151
|
Shen EM, McCloskey KE. Development of Mural Cells: From In Vivo Understanding to In Vitro Recapitulation. Stem Cells Dev 2017; 26:1020-1041. [DOI: 10.1089/scd.2017.0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Edwin M. Shen
- Graduate Program in Biological Engineering and Small-scale Technologies
| | - Kara E. McCloskey
- Graduate Program in Biological Engineering and Small-scale Technologies
- School of Engineering, University of California, Merced, Merced, California
| |
Collapse
|
152
|
Lu J, Shenoy AK. Epithelial-to-Pericyte Transition in Cancer. Cancers (Basel) 2017; 9:cancers9070077. [PMID: 28677655 PMCID: PMC5532613 DOI: 10.3390/cancers9070077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/23/2017] [Accepted: 06/30/2017] [Indexed: 01/05/2023] Open
Abstract
During epithelial-to-mesenchymal transition (EMT), cells lose epithelial characteristics and acquire mesenchymal properties. These two processes are genetically separable and governed by distinct transcriptional programs, rendering the EMT outputs highly heterogeneous. Our recent study shows that the mesenchymal products generated by EMT often express multiple pericyte markers, associate with and stabilize blood vessels to fuel tumor growth, thus phenotypically and functionally resembling pericytes. Therefore, some EMT events represent epithelial-to-pericyte transition (EPT). The serum response factor (SRF) plays key roles in both EMT and differentiation of pericytes, and may inherently confer the pericyte attributes on EMT cancer cells. By impacting their intratumoral location and cell surface receptor expression, EPT may enable cancer cells to receive and respond to angiocrine factors produced by the vascular niche, and develop therapy resistance.
Collapse
Affiliation(s)
- Jianrong Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610-3633, USA.
| | - Anitha K Shenoy
- Department of Pharmaceutics and Biomedical Sciences, California Health Sciences University, Clovis, CA 93612, USA.
| |
Collapse
|
153
|
Zheng Z, Liu Y, Yang Y, Tang J, Cheng B. Topical 1% propranolol cream promotes cutaneous wound healing in spontaneously diabetic mice. Wound Repair Regen 2017; 25:389-397. [PMID: 28494521 DOI: 10.1111/wrr.12546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/04/2017] [Indexed: 12/11/2022]
Abstract
Diabetic foot ulcers (DFUs) are a constant threat to diabetic patients and can lead to amputations and even death. Intralesional administration of propranolol in diabetic wounds has not been reported previously. This study aimed to investigate the efficacy of propranolol cream in diabetic wounds. Fifty-six spontaneously diabetic mice were divided into the propranolol group and the control group. After preparing full-thickness wounds on the back of the mice, 1% propranolol cream was topically applied to wounds in the experimental group and 0% propranolol cream in controls. The wound sizes were measured and calculated against the original area. The wounds were analyzed up to 21 days after injury. At all evaluation time-points, the wound size (%) in the propranolol group was significantly smaller than in the controls. Epidermal growth factor (EGF) protein expression increased in the experimental vs. CONTROL GROUP Vascular endothelial growth factor (VEGF) expression was significantly lower in the experimental vs. control group whereas NG2 proteoglycan was increased throughout the study. However, matrix metallopeptidase (MMP)-9 expression was at first significantly higher in the experimental vs. control group then the MMP-9 protein level in the control group increased and surpassed that in the experimental group. In conclusion, intralesional administration of 1% propranolol cream promotes reepithelialization and regulates abnormal angiogenesis in diabetic wounds. Propranolol cream may become a new drug for the treatment of DFUs.
Collapse
Affiliation(s)
- Zhifang Zheng
- The Graduate School of Southern Medical University, Guangzhou, China.,Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Yishu Liu
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China.,The Graduate School of Third Military Medical University, Chongqing, China
| | - Yu Yang
- The Graduate School of Southern Medical University, Guangzhou, China.,Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Jianbing Tang
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Biao Cheng
- The Graduate School of Southern Medical University, Guangzhou, China.,Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China.,The Graduate School of Third Military Medical University, Chongqing, China.,Center of Wound Treatment, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China.,The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area, PLA, Guangzhou, China
| |
Collapse
|
154
|
Shapiro JP, Guzeloglu-Kayisli O, Kayisli UA, Semerci N, Huang SJ, Arlier S, Larsen K, Fadda P, Schatz F, Lockwood CJ. Thrombin impairs human endometrial endothelial angiogenesis; implications for progestin-only contraceptive-induced abnormal uterine bleeding. Contraception 2017; 95:592-601. [PMID: 28433626 DOI: 10.1016/j.contraception.2017.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Progestin-only contraceptives induce abnormal uterine bleeding, accompanied by prothrombin leakage from dilated endometrial microvessels and increased thrombin generation by human endometrial stromal cell (HESC)-expressed tissue factor. Initial studies of the thrombin-treated HESC secretome identified elevated levels of cleaved chondroitin sulfate proteoglycan 4 (CSPG4), impairing pericyte-endothelial interactions. Thus, we investigated direct and CSPG4-mediated effects of thrombin in eliciting abnormal uterine bleeding by disrupting endometrial angiogenesis. STUDY DESIGN Liquid chromatography/tandem mass spectrometry, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time-polymerase chain reaction (PCR) evaluated conditioned medium supernatant and cell lysates from control versus thrombin-treated HESCs. Pre- and post-Depo medroxyprogesterone acetate (DMPA)-administered endometria were immunostained for CSPG4. Proliferation, apoptosis and tube formation were assessed in human endometrial endothelial cells (HEECs) incubated with recombinant human (rh)-CSPG4 or thrombin or both. RESULTS Thrombin induced CSPG4 protein expression in cultured HESCs as detected by mass spectrometry and ELISA (p<.02, n=3). Compared to pre-DMPA endometria (n=5), stromal cells in post-DMPA endometria (n=5) displayed stronger CSPG4 immunostaining. In HEEC cultures (n=3), total tube-formed mesh area was significantly higher in rh-CSPG4 versus control (p<.05). However, thrombin disrupted HEEC tube formation by a concentration- and time-dependent reduction of angiogenic parameters (p<.05), whereas CSPG4 co-treatment did not reverse these thrombin-mediated effects. CONCLUSION These results suggest that disruption of HEEC tube formation by thrombin induces aberrant angiogenesis and abnormal uterine bleeding in DMPA users. IMPLICATIONS Mass spectrometry analysis identified several HESC-secreted proteins regulated by thrombin. Therapeutic agents blocking angiogenic effects of thrombin in HESCs can prevent or minimize progestin-only contraceptive-induced abnormal uterine bleeding.
Collapse
Affiliation(s)
- John P Shapiro
- Department of Internal Medicine, The Ohio State University, College of Medicine, Columbus, OH, 43210, USA
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, FL. 33612, USA
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, FL. 33612, USA
| | - Nihan Semerci
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, FL. 33612, USA
| | - S Joseph Huang
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, FL. 33612, USA
| | - Sefa Arlier
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, FL. 33612, USA
| | - Kellie Larsen
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, FL. 33612, USA
| | - Paolo Fadda
- Department of Molecular Virology and Immunology, The Ohio State University, College of Medicine, Columbus, OH, 43210, USA
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, FL. 33612, USA
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, FL. 33612, USA.
| |
Collapse
|
155
|
Nakane T, Masumoto H, Tinney JP, Yuan F, Kowalski WJ, Ye F, LeBlanc AJ, Sakata R, Yamashita JK, Keller BB. Impact of Cell Composition and Geometry on Human Induced Pluripotent Stem Cells-Derived Engineered Cardiac Tissue. Sci Rep 2017; 7:45641. [PMID: 28368043 PMCID: PMC5377302 DOI: 10.1038/srep45641] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/01/2017] [Indexed: 12/22/2022] Open
Abstract
The current study describes a scalable, porous large-format engineered cardiac tissue (LF-ECT) composed of human induced pluripotent stem cells (hiPSCs) derived multiple lineage cardiac cells with varied 3D geometries and cell densities developed towards the goal of scale-up for large animal pre-clinical studies. We explored multiple 15 × 15 mm ECT geometries using molds with rectangular internal staggered posts (mesh, ME), without posts (plain sheet, PS), or long parallel posts (multiple linear bundles, ML) and a gel matrix containing hiPSC-derived cardiomyocytes, endothelial, and vascular mural cells matured in vitro for 14 days. ME-ECTs displayed the lowest dead cell ratio (p < 0.001) and matured into 0.5 mm diameter myofiber bundles with greater 3D cell alignment and higher active stress than PS-ECTs. Increased initial ECT cell number beyond 6 M per construct resulted in reduced cell survival and lower active stress. The 6M-ME-ECTs implanted onto 1 week post-infarct immune tolerant rat hearts engrafted, displayed evidence for host vascular coupling, and recovered myocardial structure and function with reduced scar area. We generated a larger (30 × 30 mm) ME-ECT to confirm scalability. Thus, large-format ECTs generated from hiPSC-derived cardiac cells may be feasible for large animal preclinical cardiac regeneration paradigms.
Collapse
Affiliation(s)
- Takeichiro Nakane
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, The United States of America.,Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidetoshi Masumoto
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, The United States of America.,Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Joseph P Tinney
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, The United States of America.,Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky, The United States of America
| | - Fangping Yuan
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, The United States of America.,Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky, The United States of America
| | - William J Kowalski
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, The United States of America.,Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky, The United States of America
| | - Fei Ye
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, The United States of America.,Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky, The United States of America
| | - Amanda J LeBlanc
- Department of Physiology, University of Louisville, Louisville, Kentucky, The United States of America
| | - Ryuzo Sakata
- Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun K Yamashita
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Bradley B Keller
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, The United States of America.,Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky, The United States of America
| |
Collapse
|
156
|
Abstract
Amylin, a pancreatic β-cell-derived peptide hormone, forms inclusions in brain microvessels of patients with dementia who have been diagnosed with type 2 diabetes and Alzheimer's disease. The cellular localization of these inclusions and the consequences thereof are not yet known. Using immunohistochemical staining of hippocampus and parahippocampal cortex from patients with Alzheimer's disease and non-demented controls, we show that amylin cell inclusions are found in pericytes. The number of amylin cell inclusions did not differ between patients with Alzheimer's disease and controls, but amylin-containing pericytes displayed nuclear changes associated with cell death and reduced expression of the pericyte marker neuron-glial antigen 2. The impact of amylin on pericyte viability was further demonstrated in in vitro studies, which showed that pericyte death increased in presence of fibril- and oligomer amylin. Furthermore, oligomer amylin increased caspase 3/7 activity, reduced lysate neuron-glial antigen 2 levels and impaired autophagy. Our findings contribute to increased understanding of how aggregated amylin affects brain vasculature and highlight amylin as a potential factor involved in microvascular pathology in dementia progression.
Collapse
Affiliation(s)
- Nina Schultz
- 1 Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Elin Byman
- 1 Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Malin Fex
- 2 Unit for Molecular Metabolism, Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Malin Wennström
- 1 Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
157
|
NG2 Proteoglycan Enhances Brain Tumor Progression by Promoting Beta-1 Integrin Activation in both Cis and Trans Orientations. Cancers (Basel) 2017; 9:cancers9040031. [PMID: 28362324 PMCID: PMC5406706 DOI: 10.3390/cancers9040031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022] Open
Abstract
By physically interacting with beta-1 integrins, the NG2 proteoglycan enhances activation of the integrin heterodimers. In glioma cells, co-localization of NG2 and 31 integrin in individual cells (cis interaction) can be demonstrated by immunolabeling, and the NG2-integrin interaction can be confirmed by co-immunoprecipitation. NG2-dependent integrin activation is detected via use of conformationally sensitive monoclonal antibodies that reveal the activated state of the beta-1 subunit in NG2-positive versus NG2-negative cells. NG2-dependent activation of beta-1 integrins triggers downstream activation of FAK and PI3K/Akt signaling, resulting in increased glioma cell proliferation, motility, and survival. Similar NG2-dependent cis activation of beta-1 integrins occurs in microvascular pericytes, leading to enhanced proliferation and motility of these vascular cells. Surprisingly, pericyte NG2 is also able to promote beta-1 integrin activation in closely apposed endothelial cells (trans interaction). Enhanced beta-1 signaling in endothelial cells promotes endothelial maturation by inducing the formation of endothelial junctions, resulting in increased barrier function of the endothelium and increased basal lamina assembly. NG2-dependent beta-1 integrin signaling is therefore important for tumor progression by virtue of its affects not only on the tumor cells themselves, but also on the maturation and function of tumor blood vessels.
