151
|
Parameshwar PK, Sagrillo-Fagundes L, Azevedo Portilho N, Pastor WA, Vaillancourt C, Moraes C. Engineered models for placental toxicology: Emerging approaches based on tissue decellularization. Reprod Toxicol 2022; 112:148-159. [PMID: 35840119 DOI: 10.1016/j.reprotox.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
Recent increases in prescriptions and illegal drug use as well as exposure to environmental contaminants during pregnancy have highlighted the critical importance of placental toxicology in understanding and identifying risks to both mother and fetus. Although advantageous for basic science, current in vitro models often fail to capture the complexity of placental response, likely due to their inability to recreate and monitor aspects of the microenvironment including physical properties, mechanical forces and stiffness, protein composition, cell-cell interactions, soluble and physicochemical factors, and other exogenous cues. Tissue engineering holds great promise in addressing these challenges and provides an avenue to better understand basic biology, effects of toxic compounds and potential therapeutics. The key to success lies in effectively recreating the microenvironment. One strategy to do this would be to recreate individual components and then combine them. However, this becomes challenging due to variables present according to conditions such as tissue location, age, health status and lifestyle. The extracellular matrix (ECM) is known to influence cellular fate by working as a storage of factors. Decellularized ECM (dECM) is a recent tool that allows usage of the original ECM in a refurbished form, providing a relatively reliable representation of the microenvironment. This review focuses on using dECM in modified forms such as whole organs, scaffold sheets, electrospun nanofibers, hydrogels, 3D printing, and combinations as building blocks to recreate aspects of the microenvironment to address general tissue engineering and toxicology challenges, thus illustrating their potential as tools for future placental toxicology studies.
Collapse
Affiliation(s)
| | | | - Nathalia Azevedo Portilho
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montréal, Québec, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Cathy Vaillancourt
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada; Department of Obstetrics and Gynecology, Université de Montréal, Montréal, Québec, Canada
| | - Christopher Moraes
- Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, Canada; Department of Chemical Engineering, McGill University, Montréal, Québec, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada; Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
152
|
Costa BA, Mouhieddine TH, Richter J. What's Old is New: The Past, Present and Future Role of Thalidomide in the Modern-Day Management of Multiple Myeloma. Target Oncol 2022; 17:383-405. [PMID: 35771402 DOI: 10.1007/s11523-022-00897-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 10/17/2022]
Abstract
Immunomodulatory drugs (IMiDs) have become an integral part of therapy for both newly diagnosed and relapsed/refractory multiple myeloma (RRMM). IMiDs bind to cereblon, leading to the degradation of proteins involved in B-cell survival and proliferation. Thalidomide, a first-generation IMiD, has little to no myelosuppressive potential, negligible renal clearance, and long-proven anti-myeloma activity. However, thalidomide's adverse effects (e.g., somnolence, constipation, and peripheral neuropathy) and the advent of more potent therapeutic options has led to the drug being less frequently used in many countries, including the US and Canada. Newer-generation IMiDs, such as lenalidomide and pomalidomide, are utilized far more frequently. In numerous previous trials, salvage therapy with thalidomide (50-200 mg/day) plus corticosteroids (with or without selected cytotoxic or targeted agents) has been shown to be effective and well-tolerated in the RRMM setting. Hence, thalidomide-based regimens remain important alternatives for heavily pretreated patients, especially for those who have no access to novel therapies and/or are not eligible for their use (due to renal failure, high-grade myelosuppression, or significant comorbidities). Ongoing and future trials may provide further insights into the current role of thalidomide, especially by comparing thalidomide-containing regimens with protocols based on newer-generation IMiDs and by investigating thalidomide's association with novel therapies (e.g., antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptor T cells).
Collapse
Affiliation(s)
- Bruno Almeida Costa
- Department of Medicine, Mount Sinai Morningside and West, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tarek H Mouhieddine
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1185, New York, NY, 10029, USA
| | - Joshua Richter
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1185, New York, NY, 10029, USA.
| |
Collapse
|
153
|
Niecke A, Peters KM, Alayli A, Lüngen M, Pfaff H, Albus C, Samel C. Health‐related quality of life after 50 years in individuals with thalidomide embryopathy: Evidence from a German cross‐sectional survey. Birth Defects Res 2022; 114:714-724. [DOI: 10.1002/bdr2.2051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 01/30/2023]
Affiliation(s)
- Alexander Niecke
- Department of Psychosomatic Medicine and Psychotherapy Faculty of Medicine and University Hospital Cologne Cologne Germany
| | - Klaus M. Peters
- Department of Orthopedics and Osteology Dr. Becker Rhein‐Sieg‐Klinik Nümbrecht Germany
| | - Adrienne Alayli
- Institute for Health Economics and Clinical Epidemiology, University of Cologne Faculty of Medicine and University Hospital Cologne Cologne Germany
| | - Markus Lüngen
- Faculty of Business Management and Social Sciences Osnabrück University of Applied Sciences Osnabrück Germany
| | - Holger Pfaff
- Institute of Medical Sociology, Health Services Research and Rehabilitation Science University of Cologne Cologne Germany
| | - Christian Albus
- Department of Psychosomatic Medicine and Psychotherapy Faculty of Medicine and University Hospital Cologne Cologne Germany
| | - Christina Samel
- Institute of Medical Statistics and Computational Biology University of Cologne Cologne Germany
| |
Collapse
|
154
|
Shindo S, Shioya A, Watanabe M, Sasaki T, Suzuki H, Kumagai T, Hwang GW, Nagata K. Development of an adenovirus-mediated reporter assay system to detect a low concentration of retinoic acid in MCF-7 cells. J Toxicol Sci 2022; 47:249-255. [PMID: 35650141 DOI: 10.2131/jts.47.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Retinoic acid, an active form of vitamin A, plays very important roles in mammalian embryogenesis. The concentration of retinoic acid is extremely low and strictly regulated by enzymes of cytochrome P450 (CYP) family, CYP26s (CYP26A1, CYP26B1 and CYP26C1) in the cells. Therefore, it is thought that changes in CYP26s activities due to exposure to a wide variety of drugs and chemicals exhibit teratogenicity. In this study, to easily detect the changes in retinoic acid level, we constructed an adenovirus-mediated reporter assay system using the promoter region of the CYP26A1 gene and inserting retinoic acid response element (RARE) and retinoid X response element (RXRE) into the downstream of the luciferase gene of reporter plasmid, which highly increased the response to retinoic acid. Reporter activity significantly increased in a concentration-dependent manner with retinoic acid; this increase was also observed at least after treatment with a very low concentration of 1 nM retinoic acid. This increase was suppressed by the accelerated metabolism of retinoic acid due to the overexpression of CYP26A1; however, this suppression was almost completely suspended by treatment with talarozole, a CYP26 inhibitor. In conclusion, the reporter assay system constructed using the induction of CYP26A1 expression is a risk assessment system that responds to extremely low concentrations of retinoic acid and is useful for assessing the excess vitamin A mediated teratogenicity caused by various chemicals at the cellular level.
Collapse
Affiliation(s)
- Sawako Shindo
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Anari Shioya
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Michiko Watanabe
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Takamitsu Sasaki
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Hiroyuki Suzuki
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Takeshi Kumagai
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Gi-Wook Hwang
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Kiyoshi Nagata
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
155
|
Schipper LJ, Zeverijn LJ, Garnett MJ, Voest EE. Can Drug Repurposing Accelerate Precision Oncology? Cancer Discov 2022; 12:1634-1641. [PMID: 35642948 DOI: 10.1158/2159-8290.cd-21-0612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/28/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Ongoing new insights in the field of cancer diagnostics, genomic profiling, and cancer behavior have raised the demand for novel, personalized cancer treatments. As the development of new cancer drugs is a challenging, costly, and time-consuming endeavor, drug repurposing is regarded as an attractive alternative to potentially accelerate this. In this review, we describe strategies for drug repurposing of anticancer agents, translation of preclinical findings in novel trial designs, and associated challenges. Furthermore, we provide suggestions to further utilize the potential of drug repurposing within precision oncology, with a focus on combinatorial approaches. SIGNIFICANCE Oncologic drug development is a timely and costly endeavor, with only few compounds progressing to meaningful therapy options. Although repurposing of existing agents for novel, oncologic indications provides an opportunity to accelerate this process, it is not without challenges.
Collapse
Affiliation(s)
- Luuk J Schipper
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Laurien J Zeverijn
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | | | - Emile E Voest
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
156
|
Lee F. Detecting the unknown in a sea of knowns: Health surveillance, knowledge infrastructures, and the quest for classification egress. SCIENCE IN CONTEXT 2022; 35:153-172. [PMID: 37994507 DOI: 10.1017/s0269889723000133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The sociological study of knowledge infrastructures and classification has traditionally focused on the politics and practices of classifying things or people. However, actors' work to escape dominant infrastructures and pre-established classification systems has received little attention. In response to this, this article argues that it is crucial to analyze, not only the practices and politics of classification, but also actors' work to escape dominant classification systems. The article has two aims: First, to make a theoretical contribution to the study of classification by proposing to pay analytical attention to practices of escaping classification, what the article dubs classification egress. This concept directs our attention not only to the practices and politics of classifying things, but also to how actors work to escape or resist classification systems in practice. Second, the article aims to increase our understanding of the history of quantified and statistical health surveillance. In this, the article investigates how actors in health surveillance assembled a knowledge infrastructure for surveilling, quantifying, and detecting unknown patterns of congenital malformations in the wake of the thalidomide disaster in the early 1960s. The empirical account centers on the actors' work to detect congenital malformations and escape the dominant nosological classification of diseases, the International Classification of Diseases (ICD), by replacing it with a procedural standard for reporting of symptoms. Thus, the article investigates how actors deal with the tension between the-already-known-and-classified and the unknown-unclassified-phenomenon in health surveillance practice.
Collapse
Affiliation(s)
- Francis Lee
- Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
157
|
Cristancho Ortiz CJ, de Freitas Silva M, Pruccoli L, Fonseca Nadur N, de Azevedo LL, Kümmerle AE, Guedes IA, Dardenne LE, Leomil Coelho LF, Guimarães MJ, da Silva FMR, Castro N, Gontijo VS, Rojas VCT, de Oliveira MK, Vilela FC, Giusti-Paiva A, Barbosa G, Lima LM, Pinheiro GB, Veras LG, Mortari MR, Tarozzi A, Viegas C. Design, synthesis, and biological evaluation of new thalidomide-donepezil hybrids as neuroprotective agents targeting cholinesterases and neuroinflammation. RSC Med Chem 2022; 13:568-584. [PMID: 35694691 PMCID: PMC9132228 DOI: 10.1039/d1md00374g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
A new series of eight multifunctional thalidomide-donepezil hybrids were synthesized based on the multi-target-directed ligand strategy and evaluated as potential neuroprotective, cholinesterase inhibitors and anti-neuroinflammatory agents against neurodegenerative diseases. A molecular hybridization approach was used for structural design by combining the N-benzylpiperidine pharmacophore of donepezil and the isoindoline-1,3-dione fragment from the thalidomide structure. The most promising compound, PQM-189 (3g), showed good AChE inhibitory activity with an IC50 value of 3.15 μM, which was predicted by docking studies as interacting with the enzyme in the same orientation observed in the AChE-donepezil complex and a similar profile of interaction. Additionally, compound 3g significantly decreased iNOS and IL-1β levels by 43% and 39%, respectively, after 24 h of incubation with lipopolysaccharide. In vivo data confirmed the ability of 3g to prevent locomotor impairment and changes in feeding behavior elicited by lipopolysaccharide. Moreover, the PAMPA assay evidenced adequate blood-brain barrier and gastrointestinal tract permeabilities with an Fa value of 69.8%. Altogether, these biological data suggest that compound 3g can treat the inflammatory process and oxidative stress resulting from the overexpression of iNOS and therefore the increase in reactive nitrogen species, and regulate the release of pro-inflammatory cytokines such as IL-1β. In this regard, compound PQM-189 (3g) was revealed to be a promising neuroprotective and anti-neuroinflammatory agent with an innovative thalidomide-donepezil-based hybrid molecular architecture.
