progression was similar in the intermediate AD likelihood group (medial temporal lobe atrophy; no CSF available). Conclusions Despite being less restrictive than the other criteria, the IWG-1 criteria reliably identified individuals with AD pathology. More pragmatic and easily applicable selection criteria might be preferred due to feasibility in certain situations, e.g., in multidomain prevention trials that do not specifically target β-amyloid/tau pathologies. Trial registration Netherlands Trial Register, NL1620. Registered on 9 March 2009
Collapse
Affiliation(s)
- Anna Rosenberg
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Alina Solomon
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Centre Limburg, University of Maastricht, Maastricht, Netherlands.,Department of Neurology, Alzheimer Centre, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, Netherlands
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Tobias Hartmann
- Deutsches Institut für Demenz Prävention (DIDP), Medical Faculty, and Department of Experimental Neurology, Saarland University, Homburg, Germany
| | - Miia Kivipelto
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | | |
Collapse
|
168
|
2020 update on the clinical validity of cerebrospinal fluid amyloid, tau, and phospho-tau as biomarkers for Alzheimer's disease in the context of a structured 5-phase development framework. Eur J Nucl Med Mol Imaging 2021; 48:2121-2139. [PMID: 33674895 PMCID: PMC8175301 DOI: 10.1007/s00259-021-05258-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
Purpose In the last decade, the research community has focused on defining reliable biomarkers for the early detection of Alzheimer’s disease (AD) pathology. In 2017, the Geneva AD Biomarker Roadmap Initiative adapted a framework for the systematic validation of oncological biomarkers to cerebrospinal fluid (CSF) AD biomarkers—encompassing the 42 amino-acid isoform of amyloid-β (Aβ42), phosphorylated-tau (P-tau), and Total-tau (T-tau)—with the aim to accelerate their development and clinical implementation. The aim of this work is to update the current validation status of CSF AD biomarkers based on the Biomarker Roadmap methodology. Methods A panel of experts in AD biomarkers convened in November 2019 at a 2-day workshop in Geneva. The level of maturity (fully achieved, partly achieved, preliminary evidence, not achieved, unsuccessful) of CSF AD biomarkers was assessed based on the Biomarker Roadmap methodology before the meeting and presented and discussed during the workshop. Results By comparison to the previous 2017 Geneva Roadmap meeting, the primary advances in CSF AD biomarkers have been in the area of a unified protocol for CSF sampling, handling and storage, the introduction of certified reference methods and materials for Aβ42, and the introduction of fully automated assays. Additional advances have occurred in the form of defining thresholds for biomarker positivity and assessing the impact of covariates on their discriminatory ability. Conclusions Though much has been achieved for phases one through three, much work remains in phases four (real world performance) and five (assessment of impact/cost). To a large degree, this will depend on the availability of disease-modifying treatments for AD, given these will make accurate and generally available diagnostic tools key to initiate therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05258-7.
Collapse
|
169
|
Mattsson-Carlgren N, Janelidze S, Palmqvist S, Cullen N, Svenningsson AL, Strandberg O, Mengel D, Walsh DM, Stomrud E, Dage JL, Hansson O. Longitudinal plasma p-tau217 is increased in early stages of Alzheimer's disease. Brain 2021; 143:3234-3241. [PMID: 33068398 PMCID: PMC7719022 DOI: 10.1093/brain/awaa286] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 11/25/2022] Open
Abstract
Plasma levels of tau phosphorylated at threonine-217 (p-tau217) is a candidate tool to monitor Alzheimer’s disease. We studied 150 cognitively unimpaired participants and 100 patients with mild cognitive impairment in the Swedish BioFINDER study. P-tau217 was measured repeatedly for up to 6 years (median three samples per person, median time from first to last sample, 4.3 years). Preclinical (amyloid-β-positive cognitively unimpaired, n = 62) and prodromal (amyloid-β-positive mild cognitive impairment, n = 49) Alzheimer’s disease had accelerated p-tau217 compared to amyloid-β-negative cognitively unimpaired (β = 0.56, P < 0.001, using linear mixed effects models) and amyloid-β-negative mild cognitive impairment patients (β = 0.67, P < 0.001), respectively. Mild cognitive impairment patients who later converted to Alzheimer’s disease dementia (n = 40) had accelerated p-tau217 compared to other mild cognitive impairment patients (β = 0.79, P < 0.001). P-tau217 did not change in amyloid-β-negative participants, or in patients with mild cognitive impairment who did not convert to Alzheimer’s disease dementia. For 80% power, 109 participants per arm were required to observe a slope reduction in amyloid-β-positive cognitively unimpaired (71 participants per arm in amyloid-β-positive mild cognitive impairment). Longitudinal increases in p-tau217 correlated with longitudinal worsening of cognition and brain atrophy. In summary, plasma p-tau217 increases during early Alzheimer’s disease and can be used to monitor disease progression.
Collapse
Affiliation(s)
- Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Nicholas Cullen
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Anna L Svenningsson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - David Mengel
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Erik Stomrud
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
170
|
McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, Brown J, Anderson-Jackson L, Williams L, Latore L, Thompson R, Alexander-Lindo R. Cerebrospinal Fluid Biomarkers of Alzheimer's Disease: Current Evidence and Future Perspectives. Brain Sci 2021; 11:215. [PMID: 33578866 PMCID: PMC7916561 DOI: 10.3390/brainsci11020215] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer's disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer's disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer's disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer's disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.
Collapse
Affiliation(s)
- Donovan A. McGrowder
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Fabian Miller
- Department of Physical Education, Faculty of Education, The Mico University College, 1A Marescaux Road, Kingston 5, Jamaica;
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Kurt Vaz
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Cameil Wilson-Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Melisa Anderson-Cross
- School of Allied Health and Wellness, College of Health Sciences, University of Technology, Kingston 7, Jamaica;
| | - Jabari Brown
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lennox Anderson-Jackson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lowen Williams
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Lyndon Latore
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Rory Thompson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Ruby Alexander-Lindo
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| |
Collapse
|
171
|
Keshavan A, Wellington H, Chen Z, Khatun A, Chapman M, Hart M, Cash DM, Coath W, Parker TD, Buchanan SM, Keuss SE, Harris MJ, Murray‐Smith H, Heslegrave A, Fox NC, Zetterberg H, Schott JM. Concordance of CSF measures of Alzheimer's pathology with amyloid PET status in a preclinical cohort: A comparison of Lumipulse and established immunoassays. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12131. [PMID: 33598527 PMCID: PMC7867115 DOI: 10.1002/dad2.12131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/19/2023]
Abstract
INTRODUCTION We assessed the concordance of cerebrospinal fluid (CSF) amyloid beta (Aβ) and tau measured on the fully automated Lumipulse platform with pre-symptomatic Alzheimer's disease (AD) pathology on amyloid positron emission tomography (PET). METHODS In 72 individuals from the Insight 46 study, CSF Aβ40, Aβ42, total tau (t-tau), and phosphorylated tau at site 181 (p-tau181) were measured using Lumipulse, INNOTEST, and Meso Scale Discovery (MSD) assays and inter-platform Pearson correlations derived. Lumipulse Aβ42 measures were adjusted to incorporate standardization to certified reference materials. Logistic regressions and receiver operating characteristics analysis generated CSF cut-points optimizing concordance with 18F-florbetapir amyloid PET status (n = 63). RESULTS Measurements of CSF Aβ, p-tau181, and their ratios correlated well across platforms (r 0.84 to 0.94, P < .0001); those of t-tau and t-tau/Aβ42 correlated moderately (r 0.57 to 0.79, P < .0001). The best concordance with amyloid PET (100% sensitivity and 94% specificity) was afforded by cut-points of 0.075 for Lumipulse Aβ42/Aβ40, 0.087 for MSD Aβ42/Aβ40 and 17.3 for Lumipulse Aβ42/p-tau181. DISCUSSION The Lumipulse platform provides comparable sensitivity and specificity to established CSF immunoassays in identifying pre-symptomatic AD pathology.
Collapse
Affiliation(s)
- Ashvini Keshavan
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Henrietta Wellington
- UK Dementia Research Institute Fluid Biomarkers LaboratoryUK DRI at University College LondonLondonUK
| | - Zhongbo Chen
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Ayesha Khatun
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Miles Chapman
- Neuroimmunology and CSF LaboratoryNational Hospital for Neurology and NeurosurgeryLondonUK
| | - Melanie Hart
- Neuroimmunology and CSF LaboratoryNational Hospital for Neurology and NeurosurgeryLondonUK
- Department of NeuroinflammationUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - David M. Cash
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - William Coath
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Thomas D. Parker
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Sarah M. Buchanan
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Sarah E. Keuss
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Matthew J. Harris
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Heidi Murray‐Smith
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Amanda Heslegrave
- UK Dementia Research Institute Fluid Biomarkers LaboratoryUK DRI at University College LondonLondonUK
| | - Nick C. Fox
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Henrik Zetterberg
- UK Dementia Research Institute Fluid Biomarkers LaboratoryUK DRI at University College LondonLondonUK
- Clinical Neurochemistry Laboratory, Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University HospitalMölndalSweden
| | - Jonathan M Schott
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| |
Collapse
|
172
|
Arber C, Alatza A, Leckey CA, Paterson RW, Zetterberg H, Wray S. Mass spectrometry analysis of tau and amyloid-beta in iPSC-derived models of Alzheimer's disease and dementia. J Neurochem 2021; 159:305-317. [PMID: 33539581 PMCID: PMC8613538 DOI: 10.1111/jnc.15315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Induced pluripotent stem cell (iPSC) technology enables the generation of human neurons in vitro, which contain the precise genome of the cell donor, therefore permitting the generation of disease models from individuals with a disease-associated genotype of interest. This approach has been extensively used to model inherited forms of Alzheimer's disease and frontotemporal dementia. The combination of iPSC-derived neuronal models with targeted mass spectrometry analysis has provided unprecedented insights into the regulation of specific proteins in human neuronal physiology and pathology. For example enabling investigations into tau and APP/Aβ, specifically: protein isoform expression, relative levels of cleavage fragments, aggregated species and functionally critical post-translational modifications. The use of mass spectrometry has enabled a determination of how closely iPSC-derived models recapitulate disease profiles observed in the human brain. This review will highlight the progress to date in studies using iPSCs and mass spectrometry to model Alzheimer's disease and dementia. We go on to convey our optimism, as studies in the near future will make use of this precedent, together with novel techniques such as genome editing and stable isotope labelling, to provide real progress towards an in depth understanding of early neurodegenerative processes and development of novel therapeutic agents.