Collapse
|
158
|
Song FE, Huang JL, Lin SH, Wang S, Ma GF, Tong XP. Roles of NG2-glia in ischemic stroke. CNS Neurosci Ther 2017; 23:547-553. [PMID: 28317272 DOI: 10.1111/cns.12690] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown that a widely distributed class of glial cells, termed NG2-glia, engages in rapid signaling with surrounding neurons through direct synaptic contacts in the developing and mature central nervous system (CNS). This unique glial cell group has a typical function of proliferating and differentiating into oligodendrocytes during early development of the brain, which is crucial to axon myelin formation. Therefore, NG2-glia are also called oligodendrocyte precursor cells (OPCs). In vitro and in vivo studies reveal that NG2-glia expressing receptors and ion channels demonstrate functional significance for rapid signaling with neuronal synapses and modulation of neuronal activities in both physiological and pathological conditions. Although it is well known that NG2-glia play an important role in demyelinating diseases such as multiple sclerosis, little is known about how NG2-glia or OPCs impact neurons and brain function following ischemic injury. This review summarizes recent progress on the roles of NG2-glia in ischemic stroke and illustrates new approaches for targeting NG2-glia in the brain to treat this disease.
Collapse
Affiliation(s)
- Fei-Er Song
- Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Lv Huang
- Department of Clinical Medicine, Research-Based Learning training program (RBL2015-29), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si-Han Lin
- Department of Clinical Medicine, Research-Based Learning training program (RBL2015-29), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Wang
- Department of Clinical Medicine, Research-Based Learning training program (RBL2015-29), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Fen Ma
- Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Tong
- Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
159
|
Zhou Y, Zhang J, Wang L, Chen Y, Wan Y, He Y, Jiang L, Ma J, Liao R, Zhang X, Shi L, Qin Z, Zhou Y, Chen Z, Hu W. Interleukin-1β impedes oligodendrocyte progenitor cell recruitment and white matter repair following chronic cerebral hypoperfusion. Brain Behav Immun 2017; 60:93-105. [PMID: 27663285 DOI: 10.1016/j.bbi.2016.09.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 10/24/2022] Open
Abstract
Subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion exhibits progressive white matter and cognitive impairments. However, its pathogenetic mechanisms are poorly understood. We investigated the role of interleukin-1β (IL-1β) and its receptor IL-1 receptor type 1 (IL-1R1) in an experimental SIVD model generated via right unilateral common carotid arteries occlusion (rUCCAO) in mice. We found that IL-1β expression was elevated in the corpus callosum at the early stages after rUCCAO. IL-1 receptor antagonist (IL-1Ra), when delivered at an early stage, as well as IL-1R1 knockout, rescued the downregulation of myelin basic protein (MBP) and improved remyelination at the later stage after rUCCAO. Our data suggest that the recruitment of OPCs, but not the proliferation or differentiation of OPCs, is the only compromised step of remyelination following chronic cerebral ischemia. IL-1Ra treatment and IL-1R1 knockout had no effect on the oligodendrocyte progenitor cell (OPC) proliferation, but did promote the recruitment of newly generated OPCs to the corpus callosum, which can be reversed by compensatory expression of IL-1R1 in the SVZ of IL-1R1 knockout mice. Further, we found that recruited OPCs contribute to oligodendrocyte regeneration and functional recovery. In transwell assays, IL-1β inhibited OPC migration through IL-1R1. Moreover, KdPT which can enter the brain to block IL-1R1 also showed comparable protection when intraperitoneally delivered. Our results suggest that IL-1β during the early stages following chronic cerebral hypoperfusion impedes OPC recruitment via IL-1R1, which inhibits white matter repair and functional recovery. IL-1R1 inhibitors may have potential uses in the treatment of SIVD.
Collapse
Affiliation(s)
- Yiting Zhou
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Jing Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Department of Pharmacy, Sir Run Run Shaw Hospital, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, PR China
| | - Lu Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Ying Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, PR China
| | - Yushan Wan
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yang He
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Lei Jiang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Jing Ma
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Rujia Liao
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xiangnan Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, PR China
| | - Liyun Shi
- Department of Basic Medical Science, Key Laboratory of Immunology and Molecular Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, PR China
| | - Zhenghong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, Suzhou 215123, PR China
| | - Yudong Zhou
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, PR China.
| | - Weiwei Hu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, PR China.
| |
Collapse
|
160
|
Xu J, Gong T, Heng BC, Zhang CF. A systematic review: differentiation of stem cells into functional pericytes. FASEB J 2017; 31:1775-1786. [PMID: 28119398 DOI: 10.1096/fj.201600951rrr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022]
Abstract
Pericytes are an integral cellular component of vascular structures. Numerous studies have investigated various stem cell types as potential sources of pericytes for application in cell-based therapy. The diverse stem cell types and variable experimental protocols of these studies make it imperative to evaluate the relevant scientific literature on the basis of a unified standard. The purpose of this systematic review is to rigorously evaluate the relevant scientific literature for conclusive evidence that stem cells can differentiate into functional pericytes. An online literature search was conducted up to July 2016. Eligible papers were evaluated on 4 pertinent criteria: 1) appropriate controls, 2) markers to confirm pericyte phenotype, 3) techniques for assessing pericyte functionality, and 4) differentiation efficiency of the protocol. Our search yielded 20 eligible studies (from 2006 to 2016), 12 of which were published in the past 5 yr. Of these 20 articles, only 1 had positive control, and 5 papers evaluated differentiation efficiency. The most commonly used pericyte markers were neuron-glial antigen 2, platelet-derived growth factor receptor-β, and α-smooth muscle actin. Three articles were associated with adipose stem cells, 4 with mesenchymal stem cells, and 7 with pluripotent stem cells, whereas the remaining 6 articles were based on other miscellaneous stem cell types. Stem cells can serve as a potential source of pericytes, but there should be standardized guidelines in future studies for assessing pericyte differentiation.-Xu, J., Gong, T., Heng, B. C., Zhang, C. F. A systematic review: differentiation of stem cells into functional pericytes.
Collapse
Affiliation(s)
- Jianguang Xu
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and
| | - Ting Gong
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and
| | - Boon Chin Heng
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and
| | - Cheng Fei Zhang
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and .,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
161
|
Xavier S, Sahu RK, Landes SG, Yu J, Taylor RP, Ayyadevara S, Megyesi J, Stallcup WB, Duffield JS, Reis ES, Lambris JD, Portilla D. Pericytes and immune cells contribute to complement activation in tubulointerstitial fibrosis. Am J Physiol Renal Physiol 2017; 312:F516-F532. [PMID: 28052876 PMCID: PMC5374314 DOI: 10.1152/ajprenal.00604.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/07/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022] Open
Abstract
We have examined the pathogenic role of increased complement expression and activation during kidney fibrosis. Here, we show that PDGFRβ-positive pericytes isolated from mice subjected to obstructive or folic acid injury secrete C1q. This was associated with increased production of proinflammatory cytokines, extracellular matrix components, collagens, and increased Wnt3a-mediated activation of Wnt/β-catenin signaling, which are hallmarks of myofibroblast activation. Real-time PCR, immunoblots, immunohistochemistry, and flow cytometry analysis performed in whole kidney tissue confirmed increased expression of C1q, C1r, and C1s as well as complement activation, which is measured as increased synthesis of C3 fragments predominantly in the interstitial compartment. Flow studies localized increased C1q expression to PDGFRβ-positive pericytes as well as to CD45-positive cells. Although deletion of C1qA did not prevent kidney fibrosis, global deletion of C3 reduced macrophage infiltration, reduced synthesis of C3 fragments, and reduced fibrosis. Clodronate mediated depletion of CD11bF4/80 high macrophages in UUO mice also reduced complement gene expression and reduced fibrosis. Our studies demonstrate local synthesis of complement by both PDGFRβ-positive pericytes and CD45-positive cells in kidney fibrosis. Inhibition of complement activation represents a novel therapeutic target to ameliorate fibrosis and progression of chronic kidney disease.
Collapse
Affiliation(s)
- Sandhya Xavier
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Ranjit K Sahu
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Susan G Landes
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Jing Yu
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Ronald P Taylor
- Department of Biochemistry, University of Virginia, Charlottesville, Virginia
| | | | - Judit Megyesi
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - William B Stallcup
- Sanford Burnham Prebys Medical Discovery Institute, Tumor Metastasis and Cancer Immunology Program, La Jolla, California
| | | | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Didier Portilla
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia; .,Salem Veterans Affairs Medical Center, Salem, Virginia
| |
Collapse
|
162
|
Zheng Z, Wan Y, Liu Y, Yang Y, Tang J, Huang W, Cheng B. Sympathetic Denervation Accelerates Wound Contraction but Inhibits Reepithelialization and Pericyte Proliferation in Diabetic Mice. J Diabetes Res 2017; 2017:7614685. [PMID: 29147666 PMCID: PMC5632918 DOI: 10.1155/2017/7614685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/28/2017] [Indexed: 01/13/2023] Open
Abstract
Previous studies focused on the effects of sympathetic denervation with 6-hydroxydopamine (6-OHDA) on nondiabetic wounds, but the effects of 6-OHDA on diabetic wounds have not been previously reported. In this study, treated mice received intraperitoneal 6-OHDA, and control mice received intraperitoneal injections of normal saline. Full-thickness wounds were established on the backs of mice. The wounds were sectioned (four mice per group) for analysis at 2, 5, 7, 10, 14, 17, and 21 days after injury. The wound areas in the control group were larger than those in the treatment group. Histological scores for epidermal and dermal regeneration were reduced in the 6-OHDA-treated group on day 21. The mast cells (MCs) in each field decreased after sympathectomy on days 17 and 21. The expression levels of norepinephrine, epidermal growth factor (EGF), interleukin-1 beta, NG2 proteoglycan, and desmin in the treatment group were less than those in the control group. In conclusion, 6-OHDA delays reepithelialization during wound healing in diabetic mice by decreasing EGF, but increases wound contraction by reducing IL-1β levels and the number of MCs. Besides, 6-OHDA led to reduced pericyte proliferation in diabetic wounds, which might explain the vascular dysfunction after sympathetic nerve loss in diabetic wounds.