Collapse
Affiliation(s)
- Cindy Juliet Cristancho Ortiz
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas 2600 Jovino Fernandes Sales Ave. Alfenas MG 37130-840 Brazil
| | - Matheus de Freitas Silva
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas 2600 Jovino Fernandes Sales Ave. Alfenas MG 37130-840 Brazil
| | - Letizia Pruccoli
- Department for Life Quality Studies, University of Bologna'Alma Mater Studiorum' 237 Corso d'Augusto St. 47921 Rimini Italy
| | - Nathália Fonseca Nadur
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro 21941-902 Seropédica RJ Brazil
| | - Luciana Luíza de Azevedo
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro 21941-902 Seropédica RJ Brazil
| | - Arthur Eugen Kümmerle
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro 21941-902 Seropédica RJ Brazil
| | | | | | - Luiz Felipe Leomil Coelho
- Institute of Biomedical Sciences, Federal University of Alfenas 700 Gabriel Monteiro da Silva St Alfenas MG 37130-840 Brazil
| | - Marcos J Guimarães
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro 21941-902 Rio de Janeiro/RJ Brazil
| | - Fernanda M R da Silva
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro 21941-902 Rio de Janeiro/RJ Brazil
| | - Newton Castro
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro 21941-902 Rio de Janeiro/RJ Brazil
| | - Vanessa Silva Gontijo
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas 2600 Jovino Fernandes Sales Ave. Alfenas MG 37130-840 Brazil
| | - Viviana C T Rojas
- Laboratory of Physiology, Federal University of Alfenas 2600 Jovino Fernandes Sales Avenue Alfenas MG 37130-840 Brazil
| | - Merelym Ketterym de Oliveira
- Laboratory of Physiology, Federal University of Alfenas 2600 Jovino Fernandes Sales Avenue Alfenas MG 37130-840 Brazil
| | - Fabiana Cardoso Vilela
- Laboratory of Physiology, Federal University of Alfenas 2600 Jovino Fernandes Sales Avenue Alfenas MG 37130-840 Brazil
| | - Alexandre Giusti-Paiva
- Laboratory of Physiology, Federal University of Alfenas 2600 Jovino Fernandes Sales Avenue Alfenas MG 37130-840 Brazil
| | - Gisele Barbosa
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Health Sciences Center, Federal University of Rio de Janeiro 21941-902 Rio de Janeiro/RJ Brazil
| | - Lídia Moreira Lima
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Health Sciences Center, Federal University of Rio de Janeiro 21941-902 Rio de Janeiro/RJ Brazil
| | - Gabriela Beserra Pinheiro
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasília Brasilia DF 70910-900 Brazil
| | - Letícia Germino Veras
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasília Brasilia DF 70910-900 Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasília Brasilia DF 70910-900 Brazil
| | - Andrea Tarozzi
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas 2600 Jovino Fernandes Sales Ave. Alfenas MG 37130-840 Brazil .,Department for Life Quality Studies, University of Bologna'Alma Mater Studiorum' 237 Corso d'Augusto St. 47921 Rimini Italy
| | - Claudio Viegas
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas 2600 Jovino Fernandes Sales Ave. Alfenas MG 37130-840 Brazil
| |
Collapse
|
158
|
Cherianidou A, Seidel F, Kappenberg F, Dreser N, Blum J, Waldmann T, Blüthgen N, Meisig J, Madjar K, Henry M, Rotshteyn T, Marchan R, Edlund K, Leist M, Rahnenführer J, Sachinidis A, Hengstler JG. Classification of Developmental Toxicants in a Human iPSC Transcriptomics-Based Test. Chem Res Toxicol 2022; 35:760-773. [PMID: 35416653 PMCID: PMC9377669 DOI: 10.1021/acs.chemrestox.1c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the progress made in developmental toxicology, there is a great need for in vitro tests that identify developmental toxicants in relation to human oral doses and blood concentrations. In the present study, we established the hiPSC-based UKK2 in vitro test and analyzed genome-wide expression profiles of 23 known teratogens and 16 non-teratogens. Compounds were analyzed at the maximal plasma concentration (Cmax) and at 20-fold Cmax for a 24 h incubation period in three independent experiments. Based on the 1000 probe sets with the highest variance and including information on cytotoxicity, penalized logistic regression with leave-one-out cross-validation was used to classify the compounds as test-positive or test-negative, reaching an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.96, 0.92, 0.96, and 0.88, respectively. Omitting the cytotoxicity information reduced the test performance to an AUC of 0.94, an accuracy of 0.79, and a sensitivity of 0.74. A second method, which used the number of significantly deregulated probe sets to classify the compounds, resulted in a specificity of 1; however, the AUC (0.90), accuracy (0.90), and sensitivity (0.83) were inferior compared to those of the logistic regression-based procedure. Finally, no increased performance was achieved when the high test concentrations (20-fold Cmax) were used, in comparison to testing within the realistic clinical range (1-fold Cmax). In conclusion, although further optimization is required, for example, by including additional readouts and cell systems that model different developmental processes, the UKK2-test in its present form can support the early discovery-phase detection of human developmental toxicants.
Collapse
Affiliation(s)
- Anna Cherianidou
- Faculty
of Medicine and University Hospital Cologne, Center for Physiology,
Working Group Sachinidis, University of
Cologne, Robert-Koch-Str.
39, 50931 Cologne, Germany
| | - Florian Seidel
- Leibniz
Research Centre for Working Environment and Human Factors at the Technical
University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Franziska Kappenberg
- Department
of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, Germany
| | - Nadine Dreser
- In
Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, P.O.
Box M657, 78457 Konstanz, Germany
| | - Jonathan Blum
- In
Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, P.O.
Box M657, 78457 Konstanz, Germany
| | - Tanja Waldmann
- Department
of Advanced Cell Systems, trenzyme GmbH, Byk-Gulden-Str. 2, 78467 Konstanz, Germany
| | - Nils Blüthgen
- Institute
of Pathology, Charité-Universitätsmedizin
Berlin, Chariteplatz
1, 10117 Berlin, Germany
- IRI
Life Sciences, Humboldt Universität zu Berlin, Philippstraße 13, Haus 18, 10115 Berlin, Germany
| | - Johannes Meisig
- Institute
of Pathology, Charité-Universitätsmedizin
Berlin, Chariteplatz
1, 10117 Berlin, Germany
- IRI
Life Sciences, Humboldt Universität zu Berlin, Philippstraße 13, Haus 18, 10115 Berlin, Germany
| | - Katrin Madjar
- Department
of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, Germany
| | - Margit Henry
- Faculty
of Medicine and University Hospital Cologne, Center for Physiology,
Working Group Sachinidis, University of
Cologne, Robert-Koch-Str.
39, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne (CMMC), University
of Cologne, 50931 Cologne, Germany
| | - Tamara Rotshteyn
- Faculty
of Medicine and University Hospital Cologne, Center for Physiology,
Working Group Sachinidis, University of
Cologne, Robert-Koch-Str.
39, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne (CMMC), University
of Cologne, 50931 Cologne, Germany
| | - Rosemarie Marchan
- Leibniz
Research Centre for Working Environment and Human Factors at the Technical
University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Karolina Edlund
- Leibniz
Research Centre for Working Environment and Human Factors at the Technical
University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Marcel Leist
- In
Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, P.O.
Box M657, 78457 Konstanz, Germany
| | - Jörg Rahnenführer
- Department
of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, Germany
| | - Agapios Sachinidis
- Faculty
of Medicine and University Hospital Cologne, Center for Physiology,
Working Group Sachinidis, University of
Cologne, Robert-Koch-Str.
39, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne (CMMC), University
of Cologne, 50931 Cologne, Germany
| | - Jan G. Hengstler
- Leibniz
Research Centre for Working Environment and Human Factors at the Technical
University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| |
Collapse
|
159
|
Abstract
AbstractThe druggable genome is limited by structural features that can be targeted by small molecules in disease-relevant proteins. While orthosteric and allosteric protein modulators have been well studied, they are limited to antagonistic/agonistic functions. This approach to protein modulation leaves many disease-relevant proteins as undruggable targets. Recently, protein-protein interaction modulation has emerged as a promising therapeutic field for previously undruggable protein targets. Molecular glues and heterobifunctional degraders such as PROTACs can facilitate protein interactions and bring the proteasome into proximity to induce targeted protein degradation. In this review, we discuss the function and rational design of molecular glues, heterobifunctional degraders, and hydrophobic tag degraders. We also review historic and novel molecular glues and targets and discuss the challenges and opportunities in this new therapeutic field.
Collapse
|
160
|
Tarantal AF, Hartigan-O'Connor DJ, Noctor SC. Translational Utility of the Nonhuman Primate Model. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:491-497. [PMID: 35283343 PMCID: PMC9576492 DOI: 10.1016/j.bpsc.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/15/2022]
Abstract
Nonhuman primates are essential for the study of human disease and to explore the safety of new diagnostics and therapies proposed for human use. They share similar genetic, physiologic, immunologic, reproductive, and developmental features with humans and thus have proven crucial for the study of embryonic/fetal development, organ system ontogeny, and the role of the maternal-placental-fetal interface in health and disease. The fetus may be exposed to a variety of inflammatory stimuli including infectious microbes as well as maternal inflammation, which can result from infections, obesity, or environmental exposures. Growing evidence supports that inflammation is a mediator of fetal programming and that the maternal immune system is tightly integrated with fetal-placental immune responses that may set a postnatal path for future health or disease. This review addresses some of the unique features of the nonhuman primate model system, specifically the rhesus monkey (Macaca mulatta), and importance of the species for studies focused on organ system ontogeny and the impact of viral teratogens in relation to development and congenital disorders.
