151
|
Sun T, Plutynski A, Ward S, Rubin JB. An integrative view on sex differences in brain tumors. Cell Mol Life Sci 2015; 72:3323-42. [PMID: 25985759 PMCID: PMC4531141 DOI: 10.1007/s00018-015-1930-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 02/07/2023]
Abstract
Sex differences in human health and disease can range from undetectable to profound. Differences in brain tumor rates and outcome are evident in males and females throughout the world and regardless of age. These observations indicate that fundamental aspects of sex determination can impact the biology of brain tumors. It is likely that optimal personalized approaches to the treatment of male and female brain tumor patients will require recognizing and understanding the ways in which the biology of their tumors can differ. It is our view that sex-specific approaches to brain tumor screening and care will be enhanced by rigorously documenting differences in brain tumor rates and outcomes in males and females, and understanding the developmental and evolutionary origins of sex differences. Here we offer such an integrative perspective on brain tumors. It is our intent to encourage the consideration of sex differences in clinical and basic scientific investigations.
Collapse
Affiliation(s)
- Tao Sun
- />Department of Pediatrics, Washington University School of Medicine, St Louis, USA
| | - Anya Plutynski
- />Department of Philosophy, Washington University in St Louis, St Louis, USA
| | - Stacey Ward
- />Department of Pediatrics, Washington University School of Medicine, St Louis, USA
| | - Joshua B. Rubin
- />Department of Pediatrics, Washington University School of Medicine, St Louis, USA
- />Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Ave, St Louis, MO 63110 USA
- />Campus Box 8208, 660 South Euclid Ave, St Louis, MO 63110 USA
| |
Collapse
|
152
|
Ji R, Meng L, Li Q, Lu Q. TAM receptor deficiency affects adult hippocampal neurogenesis. Metab Brain Dis 2015; 30:633-44. [PMID: 25487541 PMCID: PMC4414696 DOI: 10.1007/s11011-014-9636-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
The Tyro3, Axl and Mertk (TAM) subfamily of receptor protein tyrosine kinases functions in cell growth, differentiation, survival, and most recently found, in the regulation of immune responses and phagocytosis. All three receptors and their ligands, Gas6 (growth arrest-specific gene 6) and protein S, are expressed in the central nervous system (CNS). TAM receptors play pivotal roles in adult hippocampal neurogenesis. Loss of these receptors causes a comprised neurogenesis in the dentate gyrus of adult hippocampus. TAM receptors have a negative regulatory effect on microglia and peripheral antigen-presenting cells, and play a critical role in preventing overproduction of pro-inflammatory cytokines detrimental to the proliferation, differentiation, and survival of adult neuronal stem cells (NSCs). Besides, these receptors also play an intrinsic trophic function in supporting NSC survival, proliferation, and differentiation into immature neurons. All these events collectively ensure a sustained neurogenesis in adult hippocampus.
Collapse
Affiliation(s)
- Rui Ji
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Lingbin Meng
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Qingxian Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
153
|
Abstract
This review summarizes and organizes the literature concerning the effects of microglia on neurogenesis, particularly focusing on the subgranular zone (SGZ) of the hippocampus and subventricular zone (SVZ) of the lateral ventricles, in which the neurogenic potential is progressively restricted during the life of the organism. A comparison of microglial roles in neurogenesis in these two regions indicates that microglia regulate neurogenesis in a temporally and spatially specific manner. Microglia may also sense signals from the surrounding environment and have regulatory effects on neurogenesis. We speculate microglia function as a hub for the information obtained from the inner and outer brain regions for regulating neurogenesis.
Collapse
Affiliation(s)
- Kaoru Sato
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-Ku, Tokyo, 158-8501, Japan
| |
Collapse
|
154
|
Bjornsson CS, Apostolopoulou M, Tian Y, Temple S. It takes a village: constructing the neurogenic niche. Dev Cell 2015; 32:435-46. [PMID: 25710530 DOI: 10.1016/j.devcel.2015.01.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although many features of neurogenesis during development and in the adult are intrinsic to the neurogenic cells themselves, the role of the microenvironment is irrefutable. The neurogenic niche is a melting pot of cells and factors that influence CNS development. How do the diverse elements assemble and when? How does the niche change structurally and functionally during embryogenesis and in adulthood? In this review, we focus on the impact of non-neural cells that participate in the neurogenic niche, highlighting how cells of different embryonic origins influence this critical germinal space.
Collapse
Affiliation(s)
| | | | - Yangzi Tian
- SUNY Polytechnic Institute, College of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
155
|
Michell-Robinson MA, Touil H, Healy LM, Owen DR, Durafourt BA, Bar-Or A, Antel JP, Moore CS. Roles of microglia in brain development, tissue maintenance and repair. Brain 2015; 138:1138-59. [PMID: 25823474 DOI: 10.1093/brain/awv066] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/01/2015] [Indexed: 12/23/2022] Open
Abstract
The emerging roles of microglia are currently being investigated in the healthy and diseased brain with a growing interest in their diverse functions. In recent years, it has been demonstrated that microglia are not only immunocentric, but also neurobiological and can impact neural development and the maintenance of neuronal cell function in both healthy and pathological contexts. In the disease context, there is widespread consensus that microglia are dynamic cells with a potential to contribute to both central nervous system damage and repair. Indeed, a number of studies have found that microenvironmental conditions can selectively modify unique microglia phenotypes and functions. One novel mechanism that has garnered interest involves the regulation of microglial function by microRNAs, which has therapeutic implications such as enhancing microglia-mediated suppression of brain injury and promoting repair following inflammatory injury. Furthermore, recently published articles have identified molecular signatures of myeloid cells, suggesting that microglia are a distinct cell population compared to other cells of myeloid lineage that access the central nervous system under pathological conditions. Thus, new opportunities exist to help distinguish microglia in the brain and permit the study of their unique functions in health and disease.
Collapse
Affiliation(s)
- Mackenzie A Michell-Robinson
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Hanane Touil
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Luke M Healy
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - David R Owen
- 2 Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Bryce A Durafourt
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Amit Bar-Or
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jack P Antel
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Craig S Moore
- 3 Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| |
Collapse
|
156
|
Xavier AL, Lima FRS, Nedergaard M, Menezes JRL. Ontogeny of CX3CR1-EGFP expressing cells unveil microglia as an integral component of the postnatal subventricular zone. Front Cell Neurosci 2015; 9:37. [PMID: 25741237 PMCID: PMC4330885 DOI: 10.3389/fncel.2015.00037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/21/2015] [Indexed: 01/29/2023] Open
Abstract
The full spectrum of cellular interactions within CNS neurogenic niches is still poorly understood. Only recently has the monocyte counterpart of the nervous system, the microglial cells, been described as an integral cellular component of neurogenic niches. The present study sought to characterize the microglia population in the early postnatal subventricular zone (SVZ), the major site of postnatal neurogenesis, as well as in its anterior extension, the rostral migratory stream (RMS), a pathway for neuroblasts during their transit toward the olfactory bulb (OB) layers. Here we show that microglia within the SVZ/RMS pathway are not revealed by phenotypic markers that characterize microglia in other regions. Analysis of the transgenic mice strain that has one locus of the constitutively expressed fractalkine CX3CR1 receptor replaced by the gene encoding the enhanced green fluorescent protein (EGFP) circumvented the antigenic plasticity of the microglia, thus allowing us to depict microglia within the SVZ/RMS pathway during early development. Notably, microglia within the early SVZ/RMS are not proliferative and display a protracted development, retaining a more immature morphology than their counterparts outside germinal layers. Furthermore, microglia contact and phagocyte radial glia cells (RG) processes, thereby playing a role on the astroglial transformation that putative stem cells within the SVZ niche undergo during the first postnatal days.