Collapse
Affiliation(s)
- Zhifang Zheng
- The Graduate School of Southern Medical University, Guangzhou, China
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
- Department of Anatomy, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, China
| | - Yu Wan
- The Graduate School of Southern Medical University, Guangzhou, China
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Yishu Liu
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
- The Graduate School of Third Military Medical University, Chongqing, China
| | - Yu Yang
- The Graduate School of Southern Medical University, Guangzhou, China
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Jianbing Tang
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Wenhua Huang
- The Graduate School of Southern Medical University, Guangzhou, China
- Department of Anatomy, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, China
| | - Biao Cheng
- The Graduate School of Southern Medical University, Guangzhou, China
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
- Department of Anatomy, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, China
- The Graduate School of Third Military Medical University, Chongqing, China
- Center of Wound Treatment, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
- The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area, PLA, Guangzhou, China
| |
Collapse
|
163
|
Ieronimakis N, Hays A, Prasad A, Janebodin K, Duffield JS, Reyes M. PDGFRα signalling promotes fibrogenic responses in collagen-producing cells in Duchenne muscular dystrophy. J Pathol 2016; 240:410-424. [PMID: 27569721 PMCID: PMC5113675 DOI: 10.1002/path.4801] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/15/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022]
Abstract
Fibrosis is a characteristic of Duchenne muscular dystrophy (DMD), yet the cellular and molecular mechanisms responsible for DMD fibrosis are poorly understood. Utilizing the Collagen1a1-GFP transgene to identify cells producing Collagen-I matrix in wild-type mice exposed to toxic injury or those mutated at the dystrophin gene locus (mdx) as a model of DMD, we studied mechanisms of skeletal muscle injury/repair and fibrosis. PDGFRα is restricted to Sca1+, CD45- mesenchymal progenitors. Fate-mapping experiments using inducible CreER/LoxP somatic recombination indicate that these progenitors expand in injury or DMD to become PDGFRα+, Col1a1-GFP+ matrix-forming fibroblasts, whereas muscle fibres do not become fibroblasts but are an important source of the PDGFRα ligand, PDGF-AA. While in toxin injury/repair of muscle PDGFRα, signalling is transiently up-regulated during the regenerative phase in the DMD model and in human DMD it is chronically overactivated. Conditional expression of the constitutively active PDGFRα D842V mutation in Collagen-I+ fibroblasts, during injury/repair, hindered the repair phase and instead promoted fibrosis. In DMD, treatment of mdx mice with crenolanib, a highly selective PDGFRα/β tyrosine kinase inhibitor, reduced fibrosis, improved muscle strength, and was associated with decreased activity of Src, a downstream effector of PDGFRα signalling. These observations are consistent with a model in which PDGFRα activation of mesenchymal progenitors normally regulates repair of the injured muscle, but in DMD persistent and excessive activation of this pathway directly drives fibrosis and hinders repair. The PDGFRα pathway is a potential new target for treatment of progressive DMD. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Animals
- Benzimidazoles/pharmacology
- Benzimidazoles/therapeutic use
- Cells, Cultured
- Collagen Type I/biosynthesis
- Disease Models, Animal
- Dystrophin/genetics
- Enzyme Inhibitors/pharmacology
- Fibroblasts/drug effects
- Fibroblasts/pathology
- Fibrosis
- Male
- Mice, Transgenic
- Muscle Strength/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Mutation
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/physiology
- Regeneration/drug effects
- Regeneration/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
| | - Aislinn Hays
- Department of PathologyAlbert Einstein College of MedicineNYUSA
| | - Amalthiya Prasad
- Department of Pathology, School of MedicineUniversity of WashingtonWAUSA
| | | | - Jeremy S Duffield
- Department of Pathology, School of MedicineUniversity of WashingtonWAUSA
- Department of Medicine, School of MedicineUniversity of WashingtonWAUSA
- Discovery ResearchBiogen IncCambridgeMAUSA
| | - Morayma Reyes
- Department of PathologyAlbert Einstein College of MedicineNYUSA
- Montefiore Medical CenterBronxNYUSA
| |
Collapse
|
164
|
Avolio E, Madeddu P. Discovering cardiac pericyte biology: From physiopathological mechanisms to potential therapeutic applications in ischemic heart disease. Vascul Pharmacol 2016; 86:53-63. [PMID: 27268036 DOI: 10.1016/j.vph.2016.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
Abstract
Microvascular pericytes and the more recently discovered adventitial pericyte-like progenitor cells are a subpopulation of vascular stem cells closely associated with small and large blood vessels respectively. These populations of perivascular cells are remarkably abundant in the heart. Pericytes control important physiological processes such as angiogenesis, blood flow and vascular permeability. In the heart, this pleiotropic activity makes pericytes extremely interesting for applications in regenerative medicine. On the other hand, dysfunction of pericytes could participate in the pathogenesis of cardiovascular disease, such as arterial hypertension, fibro-calcific cardiovascular remodeling, myocardial edema and post-ischemic coronary no-reflow. On a therapeutic standpoint, preclinical studies in small animal models of myocardial infarction have demonstrated the healing potential of pericytes transplantation, which has been ascribed to direct vascular incorporation and paracrine pro-angiogenic and anti-apoptotic activities. These promising findings open the door to the clinical use of pericytes for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Elisa Avolio
- Division of Experimental Cardiovascular Medicine, University of Bristol, Bristol Heart Institute, Level 7 Bristol Royal Infirmary, Upper Maudlin St, BS2 8HW Bristol, United Kingdom.
| | - Paolo Madeddu
- Division of Experimental Cardiovascular Medicine, University of Bristol, Bristol Heart Institute, Level 7 Bristol Royal Infirmary, Upper Maudlin St, BS2 8HW Bristol, United Kingdom.
| |
Collapse
|
165
|
Stallcup WB, You WK, Kucharova K, Cejudo-Martin P, Yotsumoto F. NG2 Proteoglycan-Dependent Contributions of Pericytes and Macrophages to Brain Tumor Vascularization and Progression. Microcirculation 2016; 23:122-33. [PMID: 26465118 DOI: 10.1111/micc.12251] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022]
Abstract
The NG2 proteoglycan promotes tumor growth as a component of both tumor and stromal cells. Using intracranial, NG2-negative B16F10 melanomas, we have investigated the importance of PC and Mac NG2 in brain tumor progression. Reduced melanoma growth in Mac-NG2ko and PC-NG2ko mice demonstrates the importance of NG2 in both stromal compartments. In each genotype, the loss of PC-endothelial cell interaction diminishes the formation of endothelial junctions and assembly of the basal lamina. Tumor vessels in Mac-NG2ko mice have smaller diameters, reduced patency, and increased leakiness compared to PC-NG2ko mice, thus decreasing tumor blood supply and increasing hypoxia. While the reduced PC interaction with endothelial cells in PC-NG2ko mice results from the loss of PC activation of β1 integrin signaling in endothelial cells, reduced PC-endothelial cell interaction in Mac-NG2ko mice results from 90% reduced Mac recruitment. The absence of Mac-derived signals in Mac-NG2ko mice causes the loss of PC association with endothelial cells. Reduced Mac recruitment may be due to diminished activation of integrins in the absence of NG2, causing decreased Mac interaction with endothelial adhesion molecules that are needed for extravasation. These results reflect the complex interplay that occurs between Mac, PC, and endothelial cells during tumor vascularization.
Collapse
Affiliation(s)
- William B Stallcup
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA
| | - Weon-Kyoo You
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA.,Biologics Business, Research and Development Center, Hanwha Chemical, Daejon, South Korea
| | - Karolina Kucharova
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA
| | - Pilar Cejudo-Martin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA
| | - Fusanori Yotsumoto
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA.,Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
166
|
Shenoy AK, Jin Y, Luo H, Tang M, Pampo C, Shao R, Siemann DW, Wu L, Heldermon CD, Law BK, Chang LJ, Lu J. Epithelial-to-mesenchymal transition confers pericyte properties on cancer cells. J Clin Invest 2016; 126:4174-4186. [PMID: 27721239 DOI: 10.1172/jci86623] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/01/2016] [Indexed: 01/31/2023] Open
Abstract
Carcinoma cells can acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT). However, the significance of EMT in cancer metastasis has been controversial, and the exact fates and functions of EMT cancer cells in vivo remain inadequately understood. Here, we tracked epithelial cancer cells that underwent inducible or spontaneous EMT in various tumor transplantation models. Unlike epithelial cells, the majority of EMT cancer cells were specifically located in the perivascular space and closely associated with blood vessels. EMT markedly activated multiple pericyte markers in carcinoma cells, in particular PDGFR-β and N-cadherin, which enabled EMT cells to be chemoattracted towards and physically interact with endothelium. In tumor xenografts generated from carcinoma cells that were prone to spontaneous EMT, a substantial fraction of the pericytes associated with tumor vasculature were derived from EMT cancer cells. Depletion of such EMT cells in transplanted tumors diminished pericyte coverage, impaired vascular integrity, and attenuated tumor growth. These findings suggest that EMT confers key pericyte attributes on cancer cells. The resulting EMT cells phenotypically and functionally resemble pericytes and are indispensable for vascular stabilization and sustained tumor growth. This study thus proposes a previously unrecognized role for EMT in cancer.
Collapse
|
167
|
Prolyl-4-hydroxylase 2 and 3 coregulate murine erythropoietin in brain pericytes. Blood 2016; 128:2550-2560. [PMID: 27683416 DOI: 10.1182/blood-2016-05-713545] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/22/2016] [Indexed: 12/20/2022] Open
Abstract
A classic response to systemic hypoxia is the increased production of red blood cells due to hypoxia-inducible factor (HIF)-mediated induction of erythropoietin (EPO). EPO is a glycoprotein hormone that is essential for normal erythropoiesis and is predominantly synthesized by peritubular renal interstitial fibroblast-like cells, which express cellular markers characteristic of neuronal cells and pericytes. To investigate whether the ability to synthesize EPO is a general functional feature of pericytes, we used conditional gene targeting to examine the von Hippel-Lindau/prolyl-4-hydroxylase domain (PHD)/HIF axis in cell-expressing neural glial antigen 2, a known molecular marker of pericytes in multiple organs. We found that pericytes in the brain synthesized EPO in mice with genetic HIF activation and were capable of responding to systemic hypoxia with the induction of Epo. Using high-resolution multiplex in situ hybridization, we determined that brain pericytes represent an important cellular source of Epo in the hypoxic brain (up to 70% of all Epo-expressing cells). We furthermore determined that Epo transcription in brain pericytes was HIF-2 dependent and cocontrolled by PHD2 and PHD3, oxygen- and 2-oxoglutarate-dependent prolyl-4-hydroxylases that regulate HIF activity. In summary, our studies provide experimental evidence that pericytes in the brain have the ability to function as oxygen sensors and respond to hypoxia with EPO synthesis. Our findings furthermore suggest that the ability to synthesize EPO may represent a functional feature of pericytes in the brain and kidney.
Collapse
|
168
|
Leuning DG, Reinders ME, Li J, Peired AJ, Lievers E, de Boer HC, Fibbe WE, Romagnani P, van Kooten C, Little MH, Engelse MA, Rabelink TJ. Clinical-Grade Isolated Human Kidney Perivascular Stromal Cells as an Organotypic Cell Source for Kidney Regenerative Medicine. Stem Cells Transl Med 2016; 6:405-418. [PMID: 28191776 PMCID: PMC5442810 DOI: 10.5966/sctm.2016-0053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are immunomodulatory and tissue homeostatic cells that have shown beneficial effects in kidney diseases and transplantation. Perivascular stromal cells (PSCs) identified within several different organs share characteristics of bone marrow‐derived MSCs (BM‐MSCs). These PSCs may also possess tissue‐specific properties and play a role in local tissue homeostasis. We hypothesized that human kidney‐derived PSCs (hkPSCs) would elicit improved kidney repair in comparison with BM‐MSCs. Here we introduce a novel, clinical‐grade isolation method of hkPSCs from cadaveric kidneys by enriching for the perivascular marker, NG2. hkPSCs show strong transcriptional similarities to BM‐MSCs but also show organotypic expression signatures, including the HoxD10 and HoxD11 nephrogenic transcription factors. Comparable to BM‐MSCs, hkPSCs showed immunosuppressive potential and, when cocultured with endothelial cells, vascular plexus formation was supported, which was specifically in the hkPSCs accompanied by an increased NG2 expression. hkPSCs did not undergo myofibroblast transformation after exposure to transforming growth factor‐β, further corroborating their potential regulatory role in tissue homeostasis. This was further supported by the observation that hkPSCs induced accelerated repair in a tubular epithelial wound scratch assay, which was mediated through hepatocyte growth factor release. In vivo, in a neonatal kidney injection model, hkPSCs reintegrated and survived in the interstitial compartment, whereas BM‐MSCs did not show this potential. Moreover, hkPSCs gave protection against the development of acute kidney injury in vivo in a model of rhabdomyolysis‐mediated nephrotoxicity. Overall, this suggests a superior therapeutic potential for the use of hkPSCs and their secretome in the treatment of kidney diseases. Stem Cells Translational Medicine2017;6:405–418
Collapse
Affiliation(s)
- Daniëlle G. Leuning
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
- Einthoven Laboratory of Vascular Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marlies E.J. Reinders
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
- Einthoven Laboratory of Vascular Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joan Li
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Anna J. Peired
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies, University of Florence, Florence, Italy
- Department of Biomedical, Experimental, and Clinical Sciences, University of Florence, Florence, Italy
| | - Ellen Lievers
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
- Einthoven Laboratory of Vascular Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hetty C. de Boer
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
- Einthoven Laboratory of Vascular Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Willem E. Fibbe
- Department of Immunology and Hematology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies, University of Florence, Florence, Italy
- Department of Biomedical, Experimental, and Clinical Sciences, University of Florence, Florence, Italy
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
- Einthoven Laboratory of Vascular Medicine, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Immunology and Hematology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Melissa H. Little
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Murdoch Childrens Research Institute, Parkville, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Marten A. Engelse
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
- Einthoven Laboratory of Vascular Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ton J. Rabelink
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
- Einthoven Laboratory of Vascular Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
169
|
Vezzani B, Pierantozzi E, Sorrentino V. Not All Pericytes Are Born Equal: Pericytes from Human Adult Tissues Present Different Differentiation Properties. Stem Cells Dev 2016; 25:1549-1558. [PMID: 27549576 DOI: 10.1089/scd.2016.0177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pericytes (PCs) have been recognized for a long time only as structural cells of the blood vessels. The identification of tight contacts with endothelial cells and the ability to interact with surrounding cells through paracrine signaling revealed additional functions of PCs in maintaining the homeostasis of the perivascular environment. PCs got the front page, in the late 1990s, after the identification and characterization of a new embryonic cell population, the mesoangioblasts, from which PCs present in the adult organism are thought to derive. From these studies, it was clear that PCs were also endowed with multipotent mesodermal abilities. Furthermore, their ability to cross the vascular wall and to reconstitute skeletal muscle tissue after systemic injection opened the way to a number of studies aimed to develop therapeutic protocols for a cell therapy of muscular dystrophy. This has resulted in a major effort to characterize pericytic cell populations from skeletal muscle and other adult tissues. Additional studies also addressed their relationship with other cells of the perivascular compartment and with mesenchymal stem cells. These data have provided initial evidence that PCs from different adult tissues might be endowed with distinctive differentiation abilities. This would suggest that the multipotent mesenchymal ability of PCs might be restrained within different tissues, likely depending on the specific cell renewal and repair requirements of each tissue. This review presents current knowledge on human PCs and highlights recent data on the differentiation properties of PCs isolated from different adult tissues.