Collapse
Affiliation(s)
- Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Argyro Alatza
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Claire A Leckey
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.,Translational Mass Spectrometry Research Group, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Ross W Paterson
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
173
|
Amponsah AE, Guo R, Kong D, Feng B, He J, Zhang W, Liu X, Du X, Ma Z, Liu B, Ma J, Cui H. Patient-derived iPSCs, a reliable in vitro model for the investigation of Alzheimer's disease. Rev Neurosci 2021; 32:379-402. [PMID: 33550785 DOI: 10.1515/revneuro-2020-0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and a common cause of dementia among elderly individuals. The disease is characterized by progressive cognitive decline, accumulation of senile amyloid plaques and neurofibrillary tangles, oxidative stress, and inflammation. Human-derived cell models of AD are scarce, and over the years, non-human-derived models have been developed to recapitulate clinical AD, investigate the disease's pathogenesis and develop therapies for the disease. Several pharmacological compounds have been developed for AD based on findings from non-human-derived cell models; however, these pharmacological compounds have failed at different phases of clinical trials. This necessitates the application of human-derived cell models, such as induced pluripotent stem cells (iPSCs) in their optimized form in AD mechanistic studies and preclinical drug testing. This review provides an overview of AD and iPSCs. The AD-relevant phenotypes of iPSC-derived AD brain cells and the usefulness of iPSCs in AD are highlighted. Finally, the various recommendations that have been made to enhance iPSC/AD modelling are discussed.
Collapse
Affiliation(s)
- Asiamah Ernest Amponsah
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Desheng Kong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Jingjing He
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Wei Zhang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Xin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Xiaofeng Du
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Zhenhuan Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Boxin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China.,Human Anatomy Department, Hebei Medical University, Shijiazhuang, Hebei Province050017, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China.,Human Anatomy Department, Hebei Medical University, Shijiazhuang, Hebei Province050017, China
| |
Collapse
|
174
|
Camporesi E, Lashley T, Gobom J, Lantero-Rodriguez J, Hansson O, Zetterberg H, Blennow K, Becker B. Neuroligin-1 in brain and CSF of neurodegenerative disorders: investigation for synaptic biomarkers. Acta Neuropathol Commun 2021; 9:19. [PMID: 33522967 PMCID: PMC7852195 DOI: 10.1186/s40478-021-01119-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/09/2021] [Indexed: 02/02/2023] Open
Abstract
Synaptic pathology is a central event in Alzheimer’s disease (AD) and other neurodegenerative conditions, and investigation of synaptic proteins can provide valuable tools to follow synaptic dysfunction and loss in these diseases. Neuroligin-1 (Nlgn1) is a postsynaptic cell adhesion protein, important for synapse stabilization and formation. Nlgn1 has been connected to cognitive disorders, and specifically to AD, as target of the synaptotoxic effect of amyloid-β (Aβ) oligomers and Aβ fibrils. To address changes in Nlgn1 expression in human brain, brain regions in different neurological disorders were examined by Western blot and mass spectrometry. Brain specimens from AD (n = 23), progressive supranuclear palsy (PSP, n = 11), corticobasal degeneration (CBD, n = 10), and Pick’s disease (PiD, n = 9) were included. Additionally, cerebrospinal fluid (CSF) samples of AD patients (n = 43) and non-demented controls (n = 42) were analysed. We found decreased levels of Nlgn1 in temporal and parietal cortex (~ 50–60% reductions) in AD brains compared with controls. In frontal grey matter the reduction was not seen for AD patients; however, in the same region, marked reduction was found for PiD (~ 77%), CBD (~ 66%) and to a lesser extent for PSP (~ 43%), which could clearly separate these tauopathies from controls. The Nlgn1 level was reduced in CSF from AD patients compared to controls, but with considerable overlap. The dramatic reduction of Nlgn1 seen in the brain extracts of tauopathies warrants further investigation regarding the potential use of Nlgn1 as a biomarker for these neurodegenerative diseases.
Collapse
|
175
|
Lindberg O, Kern S, Skoog J, Machado A, Pereira JB, Sacuiu SF, Wahlund LO, Blennow K, Zetterberg H, Zettergren A, Westman E, Skoog I. Effects of amyloid pathology and the APOE ε4 allele on the association between cerebrospinal fluid Aβ38 and Aβ40 and brain morphology in cognitively normal 70-years-olds. Neurobiol Aging 2021; 101:1-12. [PMID: 33548794 DOI: 10.1016/j.neurobiolaging.2020.10.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 11/25/2022]
Abstract
The association between cerebrospinal fluid (CSF) amyloid beta (Aβ) Aβ38 or Aβ40 and brain grey- and white matter integrity is poorly understood. We studied this in 213 cognitively normal 70-year-olds, and in subgroups defined by presence/absence of the APOE ε4 allele and Aβ pathology: Aβ-/APOE-, Aβ+/APOE-, Aβ-/APOE+ and Aβ+/APOE+. CSF Aβ was quantified using ELISA and genotyping for APOE was performed. Low CSF Aβ42 defined Aβ plaque pathology. Brain volumes were assessed using Freesurfer-5.3, and white matter integrity using tract-based statistics in FSL. Aβ38 and Aβ40 were positively correlated with cortical thickness, some subcortical volumes and white matter integrity in the total sample, and in 3 of the subgroups: Aβ-/APOE-, Aβ+/APOE- and Aβ-/APOE+. In Aβ+/APOE+ subjects, higher Aβ38 and Aβ40 were linked to reduced cortical thickness and subcortical volumes. We hypothesize that production of all Aβ species decrease in brain regions with atrophy. In Aβ+/APOE+, Aβ-dysregulation may be linked to cortical atrophy in which high Aβ levels is causing pathological changes in the gray matter of the brain.
Collapse
Affiliation(s)
- Olof Lindberg
- Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Silke Kern
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry Cognition and Old Age Psychiatry Clinic, Mölndal, Sweden; Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Mölndal, Sweden
| | - Johan Skoog
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry Cognition and Old Age Psychiatry Clinic, Mölndal, Sweden; Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Mölndal, Sweden; Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Alejandra Machado
- Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Joana B Pereira
- Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Simona F Sacuiu
- Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry Cognition and Old Age Psychiatry Clinic, Mölndal, Sweden; Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Mölndal, Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Mölndal, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ingmar Skoog
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry Cognition and Old Age Psychiatry Clinic, Mölndal, Sweden; Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
176
|
Trelle AN, Carr VA, Wilson EN, Swarovski MS, Hunt MP, Toueg TN, Tran TT, Channappa D, Corso NK, Thieu MK, Jayakumar M, Nadiadwala A, Guo W, Tanner NJ, Bernstein JD, Litovsky CP, Guerin SA, Khazenzon AM, Harrison MB, Rutt BK, Deutsch GK, Chin FT, Davidzon GA, Hall JN, Sha SJ, Fredericks CA, Andreasson KI, Kerchner GA, Wagner AD, Mormino EC. Association of CSF Biomarkers With Hippocampal-Dependent Memory in Preclinical Alzheimer Disease. Neurology 2021; 96:e1470-e1481. [PMID: 33408146 DOI: 10.1212/wnl.0000000000011477] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To determine whether memory tasks with demonstrated sensitivity to hippocampal function can detect variance related to preclinical Alzheimer disease (AD) biomarkers, we examined associations between performance in 3 memory tasks and CSF β-amyloid (Aβ)42/Aβ40 and phosopho-tau181 (p-tau181) in cognitively unimpaired older adults (CU). METHODS CU enrolled in the Stanford Aging and Memory Study (n = 153; age 68.78 ± 5.81 years; 94 female) completed a lumbar puncture and memory assessments. CSF Aβ42, Aβ40, and p-tau181 were measured with the automated Lumipulse G system in a single-batch analysis. Episodic memory was assayed using a standardized delayed recall composite, paired associate (word-picture) cued recall, and a mnemonic discrimination task that involves discrimination between studied "target" objects, novel "foil" objects, and perceptually similar "lure" objects. Analyses examined cross-sectional relationships among memory performance, age, and CSF measures, controlling for sex and education. RESULTS Age and lower Aβ42/Aβ40 were independently associated with elevated p-tau181. Age, Aβ42/Aβ40, and p-tau181 were each associated with (1) poorer associative memory and (2) diminished improvement in mnemonic discrimination performance across levels of decreased task difficulty (i.e., target-lure similarity). P-tau mediated the effect of Aβ42/Aβ40 on memory. Relationships between CSF proteins and delayed recall were similar but nonsignificant. CSF Aβ42 was not significantly associated with p-tau181 or memory. CONCLUSIONS Tests designed to tax hippocampal function are sensitive to subtle individual differences in memory among CU and correlate with early AD-associated biomarker changes in CSF. These tests may offer utility for identifying CU with preclinical AD pathology.
Collapse
Affiliation(s)
- Alexandra N Trelle
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA.
| | - Valerie A Carr
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Edward N Wilson
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Michelle S Swarovski
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Madison P Hunt
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Tyler N Toueg
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Tammy T Tran
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Divya Channappa
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Nicole K Corso
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Monica K Thieu
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Manasi Jayakumar
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Ayesha Nadiadwala
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Wanjia Guo
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Natalie J Tanner
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Jeffrey D Bernstein
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Celia P Litovsky
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Scott A Guerin
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Anna M Khazenzon
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Marc B Harrison
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Brian K Rutt
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Gayle K Deutsch
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Frederick T Chin
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Guido A Davidzon
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Jacob N Hall
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Sharon J Sha
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Carolyn A Fredericks
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Katrin I Andreasson
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Geoffrey A Kerchner
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Anthony D Wagner
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Elizabeth C Mormino
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| |
Collapse
|
177
|
Determination of plasma β-amyloids by rolling circle amplification chemiluminescent immunoassay for noninvasive diagnosis of Alzheimer's disease. Mikrochim Acta 2021; 188:24. [PMID: 33404755 DOI: 10.1007/s00604-020-04650-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
A rolling circle amplification chemiluminescence immunoassay (RCA-CLIA) was developed for precise quantitation of Aβ in plasma. Capture antibodies conjugated with magnetic beads and detection antibodies with collateral single-stranded DNA (ssDNA) were bound to Aβ42/Aβ40 antigens to form a typical double-antibody sandwich structure. The RCA reaction was triggered by the addition of ssDNA, which generated products with a large number of sites for the binding of acridinium ester (AE)-labeled detection probes, thereby realizing the purpose of the amplification. The RCA-CLIA method had higher sensitivity than conventional CLIA without loss of specificity. Under optimum conditions, the linear range of Aβ42 and Aβ40 detection was 3.9-140 pg/mL and 3.9-180 pg/mL, respectively, with corresponding low detection limits of 1.99 pg/mL and 3.14 pg/mL, respectively. Plasma Aβ42 and Aβ40 were detected in the blood of 21 AD patients and 22 healthy people, wherein this ratio could significantly distinguish AD patients from healthy individuals with a sensitivity of 90.48% and specificity of 63.64% for a cutoff value of 154. The Aβ42/Aβ40 ratio of plasma acts as an accurate indicator for AD diagnosis; therefore, detection of plasma Aβ using the RCA-CLIA exhibits great potential in noninvasive diagnosis and progressive assessment of AD.