Collapse
Affiliation(s)
- Anna L Xavier
- Programa em Ciências Morfológicas, Programa de Diferenciação Celular, Laboratório de Neuroanatomia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Center for Translational Neuromedicine, University of Rochester Medical School Rochester, NY, USA
| | - Flavia R S Lima
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical School Rochester, NY, USA
| | - João R L Menezes
- Programa em Ciências Morfológicas, Programa de Diferenciação Celular, Laboratório de Neuroanatomia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
157
|
Dong X, Luo M, Huang G, Zhang J, Tong F, Cheng Y, Cai Q, Dong J, Wu G, Cheng J. Relationship between irradiation-induced neuro-inflammatory environments and impaired cognitive function in the developing brain of mice. Int J Radiat Biol 2015; 91:224-39. [PMID: 25426696 DOI: 10.3109/09553002.2014.988895] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Radiation-induced brain injury (RIBI) is the most common side-effect after cranial radiation therapy (CRT). In the present study, the RIBI mice model was established and the changes in the expression of tumor necrosis factor alpha (TNF-α) and interleukin-1beta (IL-1β) mRNA, and the related signal pathways in the hippocampus of this model were investigated. MATERIALS AND METHODS 10 Gy CRT or sham-irradiation was given to the three-week old mice. The water maze test was used to test the RIBI model in mice. The expression of pro-inflammatory cytokines was detected by real-time polymerase chain reaction (PCR) in vivo. The changes of microglial activation and neurogensis in the hippocampus were analyzed by immunofluorescence and immunohistochemistry. The cytoplasm to nuclei translocation of Nuclear factor kappa B (NF-κB), and the protein expressions of IkappaB-alpha (IκB-α), NF-κB essential modulator (NEMO), p53-induced protein with a death domain (PIDD), TNF-α and IL-1β were examined by Western blotting. A RIBI model was established by Morris water maze test 6 weeks after 10 Gy CRT in three-week old C57BL/6J mice. RESULTS The mRNA and protein expression levels of TNF-α and IL-1β reached the peak during the early phase after CRT. Increases in cytokine levels also were observed after irradiation of mouse BV-2 microglial cells. Neurogensis was significantly inhibited in the hippocampus with an increase of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells. The total number of microglia was decreased after CRT, but microglial activation was significantly increased. Western blotting revealed, in the RIBI mice, the expression of IκB-α was down-regulated, accompanied by the up-regulated expression of NEMO and regulated auto-proteolysis of PIDD. Also the NF-κB pathway activation was observed in BV-2 cells after irradiation. CONCLUSIONS CRT-induced pro-inflammatory cytokines release in the brain tissues and inhibition of neurogenesis in the hippocampus might be contributed by the microglial activation and play an important role in RIBI.
Collapse
Affiliation(s)
- Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Katsumoto A, Lu H, Miranda AS, Ransohoff RM. Ontogeny and functions of central nervous system macrophages. THE JOURNAL OF IMMUNOLOGY 2014; 193:2615-21. [PMID: 25193935 DOI: 10.4049/jimmunol.1400716] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microglia, the only nonneuroepithelial cells found in the parenchyma of the CNS, originate during embryogenesis from the yolk sac and enter the CNS quite early (embryonic day 9.5-10 in mice). Thereafter, microglia are maintained independently of any input from the blood and, in particular, do not require hematopoietic stem cells as a source of replacement for senescent cells. Monocytes are hematopoietic cells, derived from bone marrow. The ontogeny of microglia and monocytes is important for understanding CNS pathologies. Microglial functions are distinct from those of blood-derived monocytes, which invade the CNS only under pathological conditions. Recent data reveal that microglia play an important role in managing neuronal cell death, neurogenesis, and synaptic interactions. In this article, we discuss the physiology of microglia and the functions of monocytes in CNS pathology. We address the roles of microglia and monocytes in neurodegenerative diseases as an example of CNS pathology.
Collapse
Affiliation(s)
- Atsuko Katsumoto
- Neuroinflammation Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Haiyan Lu
- Neuroinflammation Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Aline S Miranda
- Neuroinflammation Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Richard M Ransohoff
- Neuroinflammation Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
159
|
Capilla-Gonzalez V, Cebrian-Silla A, Guerrero-Cazares H, Garcia-Verdugo JM, Quiñones-Hinojosa A. Age-related changes in astrocytic and ependymal cells of the subventricular zone. Glia 2014; 62:790-803. [PMID: 24677590 DOI: 10.1002/glia.22642] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/10/2014] [Accepted: 01/16/2014] [Indexed: 01/06/2023]
Abstract
Neurogenesis persists in the adult subventricular zone (SVZ) of the mammalian brain. During aging, the SVZ neurogenic capacity undergoes a progressive decline, which is attributed to a decrease in the population of neural stem cells (NSCs). However, the behavior of the NSCs that remain in the aged brain is not fully understood. Here we performed a comparative ultrastructural study of the SVZ niche of 2-month-old and 24-month-old male C57BL/6 mice, focusing on the NSC population. Using thymidine-labeling, we showed that residual NSCs in the aged SVZ divide less frequently than those in young mice. We also provided evidence that ependymal cells are not newly generated during senescence, as others studies suggest. Remarkably, both astrocytes and ependymal cells accumulated a high number of intermediate filaments and dense bodies during aging, resembling reactive cells. A better understanding of the changes occurring in the neurogenic niche during aging will allow us to develop new strategies for fighting neurological disorders linked to senescence.
Collapse
|
160
|
Carreira BP, Morte MI, Santos AI, Lourenço AS, Ambrósio AF, Carvalho CM, Araújo IM. Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling. Front Cell Neurosci 2014; 8:343. [PMID: 25389386 PMCID: PMC4211408 DOI: 10.3389/fncel.2014.00343] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/05/2014] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO), which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSCs), and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an inflammatory stimulus (lipopolysaccharide plus IFN-γ), using a culture system of subventricular zone (SVZ)-derived NSCs mixed with microglia cells obtained from wild-type mice (iNOS(+/+)) or from iNOS knockout mice (iNOS(-/-)). We found an impairment of NSC cell proliferation in iNOS(+/+) mixed cultures, which was not observed in iNOS(-/-) mixed cultures. Furthermore, the increased release of NO by activated iNOS(+/+) microglial cells decreased the activation of the ERK/MAPK signaling pathway, which was concomitant with an enhanced nitration of the EGF receptor. Preventing nitrogen reactive species formation with MnTBAP, a scavenger of peroxynitrite (ONOO(-)), or using the ONOO(-) degradation catalyst FeTMPyP, cell proliferation and ERK signaling were restored to basal levels in iNOS(+/+) mixed cultures. Moreover, exposure to the NO donor NOC-18 (100 μM), for 48 h, inhibited SVZ-derived NSC proliferation. Regarding the antiproliferative effect of NO, we found that NOC-18 caused the impairment of signaling through the ERK/MAPK pathway, which may be related to increased nitration of the EGF receptor in NSC. Using MnTBAP nitration was prevented, maintaining ERK signaling, rescuing NSC proliferation. We show that NO from inflammatory origin leads to a decreased function of the EGF receptor, which compromised proliferation of NSC. We also demonstrated that NO-mediated nitration of the EGF receptor caused a decrease in its phosphorylation, thus preventing regular proliferation signaling through the ERK/MAPK pathway.
Collapse
Affiliation(s)
- Bruno P Carreira
- Centre for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Maria I Morte
- Centre for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Ana I Santos
- Centre for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve Faro, Portugal ; Centre for Molecular and Structural Biomedicine, CBME/IBB, University of Algarve Faro, Portugal
| | - Ana S Lourenço
- Centre for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve Faro, Portugal ; Centre for Molecular and Structural Biomedicine, CBME/IBB, University of Algarve Faro, Portugal
| | - António F Ambrósio
- Centre for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Centre of Ophthalmology and Vision Sciences, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra Coimbra, Portugal
| | - Caetana M Carvalho
- Centre for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Inês M Araújo
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve Faro, Portugal ; Centre for Molecular and Structural Biomedicine, CBME/IBB, University of Algarve Faro, Portugal
| |
Collapse
|
161
|
Eyre HA, Stuart MJ, Baune BT. A phase-specific neuroimmune model of clinical depression. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:265-74. [PMID: 24999185 DOI: 10.1016/j.pnpbp.2014.06.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/17/2014] [Accepted: 06/25/2014] [Indexed: 12/27/2022]
Abstract
Immune dysfunction and pro-inflammatory states in particular have been implicated in the aetiology and pathogenesis of depression. Whilst the onset of an episode and certain symptoms of depression appear well explained by this inflammatory model, the underpinnings of the episodic and progressive nature, as well as relapse and remission status in depression require attention. In this review it is suggested that additional immune factors beyond pro- and anti-inflammatory cytokines may effectively contribute to the understanding of the neurobiology of clinical depression. Considering neurobiological effects of immunomodulatory factors such as T cells, macrophages, microglia and astrocytes relevant to depression, we suggest a neuroimmune model of depression underpinned by dynamic immunomodulatory processes. This perspective paper then outlines a neuroimmune model of clinical phases of depression in an attempt to more adequately explain depression-like behaviours in pre-clinical models and the dynamic nature of depression in clinical populations. Finally, the implications for immunomodulatory treatments of depression are considered.