Collapse
Affiliation(s)
- Bianca Vezzani
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| |
Collapse
|
170
|
|
171
|
Yu QC, Song W, Wang D, Zeng YA. Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res 2016; 26:1079-1098. [PMID: 27364685 PMCID: PMC5113308 DOI: 10.1038/cr.2016.85] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/20/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023] Open
Abstract
Vascular growth and remodeling are dependent on the generation of new endothelial cells from stem cells and the involvement of perivascular cells to maintain vessel integrity and function. The existence and cellular identity of vascular endothelial stem cells (VESCs) remain unclear. The perivascular pericytes in adult tissues are thought to arise from the recruitment and differentiation of mesenchymal progenitors during early development. In this study, we identified Protein C receptor-expressing (Procr+) endothelial cells as VESCs in multiple tissues. Procr+ VESCs exhibit robust clonogenicity in culture, high vessel reconstitution efficiency in transplantation, long-term clonal expansion in lineage tracing, and EndMT characteristics. Moreover, Procr+ VESCs are bipotent, giving rise to de novo formation of endothelial cells and pericytes. This represents a novel origin of pericytes in adult angiogenesis, reshaping our understanding of blood vessel development and homeostatic process. Our study may also provide a more precise therapeutic target to inhibit pathological angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Qing Cissy Yu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenqian Song
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Daisong Wang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Arial Zeng
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
172
|
Arrigoni C, Bongio M, Talò G, Bersini S, Enomoto J, Fukuda J, Moretti M. Rational Design of Prevascularized Large 3D Tissue Constructs Using Computational Simulations and Biofabrication of Geometrically Controlled Microvessels. Adv Healthc Mater 2016; 5:1617-26. [PMID: 27191352 DOI: 10.1002/adhm.201500958] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/31/2015] [Indexed: 12/12/2022]
Abstract
A major challenge in the development of clinically relevant 3D tissue constructs is the formation of vascular networks for oxygenation, nutrient supply, and waste removal. To this end, this study implements a multimodal approach for the promotion of vessel-like structures formation in stiff fibrin hydrogels. Computational simulations have been performed to identify the easiest microchanneled configuration assuring normoxic conditions throughout thick cylindrical hydrogels (8 mm height, 6 mm ∅), showing that in our configuration a minimum of three microchannels (600 μm ∅), placed in a non-planar disposition, is required. Using small hydrogel bricks with oxygen distribution equal to the microchanneled configuration, this study demonstrates that among different culture conditions, co-culture of mesenchymal and endothelial cells supplemented with ANG-1 and VEGF leads to the most developed vascular network. Microchanneled hydrogels have been then cultured in the same conditions both statically and in a bioreactor for 7 d. Unexpectedly, the combination between shear forces and normoxic conditions is unable to promote microvascular networks formation in three-channeled hydrogels. Differently, application of either shear forces or normoxic conditions alone results in microvessels outgrowth. These results suggest that to induce angiogenesis in engineered constructs, complex interactions between several biochemical and biophysical parameters have to be modulated.
Collapse
Affiliation(s)
- Chiara Arrigoni
- Cell and Tissue Engineering Laboratory; IRCCS Galeazzi Orthopaedic Institute; Via R. Galeazzi 4 20161 Milan Italy
| | - Matilde Bongio
- Cell and Tissue Engineering Laboratory; IRCCS Galeazzi Orthopaedic Institute; Via R. Galeazzi 4 20161 Milan Italy
| | - Giuseppe Talò
- Cell and Tissue Engineering Laboratory; IRCCS Galeazzi Orthopaedic Institute; Via R. Galeazzi 4 20161 Milan Italy
| | - Simone Bersini
- Cell and Tissue Engineering Laboratory; IRCCS Galeazzi Orthopaedic Institute; Via R. Galeazzi 4 20161 Milan Italy
| | - Junko Enomoto
- Faculty of Engineering; Division of Materials Science and Chemical Engineering; University of Yokohama; 79-1 Tokiwadai Hodogaya-ku Yokohama 240-8501 Japan
| | - Junji Fukuda
- Faculty of Engineering; Division of Materials Science and Chemical Engineering; University of Yokohama; 79-1 Tokiwadai Hodogaya-ku Yokohama 240-8501 Japan
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory; IRCCS Galeazzi Orthopaedic Institute; Via R. Galeazzi 4 20161 Milan Italy
- Regenerative Medicine Technologies Lab; Ente Ospedaliero Cantonale (EOC); Lugano 6900 Switzerland
- Swiss Institute of Regenerative Medicine (SIRM); Lugano 6900 Switzerland
- Fondazione Cardiocentro Ticino; Lugano 6900 Switzerland
| |
Collapse
|
173
|
Hall AP. Review of the Pericyte during Angiogenesis and its Role in Cancer and Diabetic Retinopathy. Toxicol Pathol 2016; 34:763-75. [PMID: 17162534 DOI: 10.1080/01926230600936290] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Anthony P Hall
- AstraZeneca R&D Alderley Park, Safety Assessment UK, Mereside, Alderley Park, Macclesfield, SK10 4TG Cheshire, England.
| |
Collapse
|
174
|
Padel T, Özen I, Boix J, Barbariga M, Gaceb A, Roth M, Paul G. Platelet-derived growth factor-BB has neurorestorative effects and modulates the pericyte response in a partial 6-hydroxydopamine lesion mouse model of Parkinson's disease. Neurobiol Dis 2016; 94:95-105. [PMID: 27288154 DOI: 10.1016/j.nbd.2016.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/24/2016] [Accepted: 06/05/2016] [Indexed: 12/28/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease where the degeneration of the nigrostriatal pathway leads to specific motor deficits. There is an unmet medical need for regenerative treatments that stop or reverse disease progression. Several growth factors have been investigated in clinical trials to restore the dopaminergic nigrostriatal pathway damaged in PD. Platelet-derived growth factor-BB (PDGF-BB), a molecule that recruits pericytes to stabilize microvessels, was recently investigated in a phase-1 clinical trial, showing a dose-dependent increase in dopamine transporter binding in the putamen of PD patients. Interestingly, evidence is accumulating that PD is paralleled by microvascular changes, however, whether PDGF-BB modifies pericytes in PD is not known. Using a pericyte reporter mouse strain, we investigate the functional and restorative effect of PDGF-BB in a partial 6-hydroxydopamine medial forebrain bundle lesion mouse model of PD, and whether this restorative effect is accompanied by changes in pericyte features. We demonstrate that a 2-week treatment with PDGF-BB leads to behavioural recovery using several behavioural tests, and partially restores the nigrostriatal pathway. Interestingly, we find that pericytes are activated in the striatum of PD lesioned mice and that these changes are reversed by PDGF-BB treatment. The modulation of brain pericytes may contribute to the PDGF-BB-induced neurorestorative effects, PDGF-BB allowing for vascular stabilization in PD. Pericytes might be a new cell target of interest for future regenerative therapies.
Collapse
Affiliation(s)
- Thomas Padel
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Ilknur Özen
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Jordi Boix
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Marco Barbariga
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Abderahim Gaceb
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Michaela Roth
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden; Department of Neurology, Scania University Hospital, 22185 Lund, Sweden.
| |
Collapse
|
175
|
Pombero A, Garcia-Lopez R, Martinez S. Brain mesenchymal stem cells: physiology and pathological implications. Dev Growth Differ 2016; 58:469-80. [PMID: 27273235 DOI: 10.1111/dgd.12296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are defined as progenitor cells that give rise to a number of unique, differentiated mesenchymal cell types. This concept has progressively evolved towards an all-encompassing concept including multipotent perivascular cells of almost any tissue. In central nervous system, pericytes are involved in blood-brain barrier, and angiogenesis and vascular tone regulation. They form the neurovascular unit (NVU) together with endothelial cells, astrocytes and neurons. This functional structure provides an optimal microenvironment for neural proliferation in the adult brain. Neurovascular niche include both diffusible signals and direct contact with endothelial and pericytes, which are a source of diffusible neurotrophic signals that affect neural precursors. Therefore, MSCs/pericyte properties such as differentiation capability, as well as immunoregulatory and paracrine effects make them a potential resource in regenerative medicine.
Collapse
Affiliation(s)
- Ana Pombero
- Intituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, University of Murcia, Murcia, Spain
| | - Raquel Garcia-Lopez
- Instituto de Neurociencias, Universidad Miguel Hernandez-Consejo Superior de Investigaciones, Av Ramon y Cajal s/n, San Juan de Alicante, 03550, Spain
| | - Salvador Martinez
- Instituto de Neurociencias, Universidad Miguel Hernandez-Consejo Superior de Investigaciones, Av Ramon y Cajal s/n, San Juan de Alicante, 03550, Spain
| |
Collapse
|
176
|
Levine J. The reactions and role of NG2 glia in spinal cord injury. Brain Res 2016; 1638:199-208. [PMID: 26232070 PMCID: PMC4732922 DOI: 10.1016/j.brainres.2015.07.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/02/2015] [Accepted: 07/18/2015] [Indexed: 01/06/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) react rapidly to brain and spinal cord injuries. This reaction is characterized by the retraction of cell processes, cell body swelling and increased expression of the NG2 chondroitin sulfate proteoglycan. Reactive OPCs rapidly divide and accumulate surrounding the injury site where they become major cellular components of the glial scar. The glial reaction to injury is an attempt to restore normal homeostasis and re-establish the glia limitans but the exact role of reactive OPCs in these processes is not well understood. Traumatic injury results in extensive oligodendrocyte cell death and the proliferating OPCs generate the large number of precursor cells necessary for remyelination. Reactive OPCs, however, also are a source of axon-growth inhibitory proteoglycans and may interact with invading inflammatory cells in complex ways. Here, I discuss these and other properties of OPCs after spinal cord injury. Understanding the regulation of these disparate properties may lead to new therapeutic approaches to devastating injuries of the spinal cord. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Joel Levine
- Department of Neurobiology and Behavior, Stonybrook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
177
|
Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, Kaser-Eichberger A, Strohmaier C, Runge C, Aigner L, Rivera FJ, Reitsamer HA. Brain and Retinal Pericytes: Origin, Function and Role. Front Cell Neurosci 2016; 10:20. [PMID: 26869887 PMCID: PMC4740376 DOI: 10.3389/fncel.2016.00020] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022] Open
Abstract
Pericytes are specialized mural cells located at the abluminal surface of capillary blood vessels, embedded within the basement membrane. In the vascular network these multifunctional cells fulfil diverse functions, which are indispensable for proper homoeostasis. They serve as microvascular stabilizers, are potential regulators of microvascular blood flow and have a central role in angiogenesis, as they for example regulate endothelial cell proliferation. Furthermore, pericytes, as part of the neurovascular unit, are a major component of the blood-retina/brain barrier. CNS pericytes are a heterogenic cell population derived from mesodermal and neuro-ectodermal germ layers acting as modulators of stromal and niche environmental properties. In addition, they display multipotent differentiation potential making them an intriguing target for regenerative therapies. Pericyte-deficiencies can be cause or consequence of many kinds of diseases. In diabetes, for instance, pericyte-loss is a severe pathological process in diabetic retinopathy (DR) with detrimental consequences for eye sight in millions of patients. In this review, we provide an overview of our current understanding of CNS pericyte origin and function, with a special focus on the retina in the healthy and diseased. Finally, we highlight the role of pericytes in de- and regenerative processes.