Collapse
Affiliation(s)
- Alice F Tarantal
- Department of Pediatrics, School of Medicine, University of California Davis, Davis, California; Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California; California National Primate Research Center, University of California Davis, Davis, California.
| | - Dennis J Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California; California National Primate Research Center, University of California Davis, Davis, California
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Davis, California; Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis, Davis, California
| |
Collapse
|
161
|
Fliedel L, Alhareth K, Mignet N, Fournier T, Andrieux K. Placental Models for Evaluation of Nanocarriers as Drug Delivery Systems for Pregnancy Associated Disorders. Biomedicines 2022; 10:936. [PMID: 35625672 PMCID: PMC9138319 DOI: 10.3390/biomedicines10050936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pregnancy-associated disorders affect around 20% of pregnancies each year around the world. The risk associated with pregnancy therapeutic management categorizes pregnant women as "drug orphan" patients. In the last few decades, nanocarriers have demonstrated relevant properties for controlled drug delivery, which have been studied for pregnancy-associated disorders. To develop new drug dosage forms it is mandatory to have access to the right evaluation models to ensure their usage safety and efficacy. This review exposes the various placental-based models suitable for nanocarrier evaluation for pregnancy-associated therapies. We first review the current knowledge about nanocarriers as drug delivery systems and how placenta can be used as an evaluation model. Models are divided into three categories: in vivo, in vitro, and ex vivo placental models. We then examine the recent studies using those models to evaluate nanocarriers behavior towards the placental barrier and which information can be gathered from these results. Finally, we propose a flow chart on the usage and the combination of models regarding the nanocarriers and nanoparticles studied and the intended therapeutic strategy.
Collapse
Affiliation(s)
- Louise Fliedel
- Unité de Technologies Chimiques et Biologiques Pour la Santé (UTCBS), Inserm U1267, CNRS UMR8258, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France; (L.F.); (K.A.); (N.M.)
- Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre and Postnatal Microbiota Unit (3PHM), Inserm U1139, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France;
| | - Khair Alhareth
- Unité de Technologies Chimiques et Biologiques Pour la Santé (UTCBS), Inserm U1267, CNRS UMR8258, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France; (L.F.); (K.A.); (N.M.)
| | - Nathalie Mignet
- Unité de Technologies Chimiques et Biologiques Pour la Santé (UTCBS), Inserm U1267, CNRS UMR8258, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France; (L.F.); (K.A.); (N.M.)
| | - Thierry Fournier
- Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre and Postnatal Microbiota Unit (3PHM), Inserm U1139, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France;
| | - Karine Andrieux
- Unité de Technologies Chimiques et Biologiques Pour la Santé (UTCBS), Inserm U1267, CNRS UMR8258, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France; (L.F.); (K.A.); (N.M.)
| |
Collapse
|
162
|
Chaves-Moreira D, Mitchell MA, Arruza C, Rawat P, Sidoli S, Nameki R, Reddy J, Corona RI, Afeyan LK, Klein IA, Ma S, Winterhoff B, Konecny GE, Garcia BA, Brady DC, Lawrenson K, Morin PJ, Drapkin R. The transcription factor PAX8 promotes angiogenesis in ovarian cancer through interaction with SOX17. Sci Signal 2022; 15:eabm2496. [PMID: 35380877 DOI: 10.1126/scisignal.abm2496] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PAX8 is a master transcription factor that is essential during embryogenesis and promotes neoplastic growth. It is expressed by the secretory cells lining the female reproductive tract, and its deletion during development results in atresia of reproductive tract organs. Nearly all ovarian carcinomas express PAX8, and its knockdown results in apoptosis of ovarian cancer cells. To explore the role of PAX8 in these tissues, we purified the PAX8 protein complex from nonmalignant fallopian tube cells and high-grade serous ovarian carcinoma cell lines. We found that PAX8 was a member of a large chromatin remodeling complex and preferentially interacted with SOX17, another developmental transcription factor. Depleting either PAX8 or SOX17 from cancer cells altered the expression of factors involved in angiogenesis and functionally disrupted tubule and capillary formation in cell culture and mouse models. PAX8 and SOX17 in ovarian cancer cells promoted the secretion of angiogenic factors by suppressing the expression of SERPINE1, which encodes a proteinase inhibitor with antiangiogenic effects. The findings reveal a non-cell-autonomous function of these transcription factors in regulating angiogenesis in ovarian cancer.
Collapse
Affiliation(s)
- Daniele Chaves-Moreira
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Biomedical Research Building II/III, Suite 1224, Philadelphia, PA 19104, USA
| | - Marilyn A Mitchell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Biomedical Research Building II/III, Suite 1224, Philadelphia, PA 19104, USA
| | - Cristina Arruza
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Biomedical Research Building II/III, Suite 1224, Philadelphia, PA 19104, USA
| | - Priyanka Rawat
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Biomedical Research Building II/III, Suite 1224, Philadelphia, PA 19104, USA
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, Suite 9-124, Philadelphia, PA 19104, USA
| | - Robbin Nameki
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica Reddy
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rosario I Corona
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lena K Afeyan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Isaac A Klein
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Boris Winterhoff
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gottfried E Konecny
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, Suite 9-124, Philadelphia, PA 19104, USA
| | - Donita C Brady
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Biomedical Research Building II/III, Suite 612, Philadelphia, PA 19104, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Biomedical Research Building II/III, Suite 612, Philadelphia, PA 19104, USA
| | - Kate Lawrenson
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Patrice J Morin
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Biomedical Research Building II/III, Suite 1224, Philadelphia, PA 19104, USA
| | - Ronny Drapkin
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Biomedical Research Building II/III, Suite 1224, Philadelphia, PA 19104, USA
| |
Collapse
|
163
|
Sharif MJH, Farrukh MJ, Khan FU, Khan Q, Ahmed SS, Kousar R, Ahmad T, Abid SMA, Ashfaq M, Khan SA. Exploring the factors and barriers of healthcare professionals in tertiary care hospitals toward pharmacovigilance: a multicenter study from Khyber Pakhtunkhwa, Pakistan. Curr Med Res Opin 2022; 38:595-605. [PMID: 35166143 DOI: 10.1080/03007995.2022.2042992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Spontaneous Adverse drug reactions (ADRs) reporting is a cornerstone for a successful pharmacovigilance program as under-reporting of ADRs remains a major issue around the globe. The current study aimed to assess the knowledge attitude and practices of health care professionals regarding pharmacovigilance along with barriers and factors to encourage ADR reporting at tertiary care hospitals of Khyber-Pakhtunkhwa, Pakistan. METHODS A questionnaire-based cross-sectional survey was conducted, using the convenience sampling method to collect the data from doctors, nurses, and pharmacists working in seven tertiary care hospitals from seven districts of Khyber-Pakhtunkhwa province, Pakistan, between July 2019 and March 2020. RESULTS During the study, a total of 830 questionnaires were distributed, out of which 669 were returned (response rate 80.6%). Overall, Healthcare professionals exhibited poor knowledge (79.5%) about ADR reporting and pharmacovigilance however, 73.5% of pharmacists were more knowledgeable as compared to 18.7% doctors and 13.8% nurses (p < .001). Moreover, poor reporting practices were displayed by 95.6% doctors, 94.4% nurses, 94.4 and 75.5% pharmacists (p < .001). However, the majority of healthcare professionals showed an overall positive attitude (94%) toward ADR reporting. The most frequently cited barriers were unavailability of reporting forms (92.5%), absence of a professional environment to discuss ADRs (82.5%), and lack of training (81.8%) whereas, most common factors to encourage ADR reporting were obligatory reporting (85.9%) and provision of ADR management guidelines and training (84.3%). A significant relation was found between the healthcare professionals and their professional status with the overall knowledge, attitude, and practice (KAP) scores (p < .001) whereas a medium, positive correlation was found between the knowledge and practice of pharmacovigilance and ADR reporting by the healthcare professionals (r = 0.321, n = 669, p < .001). CONCLUSION There is an overall lack of knowledge and poor reporting practices among health care professionals on ADR reporting and pharmacovigilance. Hence the study suggests that strategies should be devised by all the stakeholders to properly educate and train the healthcare professionals in this area to enhance overall patient safety and safe use of medicines.
Collapse
Affiliation(s)
| | | | - Faiz Ullah Khan
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Qasim Khan
- Department of Pharmacy, COMSATS University Islamabad-Abbottabad Campus, Abbottabad, Pakistan
| | - Sardar Shabbir Ahmed
- Secretary Quality Control Board, Focal Person Pharmacovigilance Islamabad, Islamabad, Pakistan
| | - Rozina Kousar
- Department of Pharmacy, Women Institute of Learning, Abbottabad, Pakistan
| | - Tawseef Ahmad
- Department of Pharmacy, COMSATS University Islamabad-Abbottabad Campus, Abbottabad, Pakistan
| | - Syed Mobasher Ali Abid
- Department of Pharmacy, COMSATS University Islamabad-Abbottabad Campus, Abbottabad, Pakistan
| | - Muhammad Ashfaq
- Department of Pharmacy, COMSATS University Islamabad-Abbottabad Campus, Abbottabad, Pakistan
| | - Shujaat Ali Khan
- Department of Pharmacy, COMSATS University Islamabad-Abbottabad Campus, Abbottabad, Pakistan
| |
Collapse
|
164
|
Schaeffer T, Canizares MF, Wall LB, Bohn D, Steinman S, Samora J, Manske MC, Hutchinson DT, Shah AS, Bauer AS. How Risky Are Risk Factors? An Analysis of Prenatal Risk Factors in Patients Participating in the Congenital Upper Limb Differences Registry. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2022; 4:147-152. [PMID: 35601517 PMCID: PMC9120783 DOI: 10.1016/j.jhsg.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/02/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose Risk factors for congenital upper limb differences (CoULDs) are often studied at the general population level. The CoULD registry provides a unique opportunity to study prenatal risk factors within a large patient sample. Methods All patients enrolled between June 2014 and March 2020 in the prospective CoULD registry, a national multicenter database of patients diagnosed with a CoULD, were included in the analysis. We analyzed self-reported, prenatal risk factors, including maternal smoking, alcohol use, recreational drug use, prescription drug use, gestational diabetes mellitus (GDM), and gestational hypertension. The outcome measures included comorbid medical conditions, proximal involvement of limb difference, bilateral involvement, and additional orthopedic conditions. Multivariable logistic regression was used to analyze the effect of the risk factors, controlling for sex and the presence of a named syndrome. Results In total, 2,410 patients were analyzed, of whom 72% (1,734) did not have a self-reported risk factor. Among the 29% (676) who did have at least 1 risk factor, prenatal maternal prescription drug use was the most frequent (376/2,410; 16%). Maternal prescription drug use was associated with increased odds of patient medical comorbidities (odds ratio [OR] = 1.43, P = .02). Gestational diabetes mellitus was associated with increased odds of comorbid medical conditions (OR = 1.58, P = .04), additional orthopedic conditions (OR = 1.51, P = .04), and proximal involvement (OR = 1.52, P = .04). Overall, reporting 1 or more risk factors increased the odds of patient comorbid medical conditions (OR = 1.42, P < .001) and additional orthopedic conditions (OR = 1.25, P = .03). Conclusions Most caregivers (72%) did not report a risk factor during enrollment. However, reporting a risk factor was associated with patient medical and orthopedic comorbidities. Of note, GDM alone significantly increased the odds of both these outcome measures along with proximal limb differences. These findings highlight the ill-defined etiology of CoULDs but suggest that prenatal risk factors, especially GDM, are associated with a higher degree of morbidity. Type of study/level of evidence Prognostic III.