Collapse
Affiliation(s)
- H A Eyre
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, Australia; School of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - M J Stuart
- School of Medicine, University of Queensland, Brisbane, Australia
| | - B T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
162
|
Microglia and their CX3CR1 signaling are involved in hippocampal- but not olfactory bulb-related memory and neurogenesis. Brain Behav Immun 2014; 41:239-50. [PMID: 24933434 DOI: 10.1016/j.bbi.2014.04.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/15/2014] [Accepted: 04/26/2014] [Indexed: 12/13/2022] Open
Abstract
Recent studies demonstrate that microglia play an important role in cognitive and neuroplasticity processes, at least partly via microglial CX3C receptor 1 (CX3CR1) signaling. Furthermore, microglia are responsive to environmental enrichment (EE), which modulates learning, memory and neurogenesis. In the present study we examined the role of microglial CX3CR1 signaling in hippocampal- and olfactory-bulb (OB)-related memory and neurogenesis in homozygous mice with microglia-specific transgenic expression of GFP under the CX3CR1 promoter (CX3CR1(-/-) mice), in which the CX3CR1 gene is functionally deleted, as well as heterozygous CX3CR1(+/-) and WT controls. We report that the CX3CR1-deficient mice displayed better hippocampal-dependent memory functioning and olfactory recognition, along with increased number and soma size of hippocampal microglia, suggestive of mild activation status, but no changes in OB microglia. A similar increase in hippocampal-dependent memory functioning and microglia number was also induced by pharmacological inhibition of CX3CR1 signaling, using chronic (2weeks) i.c.v. administration of CX3CR1 blocking antibody. In control mice, EE improved hippocampal-dependent memory and neurogenesis, and increased hippocampal microglia number and soma size, whereas odor enrichment (OE) improved olfactory recognition and OB neurogenesis without changing OB microglia status. In CX3CR1-deficient mice, EE and OE did not produce any further improvement in memory functioning or neurogenesis and had no effect on microglial status. These results support the notion that in the hippocampus microglia and their interactions with neurons via the CX3CR1 play an important role in memory functioning and neurogenesis, whereas in the OB microglia do not seem to be involved in these processes.
Collapse
|
163
|
Tobin MK, Bonds JA, Minshall RD, Pelligrino DA, Testai FD, Lazarov O. Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here. J Cereb Blood Flow Metab 2014; 34:1573-84. [PMID: 25074747 PMCID: PMC4269726 DOI: 10.1038/jcbfm.2014.130] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/28/2014] [Accepted: 06/30/2014] [Indexed: 12/18/2022]
Abstract
This review covers the pathogenesis of ischemic stroke and future directions regarding therapeutic options after injury. Ischemic stroke is a devastating disease process affecting millions of people worldwide every year. The mechanisms underlying the pathophysiology of stroke are not fully understood but there is increasing evidence demonstrating the contribution of inflammation to the drastic changes after cerebral ischemia. This inflammation not only immediately affects the infarcted tissue but also causes long-term damage in the ischemic penumbra. Furthermore, the interaction between inflammation and subsequent neurogenesis is not well understood but the close relationship between these two processes has garnered significant interest in the last decade or so. Current approved therapy for stroke involving pharmacological thrombolysis is limited in its efficacy and new treatment strategies need to be investigated. Research aimed at new therapies is largely about transplantation of neural stem cells and using endogenous progenitor cells to promote brain repair. By understanding the interaction between inflammation and neurogenesis, new potential therapies could be developed to further establish brain repair mechanisms.
Collapse
Affiliation(s)
- Matthew K Tobin
- 1] Medical Scientist Training Program, University of Illinois at Chicago, Chicago, Illinois, USA [2] Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA [3] Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jacqueline A Bonds
- 1] Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA [2] Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D Minshall
- 1] Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA [2] Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Dale A Pelligrino
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Fernando D Testai
- Department of Neurology and Rehabilitation Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
164
|
Qin Y, Zhang W, Yang P. Current states of endogenous stem cells in adult spinal cord. J Neurosci Res 2014; 93:391-8. [DOI: 10.1002/jnr.23480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/21/2014] [Accepted: 08/14/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Qin
- Cadet Brigade, Third Military Medical University; Chongqing People's Republic of China
| | - Wen Zhang
- Cadet Brigade, Third Military Medical University; Chongqing People's Republic of China
| | - Ping Yang
- Department of Neurobiology; Chongqing Key Laboratory of Neurobiology; Third Military Medical University; Chongqing People's Republic of China
| |
Collapse
|
165
|
Dang Y, Xu Y, Wu W, Li W, Sun Y, Yang J, Zhu Y, Zhang C. Tetrandrine suppresses lipopolysaccharide-induced microglial activation by inhibiting NF-κB and ERK signaling pathways in BV2 cells. PLoS One 2014; 9:e102522. [PMID: 25115855 PMCID: PMC4130469 DOI: 10.1371/journal.pone.0102522] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/19/2014] [Indexed: 01/08/2023] Open
Abstract
Background and Objective Tetrandrine (TET) is a bisbenzylisoquinoline alkaloid extracted from Stephania tetrandra Moore. Recent studies have suggested that TET can reduce the inflammatory response in microglia, but the mechanisms remain unclear. The aim of this study is to investigate whether TET can inhibit lipopolysaccharide (LPS)-induced microglial activation and clarify its possible mechanisms. Study Design/Materials and Methods Cell viability assays and cell apoptosis assays were used to determine the working concentrations of TET. Then, BV2 cells were seeded and pretreated with TET for 2 h. LPS was then added and incubated for an additional 24 hours. qRT-PCR and ELISA were used to measure the mRNA or protein levels of IL1β and TNFα. Western blotting was utilized to quantify the expression of CD11b and cell signaling proteins. Results TET at optimal concentrations (0.1 µM, 0.5 µM or 1 µM) did not affect the cell viability. After TET pretreatment, the levels of IL1β and TNFα (both in transcription and translation) were significantly inhibited in a dose-dependent manner. Further studies indicated that phospho-p65, phospho-IKK, and phospho-ERK 1/2 expression were also suppressed by TET. Conclusions Our results indicate that TET can effectively suppress microglial activation and inhibit the production of IL1β and TNFα by regulating the NF-kB and ERK signaling pathways. Together with our previous studies, we suggest that TET would be a promising candidate to effectively suppress overactivated microglia and alleviate neurodegeneration in glaucoma.
Collapse
Affiliation(s)
- Yalong Dang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yongsheng Xu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Wentao Wu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Weiyi Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yanran Sun
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Jing Yang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Yu Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
- * E-mail: (YZ); (CZ)
| | - Chun Zhang
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
- * E-mail: (YZ); (CZ)
| |
Collapse
|
166
|
Malmsten L, Vijayaraghavan S, Hovatta O, Marutle A, Darreh-Shori T. Fibrillar β-amyloid 1-42 alters cytokine secretion, cholinergic signalling and neuronal differentiation. J Cell Mol Med 2014; 18:1874-88. [PMID: 25109373 PMCID: PMC4196662 DOI: 10.1111/jcmm.12343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/28/2014] [Indexed: 11/29/2022] Open
Abstract
Adult neurogenesis is impaired by inflammatory processes, which are linked to altered cholinergic signalling and cognitive decline in Alzheimer's disease. In this study, we investigated how amyloid beta (Aβ)-evoked inflammatory responses affect the generation of new neurons from human embryonic stem (hES) cells and the role of cholinergic signalling in regulating this process. The hES were cultured as neurospheres and exposed to fibrillar and oligomeric Aβ(1-42) (Aβf, AβO) or to conditioned medium from human primary microglia activated with either Aβ(1-42) or lipopolysaccharide. The neurospheres were differentiated for 29 days in vitro and the resulting neuronal or glial phenotypes were thereafter assessed. Secretion of cytokines and the enzymes acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and choline acetyltransferase (ChAT) involved in cholinergic signalling was measured in medium throughout the differentiation. We report that differentiating neurospheres released various cytokines, and exposure to Aβf, but not AβO, increased the secretion of IL-6, IL-1β and IL-2. Aβf also influenced the levels of AChE, BuChE and ChAT in favour of a low level of acetylcholine. These changes were linked to an altered secretion pattern of cytokines. A different pattern was observed in microglia activated by Aβf, demonstrating decreased secretion of TNF-α, IL-1β and IL-2 relative to untreated cells. Subsequent exposure of differentiating neurospheres to Aβf or to microglia-conditioned medium decreased neuronal differentiation and increased glial differentiation. We suggest that a basal physiological secretion of cytokines is involved in shaping the differentiation of neurospheres and that Aβf decreases neurogenesis by promoting a microenvironment favouring hypo-cholinergic signalling and gliogenesis.
Collapse
Affiliation(s)
- Linn Malmsten
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
167
|
Kang SS, Keasey MP, Hagg T. P2X7 receptor inhibition increases CNTF in the subventricular zone, but not neurogenesis or neuroprotection after stroke in adult mice. Transl Stroke Res 2014; 4:533-45. [PMID: 24312160 DOI: 10.1007/s12975-013-0265-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increasing endogenous ciliary neurotrophic factor (CNTF) expression with a pharmacological agent might be beneficial after stroke as CNTF both promotes neurogenesis and, separately, is neuroprotective. P2X7 purinergic receptor inhibition is neuroprotective in rats and increases CNTF release in rat CMT1A Schwann cells. We, first, investigated the role of P2X7 in regulating CNTF and neurogenesis in adult mouse subventricular zone (SVZ). CNTF expression was increased by daily intravenous injections of the P2X7 antagonist Brilliant Blue G (BBG) in naïve C57BL/6 or Balb/c mice over 3 days. Despite the ∼40-60 % increase or decrease in CNTF with BBG or the agonist BzATP, respectively, the number of proliferated BrdU+SVZ nuclei did not change. BBG failed to increase FGF2, which is involved in CNTF-regulated neurogenesis, but induced IL-6, LIF, and EGF, which are known to reduce SVZ proliferation. Injections of IL-6 next to the SVZ induced CNTF and FGF2, but not proliferation, suggesting that IL-6 counteracts their neurogenesis-inducing effects. Following ischemic injury of the striatum by middle cerebral artery occlusion (MCAO), a 3-day BBG treatment increased CNTF in the medial penumbra containing the SVZ. BBG also induced CNTF and LIF, which are known to be protective following stroke, in the whole striatum after MCAO, but not GDNF or BDNF. However, BBG treatment did not reduce the lesion area or apoptosis in the penumbra. Even so, this study shows that P2X7 can be targeted with systemic drug treatments to differentially regulate neurotrophic factors in the brain following stroke.