Collapse
Affiliation(s)
- Andrea Trost
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and OptometrySalzburg, Austria; Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
| | - Simona Lange
- Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria
| | - Falk Schroedl
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and OptometrySalzburg, Austria; Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| | - Daniela Bruckner
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Karolina A Motloch
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Barbara Bogner
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Clemens Strohmaier
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Christian Runge
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Ludwig Aigner
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria; Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| | - Francisco J Rivera
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria; Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| | - Herbert A Reitsamer
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and OptometrySalzburg, Austria; Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| |
Collapse
|
178
|
Zhou Z, Pausch F, Schlötzer-Schrehardt U, Brachvogel B, Pöschl E. Induction of initial steps of angiogenic differentiation and maturation of endothelial cells by pericytes in vitro and the role of collagen IV. Histochem Cell Biol 2016; 145:511-25. [PMID: 26747274 DOI: 10.1007/s00418-015-1398-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2015] [Indexed: 12/31/2022]
Abstract
Activation of endothelial cells and recruitment of mural cells define critical steps during the formation of stable vascular elements. Both events are reflected by cocultures of endothelial cells and isolated murine pericyte-like cells and define a versatile platform for the analysis of distinct steps during the angiogenic process in vitro. Isolated pericyte-like cells promote the survival of endothelial cells, induce the assembly of endothelial cells as well as establish direct contacts with forming endothelial alignments. More importantly, they also induce characteristic steps of maturation including the assembly of stable cell-cell junctions, deposition of basement membrane-like matrices and local formation of a central lumen. The presence of pericyte-like cells induces the secretion of extracellular matrices enriched in collagen IV by endothelial cells, which improves endothelial tube formation and provides the adhesive substrate for mural cell recruitment. Collagen-binding integrins contribute differentially to the process, with α1β1 involved in the adhesion of pericyte-like cells to collagen IV and α2β1 mainly involved in endothelial cord formation. These data indicate that pericyte-like cells are essential for the survival of endothelial cells, the efficient formation of endothelial alignments as well as initial steps of maturation of capillary-like structures.
Collapse
Affiliation(s)
- Zhigang Zhou
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Cardiovascular Medicine, Medical College, Nantong University, Nantong, China
| | - Friederike Pausch
- Department of Experimental Medicine I, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Bent Brachvogel
- Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Ernst Pöschl
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
179
|
Hashitani H, Lang RJ. Spontaneous activity in the microvasculature of visceral organs: role of pericytes and voltage-dependent Ca(2+) channels. J Physiol 2016; 594:555-65. [PMID: 26607499 DOI: 10.1113/jp271438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/31/2015] [Indexed: 12/21/2022] Open
Abstract
The microvasculature plays a primary role in the interchange of substances between tissues and the circulation. In visceral organs that undergo considerable distension upon filling, the microvasculature appears to display intrinsic contractile properties to maintain their flow. Submucosal venules in the bladder or gastrointestinal tract generate rhythmic spontaneous phasic constrictions and associated Ca(2+) transients. These events are initiated within either venular pericytes or smooth muscle cells (SMCs) arising from spontaneous Ca(2+) release from the sarcoplasmic reticulum (SR) and the opening of Ca(2+) -activated chloride channels (CaCCs) that trigger Ca(2+) influx through L-type voltage-dependent Ca(2+) channels (VDCCs). L-type VDCCs also play a critical role in maintaining synchrony within the contractile mural cells. In the stomach myenteric layer, spontaneous Ca(2+) transients originating in capillary pericytes appear to spread to their neighbouring arteriolar SMCs. Capillary Ca(2+) transients primarily rely on SR Ca(2+) release, but also require Ca(2+) influx through T-type VDCCs for their synchrony. The opening of T-type VDCCs also contribute to the propagation of Ca(2+) transients into SMCs. In visceral microvasculature, pericytes act as either spontaneously active contractile machinery of the venules or as pacemaker cells generating synchronous Ca(2+) transients that drive spontaneous contractions in upstream arterioles. Thus pericytes play different roles in different vascular beds in a manner that may well depend on the selective expression of T-type and L-type Ca(2+) channels.
Collapse
Affiliation(s)
- Hikaru Hashitani
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Richard J Lang
- Department of Physiology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
180
|
Eugenín-von Bernhardi J, Dimou L. NG2-glia, More Than Progenitor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:27-45. [PMID: 27714683 DOI: 10.1007/978-3-319-40764-7_2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NG2-glia are a mysterious and ubiquitous glial population with a highly branched morphology. Initial studies suggested that their unique function is the generation and maintenance of oligodendrocytes in the central nervous system (CNS), important for proper myelination and therefore for axonal support and fast conduction velocity. Over the last years this simplistic notion has been dramatically changed: the wide and homogeneous distribution of NG2-glia within all areas of the developing CNS that is maintained during the whole lifespan, their potential to also differentiate into other cell types in a spatiotemporal manner, their active capability of maintaining their population and their dynamic behavior in altered conditions have raised the question: are NG2-glia simple progenitor cells or do they play further major roles in the normal function of the CNS? In this chapter, we will discuss some important features of NG2-glia like their homeostatic distribution in the CNS and their potential to differentiate into diverse cell types. Additionally, we will give some further insights into the properties that these cells have, like the ability to form synapses with neurons and their plastic behavior triggered by neuronal activity, suggesting that they may play a role specifically in myelin and more generally in brain plasticity. Finally, we will briefly review their behavior in disease models suggesting that their function is extended to repair the brain after insult.
Collapse
Affiliation(s)
- Jaime Eugenín-von Bernhardi
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany. .,Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, 82152, Planegg-Martinsried, Germany.
| | - Leda Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
181
|
Affiliation(s)
- Per Fogelstrand
- From the Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- From the Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
182
|
Minocha S, Valloton D, Brunet I, Eichmann A, Hornung JP, Lebrand C. NG2 glia are required for vessel network formation during embryonic development. eLife 2015; 4. [PMID: 26651999 PMCID: PMC4764555 DOI: 10.7554/elife.09102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/29/2015] [Indexed: 01/13/2023] Open
Abstract
The NG2(+) glia, also known as polydendrocytes or oligodendrocyte precursor cells, represent a new entity among glial cell populations in the central nervous system. However, the complete repertoire of their roles is not yet identified. The embryonic NG2(+) glia originate from the Nkx2.1(+) progenitors of the ventral telencephalon. Our analysis unravels that, beginning from E12.5 until E16.5, the NG2(+) glia populate the entire dorsal telencephalon. Interestingly, their appearance temporally coincides with the establishment of blood vessel network in the embryonic brain. NG2(+) glia are closely apposed to developing cerebral vessels by being either positioned at the sprouting tip cells or tethered along the vessel walls. Absence of NG2(+) glia drastically affects the vascular development leading to severe reduction of ramifications and connections by E18.5. By revealing a novel and fundamental role for NG2(+) glia, our study brings new perspectives to mechanisms underlying proper vessels network formation in embryonic brains.
Collapse
Affiliation(s)
- Shilpi Minocha
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Delphine Valloton
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | | | - Jean-Pierre Hornung
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Cecile Lebrand
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
183
|
Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA, Tallquist MD. Revisiting Cardiac Cellular Composition. Circ Res 2015; 118:400-9. [PMID: 26635390 DOI: 10.1161/circresaha.115.307778] [Citation(s) in RCA: 958] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/02/2015] [Indexed: 01/18/2023]
Abstract
RATIONALE Accurate knowledge of the cellular composition of the heart is essential to fully understand the changes that occur during pathogenesis and to devise strategies for tissue engineering and regeneration. OBJECTIVE To examine the relative frequency of cardiac endothelial cells, hematopoietic-derived cells, and fibroblasts in the mouse and human heart. METHODS AND RESULTS Using a combination of genetic tools and cellular markers, we examined the occurrence of the most prominent cell types in the adult mouse heart. Immunohistochemistry revealed that endothelial cells constitute >60%, hematopoietic-derived cells 5% to 10%, and fibroblasts <20% of the nonmyocytes in the heart. A refined cell isolation protocol and an improved flow cytometry approach provided an independent means of determining the relative abundance of nonmyocytes. High-dimensional analysis and unsupervised clustering of cell populations confirmed that endothelial cells are the most abundant cell population. Interestingly, fibroblast numbers are smaller than previously estimated, and 2 commonly assigned fibroblast markers, Sca-1 and CD90, under-represent fibroblast numbers. We also describe an alternative fibroblast surface marker that more accurately identifies the resident cardiac fibroblast population. CONCLUSIONS This new perspective on the abundance of different cell types in the heart demonstrates that fibroblasts comprise a relatively minor population. By contrast, endothelial cells constitute the majority of noncardiomyocytes and are likely to play a greater role in physiological function and response to injury than previously appreciated.
Collapse
Affiliation(s)
- Alexander R Pinto
- From the Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia (A.R.P., A.I., R.D., A.C., L.W., N.R.); Department of Medicine, Center for Cardiovascular Research (M.J.I., J.T.K., M.L.D'A., K.A., M.D.T.) and Department of Cellular and Molecular Biology (M.J.I., J.T.K.), University of Hawaii, Honolulu, HI; National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.A.R.); and The Jackson Laboratory, Bar Harbor, ME (N.A.R.).
| | - Alexei Ilinykh
- From the Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia (A.R.P., A.I., R.D., A.C., L.W., N.R.); Department of Medicine, Center for Cardiovascular Research (M.J.I., J.T.K., M.L.D'A., K.A., M.D.T.) and Department of Cellular and Molecular Biology (M.J.I., J.T.K.), University of Hawaii, Honolulu, HI; National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.A.R.); and The Jackson Laboratory, Bar Harbor, ME (N.A.R.)
| | - Malina J Ivey
- From the Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia (A.R.P., A.I., R.D., A.C., L.W., N.R.); Department of Medicine, Center for Cardiovascular Research (M.J.I., J.T.K., M.L.D'A., K.A., M.D.T.) and Department of Cellular and Molecular Biology (M.J.I., J.T.K.), University of Hawaii, Honolulu, HI; National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.A.R.); and The Jackson Laboratory, Bar Harbor, ME (N.A.R.)
| | - Jill T Kuwabara
- From the Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia (A.R.P., A.I., R.D., A.C., L.W., N.R.); Department of Medicine, Center for Cardiovascular Research (M.J.I., J.T.K., M.L.D'A., K.A., M.D.T.) and Department of Cellular and Molecular Biology (M.J.I., J.T.K.), University of Hawaii, Honolulu, HI; National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.A.R.); and The Jackson Laboratory, Bar Harbor, ME (N.A.R.)
| | - Michelle L D'Antoni
- From the Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia (A.R.P., A.I., R.D., A.C., L.W., N.R.); Department of Medicine, Center for Cardiovascular Research (M.J.I., J.T.K., M.L.D'A., K.A., M.D.T.) and Department of Cellular and Molecular Biology (M.J.I., J.T.K.), University of Hawaii, Honolulu, HI; National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.A.R.); and The Jackson Laboratory, Bar Harbor, ME (N.A.R.)
| | - Ryan Debuque
- From the Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia (A.R.P., A.I., R.D., A.C., L.W., N.R.); Department of Medicine, Center for Cardiovascular Research (M.J.I., J.T.K., M.L.D'A., K.A., M.D.T.) and Department of Cellular and Molecular Biology (M.J.I., J.T.K.), University of Hawaii, Honolulu, HI; National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.A.R.); and The Jackson Laboratory, Bar Harbor, ME (N.A.R.)
| | - Anjana Chandran
- From the Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia (A.R.P., A.I., R.D., A.C., L.W., N.R.); Department of Medicine, Center for Cardiovascular Research (M.J.I., J.T.K., M.L.D'A., K.A., M.D.T.) and Department of Cellular and Molecular Biology (M.J.I., J.T.K.), University of Hawaii, Honolulu, HI; National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.A.R.); and The Jackson Laboratory, Bar Harbor, ME (N.A.R.)