Collapse
Affiliation(s)
- Tyler Schaeffer
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA
| | - Maria F. Canizares
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA
| | - Lindley B. Wall
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO
- Shriners Hospitals for Children – St. Louis, St. Louis, MO
| | - Deborah Bohn
- Gillette Children’s Specialty Healthcare, St. Paul, MN
| | | | | | | | | | | | - Andrea S. Bauer
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA
- Corresponding author: Andrea S. Bauer, MD, Boston Children’s Hospital, 300 Longwood Avenue, Hunnewell 2, Boston, MA 02115.
| | | |
Collapse
|
165
|
Schwartzberg JL, King B, Appel JM. Toxic: The Challenge of Involuntary Contraception in Incompetent Psychiatric Patients Treated with Teratogenic Medications. THE JOURNAL OF CLINICAL ETHICS 2022. [DOI: 10.1086/jce2022331029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
166
|
Nemec B, Olszynko-Gryn J. The Duogynon controversy and ignorance production in post-thalidomide West Germany. REPRODUCTIVE BIOMEDICINE & SOCIETY ONLINE 2022; 14:75-86. [PMID: 34926842 PMCID: PMC8648809 DOI: 10.1016/j.rbms.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 08/10/2021] [Accepted: 09/20/2021] [Indexed: 06/14/2023]
Abstract
This article examines the West German controversy over Duogynon, a 'hormone pregnancy test' and the drug at the centre of the first major, international debate over iatrogenic birth defects in the post-thalidomide era. It recovers an asymmetrical power struggle over the uneven distribution of biomedical knowledge and ignorance (about teratogenic risk) that pitted parent-activists, whistleblowers and investigative journalists against industrialists, scientific experts and government officials. It sheds new light on the nexus of reproduction, disability, epidemiology and health activism in West Germany. In addition, it begins to recover an internationally influential discourse that, in the post-thalidomide world, seems to have resuscitated antenatal drug use as safe until proven harmful.
Collapse
|
167
|
Cowan AD, Ciulli A. Driving E3 Ligase Substrate Specificity for Targeted Protein Degradation: Lessons from Nature and the Laboratory. Annu Rev Biochem 2022; 91:295-319. [PMID: 35320687 DOI: 10.1146/annurev-biochem-032620-104421] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methods to direct the degradation of protein targets with proximity-inducing molecules that coopt the cellular degradation machinery are advancing in leaps and bounds, and diverse modalities are emerging. The most used and well-studied approach is to hijack E3 ligases of the ubiquitin-proteasome system. E3 ligases use specific molecular recognition to determine which proteins in the cell are ubiquitinated and degraded. This review focuses on the structural determinants of E3 ligase recruitment of natural substrates and neo-substrates obtained through monovalent molecular glues and bivalent proteolysis-targeting chimeras. We use structures to illustrate the different types of substrate recognition and assess the basis for neo-protein-protein interactions in ternary complex structures. The emerging structural and mechanistic complexity is reflective of the diverse physiological roles of protein ubiquitination. This molecular insight is also guiding the application of structure-based design approaches to the development of new and existing degraders as chemical tools and therapeutics. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Angus D Cowan
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, United Kingdom;
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, United Kingdom;
| |
Collapse
|
168
|
Che J, Luo T, Huang L, Lu Q, Yan D, Meng Y, Xie J, Chen W, Chen J, Long L. Magnetic Resonance Imaging Quantification of the Liver Iron Burden and Volume Changes Following Treatment With Thalidomide in Patients With Transfusion-Dependent ß-Thalassemia. Front Pharmacol 2022; 13:810668. [PMID: 35250561 PMCID: PMC8894715 DOI: 10.3389/fphar.2022.810668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
Clinical trials have indicated that thalidomide could be used to treat thalassemia, but evidence of changes in liver iron burden and liver volume during thalidomide treatment is lacking. This study aimed to evaluate the liver iron burden and volume changes following thalidomide treatment in patients with transfusion-dependent ß-thalassemia. A total of 66 participants with transfusion-dependent ß-thalassemia were included in this prospective cohort study between January 2017 and December 2020. Patients were treated with thalidomide (150–200 mg/day) plus conventional therapy. Liver volume, liver R2*, and hepatic muscle signal ratio (SIR)_T1 and SIR_T2 were measured with magnetic resonance imaging (MRI), and serum ferritin, hemoglobin, erythrocyte and platelet counts, and liver function were measured at baseline and at the 3rd and 12th months. Adverse events were also noted. Patients showed progressive increase in hemoglobin, erythrocyte, platelet count, SIR_T1, and SIR_T2 during the 12-months follow up. Serum ferritin, R2*, and liver volume progressively decreased during the follow up. The R2* value had a significantly positive correlation with serum ferritin, and SIR_T1 and SIR_T2 had a significantly negative correlation with serum ferritin. No serious adverse events were observed. This study showed that thalidomide could potentially be used to successfully treat patients with transfusion-dependent ß-thalassemia; the liver iron burden and liver volume could be relieved during treatment, and the MRI-measured R2*, SIR_T1, and SIR_T2 may be used to noninvasively monitor liver iron concentration.
Collapse
Affiliation(s)
- Jinlian Che
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Radiology, Seven Affiliated Hospital of Guangxi Medical University (Wuzhou Gongren Hospital), Wuzhou, China
| | - Tianying Luo
- Department of Hematology, Seven Affiliated Hospital of Guangxi Medical University (Wuzhou Gongren Hospital), Wuzhou, China
| | - Lan Huang
- Department of Hematology, Seven Affiliated Hospital of Guangxi Medical University (Wuzhou Gongren Hospital), Wuzhou, China
| | - Qiyang Lu
- Department of Hematology, Seven Affiliated Hospital of Guangxi Medical University (Wuzhou Gongren Hospital), Wuzhou, China
| | - Da Yan
- Department of Radiology, Seven Affiliated Hospital of Guangxi Medical University (Wuzhou Gongren Hospital), Wuzhou, China
| | - Yinying Meng
- Department of Radiology, Seven Affiliated Hospital of Guangxi Medical University (Wuzhou Gongren Hospital), Wuzhou, China
| | - Jinlan Xie
- Department of Radiology, Seven Affiliated Hospital of Guangxi Medical University (Wuzhou Gongren Hospital), Wuzhou, China
| | - Weihua Chen
- Department of Radiology, Seven Affiliated Hospital of Guangxi Medical University (Wuzhou Gongren Hospital), Wuzhou, China
| | - Jiangming Chen
- Department of Hematology, Seven Affiliated Hospital of Guangxi Medical University (Wuzhou Gongren Hospital), Wuzhou, China
- *Correspondence: Liling Long, ; Jiangming Chen,
| | - Liling Long
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- NHC Key Laboratory of Thalassemia Medicine (Gaungxi Medical University), Nanning, China
- *Correspondence: Liling Long, ; Jiangming Chen,
| |
Collapse
|
169
|
Prediction of CYP-mediated silybin A-losartan pharmacokinetic interactions using physiological based pharmacokinetic modeling. J Pharmacokinet Pharmacodyn 2022; 49:311-323. [DOI: 10.1007/s10928-022-09804-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
|
170
|
Magen H, Simchen MJ, Erman S, Avigdor A. Diagnosis and management of multiple myeloma during pregnancy: case report, review of the literature, and an update on current treatments. Ther Adv Hematol 2022; 13:20406207211066173. [PMID: 35083030 PMCID: PMC8785339 DOI: 10.1177/20406207211066173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/19/2021] [Indexed: 11/15/2022] Open
Abstract
The simultaneous occurrence of pregnancy and multiple myeloma (MM) is rare. The challenge of diagnosing MM during pregnancy is demonstrated in the case presented here. Despite the rarity of concurrent MM and pregnancy, this possibility should be considered in patients with signs and symptoms that may be attributed to MM so as not to delay the diagnosis and decision about pregnancy continuation and initiation of an appropriate and safe therapy to the mother and fetus. Treating physicians should be aware of the potential effects of MM therapies on the fetus and pregnancy outcomes.
Collapse
Affiliation(s)
- Hila Magen
- Head of Multiple Myeloma Unit, Hematology Department, Chaim Sheba Medical Center, 2 Derech Sheba, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal J. Simchen
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Shira Erman
- Hematology Department, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Abraham Avigdor
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Hematology Department, Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
171
|
Reece AS, Hulse GK. Geotemporospatial and causal inference epidemiological analysis of US survey and overview of cannabis, cannabidiol and cannabinoid genotoxicity in relation to congenital anomalies 2001–2015. BMC Pediatr 2022; 22:47. [PMID: 35042455 PMCID: PMC8767720 DOI: 10.1186/s12887-021-02996-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
Cannabinoids including cannabidiol have recognized genotoxic activities but their significance has not been studied broadly epidemiologically across the teratological spectrum. We examined these issues including contextual space-time relationships and formal causal inferential analysis in USA.
Methods
State congenital anomaly (CA) rate (CAR) data was taken from the annual reports of the National Birth Defects Prevention Network 2001–2005 to 2011–2015. Substance abuse rates were from the National Survey of Drug Use and Health a nationally representative longitudinal survey of the non-institutionalized US population with 74.1% response rate. Drugs examined were cigarettes, monthly and binge alcohol, monthly cannabis and analgesic and cocaine abuse. Early termination of pregnancy for abortion (ETOPFA) rates were taken from the published literature. Cannabinoid concentrations were from Drug Enforcement Agency. Ethnicity and income data were from the US Census Bureau. Inverse probability weighted (IPW) regressions and geotemporospatial regressions conducted for selected CAs.
Results
Data on 18,328,529 births from an aggregated population of 2,377,483,589 for mid-year analyses 2005–2013 comprehending 12,611 CARs for 62 CAs was assembled and ETOPFA-corrected (ETOPFACAR) where appropriate. E-Values for ETOPFACARs by substance trends were elevated for THC (40 CAs), cannabis (35 CAs), tobacco (11 CAs), cannabidiol (8 CAs), monthly alcohol (5 CAs) and binge alcohol (2 CAs) with minimum E-Values descending from 16.55, 1.55x107, 555.10, 7.53x1019, 9.30 and 32.98. Cardiovascular, gastrointestinal, chromosomal, limb reductions, urinary, face and body wall CAs particularly affected. Highest v. lowest substance use quintile CAR prevalence ratios 2.84 (95%C.I. 2.44, 3.31), 4.85 (4.08, 5.77) and 1.92 (1.63, 2.27) and attributable fraction in exposed 0.28 (0.27, 0.28), 0.57 (0.51, 0.62) and 0.47 (0.38, 0.55) for tobacco, cannabis and cannabidiol. Small intestinal stenosis or atresia and obstructive genitourinary defect were studied in detail in lagged IPW pseudo-randomized causal regressions and spatiotemporal models confirmed the causal role of cannabinoids. Spatiotemporal predictive modelling demonstrated strongly sigmoidal non-linear cannabidiol dose-response power-function relationships (P = 2.83x10−60 and 1.61x10−71 respectively).