Collapse
|
178
|
Blazhenets G, Frings L, Ma Y, Sörensen A, Eidelberg D, Wiltfang J, Meyer PT. Validation of the Alzheimer Disease Dementia Conversion-Related Pattern as an ATN Biomarker of Neurodegeneration. Neurology 2021; 96:e1358-e1368. [PMID: 33408150 DOI: 10.1212/wnl.0000000000011521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/09/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether the Alzheimer disease (AD) dementia conversion-related pattern (ADCRP) on [18F]FDG PET can serve as a valid predictor for the development of AD dementia, the individual expression of the ADCRP (subject score) and its prognostic value were examined in patients with mild cognitive impairment (MCI) and biologically defined AD. METHODS A total of 269 patients with available [18F]FDG PET, [18F]AV-45 PET, phosphorylated and total tau in CSF, and neurofilament light chain in plasma were included. Following the AT(N) classification scheme, where AD is defined biologically by in vivo biomarkers of β-amyloid (Aβ) deposition ("A") and pathologic tau ("T"), patients were categorized to the A-T-, A+T-, A+T+ (AD), and A-T+ groups. RESULTS The mean subject score of the ADCRP was significantly higher in the A+T+ group compared to each of the other group (all p < 0.05) but was similar among the latter (all p > 0.1). Within the A+T+ group, the subject score of ADCRP was a significant predictor of conversion to dementia (hazard ratio, 2.02 per z score increase; p < 0.001), with higher predictive value than of alternative biomarkers of neurodegeneration (total tau and neurofilament light chain). Stratification of A+T+ patients by the subject score of ADCRP yielded well-separated groups of high, medium, and low conversion risks. CONCLUSIONS The ADCRP is a valuable biomarker of neurodegeneration in patients with MCI and biologically defined AD. It shows great potential for stratifying the risk and estimating the time to conversion to dementia in patients with MCI and underlying AD (A+T+). CLASSIFICATION OF EVIDENCE This study provides Class I evidence that [18F]FDG PET predicts the development of AD dementia in individuals with MCI and underlying AD as defined by the AT(N) framework.
Collapse
Affiliation(s)
- Ganna Blazhenets
- From the Department of Nuclear Medicine (G.B., L.F., A.S., P.T.M.), Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg; Center for Neurosciences (Y.M., D.E.), Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY; and Department of Psychiatry and Psychotherapy (J.W.), University Medical Center, Georg-August-University, Göttingen, Germany.
| | - Lars Frings
- From the Department of Nuclear Medicine (G.B., L.F., A.S., P.T.M.), Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg; Center for Neurosciences (Y.M., D.E.), Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY; and Department of Psychiatry and Psychotherapy (J.W.), University Medical Center, Georg-August-University, Göttingen, Germany
| | - Yilong Ma
- From the Department of Nuclear Medicine (G.B., L.F., A.S., P.T.M.), Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg; Center for Neurosciences (Y.M., D.E.), Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY; and Department of Psychiatry and Psychotherapy (J.W.), University Medical Center, Georg-August-University, Göttingen, Germany
| | - Arnd Sörensen
- From the Department of Nuclear Medicine (G.B., L.F., A.S., P.T.M.), Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg; Center for Neurosciences (Y.M., D.E.), Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY; and Department of Psychiatry and Psychotherapy (J.W.), University Medical Center, Georg-August-University, Göttingen, Germany
| | - David Eidelberg
- From the Department of Nuclear Medicine (G.B., L.F., A.S., P.T.M.), Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg; Center for Neurosciences (Y.M., D.E.), Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY; and Department of Psychiatry and Psychotherapy (J.W.), University Medical Center, Georg-August-University, Göttingen, Germany
| | - Jens Wiltfang
- From the Department of Nuclear Medicine (G.B., L.F., A.S., P.T.M.), Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg; Center for Neurosciences (Y.M., D.E.), Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY; and Department of Psychiatry and Psychotherapy (J.W.), University Medical Center, Georg-August-University, Göttingen, Germany
| | - Philipp T Meyer
- From the Department of Nuclear Medicine (G.B., L.F., A.S., P.T.M.), Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg; Center for Neurosciences (Y.M., D.E.), Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY; and Department of Psychiatry and Psychotherapy (J.W.), University Medical Center, Georg-August-University, Göttingen, Germany
| | | |
Collapse
|
179
|
Sala A, Nordberg A, Rodriguez-Vieitez E, for the Alzheimer’s Disease Neuroimaging Initiative. Longitudinal pathways of cerebrospinal fluid and positron emission tomography biomarkers of amyloid-β positivity. Mol Psychiatry 2021; 26:5864-5874. [PMID: 33303945 PMCID: PMC8758501 DOI: 10.1038/s41380-020-00950-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 01/20/2023]
Abstract
Mismatch between CSF and PET amyloid-β biomarkers occurs in up to ≈20% of preclinical/prodromal Alzheimer's disease individuals. Factors underlying mismatching results remain unclear. In this study we hypothesized that CSF/PET discordance provides unique biological/clinical information. To test this hypothesis, we investigated non-demented and demented participants with CSF amyloid-β42 and [18F]Florbetapir PET assessments at baseline (n = 867) and at 2-year follow-up (n = 289). Longitudinal trajectories of amyloid-β positivity were tracked simultaneously for CSF and PET biomarkers. In the longitudinal cohort (n = 289), we found that participants with normal CSF/PET amyloid-β biomarkers progressed more frequently toward CSF/PET discordance than to full CSF/PET positivity (χ2(1) = 5.40; p < 0.05). Progression to CSF+/PET+ status was ten times more frequent in cases with discordant biomarkers, as compared to csf-/pet- cases (χ2(1) = 18.86; p < 0.001). Compared to the CSF+/pet- group, the csf-/PET+ group had lower APOE-ε4ε4 prevalence (χ2(6) = 197; p < 0.001; n = 867) and slower rate of brain amyloid-β accumulation (F(3,600) = 12.76; p < 0.001; n = 608). These results demonstrate that biomarker discordance is a typical stage in the natural history of amyloid-β accumulation, with CSF or PET becoming abnormal first and not concurrently. Therefore, biomarker discordance allows for identification of individuals with elevated risk of progression toward fully abnormal amyloid-β biomarkers, with subsequent risk of neurodegeneration and cognitive decline. Our results also suggest that there are two alternative pathways ("CSF-first" vs. "PET-first") toward established amyloid-β pathology, characterized by different genetic profiles and rates of amyloid-β accumulation. In conclusion, CSF and PET amyloid-β biomarkers provide distinct information, with potential implications for their use as biomarkers in clinical trials.
Collapse
Affiliation(s)
- Arianna Sala
- grid.4714.60000 0004 1937 0626Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy ,grid.18887.3e0000000417581884In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Agneta Nordberg
- grid.4714.60000 0004 1937 0626Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Theme Aging, The Aging Brain, Karolinska University Hospital, Stockholm, Sweden
| | - Elena Rodriguez-Vieitez
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
180
|
Van Zeller M, Dias D, Sebastião AM, Valente CA. NLRP3 Inflammasome: A Starring Role in Amyloid-β- and Tau-Driven Pathological Events in Alzheimer's Disease. J Alzheimers Dis 2021; 83:939-961. [PMID: 34366341 PMCID: PMC8543248 DOI: 10.3233/jad-210268] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease commonly diagnosed among the elderly population. AD is characterized by the loss of synaptic connections, neuronal death, and progressive cognitive impairment, attributed to the extracellular accumulation of senile plaques, composed by insoluble aggregates of amyloid-β (Aβ) peptides, and to the intraneuronal formation of neurofibrillary tangles shaped by hyperphosphorylated filaments of the microtubule-associated protein tau. However, evidence showed that chronic inflammatory responses, with long-lasting exacerbated release of proinflammatory cytokines by reactive glial cells, contribute to the pathophysiology of the disease. NLRP3 inflammasome (NLRP3), a cytosolic multiprotein complex sensor of a wide range of stimuli, was implicated in multiple neurological diseases, including AD. Herein, we review the most recent findings regarding the involvement of NLRP3 in the pathogenesis of AD. We address the mechanisms of NLRP3 priming and activation in glial cells by Aβ species and the potential role of neurofibrillary tangles and extracellular vesicles in disease progression. Neuronal death by NLRP3-mediated pyroptosis, driven by the interneuronal tau propagation, is also discussed. We present considerable evidence to claim that NLRP3 inhibition, is undoubtfully a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Mariana Van Zeller
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo Dias
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia A. Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
181
|
Franzmeier N, Ren J, Damm A, Monté-Rubio G, Boada M, Ruiz A, Ramirez A, Jessen F, Düzel E, Rodríguez Gómez O, Benzinger T, Goate A, Karch CM, Fagan AM, McDade E, Buerger K, Levin J, Duering M, Dichgans M, Suárez-Calvet M, Haass C, Gordon BA, Lim YY, Masters CL, Janowitz D, Catak C, Wolfsgruber S, Wagner M, Milz E, Moreno-Grau S, Teipel S, Grothe MJ, Kilimann I, Rossor M, Fox N, Laske C, Chhatwal J, Falkai P, Perneczky R, Lee JH, Spottke A, Boecker H, Brosseron F, Fliessbach K, Heneka MT, Nestor P, Peters O, Fuentes M, Menne F, Priller J, Spruth EJ, Franke C, Schneider A, Westerteicher C, Speck O, Wiltfang J, Bartels C, Araque Caballero MÁ, Metzger C, Bittner D, Salloway S, Danek A, Hassenstab J, Yakushev I, Schofield PR, Morris JC, Bateman RJ, Ewers M. The BDNF Val66Met SNP modulates the association between beta-amyloid and hippocampal disconnection in Alzheimer's disease. Mol Psychiatry 2021; 26:614-628. [PMID: 30899092 PMCID: PMC6754794 DOI: 10.1038/s41380-019-0404-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/19/2019] [Accepted: 02/14/2019] [Indexed: 01/29/2023]
Abstract
In Alzheimer's disease (AD), a single-nucleotide polymorphism in the gene encoding brain-derived neurotrophic factor (BDNFVal66Met) is associated with worse impact of primary AD pathology (beta-amyloid, Aβ) on neurodegeneration and cognitive decline, rendering BDNFVal66Met an important modulating factor of cognitive impairment in AD. However, the effect of BDNFVal66Met on functional networks that may underlie cognitive impairment in AD is poorly understood. Using a cross-validation approach, we first explored in subjects with autosomal dominant AD (ADAD) from the Dominantly Inherited Alzheimer Network (DIAN) the effect of BDNFVal66Met on resting-state fMRI assessed functional networks. In seed-based connectivity analysis of six major large-scale networks, we found a stronger decrease of hippocampus (seed) to medial-frontal connectivity in the BDNFVal66Met carriers compared to BDNFVal homozogytes. BDNFVal66Met was not associated with connectivity in any other networks. Next, we tested whether the finding of more pronounced decrease in hippocampal-medial-frontal connectivity in BDNFVal66Met could be also found in elderly subjects with sporadically occurring Aβ, including a group with subjective cognitive decline (N = 149, FACEHBI study) and a group ranging from preclinical to AD dementia (N = 114, DELCODE study). In both of these independently recruited groups, BDNFVal66Met was associated with a stronger effect of more abnormal Aβ-levels (assessed by biofluid-assay or amyloid-PET) on hippocampal-medial-frontal connectivity decreases, controlled for hippocampus volume and other confounds. Lower hippocampal-medial-frontal connectivity was associated with lower global cognitive performance in the DIAN and DELCODE studies. Together these results suggest that BDNFVal66Met is selectively associated with a higher vulnerability of hippocampus-frontal connectivity to primary AD pathology, resulting in greater AD-related cognitive impairment.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Jinyi Ren
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Alexander Damm
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Gemma Monté-Rubio