Collapse
Affiliation(s)
- Seong Su Kang
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd Street, MDR Building, Room 616, Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY 40292, USA
| | | | | |
Collapse
|
168
|
Marshall GP, Deleyrolle LP, Reynolds BA, Steindler DA, Laywell ED. Microglia from neurogenic and non-neurogenic regions display differential proliferative potential and neuroblast support. Front Cell Neurosci 2014; 8:180. [PMID: 25076873 PMCID: PMC4100441 DOI: 10.3389/fncel.2014.00180] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/11/2014] [Indexed: 11/23/2022] Open
Abstract
Microglia isolated from the neurogenic subependymal zone (SEZ) and hippocampus (HC) are capable of massive in vitro population expansion that is not possible with microglia isolated from non-neurogenic regions. We asked if this regional heterogeneity in microglial proliferative capacity is cell intrinsic, or is conferred by interaction with respective neurogenic or non-neurogenic niches. By combining SEZ and cerebral cortex (CTX) primary tissue dissociates to generate heterospatial cultures, we find that exposure to the SEZ environment does not enhance CTX microglia expansion; however, the CTX environment exerts a suppressive effect on SEZ microglia expansion. Furthermore, addition of purified donor SEZ microglia to either CTX- or SEZ-derived cultures suppresses the expansion of host microglia, while the addition of donor CTX microglia enhances the over-all microglia yield. These data suggest that SEZ and CTX microglia possess intrinsic, spatially restricted characteristics that are independent of their in vitro environment, and that they represent unique and functionally distinct populations. Finally, we determined that the repeated supplementation of neurogenic SEZ cultures with expanded SEZ microglia allows for sustained levels of inducible neurogenesis, provided that the ratio of microglia to total cells remains within a fairly narrow range.
Collapse
Affiliation(s)
- Gregory P Marshall
- Departments of Anatomy and Cell Biology, College of Medicine, University of Florida Gainesville, FL, USA
| | - Loic P Deleyrolle
- Department of Neurosurgery, College of Medicine, University of Florida Gainesville, FL, USA
| | - Brent A Reynolds
- Department of Neurosurgery, College of Medicine, University of Florida Gainesville, FL, USA
| | - Dennis A Steindler
- Department of Neurosurgery, College of Medicine, University of Florida Gainesville, FL, USA
| | - Eric D Laywell
- Department of Biomedical Sciences, College of Medicine, Florida State University Tallahassee, FL, USA
| |
Collapse
|
169
|
Ferrazzano P, Chanana V, Uluc K, Fidan E, Akture E, Kintner DB, Cengiz P, Sun D. Age-dependent microglial activation in immature brains after hypoxia- ischemia. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:338-49. [PMID: 23469850 DOI: 10.2174/1871527311312030007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/13/2012] [Accepted: 09/22/2012] [Indexed: 12/20/2022]
Abstract
In the present study, we tested whether the ongoing differentiation of microglia in the immature brain results in more robust microglial activation and pro-inflammatory responses than juvenile brains following hypoxia-ischemia (HI). Under normoxic conditions, microglial activation profiles were assessed in postnatal day 9 and postnatal day 30 mice (P9 and P30) by analyzing relative expression levels of CD45 in CD11b+/CD45+ microglia/macrophages. Flow cytometry analysis revealed that the hippocampi of P9 and P30 brains exhibited higher levels of CD45 expression in CD11b+/CD45+ cells than in the cortex and striatum. In response to HI, there was an early increase in number of CD11b+/CD45+ microglia/macrophages in the ipsilateral hippocampus of P9 mice. These cells transformed from a "ramified" to an "amoeboid" morphology in the CA1 region, which was accompanied by a loss of microtubule-associated protein 2 immunostaining in this brain region. The peak response of microglial activation in the ipsilateral hippocampus of P9 mice occurred on day 2 post-HI, which was in contrast to a delayed and persistent microglial activation in the cortex and striatum (peak on day 9 post-HI). P9 brains demonstrated a 2-3 fold greater increase in microglia counts than P30 brains in each region (hippocampus, cortex, and striatum) during day 1-17 post-HI. P9 brains also showed more robust expression of pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1β) than P30 brains. Taken together, compared to P30 mice, P9 mice demonstrated differences in microglial activation and pro-inflammatory responses after HI, which may be important in brain damage and tissue repair.
Collapse
Affiliation(s)
- Peter Ferrazzano
- Department of Pediatrics, University of Wisconsin Medical School, 1500 Highland Ave., Madison, WI 53705, USA.
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Shen W, Lee SR, Araujo J, Chung SH, Zhu L, Gillies MC. Effect of glucocorticoids on neuronal and vascular pathology in a transgenic model of selective Müller cell ablation. Glia 2014; 62:1110-24. [PMID: 24687761 DOI: 10.1002/glia.22666] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 01/09/2023]
Abstract
Retinal diseases such as macular telangiectasis type 2 (MacTel), age-related macular degeneration (AMD) and diabetic retinopathy (DR) affect both neurons and blood vessels. Treatments addressing both at the same time might have advantages over more specific approaches, such as vascular endothelial growth factor (VEGF) inhibitors, which are used to treat vascular leak but are suspected to have a neurotoxic effect. Here, we studied the effects of an intravitreal injection of triamcinolone acetonide (TA) in a transgenic model in which patchy Müller cell ablation leads to photoreceptor degeneration, vascular leak, and intraretinal neovascularization. TA was injected 4 days before Müller cell ablation. Changes in photoreceptors, microglia and Müller cells, retinal vasculature, differential expression of p75 neurotrophin receptor (p75(NTR) ), tumor necrosis factor-α (TNFα), the precursor and mature forms of neurotrophin 3 (pro-NT3 and mature NT3) and activation of the p53 and p38 stress-activated protein kinase (p38/SAPK) signaling pathways were examined. We found that TA prevented photoreceptor degeneration and inhibited activation of microglial and Müller cells. TA attenuated Müller cell loss and inhibited overexpression of p75(NTR) , TNFα, pro-NT, and the activation of p53 and p38/SAPK signaling pathways. TA not only prevented the development of retinal vascular lesions but also inhibited fluorescein leakage from established vascular lesions. TA inhibited overexpression of VEGF in transgenic mice but without affecting its basal level expression in the normal retina. Our data suggest that glucocorticoid treatment may be beneficial for treatment of retinal diseases such as MacTel, AMD, and DR that affect both neurons and the vasculature.
Collapse
Affiliation(s)
- Weiyong Shen
- Macular Research Group. Save Sight Institute, The University of Sydney, Australia
| | | | | | | | | | | |
Collapse
|
171
|
Abstract
Microglia, the resident innate immune cells in the brain, have long been understood to be crucial to maintenance in the nervous system, by clearing debris, monitoring for infiltration of infectious agents, and mediating the brain's inflammatory and repair response to traumatic injury, stroke, or neurodegeneration. A wave of new research has shown that microglia are also active players in many basic processes in the healthy brain, including cell proliferation, synaptic connectivity, and physiology. Microglia, both in their capacity as phagocytic cells and via secretion of many neuroactive molecules, including cytokines and growth factors, play a central role in early brain development, including sexual differentiation of the brain. In this review, we present the vast roles microglia play in normal brain development and how perturbations in the normal neuroimmune environment during development may contribute to the etiology of brain-based disorders. There are notable differences between microglia and neuroimmune signaling in the male and female brain throughout the life span, and these differences may contribute to the vast differences in the incidence of neuropsychiatric and neurological disorders between males and females.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Psychology and Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
172
|
Abeysinghe HCS, Bokhari L, Dusting GJ, Roulston CL. Brain remodelling following endothelin-1 induced stroke in conscious rats. PLoS One 2014; 9:e97007. [PMID: 24809543 PMCID: PMC4029108 DOI: 10.1371/journal.pone.0097007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/14/2014] [Indexed: 01/20/2023] Open
Abstract
The extent of stroke damage in patients affects the range of subsequent pathophysiological responses that influence recovery. Here we investigate the effect of lesion size on development of new blood vessels as well as inflammation and scar formation and cellular responses within the subventricular zone (SVZ) following transient focal ischemia in rats (n = 34). Endothelin-1-induced stroke resulted in neurological deficits detected between 1 and 7 days (P<0.001), but significant recovery was observed beyond this time. MCID image analysis revealed varying degrees of damage in the ipsilateral cortex and striatum with infarct volumes ranging from 0.76–77 mm3 after 14 days, where larger infarct volumes correlated with greater functional deficits up to 7 days (r = 0.53, P<0.05). Point counting of blood vessels within consistent sample regions revealed that increased vessel numbers correlated significantly with larger infarct volumes 14 days post-stroke in the core cortical infarct (r = 0.81, P<0.0001), core striatal infarct (r = 0.91, P<0.005) and surrounding border zones (r = 0.66, P<0.005; and r = 0.73, P<0.05). Cell proliferation within the SVZ also increased with infarct size (P<0.01) with a greater number of Nestin/GFAP positive cells observed extending towards the border zone in rats with larger infarcts. Lesion size correlated with both increased microglia and astrocyte activation, with severely diffuse astrocyte transition, the formation of the glial scar being more pronounced in rats with larger infarcts. Thus stroke severity affects cell proliferation within the SVZ in response to injury, which may ultimately make a further contribution to glial scar formation, an important factor to consider when developing treatment strategies that promote neurogenesis.