| | - Lina Wang
- From the Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia (A.R.P., A.I., R.D., A.C., L.W., N.R.); Department of Medicine, Center for Cardiovascular Research (M.J.I., J.T.K., M.L.D'A., K.A., M.D.T.) and Department of Cellular and Molecular Biology (M.J.I., J.T.K.), University of Hawaii, Honolulu, HI; National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.A.R.); and The Jackson Laboratory, Bar Harbor, ME (N.A.R.)
| | - Komal Arora
- From the Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia (A.R.P., A.I., R.D., A.C., L.W., N.R.); Department of Medicine, Center for Cardiovascular Research (M.J.I., J.T.K., M.L.D'A., K.A., M.D.T.) and Department of Cellular and Molecular Biology (M.J.I., J.T.K.), University of Hawaii, Honolulu, HI; National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.A.R.); and The Jackson Laboratory, Bar Harbor, ME (N.A.R.)
| | - Nadia A Rosenthal
- From the Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia (A.R.P., A.I., R.D., A.C., L.W., N.R.); Department of Medicine, Center for Cardiovascular Research (M.J.I., J.T.K., M.L.D'A., K.A., M.D.T.) and Department of Cellular and Molecular Biology (M.J.I., J.T.K.), University of Hawaii, Honolulu, HI; National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.A.R.); and The Jackson Laboratory, Bar Harbor, ME (N.A.R.)
| | - Michelle D Tallquist
- From the Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia (A.R.P., A.I., R.D., A.C., L.W., N.R.); Department of Medicine, Center for Cardiovascular Research (M.J.I., J.T.K., M.L.D'A., K.A., M.D.T.) and Department of Cellular and Molecular Biology (M.J.I., J.T.K.), University of Hawaii, Honolulu, HI; National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.A.R.); and The Jackson Laboratory, Bar Harbor, ME (N.A.R.).
| |
Collapse
|
184
|
Birey F, Kloc M, Chavali M, Hussein I, Wilson M, Christoffel DJ, Chen T, Frohman MA, Robinson JK, Russo SJ, Maffei A, Aguirre A. Genetic and Stress-Induced Loss of NG2 Glia Triggers Emergence of Depressive-like Behaviors through Reduced Secretion of FGF2. Neuron 2015; 88:941-956. [PMID: 26606998 PMCID: PMC5354631 DOI: 10.1016/j.neuron.2015.10.046] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 09/29/2015] [Accepted: 10/28/2015] [Indexed: 01/25/2023]
Abstract
NG2-expressing glia (NG2 glia) are a uniformly distributed and mitotically active pool of cells in the central nervous system (CNS). In addition to serving as progenitors of myelinating oligodendrocytes, NG2 glia might also fulfill physiological roles in CNS homeostasis, although the mechanistic nature of such roles remains unclear. Here, we report that ablation of NG2 glia in the prefrontal cortex (PFC) of the adult brain causes deficits in excitatory glutamatergic neurotransmission and astrocytic extracellular glutamate uptake and induces depressive-like behaviors in mice. We show in parallel that chronic social stress causes NG2 glia density to decrease in areas critical to Major Depressive Disorder (MDD) pathophysiology at the time of symptom emergence in stress-susceptible mice. Finally, we demonstrate that loss of NG2 glial secretion of fibroblast growth factor 2 (FGF2) suffices to induce the same behavioral deficits. Our findings outline a pathway and role for NG2 glia in CNS homeostasis and mood disorders.
Collapse
Affiliation(s)
- Fikri Birey
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michelle Kloc
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Manideep Chavali
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Israa Hussein
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael Wilson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel J Christoffel
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Tony Chen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael A Frohman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - John K Robinson
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Arianna Maffei
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Adan Aguirre
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
185
|
She ZG, Chang Y, Pang HB, Han W, Chen HZ, Smith JW, Stallcup WB. NG2 Proteoglycan Ablation Reduces Foam Cell Formation and Atherogenesis via Decreased Low-Density Lipoprotein Retention by Synthetic Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2015; 36:49-59. [PMID: 26543095 DOI: 10.1161/atvbaha.115.306074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/24/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Obesity and hyperlipidemia are critical risk factors for atherosclerosis. Because ablation of NG2 proteoglycan in mice leads to hyperlipidemia and obesity, we investigated the impact of NG2 ablation on atherosclerosis in apoE null mice. APPROACH AND RESULTS Immunostaining indicates that NG2 expression in plaque, primarily by synthetic smooth muscle cells, increases during atherogenesis. NG2 ablation unexpectedly results in decreased (30%) plaque development, despite aggravated obesity and hyperlipidemia. Mechanistic studies reveal that NG2-positive plaque synthetic smooth muscle cells in culture can sequester low-density lipoprotein to enhance foam-cell formation, processes in which NG2 itself plays direct roles. In agreement with these observations, low-density lipoprotein retention and lipid accumulation in the NG2/ApoE knockout aorta is 30% less than that seen in the control aorta. CONCLUSIONS These results indicate that synthetic smooth muscle cell-dependent low-density lipoprotein retention and foam cell formation outweigh obesity and hyperlipidemia in promoting mouse atherogenesis. Our study sheds new light on the role of synthetic smooth muscle cells during atherogenesis. Blocking plaque NG2 or altering synthetic smooth muscle cells function may be promising therapeutic strategies for atherosclerosis.
Collapse
Affiliation(s)
- Zhi-Gang She
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.).
| | - Yunchao Chang
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| | - Hong-Bo Pang
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| | - Wenlong Han
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| | - Hou-Zao Chen
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| | - Jeffrey W Smith
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| | - William B Stallcup
- From the Tumor Microenvironment and Cancer Immunology Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Z.-G.S., Y.C., H.-B.P., W.H., J.W.S., W.B.S.); and Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing, Republic of China (H.-Z.C.)
| |
Collapse
|
186
|
Brown MP, Bezak E, Allen BJ. The potential complementary role of targeted alpha therapy in the management of metastatic melanoma. Melanoma Manag 2015; 2:353-366. [PMID: 30190863 DOI: 10.2217/mmt.15.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Standard treatments for metastatic melanoma have recently extended survival although many patients still succumb. Targeted alpha therapy (TAT) is a new therapeutic approach in which a cancer-targeting vector is labeled with an alpha-emitting radioisotope. Alpha-particles have the shortest range and highest energy transfer, and produce localized, high-density and lethal ionization damage to DNA. Thus, the targeted radiation can kill isolated cancer cells circulating in blood and lymphatic vessels, regress metastatic cancer cell clusters, and disrupt the vasculature of solid tumors. Preclinical and clinical studies of TAT for metastatic melanoma demonstrate its safety and anti-tumor activity. We recommend ways in which TAT can be used to treat small-volume disease sometimes in conjunction with cytoreductive anti-melanoma therapies.
Collapse
Affiliation(s)
- Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, SA, Australia.,School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia.,Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, SA, Australia.,School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Eva Bezak
- International Centre for Allied Health Evidence, Sansom Insitute, University of South Australia, Adelaide, Australia.,Sansom Insitute for Health Research, University of South Australia, Adelaide, Australia.,School of Physical Sciences, University of Adelaide, Adelaide, Australia.,International Centre for Allied Health Evidence, Sansom Insitute, University of South Australia, Adelaide, Australia.,Sansom Insitute for Health Research, University of South Australia, Adelaide, Australia.,School of Physical Sciences, University of Adelaide, Adelaide, Australia
| | - Barry J Allen
- Faculty of Medicine, University of Western Sydney, Liverpool, NSW, Australia.,Faculty of Medicine, University of Western Sydney, Liverpool, NSW, Australia
| |
Collapse
|
187
|
Volz KS, Jacobs AH, Chen HI, Poduri A, McKay AS, Riordan DP, Kofler N, Kitajewski J, Weissman I, Red-Horse K. Pericytes are progenitors for coronary artery smooth muscle. eLife 2015; 4. [PMID: 26479710 PMCID: PMC4728130 DOI: 10.7554/elife.10036] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022] Open
Abstract
Epicardial cells on the heart's surface give rise to coronary artery smooth muscle cells (caSMCs) located deep in the myocardium. However, the differentiation steps between epicardial cells and caSMCs are unknown as are the final maturation signals at coronary arteries. Here, we use clonal analysis and lineage tracing to show that caSMCs derive from pericytes, mural cells associated with microvessels, and that these cells are present in adults. During development following the onset of blood flow, pericytes at arterial remodeling sites upregulate Notch3 while endothelial cells express Jagged-1. Deletion of Notch3 disrupts caSMC differentiation. Our data support a model wherein epicardial-derived pericytes populate the entire coronary microvasculature, but differentiate into caSMCs at arterial remodeling zones in response to Notch signaling. Our data are the first demonstration that pericytes are progenitors for smooth muscle, and their presence in adult hearts reveals a new potential cell type for targeting during cardiovascular disease.
Collapse
Affiliation(s)
- Katharina S Volz
- Stem Cell and Regenerative Medicine PhD Program, Stanford School of Medicine, Stanford, United States.,Department of Biological Sciences, Stanford University, Stanford, United States.,Institute for Stem Cell and Regenerative Medicine, Stanford School of Medicine, Ludwig Center, Stanford, United States
| | - Andrew H Jacobs
- Department of Biological Sciences, Stanford University, Stanford, United States
| | - Heidi I Chen
- Department of Biological Sciences, Stanford University, Stanford, United States
| | - Aruna Poduri
- Department of Biological Sciences, Stanford University, Stanford, United States
| | - Andrew S McKay
- Department of Biological Sciences, Stanford University, Stanford, United States
| | - Daniel P Riordan
- Department of Biochemistry, Stanford School of Medicine, Stanford, United States
| | - Natalie Kofler
- Columbia University Medical Center, New York, United States
| | - Jan Kitajewski
- Columbia University Medical Center, New York, United States
| | - Irving Weissman
- Institute for Stem Cell and Regenerative Medicine, Stanford School of Medicine, Ludwig Center, Stanford, United States.,Ludwig Center for Cancer Stem Cell Biology and Medicine at Stanford University, Stanford, United States
| | - Kristy Red-Horse
- Department of Biological Sciences, Stanford University, Stanford, United States
| |
Collapse
|
188
|
Zeng Y, Zhu L, Han Q, Liu W, Mao X, Li Y, Yu N, Feng S, Fu Q, Wang X, Du Y, Zhao RC. Preformed gelatin microcryogels as injectable cell carriers for enhanced skin wound healing. Acta Biomater 2015; 25:291-303. [PMID: 26234487 DOI: 10.1016/j.actbio.2015.07.042] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/18/2015] [Accepted: 07/29/2015] [Indexed: 01/06/2023]
Abstract
Wound dressings of cell-laden bulk hydrogel or scaffold were mainly applied for enhanced cell engraftment in contrast to free cell injection. However, dressing of cells laden in biomaterials on wound surface might not effectively and timely exert functions on deep or chronic wounds where insufficient blood supply exists. Previously, we developed injectable gelatin microcryogels (GMs) which could load cells for enhanced cell delivery and cell therapy. In this study, biological changes of human adipose-derived stem cells (hASCs) laden in GMs were compared in varied aspects with traditional two dimensional (2D) cell culture, such as cell phenotype markers, stemness genes, differentiation, secretion of growth factors, cell apoptosis and cell memory by FACS, QRT-PCR and ELISA, that demonstrated the priming effects of GMs on upregulation of stemness genes and improved secretion of growth factors of hASCs for potential augmented wound healing. In a full-thickness skin wound model in nude mice, multisite injection and dressing of hASCs-laden GMs could significantly accelerate the healing compared to free cell injection. Bioluminescence imaging and protein analysis indicated improved cell retention and secretion of multiple growth factors. Our study suggests that GMs as primed injectable 3D micro-niches represent a new cell delivery methodology for skin wound healing which could not only benefit on the recovery of wound bed but also play direct effects on wound basal layer for healing enhancement. Injectable GMs as facile multisite cell delivery approach potentially provide new minimally-invasive therapeutic strategy for refractory wounds such as diabetic ulcer or radiative skin wound. STATEMENT OF SIGNIFICANCE This work applied a type of elastic micro-scaffold (GMs) to load and prime hMSCs for skin wound healing. Due to the injectability of GMs, the 3D cellular micro-niches could simply realize minimally-invasive and multisite cell delivery approach for accelerating the wound healing process superior to free cell injection. The biological features of MSCs has been thoroughly characterized during 3D culture in GMs (i.e. cell proliferation, characterization of cell surface markers, stemness of MSCs in GMs, differentiation of MSCs in GMs, secretion of MSCs in GMs, induced apoptosis of MSCs in GMs). Multiple methods such as bioluminescent imaging, immunohistochemistry, immunofluorescence, qRT-PCR, ELSA and western blot were used to assess the in vivo results between groups.