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain
| | - Mercè Boada
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Agustín Ruiz
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Alfredo Ramirez
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany ,grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Frank Jessen
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Emrah Düzel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Octavio Rodríguez Gómez
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Tammie Benzinger
- grid.4367.60000 0001 2355 7002Department of Radiology, Washington University in St Louis, St Louis, MO USA ,grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA
| | - Alison Goate
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Celeste M. Karch
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University in St Louis, St Louis, MO USA
| | - Anne M. Fagan
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Eric McDade
- grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Katharina Buerger
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Levin
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XDepartment of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Duering
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Martin Dichgans
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marc Suárez-Calvet
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.430077.7Barcelonabeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Catalonia Spain ,grid.5252.00000 0004 1936 973XFaculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Haass
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XFaculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Brian A. Gordon
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychological and Brain Sciences, Washington University, St. Louis, MO USA
| | - Yen Ying Lim
- grid.1008.90000 0001 2179 088XThe Florey Institute, The University of Melbourne, Parkville, VIC Australia
| | - Colin L. Masters
- grid.1008.90000 0001 2179 088XThe Florey Institute, The University of Melbourne, Parkville, VIC Australia
| | - Daniel Janowitz
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Cihan Catak
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Steffen Wolfsgruber
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Wagner
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Esther Milz
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Sonia Moreno-Grau
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Stefan Teipel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany ,grid.413108.f0000 0000 9737 0454Department of Psychosomatic Medicine, University Hospital Rostock, Rostock, Germany
| | - Michel J Grothe
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Ingo Kilimann
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Martin Rossor
- grid.83440.3b0000000121901201Dementia Research Centre, University College London, Queen Square, London, UK
| | - Nick Fox
- grid.83440.3b0000000121901201Dementia Research Centre, University College London, Queen Square, London, UK
| | - Christoph Laske
- grid.428620.aHertie Institute for Clinical Brain Research, Tübingen, Germany ,grid.424247.30000 0004 0438 0426Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jasmeer Chhatwal
- grid.38142.3c000000041936754XMassachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA USA
| | - Peter Falkai
- grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Perneczky
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany ,grid.7445.20000 0001 2113 8111Neuroepidemiology and Ageing Research Unit, School of Public Health, The Imperial College of Science, Technology and Medicine, London, UK
| | - Jae-Hong Lee
- grid.413967.e0000 0001 0842 2126Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Annika Spottke
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ,grid.10388.320000 0001 2240 3300Department of Neurology, University of Bonn, Bonn, Germany
| | - Henning Boecker
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ,grid.10388.320000 0001 2240 3300Department of Radiology, University of Bonn, Bonn, Germany
| | - Frederic Brosseron
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Fliessbach
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T. Heneka
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Peter Nestor
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, Brisbane, QLD Australia
| | - Oliver Peters
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Manuel Fuentes
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Felix Menne
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Josef Priller
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Eike J. Spruth
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Christiana Franke
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Anja Schneider
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christine Westerteicher
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Oliver Speck
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Leibniz Institute for Neurobiology, Magdeburg, Germany ,grid.452320.20000 0004 0404 7236Center for Behavioral Brain Sciences, Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Department for Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke University, Magdeburg, Germany
| | - Jens Wiltfang
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany ,grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany ,grid.7311.40000000123236065iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Claudia Bartels
- grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Miguel Ángel Araque Caballero
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Coraline Metzger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Bittner
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Stephen Salloway
- grid.40263.330000 0004 1936 9094Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI USA
| | - Adrian Danek
- grid.5252.00000 0004 1936 973XDepartment of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jason Hassenstab
- grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Igor Yakushev
- grid.6936.a0000000123222966Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Peter R. Schofield
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Barker Street Randwick, Sydney, NSW 2031 Australia ,grid.1005.40000 0004 4902 0432School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - John C. Morris
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University in St Louis, St Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Randall J. Bateman
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
| |
Collapse
|
182
|
Stockmann J, Verberk IMW, Timmesfeld N, Denz R, Budde B, Lange-Leifhelm J, Scheltens P, van der Flier WM, Nabers A, Teunissen CE, Gerwert K. Amyloid-β misfolding as a plasma biomarker indicates risk for future clinical Alzheimer's disease in individuals with subjective cognitive decline. Alzheimers Res Ther 2020; 12:169. [PMID: 33357241 PMCID: PMC7761044 DOI: 10.1186/s13195-020-00738-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND We evaluated Aβ misfolding in combination with Aβ42/40 ratio as a prognostic tool for future clinical progression to mild cognitive impairment (MCI) or dementia due to Alzheimer's disease (AD) in individuals with subjective cognitive decline (SCD). METHODS Baseline plasma samples (n = 203) from SCD subjects in the SCIENCe project and Amsterdam Dementia Cohort (age 61 ± 9 years; 57% male, mean follow-up time 2.7 years) were analyzed using immuno-infrared-sensor technology. Within 6 years of follow-up, 22 (11%) individuals progressed to MCI or dementia due to AD. Sensor readout values > 1646 cm- 1 reflected normal Aβ folding; readouts at ≤ 1646 cm- 1 reflected low and at < 1644 cm- 1 high misfolding. We used Cox proportional hazard models to quantify Aβ misfolding as a prognostic biomarker for progression to MCI and dementia due to AD. The accuracy of the predicted development of MCI/AD was determined by time-dependent receiver operating characteristic (t-ROC) curve analyses that take individual follow-up and conversion times into account. Statistical models were adjusted for age, sex, and APOEε4 status. Additionally, plasma Aβ42/40 data measured by SIMOA were statistically analyzed and compared. RESULTS All 22 patients who converted to MCI or AD-dementia within 6 years exhibited Aβ misfolding at baseline. Cox analyses revealed a hazard ratio (HR) of 19 (95% confidence interval [CI] 2.2-157.8) for future conversion of SCD subjects with high misfolding and of 11 (95% CI 1.0-110.1) for those with low misfolding. T-ROC curve analyses yielded an area under the curve (AUC) of 0.94 (95% CI 0.86-1.00; 6-year follow-up) for Aβ misfolding in an age, sex, and APOEε4 model. A similar model with plasma Aβ42/40 ratio yielded an AUC of 0.92 (95% CI, 0.82-1.00). The AUC increased to 0.99 (95% CI, 0.99-1.00) after inclusion of both Aβ misfolding and the Aβ42/40 ratio. CONCLUSIONS A panel of structure- and concentration-based plasma amyloid biomarkers may predict conversion to clinical MCI and dementia due to AD in cognitively unimpaired subjects. These plasma biomarkers provide a noninvasive and cost-effective alternative for screening early AD pathological changes. Follow-up studies and external validation in larger cohorts are in progress for further validation of our findings.
Collapse
Affiliation(s)
- Julia Stockmann
- Competence Center for Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
- Department of Biophysics, Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nina Timmesfeld
- Ruhr University Bochum, Department of Medical Informatics, Biometry and Epidemiology, Bochum, Germany
| | - Robin Denz
- Ruhr University Bochum, Department of Medical Informatics, Biometry and Epidemiology, Bochum, Germany
| | - Brian Budde
- Competence Center for Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
- Department of Biophysics, Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| | - Julia Lange-Leifhelm
- Competence Center for Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
- Department of Biophysics, Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Andreas Nabers
- Competence Center for Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
- Department of Biophysics, Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Klaus Gerwert
- Competence Center for Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany.
- Department of Biophysics, Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany.
| |
Collapse
|
183
|
Seino Y, Nakamura T, Harada T, Nakahata N, Kawarabayashi T, Ueda T, Takatama M, Shoji M. Quantitative Measurement of Cerebrospinal Fluid Amyloid-β Species by Mass Spectrometry. J Alzheimers Dis 2020; 79:573-584. [PMID: 33337370 PMCID: PMC7902963 DOI: 10.3233/jad-200987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: High sensitivity liquid chromatography mass spectrometry (LC-MS/MS) was recently introduced to measure amyloid-β (Aβ) species, allowing for a simultaneous assay that is superior to ELISA, which requires more assay steps with multiple antibodies. Objective: We validated the Aβ1-38, Aβ1-40, Aβ1-42, and Aβ1-43 assay by LC-MS/MS and compared it with ELISA using cerebrospinal fluid (CSF) samples to investigate its feasibility for clinical application. Methods: CSF samples from 120 subjects [8 Alzheimer’s disease (AD) with dementia (ADD), 2 mild cognitive dementia due to Alzheimer’s disease (ADMCI), 14 cognitively unimpaired (CU), and 96 neurological disease subjects] were analyzed. Aβ species were separated using the Shimadzu Nexera X2 system and quantitated using a Qtrap 5500 LC-MS/MS system. Aβ1-40 and Aβ1-42 levels were validated using ELISA. Results: CSF levels in CU were 666±249 pmol/L in Aβ1-38, 2199±725 pmol/L in Aβ1-40, 153.7±79.7 pmol/L in Aβ1-42, and 9.78±4.58 pmol/L in Aβ1-43. The ratio of the amounts of Aβ1-38, Aβ1-40, Aβ1-42, and Aβ1-43 was approximately 68:225:16:1. Linear regression analyses showed correlations among the respective Aβ species. Both Aβ1-40 and Aβ1-42 values were strongly correlated with ELISA measurements. No significant differences were observed in Aβ1-38 or Aβ1-40 levels between AD and CU. Aβ1-42 and Aβ1-43 levels were significantly lower, whereas the Aβ1-38/1-42, Aβ1-38/1-43, and Aβ1-40/Aβ1-43 ratios were significantly higher in AD than in CU. The basic assay profiles of the respective Aβ species were adequate for clinical usage. Conclusion: A quantitative LC-MS/MS assay of CSF Aβ species is as reliable as specific ELISA for clinical evaluation of CSF biomarkers for AD.