Conclusions
Data implicate cannabinoids including cannabidiol in a diverse spectrum of heritable CAs. Sigmoidal non-linear dose-response relationships are of grave concern.
These transgenerational genotoxic, epigenotoxic, chromosomal-toxic putatively causal teratogenic effects strongly indicate tight restrictions on community cannabinoid penetration.
Collapse
|
172
|
Kanno S, Okubo Y, Kageyama T, Yan L, Fukuda J. Integrated fibroblast growth factor signal disruptions in human iPS cells for prediction of teratogenic toxicity of chemicals. J Biosci Bioeng 2022; 133:291-299. [PMID: 35034848 DOI: 10.1016/j.jbiosc.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
The number of man-made chemicals has increased rapidly in recent decades, with certain chemicals potentially causing malformations in fetuses. Although the toxicities of chemicals have been tested in animals, chemicals that are not teratogenic in rodents can cause severe malformations in humans, owing to the differences in the susceptibility to the teratogenicity of chemicals among species. One possible cause of such species differences, other than pharmacokinetics, could be the difference in sensitivity to such chemicals at the cellular level. Therefore, a human cell-based high-throughput assay system is needed for detecting potential teratogenic chemicals. In this study, we proposed a signal reporter assay using human induced pluripotent stem cells (iPSCs). Because developmental processes are governed by highly intricate and precisely programmed signaling pathways, external chemical-induced disruption of these pathways often triggers developmental toxicities. The reporter assay using hiPSCs was used to detect changes in the fibroblast growth factor (FGF) signaling pathway, a pathway essential for limb morphogenesis. The method was based on monitoring and time-accumulation of the signal disruption over time, rather than the classical endpoint detection of the signal disruption. This approach was useful for detecting signal disruptions caused by the malformation chemicals listed in the ICH S5 guideline, including thalidomide. The human iPSC-based signal disruption assay could be a promising tool for the initial screening of developmental toxicants.
Collapse
Affiliation(s)
- Seiya Kanno
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya Ward, Yokohama, Kanagawa 240-8501, Japan; TechnoPro, Inc., 6-10-1 Roppongi, Minato City, Tokyo 106-6135, Japan
| | - Yusuke Okubo
- Division of Cellular & Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya Ward, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-2-1 Sakado, Takatsu Ward, Kawasaki, Kanagawa 213-0012, Japan
| | - Lei Yan
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya Ward, Yokohama, Kanagawa 240-8501, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya Ward, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-2-1 Sakado, Takatsu Ward, Kawasaki, Kanagawa 213-0012, Japan.
| |
Collapse
|
173
|
Sarayani A, Albogami Y, Thai TN, Smolinski NE, Patel P, Wang Y, Nduaguba S, Rasmussen SA, Winterstein AG. Prenatal exposure to teratogenic medications in the era of Risk Evaluation and Mitigation Strategies. Am J Obstet Gynecol 2022; 227:263.e1-263.e38. [PMID: 35032444 DOI: 10.1016/j.ajog.2022.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Prevention of prenatal exposures to teratogenic drugs is a significant clinical and public health concern. With the enactment of the US Food and Drug Administration Amendments Act in 2007, the US Food and Drug Administration has begun to require manufacturers to implement Risk Evaluation and Mitigation Strategies to prevent prenatal exposures. Among 12 risk evaluation and mitigation strategy drugs, several had predecessor risk mitigation plans (eg, isotretinoin) and some were newly required (eg, mycophenolate). Only a small proportion of teratogenic drugs are currently subject to Risk Evaluation and Mitigation Strategies, and the extent of prenatal exposure to the universe of teratogenic drugs compared with drugs subject to Risk Evaluation and Mitigation Strategies is unknown. Moreover, the effectiveness of such advanced risk mitigation programs in preventing prenatal exposure is not clear. OBJECTIVE This study aimed to characterize the epidemiology of prenatal exposures to definite and potential teratogens during the risk evaluation and mitigation strategy era. STUDY DESIGN We constructed a time-series of pregnancies identified from a national private insurance claims database (IBM MarketScan) to estimate prenatal exposures to teratogenic drugs (2006-2017). Pregnancy outcomes, gestational age, and the onset of pregnancy were determined with previously validated algorithms. The Teratology Information Service and Clinical Pharmacology databases were used to identify drugs with definite (n=141) or potential (n=65) teratogenic effects, and drugs with debatable risks such as benzodiazepines, statins, tetracyclines, sex hormones, infertility treatments, and gonadotropin-releasing hormone analogs were excluded. We defined prenatal exposure as ≥1 prescription fill or medical encounter involving administration of drugs with a definite teratogenic risk (including 12 for which there is a "current or discontinued" risk evaluation and mitigation strategy) or a potential teratogenic risk. We evaluated secular trends and modeled the effects of age, preconception exposure, and state healthcare quality rankings on prenatal exposure, adjusting for demographic factors and clinical conditions. RESULTS The cohort included 3,445,612 pregnancies (2,532,444 live deliveries). Prenatal exposures to definite teratogens decreased slightly during the study years from 1.86 to 1.24 per 100 pregnancies between 2006 and 2017, whereas exposure increased for potential teratogens from 3.40% to 5.33%. Prenatal exposure prevalences were higher during the first trimester and for pregnancies that ended in nonlive outcomes. Drugs subject to Risk Evaluation and Mitigation Strategies had low background utilization and contributed to a small proportion of prenatal exposures (15.1 per 100,000 pregnancies). We also observed fewer prenatal exposures to risk evaluation and mitigation strategy drugs among women of childbearing age who used these treatments (0.14% vs 0.36% for any definite teratogen). Age extremes and low state-level healthcare quality rankings were independent predictors of prenatal exposure. CONCLUSION Fetuses in more than 1 in 16 pregnancies continued to be exposed to teratogenic drugs during the past decade. Drugs with Risk Evaluation and Mitigation Strategies imposed a small burden of prenatal exposure because of the low background utilization rates and lower pregnancy prevalence among women of childbearing age who used these drugs. Although the declining exposure rates to teratogenic drugs with definite risk are encouraging, the rising prenatal exposure to drugs with potential risk calls for more assessments. Future research is needed to elucidate the health outcomes of fetuses exposed to potential risk drugs, understand the effectiveness of risk evaluation and mitigation strategy programs, and prioritize teratogenic drugs for advanced risk mitigation.
Collapse
|
174
|
Girard WP, Bertrand-Grenier A, Drolet MJ. Animal Experimentation in Oncology and Radiobiology: Arguments for and Against Following a Critical Literature Review. CANADIAN JOURNAL OF BIOETHICS 2022. [DOI: 10.7202/1089790ar] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
175
|
Reece AS, Hulse GK. Cannabinoid and substance relationships of European congenital anomaly patterns: a space-time panel regression and causal inferential study. ENVIRONMENTAL EPIGENETICS 2022; 8:dvab015. [PMID: 35145760 PMCID: PMC8824558 DOI: 10.1093/eep/dvab015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/27/2022] [Indexed: 05/04/2023]
Abstract
With reports from Australia, Canada, USA, Hawaii and Colorado documenting a link between cannabis and congenital anomalies (CAs), this relationship was investigated in Europe. Data on 90 CAs were accessed from Eurocat. Tobacco and alcohol consumption and median household income data were from the World Bank. Amphetamine, cocaine and last month and daily use of cannabis from the European Monitoring Centre for Drugs and Drug Addiction. Cannabis herb and resin Δ9-tetrahydrocannabinol concentrations were from published reports. Data were processed in R. Twelve thousand three hundred sixty CA rates were sourced across 16 nations of Europe. Nations with a higher or increasing rate of daily cannabis use had a 71.77% higher median CA rates than others [median ± interquartile range 2.13 (0.59, 6.30) v. 1.24 (0.15, 5.14)/10 000 live births (P = 4.74 × 10-17; minimum E-value (mEV) = 1.52]. Eighty-nine out of 90 CAs in bivariate association and 74/90 CAs in additive panel inverse probability weighted space-time regression were cannabis related. In inverse probability weighted interactive panel models lagged to zero, two, four and six years, 76, 31, 50 and 29 CAs had elevated mEVs (< 2.46 × 1039) for cannabis metrics. Cardiovascular, central nervous, gastrointestinal, genital, uronephrology, limb, face and chromosomalgenetic systems along with the multisystem VACTERL syndrome were particularly vulnerable targets. Data reveal that cannabis is related to many CAs and fulfil epidemiological criteria of causality. The triple convergence of rising cannabis use prevalence, intensity of daily use and Δ9-tetrahydrocannabinol concentration in herb and resin is powerfully implicated as a primary driver of European teratogenicity, confirming results from elsewhere.
Collapse
Affiliation(s)
- Albert Stuart Reece
- **Correspondence address. Department of Psychiatry, University of Western Australia, Stirling Hwy, Crawley, Western Australia 6009, Australia. Tel: (617) +3844-4000; Fax: (617) +3844-4015; E-mail:
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| |
Collapse
|
176
|
Ferreira-Filho ES, Bahamondes L, Duarte DC, Guimarães ALM, de Almeida PG, Soares-Júnior JM, Baracat EC, Sorpreso ICE. Etonogestrel-releasing contraceptive implant in a patient using thalidomide for the treatment of erythema nodosum leprosum: a case report. Gynecol Endocrinol 2022; 38:90-93. [PMID: 34486922 DOI: 10.1080/09513590.2021.1974380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Thalidomide is an immunomodulatory drug and first choice in the treatment of erythema nodosum leprosum. Given its teratogenic potential, it is essential that an effective contraceptive method is used, especially a long-acting reversible contraceptive (LARC) method. The subdermal etonogestrel (ENG)-releasing implant is an adequate method due to the high effectiveness and long-term use. However, interaction between thalidomide and ENG has not been well documented. Concern arises because thalidomide interacts with cytochrome P450 (CYP450) enzymes that metabolize sexual steroids. AIM: We aimed to study the effectiveness and safety of the ENG-implant in a thalidomide user. METHODS Case report of a sexually active 21-year-old patient with both Hansen's disease and leprosy reaction type 2 treated with thalidomide requiring effective contraception. Follow-up was up to 36 months after implant placement. RESULTS Contraception with ENG-implant was effective and safe, based on clinical parameters (reduction of menstrual flow and cervical mucus thickening) and laboratory parameters (gonadotropins and sexual steroids). CONCLUSION To the best of our knowledge, this is the first case reported which presents a patient in simultaneous use of thalidomide and ENG-implant. Although this case report preliminary supports effectiveness and safety of ENG-implant as a contraceptive option in women using thalidomide, rigorous drug-drug interaction research is needed to better characterize the interaction between thalidomide and the ENG-implant.