Collapse
Affiliation(s)
- Hima C. S. Abeysinghe
- Department of Surgery, St Vincent’s Campus, University of Melbourne, Victoria, Australia
- * E-mail:
| | - Laita Bokhari
- Neurotrauma Research team, Department of Medicine, St Vincent’s Campus, University of Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Gregory J. Dusting
- Cytoprotection Pharmacology Program, Centre for Eye Research, The Royal Eye and Ear Hospital Melbourne, Victoria, Australia
- Department of Opthamology, Faculty of Medicine, University of Melbourne, Victoria, Australia
| | - Carli L. Roulston
- Neurotrauma Research team, Department of Medicine, St Vincent’s Campus, University of Melbourne, Victoria, Australia
| |
Collapse
|
173
|
Chucair-Elliott AJ, Conrady C, Zheng M, Kroll CM, Lane TE, Carr DJJ. Microglia-induced IL-6 protects against neuronal loss following HSV-1 infection of neural progenitor cells. Glia 2014; 62:1418-34. [PMID: 24807365 DOI: 10.1002/glia.22689] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
Herpes virus type 1 (HSV-1) is one of the most widespread human pathogens and accounts for more than 90% of cases of herpes simplex encephalitis (HSE) causing severe and permanent neurologic sequelae among surviving patients. We hypothesize such CNS deficits are due to HSV-1 infection of neural progenitor cells (NPCs). In vivo, HSV-1 infection was found to diminish NPC numbers in the subventricular zone. Upon culture of NPCs in conditions that stimulate their differentiation, we found HSV-1 infection of NPCs resulted in the loss of neuronal precursors with no significant change in the percentage of astrocytes or oligodendrocytes. We propose this is due a direct effect of HSV-1 on neuronal survival without alteration of the differentiation process. The neuronal loss was prevented by the addition of microglia or conditioned media from NPC/microglia co-cultures. Using neutralizing antibodies and recombinant cytokines, we identified interleukin-6 (IL-6) as responsible for the protective effect by microglia, likely through its downstream Signal Transducer and Activator of Transcription 3 (STAT3) cascade.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | | | | | | | |
Collapse
|
174
|
Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci 2014; 34:2231-43. [PMID: 24501362 DOI: 10.1523/jneurosci.1619-13.2014] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although microglia have long been considered as brain resident immune cells, increasing evidence suggests that they also have physiological roles in the development of the normal CNS. In this study, we found large numbers of activated microglia in the forebrain subventricular zone (SVZ) of the rat from P1 to P10. Pharmacological suppression of the activation, which produces a decrease in levels of a number of proinflammatory cytokines (i.e., IL-1β, IL-6, TNF-α, and IFN-γ) significantly inhibited neurogenesis and oligodendrogenesis in the SVZ. In vitro neurosphere assays reproduced the enhancement of neurogenesis and oligodendrogenesis by activated microglia and showed that the cytokines revealed the effects complementarily. These results suggest that activated microglia accumulate in the early postnatal SVZ and that they enhance neurogenesis and oligodendrogenesis via released cytokines.
Collapse
|
175
|
Gertig U, Hanisch UK. Microglial diversity by responses and responders. Front Cell Neurosci 2014; 8:101. [PMID: 24744702 PMCID: PMC3978327 DOI: 10.3389/fncel.2014.00101] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/19/2014] [Indexed: 12/31/2022] Open
Abstract
Microglia are the principal resident innate immune cells of the CNS. Their contributions to the normal development of the CNS, the maintenance and plasticity of neuronal networks and the safeguarding of proper functionality are becoming more and more evident. Microglia also survey the tissue homeostasis to respond rapidly to exogenous and endogenous threats, primarily with a protective outcome. However, excessive acute activation, chronic activity or an improper adaptation of their functional performance can foster neuropathologies. A key to the versatile response behavior of these cells is their ability to commit to reactive phenotypes, which reveal enormous complexity. Yet the respective profiles of induced genes and installed functions may build up on heterogeneous contributions of cellular subsets. Here, we discuss findings and concepts that consider the variety of microglial activities and response options as being based-at least in part-on a diversity of the engaged cells. Whether it is the production of proinflammatory cytokines, clearance of tissue debris, antigen presentation or the ability to sense neurotransmitters, microglial cells present with an unanticipated heterogeneity of their constitutive and inducible features. While the organizational principles of this heterogeneity are still largely unknown, functional implications are already perceptible.
Collapse
Affiliation(s)
- Ulla Gertig
- Institute of Neuropathology, University of Göttingen Göttingen, Germany
| | | |
Collapse
|
176
|
Lindberg OR, Brederlau A, Kuhn HG. Epidermal growth factor treatment of the adult brain subventricular zone leads to focal microglia/macrophage accumulation and angiogenesis. Stem Cell Reports 2014; 2:440-8. [PMID: 24749069 PMCID: PMC3986663 DOI: 10.1016/j.stemcr.2014.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 12/11/2022] Open
Abstract
One of the major components of the subventricular zone (SVZ) neurogenic niche is the specialized vasculature. The SVZ vasculature is thought to be important in regulating progenitor cell proliferation and migration. Epidermal growth factor (EGF) is a mitogen with a wide range of effects. When stem and progenitor cells in the rat SVZ are treated with EGF, using intracerebroventricular infusion, dysplastic polyps are formed. Upon extended infusion, blood vessels are recruited into the polyps. In the current study we demonstrate how polyps develop through distinct stages leading up to angiogenesis. As polyps progress, microglia/macrophages accumulate in the polyp core concurrent with increasing cell death. Both microglia/macrophage accumulation and cell death peak during angiogenesis and subsequently decline following polyp vascularization. This model of inducible angiogenesis in the SVZ neurogenic niche suggests involvement of microglia/macrophages in acquired angiogenesis and can be used in detail to study angiogenesis in the adult brain. EGF-induced growth of polyps leads to vessel recruitment and angiogenesis Four distinct stages are discernible in polyp development (I–IV) Microglia/macrophages and dying cells progressively accumulate in the polyp core Microglia/macrophages and dying cells are reduced after polyp vascularization
Collapse
Affiliation(s)
- Olle R Lindberg
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 90, Sweden
| | - Anke Brederlau
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 90, Sweden
| | - H Georg Kuhn
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 90, Sweden
| |
Collapse
|
177
|
The role of glutamate and its receptors in multiple sclerosis. J Neural Transm (Vienna) 2014; 121:945-55. [PMID: 24633998 DOI: 10.1007/s00702-014-1188-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/27/2014] [Indexed: 12/18/2022]
Abstract
Glutamate is an excitatory neurotransmitter of the central nervous system, which has a central role in a complex communication network established between neurons, astrocytes, oligodendrocytes, and microglia. Multiple abnormal triggers such as energy deficiency, oxidative stress, mitochondrial dysfunction, and calcium overload can lead to abnormalities in glutamate signaling. Thus, the disturbance of glutamate homeostasis could affect practically all physiological functions and interactions of brain cells, leading to excitotoxicity. Excitotoxicity is the pathological process by which nerve cells are damaged or killed by excessive stimulation by glutamate. Although neuron degeneration and death are the ultimate consequences of multiple sclerosis (MS), it is now widely accepted that alterations in the function of surrounding glial cells are key features in the progression of the disease. The present knowledge raise the possibility that the modulation of glutamate release and transport, as well as receptors blockade or glutamate metabolism modulation, might be relevant targets for the development of future therapeutic interventions in MS.
Collapse
|
178
|
Wang M, Wong WT. Microglia-Müller cell interactions in the retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:333-8. [PMID: 24664715 DOI: 10.1007/978-1-4614-3209-8_42] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Microglia and Müller cells are cell types that feature prominently in responses to disease and injury in the retina. However, their mutual interactions have not been investigated in detail. Here, we review evidence that indicate that these two cell populations exchange functionally significant signals under uninjured conditions and during retinal inflammation. Under normal conditions, Müller cells constitute a potential source of extracellular ATP that mediates the activity-dependent regulation of microglial dynamic process motility. Following microglial activation in inflammation, microglia can signal to Müller cells, influencing their morphological, molecular, and functional responses. Microglia-Müller cell interactions appear to be a mode of bi-directional communications that help shape the overall injury response in the retina.