Collapse
Affiliation(s)
- Yang Zeng
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Lin Zhu
- Division of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Qin Han
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Wei Liu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Xiaojing Mao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yaqian Li
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Nanze Yu
- Division of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Siyu Feng
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qinyouen Fu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaojun Wang
- Division of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China.
| | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Center of Translational Medicine Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
189
|
Shaffiey SA, Jia H, Keane T, Costello C, Wasserman D, Quidgley M, Dziki J, Badylak S, Sodhi CP, March JC, Hackam DJ. Intestinal stem cell growth and differentiation on a tubular scaffold with evaluation in small and large animals. Regen Med 2015; 11:45-61. [PMID: 26395928 DOI: 10.2217/rme.15.70] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIMS To investigate the growth and differentiation of intestinal stem cells on a novel tubular scaffold in vitro and in vivo. MATERIALS & METHODS Intestinal progenitor cells from mice or humans were cultured with myofibroblasts, macrophages and/or bacteria, and evaluated in mice via omental implantation. Mucosal regeneration was evaluated in dogs after rectal mucosectomy followed by scaffold implantation. RESULTS Intestinal progenitor cells differentiated into crypt-villi structures on the scaffold. Differentiation and scaffold coverage was enhanced by coculture with myofibroblasts, macrophages and probiotic bacteria, while the implanted scaffolds enhanced mucosal regeneration in the dog rectum. CONCLUSION Intestinal stem cell growth and differentiation on a novel tubular scaffold is enhanced through addition of cellular and microbial components, as validated in mice and dogs.
Collapse
Affiliation(s)
- Shahab A Shaffiey
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15217, USA
| | - Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University, 600 N Wolfe Street, Baltimore, MD 21287, USA
| | - Timothy Keane
- McGowan Institute for Regenerative Medicine, 450 Technology Drive Suite 300, Pittsburgh, PA 15219, USA
| | - Cait Costello
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Deena Wasserman
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15217, USA
| | - Maria Quidgley
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15217, USA
| | - Jenna Dziki
- McGowan Institute for Regenerative Medicine, 450 Technology Drive Suite 300, Pittsburgh, PA 15219, USA
| | - Stephen Badylak
- McGowan Institute for Regenerative Medicine, 450 Technology Drive Suite 300, Pittsburgh, PA 15219, USA
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University, 600 N Wolfe Street, Baltimore, MD 21287, USA
| | - John C March
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University, 600 N Wolfe Street, Baltimore, MD 21287, USA
| |
Collapse
|
190
|
Chen CY, Liu SH, Chen CY, Chen PC, Chen CP. Human placenta-derived multipotent mesenchymal stromal cells involved in placental angiogenesis via the PDGF-BB and STAT3 pathways. Biol Reprod 2015; 93:103. [PMID: 26353894 DOI: 10.1095/biolreprod.115.131250] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/08/2015] [Indexed: 12/23/2022] Open
Abstract
We studied the smooth muscle cell differentiation capability of human placental multipotent mesenchymal stromal cells (hPMSCs) and identified how endothelial cells recruit hPMSCs participating in vessel formation. hPMSCs from term placentas were induced to differentiate into smooth muscle cells under induction conditions and different matrix substrates. We assessed endothelial cells from umbilical veins for platelet-derived growth factor (PDGF)-BB expression and to induce hPMSC PDGFR-beta and STAT3 activation. Endothelial cells were co-cultured with hPMSCs for in vitro angiogenesis. Cell differentiation ability was then further assessed by mouse placenta transplantation assay. hPMSCs can differentiate into smooth muscle cells; collagen type I and IV or laminin support this differentiation. Endothelial cells expressed significant levels of PDGF-BB and activated STAT3 transcriptional activity in hPMSCs. Endothelial cell-conditioned medium induced hPMSC migration, which was inhibited by STAT3 small interfering RNA transfection or by pretreatement with PDGFR-beta-blocking antibody but not by PDGFR-alpha-blocking antibody or isotype immunoglobulin G (IgG; P < 0.001). hPMSCs can incorporate into endothelial cells with tube formation and promote endothelial cells, forming capillary-like networks than endothelial cells alone (tube lengths: 12 024.1 ± 960.1 vs. 9404.2 ± 584.7 pixels; P < 0.001). Capillary-like networks were significantly reduced by hPMSCs pretreated with PDGFR-beta-blocking antibody but not by PDGFR-alpha-blocking antibody or isotype IgG (P < 0.001). Transplantation of hPMSCs into mouse placentas revealed incorporation of the hPMSCs into vessel walls, which expressed alpha-smooth muscle actin, calponin, and smooth muscle myosin (heavy chain) in vivo. In conclusion, endothelial cell-hPMSC interactions occur during vessel development of placenta. Placental endothelial cell-derived PDGF-BB recruits hPMSCs involved in vascular development via PDGFR-beta/STAT3 activation.
Collapse
Affiliation(s)
- Cheng-Yi Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shu-Hsiang Liu
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chia-Yu Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Pei-Chun Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chie-Pein Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan Division of High Risk Pregnancy, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
191
|
Kucharova K, Stallcup WB. NG2-proteoglycan-dependent contributions of oligodendrocyte progenitors and myeloid cells to myelin damage and repair. J Neuroinflammation 2015; 12:161. [PMID: 26338007 PMCID: PMC4559177 DOI: 10.1186/s12974-015-0385-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The NG2 proteoglycan is expressed by several cell types in demyelinated lesions and has important effects on the biology of these cells. Here we determine the cell-type-specific roles of NG2 in the oligodendrocyte progenitor cell (OPC) and myeloid cell contributions to demyelination and remyelination. METHODS We have used Cre-Lox technology to dissect the cell-type-specific contributions of NG2 to myelin damage and repair. Demyelination is induced by microinjection of 1 % lysolecithin into the spinal cord white matter of control, OPC-specific NG2-null (OPC-NG2ko), and myeloid-specific NG2-null (My-NG2ko) mice. The status of OPCs, myeloid cells, axons, and myelin is assessed by light, immunofluorescence, confocal, and electron microscopy. RESULTS In OPC-NG2ko mice 1 week after lysolecithin injection, the OPC mitotic index is reduced by 40 %, resulting in 25 % fewer OPCs at 1 week and a 28 % decrease in mature oligodendrocytes at 6 weeks post-injury. The initial demyelinated lesion size is not affected in OPC-NG2ko mice, but lesion repair is delayed by reduced production of oligodendrocytes. In contrast, both the initial extent of demyelination and the kinetics of lesion repair are decreased in My-NG2ko mice. Surprisingly, the OPC mitotic index at 1 week post-injury is also reduced (by 48 %) in My-NG2ko mice, leading to a 35 % decrease in OPCs at 1 week and a subsequent 34 % reduction in mature oligodendrocytes at 6 weeks post-injury. Clearance of myelin debris is also reduced by 40 % in My-NG2ko mice. Deficits in myelination detected by immunostaining for myelin basic protein are confirmed by toluidine blue staining and by electron microscopy. In addition to reduced myelin repair, fewer axons are found in 6-week lesions in both OPC-NG2ko and My-NG2ko mice, emphasizing the importance of myelination for neuron survival. CONCLUSIONS Reduced generation of OPCs and oligodendrocytes in OPC-NG2ko mice correlates with reduced myelin repair. Diminished demyelination in My-NG2ko mice may stem from a reduction (approximately 70 %) in myeloid cell recruitment to lesions. Reduced macrophage/microglia numbers may then result in decreased myelin repair via diminished clearance of myelin debris and reduced stimulatory effects on OPCs.
Collapse
Affiliation(s)
- Karolina Kucharova
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - William B Stallcup
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
192
|
Cam C, Zhu S, Truong NF, Scumpia PO, Segura T. Systematic evaluation of natural scaffolds in cutaneous wound healing. J Mater Chem B 2015; 3:7986-7992. [PMID: 26509037 DOI: 10.1039/c5tb00807g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Current strategies to improve wound healing are often created from multiple components that may include a scaffold, cells, and bioactive cues. Acellular natural hydrogels are an attractive approach since the material's intrinsic biological activity can be paired with mechanical properties similar to soft tissue to induce a host's response toward healing. In this report, a systematic evaluation was conducted to study the effect of hydrogel scaffold implantation in skin healing using a human-relevant murine wound healing model. Fibrin, micro porous hyaluronic acid, and composite hydrogels were utilized to study the effect of conductive scaffolds on the wound healing process. Composite hydrogels were paired with plasmin-degradable VEGF nanocapsules to investigate its impact as an inductive composite hydrogel on tissue repair. By 7 days, wound healing and vessel maturation within the newly formed tissue was significantly improved by the inclusion of porous scaffold architecture and VEGF nanocapsules.
Collapse
Affiliation(s)
- Cynthia Cam
- Department of Bioengineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA. ; ; Tel: +1(310)794-42248
| | - Suwei Zhu
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA. ; ; Tel: +1(310)794-42248, +1(310)206-3980
| | - Norman F Truong
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA. ; ; Tel: +1(310)794-42248, +1(310)206-3980
| | - Philip O Scumpia
- Department of Medicine, Division of Dermatology, University of California at Los Angeles, 52-121 CHS, Los Angeles, CA, 90095, USA. ; Tel: +1(310)825-1531
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA. ; ; Tel: +1(310)794-42248, +1(310)206-3980
| |
Collapse
|
193
|
Rauhauser AA, Ren C, Lu D, Li B, Zhu J, McEnery K, Vadnagara K, Zepeda-Orozco D, Zhou XJ, Lin F, Jetten AM, Attanasio M. Hedgehog signaling indirectly affects tubular cell survival after obstructive kidney injury. Am J Physiol Renal Physiol 2015; 309:F770-8. [PMID: 26290370 DOI: 10.1152/ajprenal.00232.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/17/2015] [Indexed: 01/05/2023] Open
Abstract
Hedgehog (Hh) is an evolutionary conserved signaling pathway that has important functions in kidney morphogenesis and adult organ maintenance. Recent work has shown that Hh signaling is reactivated in the kidney after injury and is an important mediator of progressive fibrosis. Pericytes and fibroblasts have been proposed to be the principal cells that respond to Hh ligands, and pharmacological attenuation of Hh signaling has been considered as a possible treatment for fibrosis, but the effect of Hh inhibition on tubular epithelial cells after kidney injury has not been reported. Using genetically modified mice in which tubule-derived hedgehog signaling is increased and mice in which this pathway is conditionally suppressed in pericytes that express the proteoglycan neuron glial protein 2 (NG2), we found that suppression of Hh signaling is associated with decreased macrophage infiltration and tubular proliferation but also increased tubular apoptosis, an effect that correlated with the reduction of tubular β-catenin activity. Collectively, our data suggest a complex function of hedgehog signaling after kidney injury in initiating both reparative and proproliferative, prosurvival processes.