Collapse
Affiliation(s)
- Yusuke Seino
- Department of Neurology, Hirosaki National Hospital, Hirosaki, Aomori, Japan
| | - Takumi Nakamura
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tomoo Harada
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Naoko Nakahata
- Department of Speech-Language-Hearing Therapy, Hirosaki University of Health and Welfare, Hirosaki, Aomori, Japan
| | | | - Tetsuya Ueda
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Masamitsu Takatama
- Dementia Center, Geriatrics Research Institute and Hospital, Maebashi, Gunma, Japan
| | - Mikio Shoji
- Dementia Center, Geriatrics Research Institute and Hospital, Maebashi, Gunma, Japan
| |
Collapse
|
184
|
Increasing the reproducibility of fluid biomarker studies in neurodegenerative studies. Nat Commun 2020; 11:6252. [PMID: 33288742 PMCID: PMC7721731 DOI: 10.1038/s41467-020-19957-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Biomarkers have revolutionized scientific research on neurodegenerative diseases, in particular Alzheimer's disease, transformed drug trial design, and are also increasingly improving patient management in clinical practice. A few key cerebrospinal fluid biomarkers have been robustly associated with neurodegenerative diseases. Several novel biomarkers are very promising, especially blood-based markers. However, many biomarker findings have had low reproducibility despite initial promising results. In this perspective, we identify possible sources for low reproducibility of studies on fluid biomarkers for neurodegenerative diseases, with a focus on Alzheimer's disease. We suggest guidelines for researchers and journal editors, with the aim to improve reproducibility of findings.
Collapse
|
185
|
Tarawneh R. Biomarkers: Our Path Towards a Cure for Alzheimer Disease. Biomark Insights 2020; 15:1177271920976367. [PMID: 33293784 PMCID: PMC7705771 DOI: 10.1177/1177271920976367] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, biomarkers have significantly improved our understanding of
the pathophysiology of Alzheimer disease (AD) and provided valuable tools to
examine different disease mechanisms and their progression over time. While
several markers of amyloid, tau, neuronal, synaptic, and axonal injury,
inflammation, and immune dysregulation in AD have been identified, there is a
relative paucity of biomarkers which reflect other disease mechanisms such as
oxidative stress, mitochondrial injury, vascular or endothelial injury, and
calcium-mediated excitotoxicity. Importantly, there is an urgent need to
standardize methods for biomarker assessments across different centers, and to
identify dynamic biomarkers which can monitor disease progression over time
and/or response to potential disease-modifying treatments. The updated research
framework for AD, proposed by the National Institute of Aging- Alzheimer’s
Association (NIA-AA) Work Group, emphasizes the importance of incorporating
biomarkers in AD research and defines AD as a biological construct consisting of
amyloid, tau, and neurodegeneration which spans pre-symptomatic and symptomatic
stages. As results of clinical trials of AD therapeutics have been
disappointing, it has become increasingly clear that the success of future AD
trials will require the incorporation of biomarkers in participant selection,
prognostication, monitoring disease progression, and assessing response to
treatments. We here review the current state of fluid AD biomarkers, and discuss
the advantages and limitations of the updated NIA-AA research framework.
Importantly, the integration of biomarker data with clinical, cognitive, and
imaging domains through a systems biology approach will be essential to
adequately capture the molecular, genetic, and pathological heterogeneity of AD
and its spatiotemporal evolution over time.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
186
|
Robert J, Weilinger NL, Cao LP, Cataldi S, Button EB, Stukas S, Martin EM, Seibler P, Gilmour M, Caffrey TM, Rowe EM, Fan J, MacVicar B, Farrer MJ, Wellington CL. An in vitro bioengineered model of the human arterial neurovascular unit to study neurodegenerative diseases. Mol Neurodegener 2020; 15:70. [PMID: 33213497 PMCID: PMC7678181 DOI: 10.1186/s13024-020-00418-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/03/2020] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION The neurovascular unit (NVU) - the interaction between the neurons and the cerebrovasculature - is increasingly important to interrogate through human-based experimental models. Although advanced models of cerebral capillaries have been developed in the last decade, there is currently no in vitro 3-dimensional (3D) perfusible model of the human cortical arterial NVU. METHOD We used a tissue-engineering technique to develop a scaffold-directed, perfusible, 3D human NVU that is cultured in native-like flow conditions that mimics the anatomy and physiology of cortical penetrating arteries. RESULTS This system, composed of primary human vascular cells (endothelial cells, smooth muscle cells and astrocytes) and induced pluripotent stem cell (iPSC) derived neurons, demonstrates a physiological multilayer organization of the involved cell types. It reproduces key characteristics of cortical neurons and astrocytes and enables formation of a selective and functional endothelial barrier. We provide proof-of-principle data showing that this in vitro human arterial NVU may be suitable to study neurovascular components of neurodegenerative diseases such as Alzheimer's disease (AD), as endogenously produced phosphorylated tau and beta-amyloid accumulate in the model over time. Finally, neuronal and glial fluid biomarkers relevant to neurodegenerative diseases are measurable in our arterial NVU model. CONCLUSION This model is a suitable research tool to investigate arterial NVU functions in healthy and disease states. Further, the design of the platform allows culture under native-like flow conditions for extended periods of time and yields sufficient tissue and media for downstream immunohistochemistry and biochemistry analyses.
Collapse
Affiliation(s)
- Jerome Robert
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
- Institute of Clinical Chemistry, University hospital Zurich, 8000 Zurich, Wagistrasse 14, CH-8952 Schlieren, Switzerland
| | - Nicholas L. Weilinger
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Li-Ping Cao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
| | - Stefano Cataldi
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
| | - Emily B. Button
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Emma M. Martin
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Philip Seibler
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Megan Gilmour
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Tara M. Caffrey
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Elyn M. Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Jianjia Fan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Brian MacVicar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Matthew J. Farrer
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Laboratory for Neurogenetics & Neuroscience, McKnight and Fixel Institutes, University of Florida, Gainesville, 32610 USA
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia V5Z 1M9 Canada
| |
Collapse
|
187
|
Teipel SJ, Kuper-Smith JO, Bartels C, Brosseron F, Buchmann M, Buerger K, Catak C, Janowitz D, Dechent P, Dobisch L, Ertl-Wagner B, Fließbach K, Haynes JD, Heneka MT, Kilimann I, Laske C, Li S, Menne F, Metzger CD, Priller J, Pross V, Ramirez A, Scheffler K, Schneider A, Spottke A, Spruth EJ, Wagner M, Wiltfang J, Wolfsgruber S, Düzel E, Jessen F, Dyrba M. Multicenter Tract-Based Analysis of Microstructural Lesions within the Alzheimer's Disease Spectrum: Association with Amyloid Pathology and Diagnostic Usefulness. J Alzheimers Dis 2020; 72:455-465. [PMID: 31594223 PMCID: PMC6918918 DOI: 10.3233/jad-190446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Diffusion changes as determined by diffusion tensor imaging are potential indicators of microstructural lesions in people with mild cognitive impairment (MCI), prodromal Alzheimer’s disease (AD), and AD dementia. Here we extended the scope of analysis toward subjective cognitive complaints as a pre-MCI at risk stage of AD. In a cohort of 271 participants of the prospective DELCODE study, including 93 healthy controls and 98 subjective cognitive decline (SCD), 45 MCI, and 35 AD dementia cases, we found reductions of fiber tract integrity in limbic and association fiber tracts in MCI and AD dementia compared with controls in a tract-based analysis (p < 0.05, family wise error corrected). In contrast, people with SCD showed spatially restricted white matter alterations only for the mode of anisotropy and only at an uncorrected level of significance. DTI parameters yielded a high cross-validated diagnostic accuracy of almost 80% for the clinical diagnosis of MCI and the discrimination of Aβ positive MCI cases from Aβ negative controls. In contrast, DTI parameters reached only random level accuracy for the discrimination between Aβ positive SCD and control cases from Aβ negative controls. These findings suggest that in prodromal stages of AD, such as in Aβ positive MCI, multicenter DTI with prospectively harmonized acquisition parameters yields diagnostic accuracy meeting the criteria for a useful biomarker. In contrast, automated tract-based analysis of DTI parameters is not useful for the identification of preclinical AD, including Aβ positive SCD and control cases.
Collapse
Affiliation(s)
- Stefan J Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Jan O Kuper-Smith
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Claudia Bartels
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Martina Buchmann
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Munich, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Cihan Catak
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Peter Dechent
- MR-Research in Neurology and Psychiatry, Georg-August-University Göttingen, Göttingen, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Birgit Ertl-Wagner
- Institute for Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany.,Division of Neuroradiology, Department of Medical Imaging, The Hospital for Sick Children, Toronto, Canada
| | - Klaus Fließbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - John-Dylan Haynes
- Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Ingo Kilimann
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Siyao Li
- Institute of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Menne
- Institute of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Coraline D Metzger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Verena Pross
- Study Center Bonn, Medical Faculty, Bonn, Germany
| | - Alfredo Ramirez
- Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - Eike J Spruth
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | | | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | | |
Collapse
|
188
|
Herdick M, Dyrba M, Fritz HCJ, Altenstein S, Ballarini T, Brosseron F, Buerger K, Can Cetindag A, Dechent P, Dobisch L, Duezel E, Ertl-Wagner B, Fliessbach K, Dawn Freiesleben S, Frommann I, Glanz W, Dylan Haynes J, Heneka MT, Janowitz D, Kilimann I, Laske C, Metzger CD, Munk MH, Peters O, Priller J, Roy N, Scheffler K, Schneider A, Spottke A, Jakob Spruth E, Tscheuschler M, Vukovich R, Wiltfang J, Jessen F, Teipel S, Grothe MJ. Multimodal MRI analysis of basal forebrain structure and function across the Alzheimer's disease spectrum. Neuroimage Clin 2020; 28:102495. [PMID: 33395986 PMCID: PMC7689403 DOI: 10.1016/j.nicl.2020.102495] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/19/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dysfunction of the cholinergic basal forebrain (cBF) is associated with cognitive decline in Alzheimer's disease (AD). Multimodal MRI allows for the investigation of cBF changes in-vivo. In this study we assessed alterations in cBF functional connectivity (FC), mean diffusivity (MD), and volume across the spectrum of AD. We further assessed effects of amyloid pathology on these changes. METHODS Participants included healthy controls, and subjects with subjective cognitive decline (SCD), mild cognitive impairment (MCI), or AD dementia (ADD) from the multicenter DELCODE study. Resting-state functional MRI (rs-fMRI) and structural MRI data was available for 477 subjects, and a subset of 243 subjects also had DTI data available. Differences between diagnostic groups were investigated using seed-based FC, volumetric, and MD analyses of functionally defined anterior (a-cBF) and posterior (p-cBF) subdivisions of a cytoarchitectonic cBF region-of-interest. In complementary analyses groups were stratified according to amyloid status based on CSF Aβ42/40 biomarker data, which was available in a subset of participants. RESULTS a-cBF and p-cBF subdivisions showed regional FC profiles that were highly consistent with previously reported patterns, but there were only minimal differences between diagnostic groups. Compared to controls, cBF volumes and MD were significantly different in MCI and ADD but not in SCD. The Aβ42/40 stratified analyses largely matched these results. CONCLUSIONS We reproduced subregion-specific FC profiles of the cBF in a clinical sample spanning the AD spectrum. At least in this multicentric cohort study, cBF-FC did not show marked changes along the AD spectrum, and multimodal MRI did not provide more sensitive measures of AD-related cBF changes compared to volumetry.