Collapse
Affiliation(s)
- Minhua Wang
- Unit on Neuron-Glia Interactions in Retinal Diseases, National Eye Institute, National Institutes of Health, 6 Center Drive, 6/215, 20892, Bethesda, MD, USA,
| | | |
Collapse
|
179
|
Ortega FJ, Vukovic J, Rodríguez MJ, Bartlett PF. Blockade of microglial KATP -channel abrogates suppression of inflammatory-mediated inhibition of neural precursor cells. Glia 2013; 62:247-58. [PMID: 24311472 DOI: 10.1002/glia.22603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 12/16/2022]
Abstract
Microglia positively affect neural progenitor cell physiology through the release of inflammatory mediators or trophic factors. We demonstrated previously that reactive microglia foster K(ATP) -channel expression and that blocking this channel using glibenclamide administration enhances striatal neurogenesis after stroke. In this study, we investigated whether the microglial K(ATP) -channel directly influences the activation of neural precursor cells (NPCs) from the subventricular zone using transgenic Csf1r-GFP mice. In vitro exposure of NPCs to lipopolysaccharide and interferon-gamma resulted in a significant decrease in precursor cell number. The complete removal of microglia from the culture or exposure to enriched microglia culture also decreased the precursor cell number. The addition of glibenclamide rescued the negative effects of enriched microglia on neurosphere formation and promoted a ∼20% improvement in precursor cell number. Similar results were found using microglial-conditioned media from isolated microglia. Using primary mixed glial and pure microglial cultures, glibenclamide specifically targeted reactive microglia to restore neurogenesis and increased the microglial production of the chemokine monocyte chemoattractant protein-1 (MCP-1). These findings provide the first direct evidence that the microglial K(ATP) -channel is a regulator of the proliferation of NPCs under inflammatory conditions.
Collapse
Affiliation(s)
- Francisco J Ortega
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
180
|
Mamber C, Kozareva DA, Kamphuis W, Hol EM. Shades of gray: The delineation of marker expression within the adult rodent subventricular zone. Prog Neurobiol 2013; 111:1-16. [DOI: 10.1016/j.pneurobio.2013.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 12/21/2022]
|
181
|
Abstract
Our view of microglia has dramatically changed in the last decade. From cells being "silent" in the healthy brain, microglia have emerged to be actively involved in several brain physiological functions including adult hippocampal neurogenesis, and cognitive and behavioral function. In light of recent discoveries revealing a role of microglia as important effectors of neuronal circuit reorganization, considerable attention has been focused on how microglia and hippocampal neurogenesis could be an interdependent phenomenon. In this review the role of microglia in the adult hippocampal neurogenesis under physiological condition is discussed.
Collapse
Affiliation(s)
- Carmelina Gemma
- Department of Anesthesiology and Pain Medicine, University of Washington Seattle, WA, USA
| | | |
Collapse
|
182
|
Gemma C, Bachstetter AD. The role of microglia in adult hippocampal neurogenesis. Front Cell Neurosci 2013; 7:229. [PMID: 24319411 PMCID: PMC3837350 DOI: 10.3389/fncel.2013.00229] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 11/05/2013] [Indexed: 12/05/2022] Open
Abstract
Our view of microglia has dramatically changed in the last decade. From cells being “silent” in the healthy brain, microglia have emerged to be actively involved in several brain physiological functions including adult hippocampal neurogenesis, and cognitive and behavioral function. In light of recent discoveries revealing a role of microglia as important effectors of neuronal circuit reorganization, considerable attention has been focused on how microglia and hippocampal neurogenesis could be an interdependent phenomenon. In this review the role of microglia in the adult hippocampal neurogenesis under physiological condition is discussed.
Collapse
Affiliation(s)
- Carmelina Gemma
- Department of Anesthesiology and Pain Medicine, University of Washington Seattle, WA, USA
| | | |
Collapse
|
183
|
Ji R, Tian S, Lu HJ, Lu Q, Zheng Y, Wang X, Ding J, Li Q, Lu Q. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation. THE JOURNAL OF IMMUNOLOGY 2013; 191:6165-77. [PMID: 24244024 DOI: 10.4049/jimmunol.1302229] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.
Collapse
Affiliation(s)
- Rui Ji
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Shen W, Zhu L, Lee SR, Chung SH, Gillies MC. Involvement of NT3 and P75(NTR) in photoreceptor degeneration following selective Müller cell ablation. J Neuroinflammation 2013; 10:137. [PMID: 24224958 PMCID: PMC3831588 DOI: 10.1186/1742-2094-10-137] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurotrophins can regulate opposing functions that result in cell survival or apoptosis, depending on which form of the protein is secreted and which receptor and signaling pathway is activated. We have recently developed a transgenic model in which inducible and patchy Müller cell ablation leads to photoreceptor degeneration. This study aimed to examine the roles of mature neurotrophin-3 (NT3), pro-NT3 and p75 neurotrophin receptor (P75(NTR)) in photoreceptor degeneration in this model. METHODS Transgenic mice received tamoxifen to induce Müller cell ablation. Changes in the status of Müller and microglia cells as well as expression of mature NT3, pro-NT3 and P75(NTR) were examined by immunohistochemistry and Western blot analysis. Recombinant mature NT3 and an antibody neutralizing 75(NTR) were injected intravitreally 3 and 6 days after Müller cell ablation to examine their effects on photoreceptor degeneration and microglial activation. RESULTS We found that patchy loss of Müller cells was associated with activation of surviving Müller cells and microglial cells, concurrently with reduced expression of mature NT3 and upregulation of pro-NT3 and P75(NTR). Intravitreal injection of mature NT3 and a neutralizing antibody to P75NTR, either alone or in combination, attenuated photoreceptor degeneration and the beneficial effect was associated with inhibition of microglial activation. CONCLUSIONS Our data suggest that Müller cell ablation alters the balance between the protective and deleterious effects of mature NT3 and pro-NT3. Modulation of the neuroprotective action of mature NT3 and pro-apoptotic pro-NT3/P75(NTR) signaling may represent a novel pharmacological strategy for photoreceptor protection in retinal disease.
Collapse
Affiliation(s)
- Weiyong Shen
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| | - Ling Zhu
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| | - So-Ra Lee
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| | - Sook H Chung
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| | - Mark C Gillies
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| |
Collapse
|
185
|
Derivation of neural stem cells from an animal model of psychiatric disease. Transl Psychiatry 2013; 3:e323. [PMID: 24193728 PMCID: PMC3849963 DOI: 10.1038/tp.2013.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 01/19/2023] Open
Abstract
Several psychiatric and neurological diseases are associated with altered hippocampal neurogenesis, suggesting differing neural stem cell (NSC) function may play a critical role in these diseases. To investigate the role of resident NSCs in a murine model of psychiatric disease, we sought to isolate and characterize NSCs from alpha-calcium-/calmodulin-dependent protein kinase II heterozygous knockout (CaMK2α-hKO) mice, a model of schizophrenia/bipolar disorder. These mice display altered neurogenesis, impaired neuronal development and are part of a larger family possessing phenotypic and behavioral correlates of schizophrenia/bipolar disorder and a shared pathology referred to as the immature dentate gyrus (iDG). The extent to which NSCs contribute to iDG pathophysiology remains unclear. To address this, we established heterogeneous cultures of NSCs isolated from the hippocampal neuropoietic niche. When induced to differentiate, CaMK2α-hKO-derived NSCs recapitulate organotypic hippocampal neurogenesis, but generate larger numbers of immature neurons than wild-type (WT) littermates. Furthermore, mutant neurons fail to assume mature phenotypes (including morphology and MAP2/calbindin expression) at the same rate observed in WT counterparts. The increased production of immature neurons which fail to mature indicates that this reductionist model retains key animal- and iDG-specific maturational deficits observed in animal models and human patients. This is doubly significant, as these stem cells lack several developmental inputs present in vivo. Interestingly, NSCs were isolated from animals prior to the emergence of overt iDG pathophysiology, suggesting mutant NSCs may possess lasting intrinsic alterations and that altered NSC function may contribute to iDG pathophysiology in adult animals.
Collapse
|
186
|
Voss MW, Vivar C, Kramer AF, van Praag H. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 2013; 17:525-44. [PMID: 24029446 DOI: 10.1016/j.tics.2013.08.001] [Citation(s) in RCA: 631] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 12/20/2022]
Abstract
Significant progress has been made in understanding the neurobiological mechanisms through which exercise protects and restores the brain. In this feature review, we integrate animal and human research, examining physical activity effects across multiple levels of description (neurons up to inter-regional pathways). We evaluate the influence of exercise on hippocampal structure and function, addressing common themes such as spatial memory and pattern separation, brain structure and plasticity, neurotrophic factors, and vasculature. Areas of research focused more within species, such as hippocampal neurogenesis in rodents, also provide crucial insight into the protective role of physical activity. Overall, converging evidence suggests exercise benefits brain function and cognition across the mammalian lifespan, which may translate into reduced risk for Alzheimer's disease (AD) in humans.