Collapse
Affiliation(s)
- Edson Santos Ferreira-Filho
- Divisão de Ginecologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luis Bahamondes
- Family Planning Clinic, Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Daniele Coelho Duarte
- Divisão de Ginecologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Patrícia Gonçalves de Almeida
- Divisão de Ginecologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - José Maria Soares-Júnior
- Divisão de Ginecologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Edmund Chada Baracat
- Divisão de Ginecologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
177
|
Selzer EB, Blain D, Hufnagel RB, Lupo PJ, Mitchell LE, Brooks BP. Review of Evidence for Environmental Causes of Uveal Coloboma. Surv Ophthalmol 2021; 67:1031-1047. [PMID: 34979194 DOI: 10.1016/j.survophthal.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Uveal coloboma is a condition defined by missing ocular tissues and is a significant cause of childhood blindness. It occurs from a failure of the optic fissure to close during embryonic development,and may lead to missing parts of the iris, ciliary body, retina, choroid, and optic nerve. Because there is no treatment for coloboma, efforts have focused on prevention. While several genetic causes of coloboma have been identified, little definitive research exists regarding the environmental causes of this condition. We review the current literature on environmental factors associated with coloboma in an effort to guide future research and preventative counseling related to this condition.
Collapse
Affiliation(s)
- Evan B Selzer
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Delphine Blain
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Robert B Hufnagel
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Laura E Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, TX
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
178
|
Moreira A, Müller M, Costa PF, Kohl Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Adv Biol (Weinh) 2021; 6:e2101139. [PMID: 34962104 DOI: 10.1002/adbi.202101139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Indexed: 12/24/2022]
Abstract
The substantial socioeconomic burden of lung diseases, recently highlighted by the disastrous impact of the coronavirus disease 2019 (COVID-19) pandemic, accentuates the need for interventive treatments capable of decelerating disease progression, limiting organ damage, and contributing to a functional tissue recovery. However, this is hampered by the lack of accurate human lung research models, which currently fail to reproduce the human pulmonary architecture and biochemical environment. Induced pluripotent stem cells (iPSCs) and organ-on-chip (OOC) technologies possess suitable characteristics for the generation of physiologically relevant in vitro lung models, allowing for developmental studies, disease modeling, and toxicological screening. Importantly, these platforms represent potential alternatives for animal testing, according to the 3Rs (replace, reduce, refine) principle, and hold promise for the identification and approval of new chemicals under the European REACH (registration, evaluation, authorization and restriction of chemicals) framework. As such, this review aims to summarize recent progress made in human iPSC- and OOC-based in vitro lung models. A general overview of the present applications of in vitro lung models is presented, followed by a summary of currently used protocols to generate different lung cell types from iPSCs. Lastly, recently developed iPSC-based lung models are discussed.
Collapse
Affiliation(s)
| | - Michelle Müller
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, Porto, 4200-135, Portugal
| | - Yvonne Kohl
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany.,Postgraduate Course for Toxicology and Environmental Toxicology, Medical Faculty, University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| |
Collapse
|
179
|
Qin FY, Zhang JJ, Wang DW, Xu T, Cai D, Cheng YX. Direct determination of E and Z configurations for double bond in bioactive meroterpenoids from Ganoderma mushrooms by diagnostic 1H NMR chemical shifts and structure revisions of previous analogues. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
180
|
Thunbo MØ, Vendelbo JH, Volqvartz T, Witte DR, Larsen A, Pedersen LH. Polypharmacy in polymorbid pregnancies and the risk of congenital malformations-A systematic review. Basic Clin Pharmacol Toxicol 2021; 130:394-414. [PMID: 34841667 DOI: 10.1111/bcpt.13695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022]
Abstract
With an increased prevalence of concurrent morbidities during pregnancy, polypharmacy has become increasingly common in pregnant women. The risks associated with polypharmacy may exceed those of individual medication because of drug-drug interactions. This systematic review aims to evaluate the risk of congenital malformations in polymorbid pregnancies exposed to first-trimester polypharmacy. PubMed, Embase and Scopus were searched to identify original human studies with first- trimester polypharmacy due to polymorbidity as the exposure and congenital malformations as the outcome. After screening of 4034 identified records, seven studies fulfilled the inclusion criteria. Four of the seven studies reported an increased risk of congenital malformations compared with unexposed or monotherapy, odds ratios ranging from 1.1 to >10.0. Particularly, short-term anti-infective treatment combined with other drugs and P-glycoprotein substrates were associated with increased malformation risks. In conclusion, knowledge is limited on risks associated with first-trimester polypharmacy due to polymorbidity with the underlying evidence of low quantity and quality. Therefore, an increased focus on pharmacovigilance to enable safe drug use in early pregnancy is needed. Large-scale register-based studies and better knowledge of placental biology are needed to support the clinical management of polymorbid pregnancies that require polypharmacy.
Collapse
Affiliation(s)
| | | | - Tabia Volqvartz
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lars Henning Pedersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Obstetrics and Gynaecology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
181
|
Hussain K, Patel P, Roberts N. The role of thalidomide in dermatology. Clin Exp Dermatol 2021; 47:667-674. [PMID: 34779533 DOI: 10.1111/ced.15019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022]
Abstract
Thalidomide is a medication that has been in existence for over half a century, and has proven to be useful and effective in severe dermatological conditions. For dermatologists, the ability of thalidomide to reduce the levels of the cytokine tumour necrosis factor-α, along with its immunomodulatory and anti-angiogenic properties, is of great significance, with the added advantage of being an oral medication. Its use is of course strictly monitored, owing to its potential adverse effects (AEs), particularly teratogenicity, with precautions taken to ensure its safe and correct use by both prescriber and patient. In this review, we look at the background and mechanism of action of thalidomide, provide an overview of conditions it can be used for with case examples, explain the potential AEs and monitoring requirements, and discuss future developments.
Collapse
Affiliation(s)
- K Hussain
- Department of Dermatology, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - P Patel
- Department of Dermatology, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - N Roberts
- Department of Dermatology, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
182
|
Deval G, Boland S, Fournier T, Ferecatu I. On Placental Toxicology Studies and Cerium Dioxide Nanoparticles. Int J Mol Sci 2021; 22:ijms222212266. [PMID: 34830142 PMCID: PMC8624015 DOI: 10.3390/ijms222212266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
The human placenta is a transient organ essential for pregnancy maintenance, fetal development and growth. It has several functions, including that of a selective barrier against pathogens and xenobiotics from maternal blood. However, some pollutants can accumulate in the placenta or pass through with possible repercussions on pregnancy outcomes. Cerium dioxide nanoparticles (CeO2 NPs), also termed nanoceria, are an emerging pollutant whose impact on pregnancy is starting to be defined. CeO2 NPs are already used in different fields for industrial and commercial applications and have even been proposed for some biomedical applications. Since 2010, nanoceria have been subject to priority monitoring by the Organization for Economic Co-operation and Development in order to assess their toxicity. This review aims to summarize the current methods and models used for toxicology studies on the placental barrier, from the basic ones to the very latest, as well as to overview the most recent knowledge of the impact of CeO2 NPs on human health, and more specifically during the sensitive window of pregnancy. Further research is needed to highlight the relationship between environmental exposure to CeO2 and placental dysfunction with its implications for pregnancy outcome.
Collapse
Affiliation(s)
- Gaëlle Deval
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
| | - Sonja Boland
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France;
| | - Thierry Fournier
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
| | - Ioana Ferecatu
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
- Correspondence: ; Tel.: +33-1-5373-9605
| |
Collapse
|
183
|
Petetta F, Ciccocioppo R. Public perception of laboratory animal testing: Historical, philosophical, and ethical view. Addict Biol 2021; 26:e12991. [PMID: 33331099 DOI: 10.1111/adb.12991] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 11/28/2022]
Abstract
The use of laboratory animals in biomedical research is a matter of intense public debate. Recent statistics indicates that about half of the western population, sensitive to this discussion, would be in favor of animal testing while the other half would oppose it. Here, outlining scientific, historical, ethical, and philosophical aspects, we provide an integrated view explaining the reasons why biomedical research can hardly abandon laboratory animal testing. In this paper, we retrace the historical moments that mark the relationship between humans and other animal species. Then starting from Darwin's position on animal experimentation, we outline the steps that over time allowed the introduction of laws and rules that regulate animals' use in biomedical research. In our analysis, we present the perspectives of various authors, with the aim of delineating a theoretical framework within which to insert the ethical debate on laboratory animals research. Through the analysis of fundamental philosophical concepts and some practical examples, we propose a view according to which laboratory animals experimentation become ethically acceptable as far as it is guided by the goal of improving humans and other animal species (i.e., pets) life. Among the elements analyzed, there is the concept of responsibility that only active moral subjects (humans) have towards themselves and towards passive moral subjects (other animal species). We delineate the principle of cruelty that is useful to understand why research in laboratory animals should not be assimilated to a cruel act. Moreover, we touch upon the concepts of necessity and "good cause" to underline that, if biomedical research would have the possibility to avoid using animals, it would surely do that. To provide an example of the negative consequences occurring from not allowing laboratory animal research, we analyze the recent experience of Covid-19 epidemic. Finally, recalling the principle of "heuristics and biases" by Kahneman, we discuss why scientists should reconsider the way they are conveying information about their research to the general public.
Collapse
Affiliation(s)
- Francesca Petetta
- School of Pharmacy, Pharmacology Unit University of Camerino Camerino Italy
| | | |
Collapse
|
184
|
Björvang RD, Vinnars MT, Papadogiannakis N, Gidlöf S, Mamsen LS, Mucs D, Kiviranta H, Rantakokko P, Ruokojärvi P, Lindh CH, Andersen CY, Damdimopoulou P. Mixtures of persistent organic pollutants are found in vital organs of late gestation human fetuses. CHEMOSPHERE 2021; 283:131125. [PMID: 34467953 DOI: 10.1016/j.chemosphere.2021.131125] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Persistent organic pollutants (POPs) are industrial chemicals with long half-lives. Early life exposure to POPs has been associated with adverse effects. Fetal exposure is typically estimated based on concentrations in maternal serum or placenta and little is known on the actual fetal exposure. We measured the concentrations of nine organochlorine pesticides (OCPs), ten polychlorinated biphenyl (PCB) congeners, and polybrominated diphenyl ether (PBDE) congeners by gas chromatography - tandem mass spectrometry in maternal serum, placenta, and fetal tissues (adipose tissue, liver, heart, lung and brain) in 20 pregnancies that ended in stillbirth (gestational weeks 36-41). The data were combined with our earlier data on perfluoroalkyl substances (PFASs) in the same cohort (Mamsen et al. 2019). HCB, p,p'-DDE, PCB 138 and PCB 153 were quantified in all samples of maternal serum, placenta and fetal tissues. All 22 POPs were detected in all fetal adipose tissue samples, even in cases where they could not be detected in maternal serum or placenta. Tissue:serum ratios were significantly higher in later gestations, male fetuses, and pregnancies with normal placental function. OCPs showed the highest tissue:serum ratios and PFAS the lowest. The highest chemical burden was found in adipose tissue and lowest in the brain. Overall, all studied human fetuses were intrinsically exposed to mixtures of POPs. Tissue:serum ratios were significantly modified by gestational age, fetal sex and placental function. Importantly, more chemicals were detected in fetal tissues compared to maternal serum and placenta, implying that these proxy samples may provide a misleading picture of actual fetal exposures.