Collapse
Affiliation(s)
- Alysha A Rauhauser
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | - Chongyu Ren
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | - Dongmei Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | - Binghua Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | - Jili Zhu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas; Department of Nephrology, Wuhan University, Hubei, Wuhan, China
| | - Kayla McEnery
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | - Komal Vadnagara
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas
| | | | - Xin J Zhou
- Renal Path Diagnostics, Pathologist BioMedical Laboratories and Department of Pathology, Baylor University Medical Center, Dallas, Texas
| | - Fangming Lin
- Department of Pediatrics, Pathology, and Cell Biology, Columbia University, New York, New York
| | - Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Massimo Attanasio
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas Texas; Eugene McDermott Center for Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
194
|
Huber B, Volz AC, Kluger PJ. How do culture media influence in vitro perivascular cell behavior? Cell Biol Int 2015; 39:1395-407. [PMID: 26179857 DOI: 10.1002/cbin.10515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/14/2015] [Indexed: 01/22/2023]
Abstract
Perivascular cells are multilineage cells located around the vessel wall and important for wall stabilization. In this study, we evaluated a stem cell media and a perivascular cell-specific media for the culture of primary perivascular cells regarding their cell morphology, doubling time, stem cell properties, and expression of cell type-specific markers. When the two cell culture media were compared to each other, perivascular cells cultured in the stem cell medium had a more elongated morphology and a faster doubling rate and cells cultured in the pericyte medium had a more typical morphology, with several filopodia, and a slower doubling rate. To evaluate stem cell properties, perivascular cells, CD146(-) cells, and mesenchymal stem cells (MSCs) were differentiated into the adipogenic, osteogenic, and chondrogenic lineages. It was seen that perivascular cells, as well as CD146(-) cells and MSCs, cultured in stem cell medium showed greater differentiation than cells cultured in pericyte-specific medium. The expression of pericyte-specific markers CD146, neural/glial antigen 2 (NG2), platelet-derived growth factor receptor-β (PDGFR-β), myosin, and α-smooth muscle actin (α-SMA) could be found in both pericyte cultures, as well as to varying amounts in CD146(-) cells, MSCs, and endothelial cells. The here presented work shows that perivascular cells can adapt to their in vitro environment and cell culture conditions influence cell functionality, such as doubling rate or differentiation behavior. Pericyte-specific markers were shown to be expressed also from cells other than perivascular cells. We can further conclude that CD146(+) perivascular cells are inhomogeneous cell population probably containing stem cell subpopulations, which are located perivascular around capillaries.
Collapse
Affiliation(s)
- Birgit Huber
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany
| | - Ann-Cathrin Volz
- Process Analysis & Technology (PA&T), Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| | - Petra Juliane Kluger
- Process Analysis & Technology (PA&T), Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany.,Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569, Stuttgart, Germany
| |
Collapse
|
195
|
Wang Y, Geldres C, Ferrone S, Dotti G. Chondroitin sulfate proteoglycan 4 as a target for chimeric antigen receptor-based T-cell immunotherapy of solid tumors. Expert Opin Ther Targets 2015; 19:1339-50. [DOI: 10.1517/14728222.2015.1068759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
196
|
Chang L, Nguyen V, Nguyen A, Scott MA, James AW. Pericytes in sarcomas of bone. Med Oncol 2015; 32:202. [PMID: 26076804 DOI: 10.1007/s12032-015-0651-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/06/2015] [Indexed: 12/13/2022]
Abstract
Pericytes are mesenchymal cells that closely enwrap small blood vessels, lying in intimate association with the endothelium. Pericytes have recently gained attention as an important mediator of vascular biology and angiogenesis in cancer. Although better studied in carcinoma, pericytes have known interaction with sarcomas of bone, including Ewing's sarcoma, osteosarcoma, and chondrosarcoma. Best studied is Ewing's sarcoma (ES), which displays a prominent perivascular growth pattern. Signaling pathways of known importance in intratumoral pericytes in ES include Notch, PDGF/PDGFR-β, and VEGF signaling. In summary, pericytes serve important functions in the tumor microenvironment. Improved understanding of pericyte biology may hold significant implications for the development of new therapies in sarcoma.
Collapse
Affiliation(s)
- Le Chang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA, 90095, USA
| | | | | | | | | |
Collapse
|
197
|
Yin GN, Das ND, Choi MJ, Song KM, Kwon MH, Ock J, Limanjaya A, Ghatak K, Kim WJ, Hyun JS, Koh GY, Ryu JK, Suh JK. The pericyte as a cellular regulator of penile erection and a novel therapeutic target for erectile dysfunction. Sci Rep 2015; 5:10891. [PMID: 26044953 PMCID: PMC4456662 DOI: 10.1038/srep10891] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/05/2015] [Indexed: 02/01/2023] Open
Abstract
Pericytes are known to play critical roles in vascular development and homeostasis. However, the distribution of cavernous pericytes and their roles in penile erection is unclear. Herein we report that the pericytes are abundantly distributed in microvessels of the subtunical area and dorsal nerve bundle of mice, followed by dorsal vein and cavernous sinusoids. We further confirmed the presence of pericytes in human corpus cavernosum tissue and successfully isolated pericytes from mouse penis. Cavernous pericyte contents from diabetic mice and tube formation of cultured pericytes in high glucose condition were greatly reduced compared with those in normal conditions. Suppression of pericyte function with anti-PDGFR-β blocking antibody deteriorated erectile function and tube formation in vivo and in vitro diabetic condition. In contrast, enhanced pericyte function with HGF protein restored cavernous pericyte content in diabetic mice, and significantly decreased cavernous permeability in diabetic mice and in pericytes-endothelial cell co-culture system, which induced significant recovery of erectile function. Overall, these findings showed the presence and distribution of pericytes in the penis of normal or pathologic condition and documented their role in the regulation of cavernous permeability and penile erection, which ultimately explore novel therapeutics of erectile dysfunction targeting pericyte function.
Collapse
Affiliation(s)
- Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Nando Dulal Das
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Min Ji Choi
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Kang-Moon Song
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Mi-Hye Kwon
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Jiyeon Ock
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Anita Limanjaya
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Kalyan Ghatak
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Woo Jean Kim
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Jae Seog Hyun
- Department of Urology, Gyeongsang National University School of Medicine, Jinju 660-702, Republic of Korea
| | - Gou Young Koh
- Department of Biological Sciences and Laboratory for Vascular Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Ji-Kan Ryu
- 1] National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea [2] Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| |
Collapse
|
198
|
Lee JH, Pryce BA, Schweitzer R, Ryder MI, Ho SP. Differentiating zones at periodontal ligament-bone and periodontal ligament-cementum entheses. J Periodontal Res 2015; 50:870-80. [PMID: 26031604 DOI: 10.1111/jre.12281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVE The structural and functional integrity of bone-periodontal ligament (PDL)-cementum complex stems from the load-bearing attachment sites (entheses) between soft (PDL) and hard (bone, cementum) tissues. These attachment sites are responsible for the maintenance of a bone-PDL-cementum complex biomechanical function. The objective was to investigate changes in spatiotemporal expression of key biomolecules in developing and functionally active entheses. MATERIAL AND METHODS Multilabeling technique was performed on hemimandibles of 3 wk and 3 mo-old scleraxis-GFP transgenic mice for CD146, CD31, NG2, osterix and bone sialoprotein. Regions of dominant stretch within the PDL were evaluated by identifying directionality of collagen fibrils, PDL fibroblasts and PDL cell cytoskeleton. RESULTS CD146+ cells adjacent to CD31+ vasculature were identified at PDL-bone enthesis. NG2+ cells were located at coronal bone-PDL and apical cementum-PDL entheses in the 3-wk-old group, but at 3 mo, NG2 was positive at the entheses of the apical region and alveolar crest. NG2 and osterix were colocalized at the osteoid and cementoid regions of the PDL-bone and PDL-cementum entheses. Bone sialoprotein was prominent at the apical region of 3-wk-old mice. The directionality of collagen fibers, fibroblasts and their cytoskeleton overlapped, except in the apical region of 3 wk. CONCLUSION Colocalization of biomolecules at zones of the PDL adjacent to attachment sites may be essential for the formation of precementum and osteoid interfaces at a load-bearing bone-PDL-tooth fibrous joint. Biophysical cues resulting from development and function can regulate recruitment and differentiation of stem cells potentially from a vascular origin toward osteo- and cemento-blastic lineages at the PDL-bone and PDL-cementum entheses. Investigating the coupled effect of biophysical and biochemical stimuli leading to cell differentiation at the functional attachment sites is critical for developing regeneration strategies to enable functional reconstruction of the periodontal complex.
Collapse
Affiliation(s)
- J-H Lee
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California at San Francisco, San Francisco, CA, USA
| | - B A Pryce
- Portland Shriner's Research Center, Oregon Health & Science University, Portland, OR, USA
| | - R Schweitzer
- Portland Shriner's Research Center, Oregon Health & Science University, Portland, OR, USA
| | - M I Ryder
- Division of Periodontology, Department of Orofacial Sciences, University of California at San Francisco, San Francisco, CA, USA
| | - S P Ho
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
199
|
Dimou L, Gallo V. NG2-glia and their functions in the central nervous system. Glia 2015; 63:1429-51. [PMID: 26010717 DOI: 10.1002/glia.22859] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022]
Abstract
In the central nervous system, NG2-glia represent a neural cell population that is distinct from neurons, astrocytes, and oligodendrocytes. While in the past the main role ascribed to these cells was that of progenitors for oligodendrocytes, in the last years it has become more obvious that they have further functions in the brain. Here, we will discuss some of the most current and highly debated issues regarding NG2-glia: Do these cells represent a heterogeneous population? Can they give rise to different progenies, and does this change under pathological conditions? How do they respond to injury or pathology? What is the role of neurotransmitter signaling between neurons and NG2-glia? We will first give an overview on the developmental origin of NG2-glia, and then discuss whether their distinct properties in different brain regions are the result of environmental influences, or due to intrinsic differences. We will then review and discuss their in vitro differentiation potential and in vivo lineage under physiological and pathological conditions, together with their electrophysiological properties in distinct brain regions and at different developmental stages. Finally, we will focus on their potential to be used as therapeutic targets in demyelinating and neurodegenerative diseases. Therefore, this review article will highlight the importance of NG2-glia not only in the healthy, but also in the diseased brain.
Collapse
Affiliation(s)
- L Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University, Munich, 80336, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, 85764, Germany
| | - V Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, District of Columbia
| |
Collapse
|
200
|
Trost A, Motloch K, Bruckner D, Schroedl F, Bogner B, Kaser-Eichberger A, Runge C, Strohmaier C, Klein B, Aigner L, Reitsamer HA. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension. Exp Eye Res 2015; 136:59-71. [PMID: 26001526 DOI: 10.1016/j.exer.2015.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 02/04/2023]
Abstract
Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, and is the second leading cause of blindness worldwide. Elevated intraocular pressure is a well known risk factor for the development of glaucomatous optic neuropathy and pharmacological or surgical lowering of intraocular pressure represents a standard procedure in glaucoma treatment. However, the treatment options are limited and although lowering of intraocular pressure impedes disease progression, glaucoma cannot be cured by the currently available therapy concepts. In an acute short-term ocular hypertension model in rat, we characterize RGC loss, but also microglial cell activation and vascular alterations of the retina at certain time points. The combination of these three parameters might facilitate a better evaluation of the disease progression, and could further serve as a new model to test novel treatment strategies at certain time points. Acute ocular hypertension (OHT) was induced by the injection of magnetic microbeads into the rat anterior chamber angle (n = 22) with magnetic position control, leading to constant elevation of IOP. At certain time points post injection (4d, 7d, 10d, 14d and 21d), RGC loss, microglial activation, and microvascular pericyte (PC) coverage was analyzed using immunohistochemistry with corresponding specific markers (Brn3a, Iba1, NG2). Additionally, the tightness of the retinal vasculature was determined via injections of Texas Red labeled dextran (10 kDa) and subsequently analyzed for vascular leakage. For documentation, confocal laser-scanning microscopy was used, followed by cell counts, capillary length measurements and morphological and statistical analysis. The injection of magnetic microbeads led to a progressive loss of RGCs at the five time points investigated (20.07%, 29.52%, 41.80%, 61.40% and 76.57%). Microglial cells increased in number and displayed an activated morphology, as revealed by Iba1-positive cell number (150.23%, 175%, 429.25%,486.72% and 544.78%) and particle size analysis (205.49%, 203.37%, 412.84%, 333.37% and 299.77%) compared to contralateral control eyes. Pericyte coverage (NG2-positive PC/mm) displayed a significant reduction after 7d of OHT in central, and after 7d and 10d in peripheral retina. Despite these alterations, the tightness of the retinal vasculature remained unaltered at 14 and 21 days after OHT induction. While vascular tightness was unchanged in the course of OHT, a progressive loss of RGCs and activation of microglial cells was detected. Since a significant loss in RGCs was observed already at day 4 of experimental glaucoma, and since activated microglia peaked at day 10, we determined a time frame of 7-14 days after MB injection as potential optimum to study glaucoma mechanisms in this model.
Collapse
Affiliation(s)
- A Trost
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria; Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - K Motloch
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria
| | - D Bruckner
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria
| | - F Schroedl
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria; Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - B Bogner
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria
| | - A Kaser-Eichberger
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria
| | - C Runge
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria
| | - C Strohmaier
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria
| | - B Klein
- Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Austria
| | - L Aigner
- Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Austria
| | - H A Reitsamer
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Austria.
| |
Collapse
|