Collapse
Affiliation(s)
- Michelle W Voss
- Department of Psychology, The University of Iowa, Iowa City, IA, USA; Aging Mind and Brain Initiative (AMBI), The University of Iowa, Iowa City, IA, USA.
| | | | | | | |
Collapse
|
187
|
Gebara E, Sultan S, Kocher-Braissant J, Toni N. Adult hippocampal neurogenesis inversely correlates with microglia in conditions of voluntary running and aging. Front Neurosci 2013; 7:145. [PMID: 23970848 PMCID: PMC3747329 DOI: 10.3389/fnins.2013.00145] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 07/30/2013] [Indexed: 12/12/2022] Open
Abstract
Adult hippocampal neurogenesis results in the formation of new neurons and is a process of brain plasticity involved in learning and memory. The proliferation of adult neural stem or progenitor cells is regulated by several extrinsic factors such as experience, disease or aging and intrinsic factors originating from the neurogenic niche. Microglia is very abundant in the dentate gyrus (DG) and increasing evidence indicates that these cells mediate the inflammation-induced reduction in neurogenesis. However, the role of microglia in neurogenesis in physiological conditions remains poorly understood. In this study, we monitored microglia and the proliferation of adult hippocampal stem/progenitor cells in physiological conditions known to increase or decrease adult neurogenesis, voluntary running and aging respectively. We found that the number of microglia in the DG was strongly inversely correlated with the number of stem/progenitor cells and cell proliferation in the granule cell layer. Accordingly, co-cultures of decreasing neural progenitor/glia ratio showed that microglia but not astroglia reduced the number of progenitor cells. Together, these results suggest that microglia inhibits the proliferation of neural stem/progenitor cells despite the absence of inflammatory stimulus.
Collapse
Affiliation(s)
- Elias Gebara
- Department of Fundamental Neurosciences, University of Lausanne Lausanne, Switzerland
| | | | | | | |
Collapse
|
188
|
Jones CV, Ricardo SD. Macrophages and CSF-1: implications for development and beyond. Organogenesis 2013; 9:249-60. [PMID: 23974218 DOI: 10.4161/org.25676] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent focus on the diversity of macrophage phenotype and function signifies that these trophic cells are no longer of exclusive interest to the field of immunology. As key orchestrators of organogenesis, the contribution of macrophages to fetal development is worthy of greater attention. This review summarizes the key functions of macrophages and their primary regulator, colony-stimulating factor (CSF)-1, during development; highlighting trophic mechanisms beyond phagocytosis and outlining their roles in a range of developing organ systems. Advances in the understanding of macrophage polarization and functional heterogeneity are discussed from a developmental perspective. In addition, this review highlights the relevance of CSF-1 as a pleiotropic developmental growth factor and summarizes recent experimental evidence and clinical advancements in the area of CSF-1 and macrophage manipulation in reproduction and organogenic settings. Interrogation of embryonic macrophages also has implications beyond development, with recent attention focused on yolk sac macrophage ontogeny and their role in homeostasis and mediating tissue regeneration. The regulatory networks that govern development involve a complex range of growth factors, signaling pathways and transcriptional regulators arising from epithelial, mesenchymal and stromal origins. A component of the organogenic milieu common to the majority of developing organs is the tissue macrophage. These hemopoietic cells are part of the mononuclear phagocyte system regulated primarily by colony-stimulating factor (CSF)-1 (1, 2). There is a resurgence in the field of CSF-1 and macrophage biology; where greater understanding of the heterogeneity of these cells is revealing contributions to tissue repair and regeneration beyond the phagocytic and inflammatory functions for which they were traditionally ascribed (3-6). The accumulation of macrophages during tissue injury is no longer viewed as simply a surrogate for disease severity, with macrophages now known to be vital in governing tissue regeneration in many settings (7-11). In particular it is the influence of CSF-1 in regulating an alternative macrophage activation state that is increasingly linked to organ repair in a range of disease models (12-17). With many similarities drawn between organogenesis and regeneration, it is pertinent to re-examine the role of CSF-1 and macrophages in organ development.
Collapse
Affiliation(s)
- Christina V Jones
- Department of Anatomy and Developmental Biology; Monash University; Clayton, VIC Australia
| | - Sharon D Ricardo
- Department of Anatomy and Developmental Biology; Monash University; Clayton, VIC Australia
| |
Collapse
|
189
|
Kazanis I, Gorenkova N, Zhao JW, Franklin RJM, Modo M, Ffrench-Constant C. The late response of rat subependymal zone stem and progenitor cells to stroke is restricted to directly affected areas of their niche. Exp Neurol 2013; 248:387-97. [PMID: 23830949 PMCID: PMC3782662 DOI: 10.1016/j.expneurol.2013.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 01/08/2023]
Abstract
Ischaemia leads to increased proliferation of progenitors in the subependymal zone (SEZ) neurogenic niche of the adult brain and to generation and migration of newborn neurons. Here we investigated the spatiotemporal characteristics of the mitotic activity of adult neural stem and progenitor cells in the SEZ during the sub-acute and chronic post-ischaemic phases. Ischaemia was induced by performing a 1h unilateral middle cerebral artery occlusion (MCAO) and tissue was collected 4/5 weeks and 1 year after the insult. Neural stem cells (NSCs) responded differently from their downstream progenitors to MCAO, with NSCs being activated only transiently whilst progenitors remain activated even at 1 year post-injury. Importantly, mitotic activation was observed only in the affected areas of the niche and specifically in the dorsal half of the SEZ. Analysis of the topography of mitoses, in relation to the anatomy of the lesion and to the position of ependymal cells and blood vessels, suggested an interplay between lesion-derived recruiting signals and the local signals that normally control proliferation in the chronic post-ischaemic phase.
Collapse
Affiliation(s)
- Ilias Kazanis
- MRC Cambridge Centre for Stem Cell Biology and Regenerative Medicine and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
190
|
Zabel MK, Kirsch WM. From development to dysfunction: microglia and the complement cascade in CNS homeostasis. Ageing Res Rev 2013; 12:749-56. [PMID: 23419464 DOI: 10.1016/j.arr.2013.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/26/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
Of the many mysteries that surround the brain, few surpass the awe-inspiring complexity of its development. The intricate wiring of the brain at both the system and molecular level is both spatially and temporally regulated in perfect synchrony. How such a delicate, yet elegant, system arises from an embryo's most basic cells remains at the forefront of neuroscientific research. At the cellular level, the competitive dance between synapses struggling to gain dominance seems to be refereed by both neurons themselves and microglia, the innate immune cells of the nervous system. Additionally, the unexpected complement cascade, a major effecter arm of the innate immune system, is almost certainly involved in synaptic remodeling by tagging destined neurons and synapses for destruction. As suddenly as they appear, the mechanisms of neurogenesis recede entering into adulthood. However, with age and insult, these mechanisms boisterously return, resulting in neurodegeneration. This review describes some of the mechanisms involved in synaptogenesis and wiring of the brain from the point of view of the innate immune system and then covers how similar molecular processes return with age and disease, specifically in the context of Alzheimer's disease.
Collapse
|
191
|
Hanisch UK. Functional diversity of microglia - how heterogeneous are they to begin with? Front Cell Neurosci 2013; 7:65. [PMID: 23717262 PMCID: PMC3653062 DOI: 10.3389/fncel.2013.00065] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/19/2013] [Indexed: 02/06/2023] Open
Abstract
Microglia serve in the surveillance and maintenance, protection and restoration of the central nervous system (CNS) homeostasis. By their parenchymal location they differ from other CNS-associated myeloid cells, and by origin as well as functional characteristics they are also–at least in part–distinct from extraneural tissue macrophages. Nevertheless, microglia themselves may not comprise a uniform cell type. CNS regions vary by cellular and chemical composition, including white matter (myelin) content, blood–brain barrier properties or prevailing neurotransmitters. Such a micromilieu could instruct as well as require local adaptions of microglial features. Yet even cells within circumscribed populations may reveal some specialization by subtypes, regarding house-keeping duties and functional capacities upon challenges. While diversity of reactive phenotypes has been established still little is known as to whether all activated cells would respond with the same program of induced genes and functions or whether responder subsets have individual contributions. Preferential synthesis of a key cytokine could asign a master control to certain cells among a pool of activated microglia. Critical functions could be sequestered to discrete microglial subtypes in order to avoid interference, such as clearance of endogenous material and presentation of antigens. Indeed, several and especially a number of recent studies provide evidence for the constitutive and reactive heterogeneity of microglia by and within CNS regions. While such a principle of “division of labor” would influence the basic notion of “the” microglia, it could come with the practival value of addressing separate microglia types in experimental and therapeutic manipulations.