Collapse
Affiliation(s)
- Meret Herdick
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Hans-Christian J Fritz
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Tommaso Ballarini
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377 Munich, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Arda Can Cetindag
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Peter Dechent
- MR-Research in Neurology and Psychiatry, Georg-August-University Göttingen, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Emrah Duezel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Birgit Ertl-Wagner
- Institute for Clinical Radiology, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Silka Dawn Freiesleben
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ingo Frommann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - John Dylan Haynes
- Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin, Berlin, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Coraline D Metzger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany; Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Maike Tscheuschler
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - Ruth Vukovich
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany; Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931Köln, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany.
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
189
|
Carrera-Muñoz I, Triguero-Cueva L, Romero-Fábrega JC, Triviño-Ibáñez EM, Vilchez-Carrillo R, Carnero-Pardo C, Gómez-Río M. PET-Amyloid After Inconclusive Cerebrospinal Fluid Biomarkers in Clinical Practice. Is it Necessary to Duplicate Procedures? Curr Alzheimer Res 2020; 17:698-708. [PMID: 33167840 DOI: 10.2174/1567205017666201109092637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/01/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION In the absence of a gold standard for in vivo Alzheimer disease (AD) diagnosis, AD biomarkers such as cerebrospinal fluid biomarkers (CSF-B) and PET-Amyloid are considered diagnostically useful in clinical practice guidelines and have consensual appropriate use criteria (AUC). However, little evidence has been published on their utilization in the clinical setting or on approaches to mismatched results. The objective of this work was to evaluate the use of AD biomarkers in clinical practice, focusing on the implementation of PET-Amyloid in cases of inconclusive CSF-B. METHODS This naturalistic, ambispective case series included patients fulfilling AUC for CSF-B and PET-Amyloid whose CSF-B results were non-diagnostic (target population), analyzing the diagnostic certainty, the treatment approach, and the relationship between CSF-B and PET-Amyloid results. RESULTS Out of 2373 eligible patients, AD biomarkers were studied in 417 (17.6%), most frequently due to cognitive impairment in under 65-year-olds, using CSF-B in 311 patients and PET-Amyloid in 150. CSF-B results were non-diagnostic for 44 patients (52.3% male; aged 60.9±6.6 years), who then underwent PET-Amyloid study, which was positive in 31. A 'k' coefficient of 0.108 was obtained between CSF-B and PET-amyloid (54.5% concordance). In multivariate regression analysis, Aβ42 was the only significant predictor (p= 0.018) of a positive PET-Amyloid result. In the target population, PETAmyloid increased diagnostic confidence by 53.7% (p <0.001) and modified the therapeutic approach in 36.4% of cases. CONCLUSION These findings support the duplication of AD biomarkers and demonstrate that the implementation of PET-Amyloid provides an early and certain diagnosis to guide appropriate treatment.
Collapse
Affiliation(s)
- Ismael Carrera-Muñoz
- Department of Neurology, Virgen de las Nieves University Hospital, Cognitive and Behavioral Neurology Unit,
Granada, Spain
| | - Lucía Triguero-Cueva
- Department of Neurology, Virgen de las Nieves University Hospital, Cognitive and Behavioral Neurology Unit,
Granada, Spain
| | - Juan C Romero-Fábrega
- Department of Neurology, Virgen de las Nieves University Hospital, Cognitive and Behavioral Neurology Unit,
Granada, Spain
| | - Eva M Triviño-Ibáñez
- Department of Nuclear Medicine, Virgen de las Nieves University Hospital, Granada, Spain
| | - Rosa Vilchez-Carrillo
- Department of Neurology, Virgen de las Nieves University Hospital, Cognitive and Behavioral Neurology Unit,
Granada, Spain
| | - Cristóbal Carnero-Pardo
- Fidyan Neurocenter, Granada, Spain,IBS Granada Bio-Health Research Institute, Granada, Spain
| | - Manuel Gómez-Río
- Department of Neurology, Virgen de las Nieves University Hospital, Cognitive and Behavioral Neurology Unit,
Granada, Spain,Department of Nuclear Medicine, Virgen de las Nieves University Hospital, Granada, Spain
| |
Collapse
|
190
|
Xu W, Tan CC, Cao XP, Tan L, for the Alzheimer’s Disease Neuroimaging Initiative. Association of Alzheimer's disease risk variants on the PICALM gene with PICALM expression, core biomarkers, and feature neurodegeneration. Aging (Albany NY) 2020; 12:21202-21219. [PMID: 33170153 PMCID: PMC7695360 DOI: 10.18632/aging.103814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
It is still unclear how PICALM mutations influence the risk of Alzheimer's disease (AD). We tested the association of AD risk variants on the PICALM gene with PICALM expression and AD feature endophenotypes. Bioinformatic methods were used to annotate the functionalities and to select the tag single nucleotide polymorphisms (SNPs). Multiple regressions were used to examine the cross-sectional and longitudinal influences of tag SNPs on cerebrospinal fluid (CSF) AD biomarkers and neurodegenerations. A total of 59 SNPs, among which 75% were reported in Caucasians, were associated with AD risk. Of these, 73% were linked to PICALM expression in the whole blood (p < 0.0001) and/or brain regions (p < 0.05). Eleven SNPs were selected as tag SNPs in Caucasians. rs510566 (T allele) was associated with decreased CSF ptau and ptau/abeta42 ratio. The G allele of rs1237999 and rs510566 was linked with greater reserve capacities of the hippocampus, parahippocampus, middle temporal lobe, posterior cingulate, and precuneus. The longitudinal analyses revealed four loci that could predict dynamic changes of CSF ptau and ptau/abeta42 ratio (rs10501610, p = 0.0001) or AD feature neurodegeneration (rs3851179, rs592297, and rs7480193, p < 0.005). Overall, the genetic, bioinformatic, and association studies tagged four SNPs (rs3851179, rs7480193, rs510566, and rs1237999) as the most prominent PICALM loci contributing to AD in Caucasians.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | | |
Collapse
|
191
|
Luikku AJ, Hall A, Nerg O, Koivisto AM, Hiltunen M, Helisalmi S, Herukka SK, Junkkari A, Sutela A, Kojoukhova M, Korhonen V, Mattila J, Lötjönen J, Rummukainen J, Alafuzoff I, Jääskeläinen JE, Remes AM, Solomon A, Kivipelto M, Soininen H, Rauramaa T, Leinonen V. Predicting Development of Alzheimer's Disease in Patients with Shunted Idiopathic Normal Pressure Hydrocephalus. J Alzheimers Dis 2020; 71:1233-1243. [PMID: 31498122 DOI: 10.3233/jad-190334] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Idiopathic normal pressure hydrocephalus (iNPH) patients often develop Alzheimer's disease (AD) related brain pathology. Disease State Index (DSI) is a method to combine data from various sources for differential diagnosis and progression of neurodegenerative disorders. OBJECTIVE To apply DSI to predict clinical AD in shunted iNPH-patients in a defined population. METHODS 335 shunted iNPH-patients (median 74 years) were followed until death (n = 185) or 6/2015 (n = 150). DSI model (including symptom profile, onset age of NPH symptoms, atrophy of medial temporal lobe in CT/MRI, cortical brain biopsy finding, and APOE genotype) was applied. Performance of DSI model was evaluated with receiver operating characteristic (ROC) curve analysis. RESULTS A total of 70 (21%) patients developed clinical AD during median follow-up of 5.3 years. DSI-model predicted clinical AD with moderate effectiveness (AUC = 0.75). Significant factors were cortical biopsy (0.69), clinical symptoms (0.66), and medial temporal lobe atrophy (0.66). CONCLUSION We found increased occurrence of clinical AD in previously shunted iNPH patients as compared with general population. DSI supported the prediction of AD. Cortical biopsy during shunt insertion seems indicated for earlier diagnosis of comorbid AD.
Collapse
Affiliation(s)
- Antti J Luikku
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, Kuopio, Finland.,Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Anette Hall
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Ossi Nerg
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurology of NeuroCenter Kuopio University Hospital, Kuopio, Finland
| | - Anne M Koivisto
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurology of NeuroCenter Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurology of NeuroCenter Kuopio University Hospital, Kuopio, Finland.,Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Seppo Helisalmi
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurology of NeuroCenter Kuopio University Hospital, Kuopio, Finland
| | - Antti Junkkari
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, Kuopio, Finland.,Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Anna Sutela
- Department of Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Maria Kojoukhova
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland.,Department of Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Ville Korhonen
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | | | | | - Jaana Rummukainen
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland.,Department of Pathology, University of Eastern Finland, Kuopio, Finland
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University and Departmentof Pathology and Cytology, Uppsala University Hospital, Uppsala, Sweden
| | - Juha E Jääskeläinen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, Kuopio, Finland.,Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Anne M Remes
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Alina Solomon
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Miia Kivipelto
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, NVS, Karolinska Institutet, Stockholm, Sweden.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurology of NeuroCenter Kuopio University Hospital, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland.,Department of Pathology, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, Kuopio, Finland.,Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Neuroscience, Neurosurgery, University of Oulu, Oulu, Finland
| |
Collapse
|
192
|
Das S, Sengupta S, Chakraborty S. Scope of β-Secretase (BACE1)-Targeted Therapy in Alzheimer's Disease: Emphasizing the Flavonoid Based Natural Scaffold for BACE1 Inhibition. ACS Chem Neurosci 2020; 11:3510-3522. [PMID: 33073981 DOI: 10.1021/acschemneuro.0c00579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common form of dementia in the world. Studies report the presence of extracellular amyloid plaques consisting of β-amyloid peptide and intracellular tangles consisting of hyperphosphorylated tau proteins as the histopathological indicators of AD. The process of β-amyloid peptide generation by sequential cleavage of amyloid precursor protein by β-secretase (BACE1) and γ-secretase, followed by its aggregation to form amyloid plaques, is the mechanistic basis of the amyloid hypothesis. Other popular hypotheses related to the pathogenesis of AD include the tau hypothesis and the oxidative stress hypothesis. Various targets of the amyloid cascade are now in prime focus to develop drugs for AD. Many BACE1 inhibitors, β-amyloid aggregation inhibitors, and Aβ clearance strategies using monoclonal antibodies are in various stages of clinical trials. This review provides an in-depth evaluation of the role of BACE1 in disease pathogenesis and also highlights the therapeutic approaches developed to find more potent but less toxic inhibitors for BACE1, particularly emphasizing the natural scaffold as a nontoxic lead for BACE1 inhibition. Cellular targets and signaling cascades involving BACE1 have been highlighted to understand the physiological role of BACE1. This knowledge is extremely crucial to understand the toxicity evaluations for BACE1-targeted therapy. We have particularly highlighted the scope of flavonoids as a new generation of nontoxic BACE1 inhibitory scaffolds. The structure-activity relationship of BACE1 inhibition for this group of compounds has been highlighted to provide a guideline to design more selective highly potent inhibitors. The review aims to provide a holistic overview of BACE1-targeted therapy for AD that paves the way for future drug development.