Collapse
Affiliation(s)
- Richelle D Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden; Swetox, Karolinska Institute, Unit of Toxicology Sciences, 151 36, Södertälje, Sweden.
| | - Marie-Therese Vinnars
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden; Division of Obstetrics and Gynecology Örnsköldsviks Hospital, Department of Clinical Sciences, Umeå University, Örnsköldsvik/Umeå, Sweden.
| | - Nikos Papadogiannakis
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 83, Stockholm, Sweden.
| | - Sebastian Gidlöf
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, 141 86, Stockholm, Sweden.
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen and University of Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark.
| | - Daniel Mucs
- Swetox, Karolinska Institute, Unit of Toxicology Sciences, 151 36, Södertälje, Sweden.
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland.
| | - Panu Rantakokko
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland.
| | - Päivi Ruokojärvi
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland.
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 61, Lund, Sweden.
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen and University of Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark.
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden; Swetox, Karolinska Institute, Unit of Toxicology Sciences, 151 36, Södertälje, Sweden.
| |
Collapse
|
185
|
Xia Y, Wang WC, Shen WH, Xu K, Hu YY, Han GH, Liu YB. Thalidomide suppresses angiogenesis and immune evasion via lncRNA FGD5-AS1/miR-454-3p/ZEB1 axis-mediated VEGFA expression and PD-1/PD-L1 checkpoint in NSCLC. Chem Biol Interact 2021; 349:109652. [PMID: 34520751 DOI: 10.1016/j.cbi.2021.109652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/01/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for about 80-85% of total lung cancer cases. Identifying the molecular mechanisms of anti-tumor drugs is essential for improving therapeutic effects. Herein, we aim to investigate the role of thalidomide in the tumorigenicity of NSCLC. METHODS The A549 xenograft nude mouse model was established to explore therapeutic effects of thalidomide. The expression of FGD5-AS1 was evaluated in carcinomatous and paracarcinomatous tissues from NSCLC patients as well as NSCLC cell lines. CCK-8 assay was performed to assess cell viability. The invasive capacity was examined using transwell assay. The tube formation assay was applied to determine cell angiogenesis. Flow cytometry was subjected to validate CD8+ T cell activity. The FGD5-AS1/miR-454-3p/ZEB1 regulatory network was analyzed using luciferase reporter, RIP and ChIP assays. RESULTS Thalidomide reduced tumor growth and angiogenesis and increased CD8+ T cell ratio in a mouse model. Enhanced expression of FGD5-AS1 was positively correlated with the poor survival of NSCLC patients. Knockdown of FGD5-AS1 notably suppressed the proliferation, invasion and angiogenesis of cancer cells as well as the apoptosis of CD8+ T cells. Thalidomide targeted FGD5-AS1 to exert its anti-tumor activity in NSCLC. FGD5-AS1 acted as a sponge of miR-454-3p to upregulate ZEB1, thus increasing the expression of PD-L1 and VEGFA. Simultaneous overexpression of FGD5-AS1 and silencing of miR-454-3p reversed thalidomide-mediated anti-tumor effects in NSCLC. CONCLUSION Thalidomide inhibits NSCLC angiogenesis and immune evasion via FGD5-AS1/miR-454-3p/ZEB1 axis-mediated regulation of VEGFA expression and PD-1/PD-L1 checkpoint.
Collapse
Affiliation(s)
- Yang Xia
- Department of Oncology, Taizhou Clinical Medical School of Nanjing Medical University; Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, China; Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Wei-Cheng Wang
- Department of Oncology, Taizhou Clinical Medical School of Nanjing Medical University; Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, China
| | - Wen-Hao Shen
- Department of Oncology, Taizhou Clinical Medical School of Nanjing Medical University; Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, China
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yang-Yang Hu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Gao-Hua Han
- Department of Oncology, Taizhou Clinical Medical School of Nanjing Medical University; Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, China.
| | - Yong-Biao Liu
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
186
|
Deigin VI, Vinogradova JE, Vinogradov DL, Krasilshchikova MS, Ivanov VT. Thymodepressin-Unforeseen Immunosuppressor. Molecules 2021; 26:molecules26216550. [PMID: 34770959 PMCID: PMC8588242 DOI: 10.3390/molecules26216550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
The paper summarizes the available information concerning the biological properties and biomedical applications of Thymodepressin. This synthetic peptide drug displays pronounced immunoinhibitory activity across a wide range of conditions in vitro and in vivo. The history of its unforeseen discovery is briefly reviewed, and the current as well as potential expansion areas of medicinal practice are outlined. Additional experimental evidence is obtained, demonstrating several potential advantages of Thymodepressin over another actively used immunosuppressor drug, cyclosporin A.
Collapse
Affiliation(s)
- Vladislav I Deigin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Julia E Vinogradova
- Hematology Department, Sechenov First Moscow State Medical University, Russian MOH, Moscow 8-2 Trubetskaya str., 119991 Moscow, Russia
| | - Dmitry L Vinogradov
- Hematology Department, Sechenov First Moscow State Medical University, Russian MOH, Moscow 8-2 Trubetskaya str., 119991 Moscow, Russia
| | - Marina S Krasilshchikova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Vadim T Ivanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| |
Collapse
|
187
|
Warning LA, Miandashti AR, McCarthy LA, Zhang Q, Landes CF, Link S. Nanophotonic Approaches for Chirality Sensing. ACS NANO 2021; 15:15538-15566. [PMID: 34609836 DOI: 10.1021/acsnano.1c04992] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.
Collapse
Affiliation(s)
| | | | | | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
188
|
Improving cancer treatments via dynamical biophysical models. Phys Life Rev 2021; 39:1-48. [PMID: 34688561 DOI: 10.1016/j.plrev.2021.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022]
Abstract
Despite significant advances in oncological research, cancer nowadays remains one of the main causes of mortality and morbidity worldwide. New treatment techniques, as a rule, have limited efficacy, target only a narrow range of oncological diseases, and have limited availability to the general public due their high cost. An important goal in oncology is thus the modification of the types of antitumor therapy and their combinations, that are already introduced into clinical practice, with the goal of increasing the overall treatment efficacy. One option to achieve this goal is optimization of the schedules of drugs administration or performing other medical actions. Several factors complicate such tasks: the adverse effects of treatments on healthy cell populations, which must be kept tolerable; the emergence of drug resistance due to the intrinsic plasticity of heterogeneous cancer cell populations; the interplay between different types of therapies administered simultaneously. Mathematical modeling, in which a tumor and its microenvironment are considered as a single complex system, can address this complexity and can indicate potentially effective protocols, that would require experimental verification. In this review, we consider classical methods, current trends and future prospects in the field of mathematical modeling of tumor growth and treatment. In particular, methods of treatment optimization are discussed with several examples of specific problems related to different types of treatment.
Collapse
|
189
|
Chiral Resolution, Absolute Configuration Assignment, and Genotoxicity Evaluation of Racemic 3,4-Dihydroquinazoline as a Novel Anticancer Agent. J CHEM-NY 2021. [DOI: 10.1155/2021/6169055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
If a new drug candidate will be a mixture of enantiomers, both enantiomers should be separately studied for at least latent genotoxicity as early as possible since the thalidomide tragedy. Our group has recently reported that KCP-10043F (OZ-001) as a racemate (±)-3,4-dihydroquinazoline derivative strongly represses the proliferation of human A549 lung cancer cells by caspase-mediated apoptosis via STAT3 inactivation. To investigate the possible teratological effects of the two enantiomers of a racemic KCP-10043F, therefore chiral resolution of (±)-KCP-10043F was performed and subsequently followed by a series of chemical processes to afford the corresponding chiral diastereomers. By using 1H NMR anisotropy method, the absolute configuration (+)-KCP-10043F and (−)-KCP-10043F could be assigned as S and R configuration, respectively. The bacterial reverse mutation test (Ames test) for racemate (±)-KCP-10043F and its two enantiomers exhibited that all three stereoisomers were found to be nongenotoxic against five bacterial strains with/without metabolic activation. In addition, (R)-(−)-KCP-10043F displayed almost equal anticancer activity to (S)-(+)-KCP-10043F against three cancer cell lines. Based on these overall results, racemate KCP-10043F (OZ-001) could be used for our ongoing preclinical and clinical studies without the expensive asymmetric process and/or chiral separation.
Collapse
|
190
|
De Almeida YK, Athlani L, Piessat C, Delgove A, Dap F, Dautel G. Pollicization in the treatment of congenital severe hypoplasia and aplasia of the thumb: a systematic review. HAND SURGERY & REHABILITATION 2021; 41:22-30. [PMID: 34687972 DOI: 10.1016/j.hansur.2021.10.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Pollicization of the index is the treatment of choice for severe hypoplasia and aplasia of the thumb. After a historical overview, we present a systematic review of this procedure. The main steps of this procedure were reported by Dieter Buck-Gramcko in 1971 and are still relevant nowadays. Many refinements have been described over the last decades by different surgeons to address limitations related to bone stock, musculotendinous structures and skin incisions. However, considering the complexity of this procedure and the results in the literature, the functional and esthetic outcomes can still be improved thanks to basic research. Pollicization of the index is rarely done and is one of the most demanding surgical procedure in hand surgery.
Collapse
Affiliation(s)
- Y-K De Almeida
- Department of Hand Surgery, Plastic and Reconstructive Surgery, Centre chirurgical Emile Gallé, CHU Nancy, 49 Rue Hermite, 54000, Nancy, France.
| | - L Athlani
- Department of Hand Surgery, Plastic and Reconstructive Surgery, Centre chirurgical Emile Gallé, CHU Nancy, 49 Rue Hermite, 54000, Nancy, France.
| | - C Piessat
- Department of Hand Surgery, Plastic and Reconstructive Surgery, Centre chirurgical Emile Gallé, CHU Nancy, 49 Rue Hermite, 54000, Nancy, France.
| | - A Delgove
- Department of Plastic and Reconstructive Surgery, Hand Surgery, Burns Unit, Centre F-X Michelet, CHU Bordeaux, Place Amélie Raba Léon, 33000, Bordeaux, France.
| | - F Dap
- Department of Hand Surgery, Plastic and Reconstructive Surgery, Centre chirurgical Emile Gallé, CHU Nancy, 49 Rue Hermite, 54000, Nancy, France.
| | - G Dautel
- Department of Hand Surgery, Plastic and Reconstructive Surgery, Centre chirurgical Emile Gallé, CHU Nancy, 49 Rue Hermite, 54000, Nancy, France.
| |
Collapse
|
191
|
Teratogenic effects of ethanol extract of Curcuma mangga Val. rhizomes in wistar rats. Toxicol Res 2021; 37:429-434. [PMID: 34631499 DOI: 10.1007/s43188-020-00074-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022] Open
Abstract
We have recently highlighted the immunomodulatory effect of ethanol extract of Curcuma mangga Val. rhizomes. The current study was performed to investigate the teratogenic effects of C. mangga extract in Wistar rats. The C. mangga extract at doses of 100, 500 and 1000 mg/kg bw were administered to pregnant rats on day 6-15 of gestation. The litter size, length and birth weight as well as body weight of pregnant rats were determined to evaluate the teratogenic effects of C. mangga extract. External and skeletal malformations were also examined. The extract reduced the litter length compared to normal control (p < 0.05). The average body weight gain of the pregnant rats also decreased. Resorption was observed after treatment with extract at the dose of 1000 mg/kg bw. The extract at the doses of 500 and 1000 mg/kg bw reduced litter birth weight and induced external and skeletal malformations. This demonstrates that ethanol extract of C. mangga has teratogenic effects in Wistar rats and should be used with caution in pregnancy.