Collapse
Affiliation(s)
- Sucharita Das
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Swaha Sengupta
- Amity Institute of Biotechnology, Amity University, Kolkata 700135, India
| | | |
Collapse
|
193
|
Bistaffa E, Tagliavini F, Matteini P, Moda F. Contributions of Molecular and Optical Techniques to the Clinical Diagnosis of Alzheimer's Disease. Brain Sci 2020; 10:E815. [PMID: 33153223 PMCID: PMC7692713 DOI: 10.3390/brainsci10110815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. The distinctive neuropathological feature of AD is the intracerebral accumulation of two abnormally folded proteins: β-amyloid (Aβ) in the form of extracellular plaques, and tau in the form of intracellular neurofibrillary tangles. These proteins are considered disease-specific biomarkers, and the definite diagnosis of AD relies on their post-mortem identification in the brain. The clinical diagnosis of AD is challenging, especially in the early stages. The disease is highly heterogeneous in terms of clinical presentation and neuropathological features. This phenotypic variability seems to be partially due to the presence of distinct Aβ conformers, referred to as strains. With the development of an innovative technique named Real-Time Quaking-Induced Conversion (RT-QuIC), traces of Aβ strains were found in the cerebrospinal fluid of AD patients. Emerging evidence suggests that different conformers may transmit their strain signature to the RT-QuIC reaction products. In this review, we describe the current challenges for the clinical diagnosis of AD and describe how the RT-QuIC products could be analyzed by a surface-enhanced Raman spectroscopy (SERS)-based systems to reveal the presence of strain signatures, eventually leading to early diagnosis of AD with the recognition of individual disease phenotype.
Collapse
Affiliation(s)
- Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, 20133 Milan, Italy;
| | - Fabrizio Tagliavini
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Scientific Directorate, 20133 Milan, Italy;
| | - Paolo Matteini
- IFAC-CNR, Institute of Applied Physics “Nello Carrara”, National Research Council, 50019 Sesto Fiorentino, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, 20133 Milan, Italy;
| |
Collapse
|
194
|
Sannemann L, Schild AK, Altenstein S, Bartels C, Brosseron F, Buerger K, Cosma NC, Fliessbach K, Freiesleben SD, Glanz W, Heneka MT, Janowitz D, Kilimann I, Kobeleva X, Laske C, Metzger CD, Munk MHJ, Perneczky R, Peters O, Polcher A, Priller J, Rauchmann B, Rösch C, Rudolph J, Schneider A, Spottke A, Spruth EJ, Teipel S, Vukovich R, Wagner M, Wiltfang J, Wolfsgruber S, Duezel E, Jessen F. Neuropsychiatric symptoms in at-risk groups for AD dementia and their association with worry and AD biomarkers-results from the DELCODE study. Alzheimers Res Ther 2020; 12:131. [PMID: 33066827 PMCID: PMC7566134 DOI: 10.1186/s13195-020-00701-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Early identification of individuals at risk of dementia is mandatory to implement prevention strategies and design clinical trials that target early disease stages. Subjective cognitive decline (SCD) and neuropsychiatric symptoms (NPS) have been proposed as potential markers for early manifestation of Alzheimer's disease (AD). We aimed to investigate the frequency of NPS in SCD, in other at-risk groups, in healthy controls (CO), and in AD patients, and to test the association of NPS with AD biomarkers, with a particular focus on cognitively unimpaired participants with or without SCD-related worries. METHODS We analyzed data of n = 687 participants from the German DZNE Longitudinal Cognitive Impairment and Dementia (DELCODE) study, including the diagnostic groups SCD (n = 242), mild cognitive impairment (MCI, n = 115), AD (n = 77), CO (n = 209), and first-degree relatives of AD patients (REL, n = 44). The Neuropsychiatric Inventory Questionnaire (NPI-Q), Geriatric Depression Scale (GDS-15), and Geriatric Anxiety Inventory (GAI-SF) were used to assess NPS. We examined differences of NPS frequency between diagnostic groups. Logistic regression analyses were carried out to further investigate the relationship between NPS and cerebrospinal fluid (CSF) AD biomarkers, focusing on a subsample of cognitively unimpaired participants (SCD, REL, and CO), who were further differentiated based on reported worries. RESULTS The numbers of reported NPS, depression scores, and anxiety scores were significantly higher in subjects with SCD compared to CO. The quantity of reported NPS in subjects with SCD was lower compared to the MCI and AD group. In cognitively unimpaired subjects with worries, low Aß42 was associated with higher rates of reporting two or more NPS (OR 0.998, 95% CI 0.996-1.000, p < .05). CONCLUSION These findings give insight into the prevalence of NPS in different diagnostic groups, including SCD and healthy controls. NPS based on informant report seem to be associated with underlying AD pathology in cognitively unimpaired participants who worry about cognitive decline. TRIAL REGISTRATION German Clinical Trials Register DRKS00007966 . Registered 4 May 2015.
Collapse
Affiliation(s)
- Lena Sannemann
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany.
| | - Ann-Katrin Schild
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Claudia Bartels
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075, Goettingen, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377, Munich, Germany
| | - Nicoleta Carmen Cosma
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Silka Dawn Freiesleben
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Xenia Kobeleva
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Coraline D Metzger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias H J Munk
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Alexandra Polcher
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Boris Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Christina Rösch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Janna Rudolph
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Ruth Vukovich
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075, Goettingen, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075, Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Emrah Duezel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Köln, Germany
| |
Collapse
|
195
|
Bălașa AF, Chircov C, Grumezescu AM. Body Fluid Biomarkers for Alzheimer's Disease-An Up-To-Date Overview. Biomedicines 2020; 8:E421. [PMID: 33076333 PMCID: PMC7602623 DOI: 10.3390/biomedicines8100421] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegeneration is a highly complex process which is associated with a variety of molecular mechanisms related to ageing. Among neurodegenerative disorders, Alzheimer's disease (AD) is the most common, affecting more than 45 million individuals. The underlying mechanisms involve amyloid plaques and neurofibrillary tangles (NFTs) deposition, which will subsequently lead to oxidative stress, chronic neuroinflammation, neuron dysfunction, and neurodegeneration. The current diagnosis methods are still limited in regard to the possibility of the accurate and early detection of the diseases. Therefore, research has shifted towards the identification of novel biomarkers and matrices as biomarker sources, beyond amyloid-β and tau protein levels within the cerebrospinal fluid (CSF), that could improve AD diagnosis. In this context, the aim of this paper is to provide an overview of both conventional and novel biomarkers for AD found within body fluids, including CSF, blood, saliva, urine, tears, and olfactory fluids.
Collapse
Affiliation(s)
- Adrian Florian Bălașa
- Târgu Mures, Emergency Clinical Hospital, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mures, RO-540142 Târgu Mures, Romania;
| | - Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania;
| |
Collapse
|
196
|
Gertje EC, van Westen D, Panizo C, Mattsson-Carlgren N, Hansson O. Association of Enlarged Perivascular Spaces and Measures of Small Vessel and Alzheimer Disease. Neurology 2020; 96:e193-e202. [PMID: 33046608 DOI: 10.1212/wnl.0000000000011046] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/28/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the relationship between enlarged perivascular spaces (EPVS) and measures of Alzheimer disease (AD), small vessel disease (SVD), cognition, vascular risk factors, and neuroinflammation, we tested associations between EPVS and different relevant neuroimaging, biochemical, and cognitive variables in 778 study participants. METHODS Four hundred ninety-nine cognitively unimpaired (CU) individuals, 240 patients with mild cognitive impairment, and 39 patients with AD from the Swedish Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably (BioFINDER) study were included. EPVS with diameter >1 mm in centrum semiovale (CSO), basal ganglia (BG), and hippocampus (HP); hippocampal volume; white matter lesions (WML); and other SVD markers were determined from MRI. CSF levels of β-amyloid42 (Aβ42), phosphorylated tau, total tau, and neuroinflammatory markers; amyloid accumulation determined with [18F]-flutemetamol PET; and vascular risk factors and results from cognitive tests were determined and collected. RESULTS EPVS in CSO, BG, and HP were associated with WML volume and Fazekas score in individuals without dementia. No associations were found between EPVS and CSF Aβ42, total tau and phosphorylated tau, neuroinflammatory markers, vascular risk factors, and cognitive tests. EPVS in HP were associated with hippocampal atrophy. In a matched group of individuals with AD and CU, EPVS in HP were associated with AD diagnosis. CONCLUSIONS EPVS are related to SVD, also in early disease stages, but the lack of correlation with cognition suggests that their importance is limited. Our data do not support a role for EPVS in early AD pathogenesis.
Collapse
Affiliation(s)
- Eske Christiane Gertje
- From the Clinical Memory Research Unit (E.C.G., N.M.-C., O.H.), Department of Clinical Sciences Malmö, Lund University; Department of Internal Medicine (E.C.G.), Skåne University Hospital; Diagnostic Radiology (D.v.W., C.P.), Department of Clinical Sciences Lund, Lund University; Imaging and Function (D.v.W., C.P.), Skåne University Health Care; Department of Clinical Sciences Lund (N.M.-C.), Neurology, Lund University, Skåne University Hospital; Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University; andMemory Clinic (O.H.), Skåne University Health Care, Malmö, Sweden
| | - Danielle van Westen
- From the Clinical Memory Research Unit (E.C.G., N.M.-C., O.H.), Department of Clinical Sciences Malmö, Lund University; Department of Internal Medicine (E.C.G.), Skåne University Hospital; Diagnostic Radiology (D.v.W., C.P.), Department of Clinical Sciences Lund, Lund University; Imaging and Function (D.v.W., C.P.), Skåne University Health Care; Department of Clinical Sciences Lund (N.M.-C.), Neurology, Lund University, Skåne University Hospital; Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University; andMemory Clinic (O.H.), Skåne University Health Care, Malmö, Sweden.
| | - Clara Panizo
- From the Clinical Memory Research Unit (E.C.G., N.M.-C., O.H.), Department of Clinical Sciences Malmö, Lund University; Department of Internal Medicine (E.C.G.), Skåne University Hospital; Diagnostic Radiology (D.v.W., C.P.), Department of Clinical Sciences Lund, Lund University; Imaging and Function (D.v.W., C.P.), Skåne University Health Care; Department of Clinical Sciences Lund (N.M.-C.), Neurology, Lund University, Skåne University Hospital; Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University; andMemory Clinic (O.H.), Skåne University Health Care, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- From the Clinical Memory Research Unit (E.C.G., N.M.-C., O.H.), Department of Clinical Sciences Malmö, Lund University; Department of Internal Medicine (E.C.G.), Skåne University Hospital; Diagnostic Radiology (D.v.W., C.P.), Department of Clinical Sciences Lund, Lund University; Imaging and Function (D.v.W., C.P.), Skåne University Health Care; Department of Clinical Sciences Lund (N.M.-C.), Neurology, Lund University, Skåne University Hospital; Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University; andMemory Clinic (O.H.), Skåne University Health Care, Malmö, Sweden
| | - Oskar Hansson
- From the Clinical Memory Research Unit (E.C.G., N.M.-C., O.H.), Department of Clinical Sciences Malmö, Lund University; Department of Internal Medicine (E.C.G.), Skåne University Hospital; Diagnostic Radiology (D.v.W., C.P.), Department of Clinical Sciences Lund, Lund University; Imaging and Function (D.v.W., C.P.), Skåne University Health Care; Department of Clinical Sciences Lund (N.M.-C.), Neurology, Lund University, Skåne University Hospital; Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University; andMemory Clinic (O.H.), Skåne University Health Care, Malmö, Sweden
| |
Collapse
|
197
|
Lehmann S, Dumurgier J, Ayrignac X, Marelli C, Alcolea D, Ormaechea JF, Thouvenot E, Delaby C, Hirtz C, Vialaret J, Ginestet N, Bouaziz-Amar E, Laplanche JL, Labauge P, Paquet C, Lleo A, Gabelle A. Cerebrospinal fluid A beta 1-40 peptides increase in Alzheimer's disease and are highly correlated with phospho-tau in control individuals. ALZHEIMERS RESEARCH & THERAPY 2020; 12:123. [PMID: 33008460 PMCID: PMC7532565 DOI: 10.1186/s13195-020-00696-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/23/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Amyloid pathology, which is one of the characteristics of Alzheimer's disease (AD), results from altered metabolism of the beta-amyloid (Aβ) peptide in terms of synthesis, clearance, or aggregation. A decrease in cerebrospinal fluid (CSF) level Aβ1-42 is evident in AD, and the CSF ratio Aβ42/Aβ40 has recently been identified as one of the most reliable diagnostic biomarkers of amyloid pathology. Variations in inter-individual levels of Aβ1-40 in the CSF have been observed in the past, but their origins remain unclear. In addition, the variation of Aβ40 in the context of AD studied in several studies has yielded conflicting results. METHODS Here, we analyzed the levels of Aβ1-40 using multicenter data obtained on 2466 samples from six different cohorts in which CSF was collected under standardized protocols, centrifugation, and storage conditions. Tau and p-tau (181) concentrations were measured using commercially available in vitro diagnostic immunoassays. Concentrations of CSF Aβ1-42 and Aβ1-40 were measured by ELISA, xMAP technology, chemiluminescence immunoassay (CLIA), and mass spectrometry. Statistical analyses were calculated for parametric and non-parametric comparisons, linear regression, correlation, and odds ratios. The statistical tests were adjusted for the effects of covariates (age, in particular). RESULTS Regardless of the analysis method used and the cohorts, a slight but significant age-independent increase in the levels of Aβ40 in CSF was observed in AD. We also found a strong positive correlation between the levels of Aβ1-40 and p-tau (181) in CSF, particularly in control patients. CONCLUSIONS These results indicate that an increase in the baseline level of amyloid peptides, which are associated with an increase in p-tau (181), may be a biological characteristic and possibly a risk factor for AD. Further studies will be needed to establish a causal link between increased baseline levels of Aβ40 and the development of the disease.
Collapse
Affiliation(s)
- Sylvain Lehmann
- Univ Montpellier, CHU Montpellier (LBPC-PPC), INSERM (IRMB, INM), Montpellier, France.
| | - Julien Dumurgier
- Centre de Neurologie Cognitive et Service de Biochimie et de Biologie Moléculaire, Groupe Hospitalier Lariboisière Fernand-Widal, INSERMU942, Université Paris Diderot, Paris, France
| | - Xavier Ayrignac
- CHU de Montpellier, Département de Neurologie, INSERM, Univ Montpellier, Montpellier, France
| | - Cecilia Marelli
- CHU de Montpellier, Département de Neurologie, INSERM, Univ Montpellier, Montpellier, France
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Fortea Ormaechea
- Sant Pau Memory Unit, Department of Neurology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eric Thouvenot
- CHU de Nîmes, Département de Neurologie, INSERM, Univ Montpellier, Montpellier, France
| | - Constance Delaby
- Univ Montpellier, CHU Montpellier (LBPC-PPC), INSERM (IRMB, INM), Montpellier, France
| | - Christophe Hirtz
- Univ Montpellier, CHU Montpellier (LBPC-PPC), INSERM (IRMB, INM), Montpellier, France
| | - Jérôme Vialaret
- Univ Montpellier, CHU Montpellier (LBPC-PPC), INSERM (IRMB, INM), Montpellier, France
| | - Nelly Ginestet
- Univ Montpellier, CHU Montpellier (LBPC-PPC), INSERM (IRMB, INM), Montpellier, France
| | - Elodie Bouaziz-Amar
- Centre de Neurologie Cognitive et Service de Biochimie et de Biologie Moléculaire, Groupe Hospitalier Lariboisière Fernand-Widal, INSERMU942, Université Paris Diderot, Paris, France
| | - Jean-Louis Laplanche
- Centre de Neurologie Cognitive et Service de Biochimie et de Biologie Moléculaire, Groupe Hospitalier Lariboisière Fernand-Widal, INSERMU942, Université Paris Diderot, Paris, France
| | - Pierre Labauge
- CHU de Montpellier, Département de Neurologie, INSERM, Univ Montpellier, Montpellier, France
| | - Claire Paquet
- Centre de Neurologie Cognitive et Service de Biochimie et de Biologie Moléculaire, Groupe Hospitalier Lariboisière Fernand-Widal, INSERMU942, Université Paris Diderot, Paris, France
| | - Alberto Lleo
- Sant Pau Memory Unit, Department of Neurology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Audrey Gabelle
- Univ Montpellier, INSERM, CHU Montpellier (CMRR), Montpellier, France
| | | |
Collapse
|
198
|
Intracisternal injection of beta-amyloid seeds promotes cerebral amyloid angiopathy. Brain Behav Immun 2020; 89:628-640. [PMID: 32739364 DOI: 10.1016/j.bbi.2020.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Beta amyloid (Aβ) is a key component of parenchymal Aβ plaques and vascular Aβ fibrils, which lead to cerebral amyloid angiopathy (CAA) in Alzheimer's disease (AD). Recent studies have revealed that Aβ contained in the cerebrospinal fluid (CSF) can re-enter into brain through paravascular spaces. However, whether Aβ in CSF may act as a constant source of pathogenic Aβ in AD is still unclear. This study aimed to examine whether Aβ pathology could be worsened when CSF Aβ level was enhanced by intra-cisternal infusion of aged brain extract containing abundant Aβ in TgCRND8 host mice. TgCRND8 mouse is an AD animal model which develops predominant parenchymal Aβ plaques in the brain at as early as 3 months of age. Here, we showed that single intracisternal injection of Aβ seeds into TgCRND8 mice before the presence of Aβ pathology induced robust prion-like propagation of CAA within 90 days. The induced CAA is mainly distributed in the cerebral cortex, hippocampus and thalamus of TgCRND8 mice. Surprisingly, despite the robust increase in CAA levels, the TgCRND8 mice had a marked decrease in parenchymal Aβ plaques and the plaques related neuroinflammation in the brains compared with the control mice. These results amply indicate that Aβ in CSF may act as a source of Aβ contributing to the growth of vascular Aβ deposits in CAA. Our findings provide experimental evidence to unravel the mechanisms of CAA formation and the potential of targeting CSF Aβ for CAA.
Collapse
|
199
|
Wilson CA, Fouda S, Sakata S. Effects of optogenetic stimulation of basal forebrain parvalbumin neurons on Alzheimer's disease pathology. Sci Rep 2020; 10:15456. [PMID: 32963298 PMCID: PMC7508947 DOI: 10.1038/s41598-020-72421-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Neuronal activity can modify Alzheimer's disease pathology. Overexcitation of neurons can facilitate disease progression whereas the induction of cortical gamma oscillations can reduce amyloid load and improve cognitive functions in mouse models. Although previous studies have induced cortical gamma oscillations by either optogenetic activation of cortical parvalbumin-positive (PV+) neurons or sensory stimuli, it is still unclear whether other approaches to induce gamma oscillations can also be beneficial. Here we show that optogenetic activation of PV+ neurons in the basal forebrain (BF) increases amyloid burden, rather than reducing it. We applied 40 Hz optical stimulation in the BF by expressing channelrhodopsin-2 (ChR2) in PV+ neurons of 5xFAD mice. After 1-h induction of cortical gamma oscillations over three days, we observed the increase in the concentration of amyloid-β42 in the frontal cortical region, but not amyloid-β40. Amyloid plaques were accumulated more in the medial prefrontal cortex and the septal nuclei, both of which are targets of BF PV+ neurons. These results suggest that beneficial effects of cortical gamma oscillations on Alzheimer's disease pathology can depend on the induction mechanisms of cortical gamma oscillations.
Collapse
Affiliation(s)
- Caroline A Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Sarah Fouda
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
200
|
Minta K, Portelius E, Janelidze S, Hansson O, Zetterberg H, Blennow K, Andreasson U. Cerebrospinal Fluid Concentrations of Extracellular Matrix Proteins in Alzheimer's Disease. J Alzheimers Dis 2020; 69:1213-1220. [PMID: 31156172 DOI: 10.3233/jad-190187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Brevican, neurocan, tenascin-C, and tenascin-R are extracellular matrix (ECM) proteins that are mainly expressed in the brain. They play important roles in proliferation and migration of neurons and other cell types in the brain. These ECM proteins may also be involved in various pathologies, including reactive gliosis. OBJECTIVE The aim of the study was to investigate if ECM protein concentrations in cerebrospinal fluid (CSF) are linked to the neurodegenerative process in Alzheimer's disease (AD). METHODS Lumbar CSF samples from a non-AD control group (n = 50) and a clinically diagnosed AD group (n = 42), matched for age and gender, were analyzed using commercially available ELISAs detecting ECM proteins. Mann-Whitney U test was used to examine group differences, while Spearman's rho test was used for correlations. RESULTS Brevican, neurocan, tenascin-R, and tenascin-C concentrations in AD patients did not differ compared to healthy controls or when the groups were dichotomized based on the Aβ42/40 cut-off. CSF tenascin-C and tenascin-R concentrations were significantly higher in women than in men in the AD group (p = 0.02). CONCLUSION ECM proteins do not reflect AD-pathology in CSF. CSF tenascin-C and tenascin-R upregulation in women possibly reveal sexual dimorphism in the central nervous system immunity during AD.
Collapse
Affiliation(s)
- Karolina Minta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Shorena Janelidze
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Sweden.,Memory Clinic, Skåne University Hospital, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|