Collapse
|
192
|
Park I, Phan TM, Fang J. Novel Molecular Mechanism of Lenalidomide in Myeloid Malignancies Independent of Deletion of Chromosome 5q. Cancers (Basel) 2021; 13:5084. [PMID: 34680233 PMCID: PMC8534127 DOI: 10.3390/cancers13205084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022] Open
Abstract
Lenalidomide as well as other immunomodulatory drugs (IMiDs) have achieved clinical efficacies in certain sub-types of hematologic malignancies, such as multiple myeloma, lower-risk myelodysplastic syndromes (MDS) with a single deletion of chromosome 5q (del(5q)) and others. Despite superior clinical response to lenalidomide in hematologic malignancies, relapse and resistance remains a problem in IMiD-based therapy. The last ten years have witnessed the discovery of novel molecular mechanism of IMiD-based anti-tumor therapy. IMiDs bind human cereblon (CRBN), the substrate receptor of the CRL4 E3 ubiquitin ligase complex. Binding of CRBN with IMiDs leads to degradation of the Ikaros family zinc finger proteins 1 and 3 (IKZF1 and IKZF3) and casein kinase 1 alpha. We have found that lenalidomide-mediated degradation of IKZF1 leads to activation of the G protein-coupled receptor 68 (GPR68)/calcium/calpain pro-apoptotic pathway and inhibition of the regulator of calcineurin 1 (RCAN1)/calcineurin pro-survival pathway in MDS and acute myeloid leukemia (AML). Calcineurin inhibitor Cyclosporin-A potentiates the anti-leukemia activity of lenalidomide in MDS/AML with or without del(5q). These findings broaden the therapeutic potential of IMiDs. This review summarizes novel molecular mechanism of lenalidomide in myeloid malignancies, especially without del(5q), in the hope to highlight novel therapeutic targets.
Collapse
Affiliation(s)
| | | | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA; (I.P.); (T.M.P.)
| |
Collapse
|
193
|
Vargesson N, Stephens T. Thalidomide: history, withdrawal, renaissance, and safety concerns. Expert Opin Drug Saf 2021; 20:1455-1457. [PMID: 34623196 DOI: 10.1080/14740338.2021.1991307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition. Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Trent Stephens
- Idaho Dental Education Program and Department of Biological Sciences, Idaho State University, Pocatello, Idaho, USA
| |
Collapse
|
194
|
Dale B, Cheng M, Park KS, Kaniskan HÜ, Xiong Y, Jin J. Advancing targeted protein degradation for cancer therapy. Nat Rev Cancer 2021; 21:638-654. [PMID: 34131295 PMCID: PMC8463487 DOI: 10.1038/s41568-021-00365-x] [Citation(s) in RCA: 287] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
The human proteome contains approximately 20,000 proteins, and it is estimated that more than 600 of them are functionally important for various types of cancers, including nearly 400 non-enzyme proteins that are challenging to target by traditional occupancy-driven pharmacology. Recent advances in the development of small-molecule degraders, including molecular glues and heterobifunctional degraders such as proteolysis-targeting chimeras (PROTACs), have made it possible to target many proteins that were previously considered undruggable. In particular, PROTACs form a ternary complex with a hijacked E3 ubiquitin ligase and a target protein, leading to polyubiquitination and degradation of the target protein. The broad applicability of this approach is facilitated by the flexibility of individual E3 ligases to recognize different substrates. The vast majority of the approximately 600 human E3 ligases have not been explored, thus presenting enormous opportunities to develop degraders that target oncoproteins with tissue, tumour and subcellular selectivity. In this Review, we first discuss the molecular basis of targeted protein degradation. We then offer a comprehensive account of the most promising degraders in development as cancer therapies to date. Lastly, we provide an overview of opportunities and challenges in this exciting field.
Collapse
Affiliation(s)
- Brandon Dale
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Cullgen Inc., San Diego, CA, USA.
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
195
|
Chankvetadze B. Application of enantioselective separation techniques to bioanalysis of chiral drugs and their metabolites. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116332] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
196
|
Malik S, Cohen PR. Thalidomide-Then and Now: Case Report of a Woman With Thalidomide Embryopathy and Review of Current Thalidomide Uses. Cureus 2021; 13:e17070. [PMID: 34522548 PMCID: PMC8428198 DOI: 10.7759/cureus.17070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 01/01/2023] Open
Abstract
Thalidomide was initially developed as a sedative; subsequently, its use was expanded to treat morning sickness in pregnant women. However, it was later discovered to be a teratogenic drug that was associated with embryopathy in women. A woman is described who was exposed to thalidomide in utero. She had several stigmata of thalidomide embryopathy. Although treatment of nausea and anxiety in pregnant women with thalidomide was discontinued in 1961, the drug has been found to be a useful agent for the management of several systemic conditions and dermatological disorders. Whether the treatment with thalidomide shall be incorporated in the therapeutic regime for patients with severe coronavirus disease 2019 (COVID-19) infection remains to be determined.
Collapse
Affiliation(s)
- Sara Malik
- Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Philip R Cohen
- Dermatology, University of California, Davis Medical Center, Sacramento, USA
| |
Collapse
|
197
|
de Ceuninck van Capelle LA, Macdonald JM, Hyland CJT. Stereogenic and conformational properties of medium-ring benzo-fused N-heterocycle atropisomers. Org Biomol Chem 2021; 19:7098-7115. [PMID: 34190302 DOI: 10.1039/d1ob00836f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Medium-ring (7-9-membered) benzo-fused N-heterocycles - a core structure in several important pharmaceuticals - have a diverse range of interesting conformational and stereochemical properties which arise from restricted bond rotation in the non-aromatic ring. The atropisomers of these pharmaceutically relevant N-heterocycles typically exhibit different biological activities, warranting the need to deeply understand the factors controlling the conformation and stereochemistry of the systems. Beginning with a brief introduction to atropisomer classification, this review will detail a number of medium-ring benzo-fused N-heterocycle systems from the recent literature to provide an overview of structural factors which can affect the atropisomeric nature of the systems by altering the overall conformation and rate of stereo-inversion. As well as general factors such as ring-size and sterics, the impact of additional stereocentres in these systems will be addressed. This includes the differences between sulfur, nitrogen and carbon stereocentres, and the consequences of stereocentre placement around the N-heterocycle ring. Further, conformational stabilisation via non-covalent intramolecular bonds will be explored. As such, this review represents a significant resource for aiding in the design, synthesis and study of new and potentially bioactive medium-ring benzo-fused N-heterocycles.
Collapse
Affiliation(s)
- Lillian A de Ceuninck van Capelle
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.
| | | | | |
Collapse
|
198
|
Kirubarajan A, Lam A, Yu A, Taheri C, Khan S, Sethuram C, Mehta V, Olivieri N. Knowledge, Information Sources, and Institutional Trust of Patients Regarding Medication Use in Pregnancy: A Systematic Review. J Family Reprod Health 2021; 15:160-171. [PMID: 34721607 PMCID: PMC8536826 DOI: 10.18502/jfrh.v15i3.7133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective: The objective of our study is to characterize the knowledge, information sources, and institutional trust of patients regarding medication use in pregnancy. Materials and methods: We conducted a review of three databases: MEDLINE, EMBASE, and CINAHL. We included observational studies and knowledge assessments that examined the knowledge, attitudes, beliefs or information sources of pregnant patients related to medication use during pregnancy. Extraction was completed by two independent reviewers, outcomes were summarized descriptively, and appraisal was conducted. Results: Of the 1359 search results, 34 studies met inclusion criteria. Thus, our systematic review encompasses the beliefs of 11,757 pregnant participants. In most studies, participants described apprehension regarding potential risks to the fetus and the inadequacy of safety information. Across the 23 knowledge assessments, the majority of studies reported patient misconceptions about prescription medication in pregnancy. The most preferred information source was a healthcare provider. However, many participants expressed frustration, mistrust, and skepticism regarding physician knowledge. A common source of mistrust was due to perceived physician self-interest as well as a lack of education tailored to pregnancy. Consequently, informal sources of information were also popular. Conclusion: There is a need to improve the health literacy and trust among pregnant patients regarding drug prescribing. There are modifiable risk factors for mistrust that require further attention.
Collapse
Affiliation(s)
- Abirami Kirubarajan
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Lam
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Amy Yu
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Cameron Taheri
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shawn Khan
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Claire Sethuram
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vikita Mehta
- Arts and Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nancy Olivieri
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Division of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
199
|
O'Shaughnessy KL, Fischer F, Zenclussen AC. Perinatal exposure to endocrine disrupting chemicals and neurodevelopment: How articles of daily use influence the development of our children. Best Pract Res Clin Endocrinol Metab 2021; 35:101568. [PMID: 34565681 PMCID: PMC10111869 DOI: 10.1016/j.beem.2021.101568] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Substances that interfere with the body's hormonal balance or their function are called endocrine disrupting chemicals (EDCs). Many EDCs are ubiquitous in the environment and are an unavoidable aspect of daily life, including during early embryogenesis. Developmental exposure to these chemicals is of critical relevance, as EDCs can permanently alter developmental programs, including those that pattern and wire the brain. Of emerging interest is how these chemicals may also affect the immune response, given the cross-talk between the endocrine and immune systems. As brain development is strongly dependent on hormones including thyroid, androgens, and estrogens, and can also be affected by immunomodulation, this complicated interplay may have long-lasting neurodevelopmental consequences. This review focuses on data available from human cohorts, in vivo models, and in vitro assays regarding the impact of EDCs after a gestational and/or lactational exposure, and how they may impact the immune system and/or neurodevelopment.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Florence Fischer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany.
| |
Collapse
|
200
|
Ötvös SB, Kappe CO. Continuous flow asymmetric synthesis of chiral active pharmaceutical ingredients and their advanced intermediates. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:6117-6138. [PMID: 34671222 PMCID: PMC8447942 DOI: 10.1039/d1gc01615f] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Catalytic enantioselective transformations provide well-established and direct access to stereogenic synthons that are broadly distributed among active pharmaceutical ingredients (APIs). These reactions have been demonstrated to benefit considerably from the merits of continuous processing and microreactor technology. Over the past few years, continuous flow enantioselective catalysis has grown into a mature field and has found diverse applications in asymmetric synthesis of pharmaceutically active substances. The present review therefore surveys flow chemistry-based approaches for the synthesis of chiral APIs and their advanced stereogenic intermediates, covering the utilization of biocatalysis, organometallic catalysis and metal-free organocatalysis to introduce asymmetry in continuously operated systems. Single-step processes, interrupted multistep flow syntheses, combined batch/flow processes and uninterrupted one-flow syntheses are discussed herein.
Collapse
Affiliation(s)
- Sándor B Ötvös
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| |
Collapse
|