Collapse
|
192
|
Abstract
White matter neurons in multiple sclerosis brains are destroyed during demyelination and then replaced in some chronic multiple sclerosis lesions that exhibit a morphologically distinct population of activated microglia [Chang A, et al. (2008) Brain 131(Pt 9):2366-2375]. Here we investigated whether activated microglia secrete factors that promote the generation of neurons from white matter cells. Adult rat brain microglia (resting or activated with lipopolysaccharide) were isolated by flow cytometry and cocultured with neonatal rat optic nerve cells in separate but media-connected chambers. Optic nerve cells cocultured with activated microglia showed a significant increase in the number of cells of neuronal phenotype, identified by neuron-specific class III beta-tubulin (TUJ-1) labeling, compared with cultures with resting microglia. To investigate the possible source of the TUJ-1-positive cells, A2B5-positive oligodendrocyte progenitor cells and A2B5-negative cells were isolated and cocultured with resting and activated microglia. Significantly more TUJ-1-positive cells were generated from A2B5-negative cells (∼70%) than from A2B5-positive cells (~30%). Mass spectrometry analysis of microglia culture media identified protease serine 2 (PRSS2) as a factor secreted by activated, but not resting, microglia. When added to optic nerve cultures, PRSS2 significantly increased neurogenesis, whereas the serine protease inhibitor, secretory leukocyte protease inhibitor, decreased activated microglia-induced neurogenesis. Collectively our data provide evidence that activated microglia increase neurogenesis through secretion of PRSS2.
Collapse
|
193
|
Chen YJJ, Vogt D, Wang Y, Visel A, Silberberg SN, Nicholas CR, Danjo T, Pollack JL, Pennacchio LA, Anderson S, Sasai Y, Baraban SC, Kriegstein AR, Alvarez-Buylla A, Rubenstein JLR. Use of "MGE enhancers" for labeling and selection of embryonic stem cell-derived medial ganglionic eminence (MGE) progenitors and neurons. PLoS One 2013; 8:e61956. [PMID: 23658702 PMCID: PMC3641041 DOI: 10.1371/journal.pone.0061956] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 03/15/2013] [Indexed: 12/21/2022] Open
Abstract
The medial ganglionic eminence (MGE) is an embryonic forebrain structure that generates the majority of cortical interneurons. MGE transplantation into specific regions of the postnatal central nervous system modifies circuit function and improves deficits in mouse models of epilepsy, Parkinson's disease, pain, and phencyclidine-induced cognitive deficits. Herein, we describe approaches to generate MGE-like progenitor cells from mouse embryonic stem (ES) cells. Using a modified embryoid body method, we provided gene expression evidence that mouse ES-derived Lhx6(+) cells closely resemble immature interneurons generated from authentic MGE-derived Lhx6(+) cells. We hypothesized that enhancers that are active in the mouse MGE would be useful tools in detecting when ES cells differentiate into MGE cells. Here we demonstrate the utility of enhancer elements [422 (DlxI12b), Lhx6, 692, 1056, and 1538] as tools to mark MGE-like cells in ES cell differentiation experiments. We found that enhancers DlxI12b, 692, and 1538 are active in Lhx6-GFP(+) cells, while enhancer 1056 is active in Olig2(+) cells. These data demonstrate unique techniques to follow and purify MGE-like derivatives from ES cells, including GABAergic cortical interneurons and oligodendrocytes, for use in stem cell-based therapeutic assays and treatments.
Collapse
Affiliation(s)
- Ying-Jiun J. Chen
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel Vogt
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Yanling Wang
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Axel Visel
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, and Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Shanni N. Silberberg
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Cory R. Nicholas
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| | - Teruko Danjo
- Neurogenesis and Organogenesis Group, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Joshua L. Pollack
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Len A. Pennacchio
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, and Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Stewart Anderson
- 3Children's Hospital of Philadelphia, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yoshiki Sasai
- Neurogenesis and Organogenesis Group, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Scott C. Baraban
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Arnold R. Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| | - Arturo Alvarez-Buylla
- Department of Neurosurgery and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| | - John L. R. Rubenstein
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
194
|
London A, Cohen M, Schwartz M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci 2013; 7:34. [PMID: 23596391 PMCID: PMC3625831 DOI: 10.3389/fncel.2013.00034] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/18/2013] [Indexed: 11/25/2022] Open
Abstract
Functional macrophage heterogeneity is recognized outside the central nervous system (CNS), where alternatively activated macrophages can perform immune-resolving functions. Such functional heterogeneity was largely ignored in the CNS, with respect to the resident microglia and the myeloid-derived cells recruited from the blood following injury or disease, previously defined as blood-derived microglia; both were indistinguishably perceived detrimental. Our studies have led us to view the myeloid-derived infiltrating cells as functionally distinct from the resident microglia, and accordingly, to name them monocyte-derived macrophages (mo-MΦ). Although microglia perform various maintenance and protective roles, under certain conditions when they can no longer provide protection, mo-MΦ are recruited to the damaged CNS; there, they act not as microglial replacements but rather assistant cells, providing activities that cannot be timely performed by the resident cells. Here, we focus on the functional heterogeneity of microglia/mo-MΦ, emphasizing that, as opposed to the mo-MΦ, microglia often fail to timely acquire the phenotype essential for CNS repair.
Collapse
Affiliation(s)
- Anat London
- Department of Neurobiology, Weizmann Institute of Science Rehovot, Israel
| | | | | |
Collapse
|
195
|
Fuster-Matanzo A, Llorens-Martín M, Hernández F, Avila J. Role of neuroinflammation in adult neurogenesis and Alzheimer disease: therapeutic approaches. Mediators Inflamm 2013; 2013:260925. [PMID: 23690659 PMCID: PMC3649701 DOI: 10.1155/2013/260925] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/12/2013] [Indexed: 01/22/2023] Open
Abstract
Neuroinflammation, a specialized immune response that takes place in the central nervous system, has been linked to neurodegenerative diseases, and specially, it has been considered as a hallmark of Alzheimer disease, the most common cause of dementia in the elderly nowadays. Furthermore, neuroinflammation has been demonstrated to affect important processes in the brain, such as the formation of new neurons, commonly known as adult neurogenesis. For this, many therapeutic approaches have been developed in order to avoid or mitigate the deleterious effects caused by the chronic activation of the immune response. Considering this, in this paper we revise the relationships between neuroinflammation, Alzheimer disease, and adult neurogenesis, as well as the current therapeutic approaches that have been developed in the field.
Collapse
Affiliation(s)
- Almudena Fuster-Matanzo
- Department of Molecular Neurobiology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), 28031 Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neurobiology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), 28031 Madrid, Spain
| | - Félix Hernández
- Department of Molecular Neurobiology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), 28031 Madrid, Spain
| | - Jesús Avila
- Department of Molecular Neurobiology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), 28031 Madrid, Spain
| |
Collapse
|
196
|
Microglia-derived TNFα induces apoptosis in neural precursor cells via transcriptional activation of the Bcl-2 family member Puma. Cell Death Dis 2013; 4:e538. [PMID: 23492769 PMCID: PMC3613837 DOI: 10.1038/cddis.2013.59] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neuroinflammation is a common feature of acute neurological conditions such as stroke and spinal cord injury, as well as neurodegenerative conditions such as Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. Previous studies have demonstrated that acute neuroinflammation can adversely affect the survival of neural precursor cells (NPCs) and thereby limit the capacity for regeneration and repair. However, the mechanisms by which neuroinflammatory processes induce NPC death remain unclear. Microglia are key mediators of neuroinflammation and when activated to induce a pro-inflammatory state produce a number of factors that could affect NPC survival. Importantly, in the present study we demonstrate that tumor necrosis factor α (TNFα) produced by lipopolysaccharide-activated microglia is necessary and sufficient to trigger apoptosis in mouse NPCs in vitro. Furthermore, we demonstrate that microglia-derived TNFα induces NPC apoptosis via a mitochondrial pathway regulated by the Bcl-2 family protein Bax. BH3-only proteins are known to play a key role in regulating Bax activation and we demonstrate that microglia-derived TNFα induces the expression of the BH3-only family member Puma in NPCs via an NF-κB-dependent mechanism. Specifically, we show that NF-κB is activated in NPCs treated with conditioned media from activated microglia and that Puma induction and NPC apoptosis is blocked by the NF-κB inhibitor BAY-117082. Importantly, we have determined that NPC apoptosis induced by activated microglia-derived TNFα is attenuated in Puma-deficient NPCs, indicating that Puma induction is required for NPC death. Consistent with this, we demonstrate that Puma-deficient NPCs exhibit an ∼13-fold increase in survival as compared with wild-type NPCs following transplantation into the inflammatory environment of the injured spinal cord in vivo. In summary, we have identified a key signaling pathway that regulates neuroinflammation induced apoptosis in NPCs in vitro and in vivo that could be targeted to promote regeneration and repair in diverse neurological conditions.
Collapse
|
197
|
Wong WT. Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation. Front Cell Neurosci 2013; 7:22. [PMID: 23493481 PMCID: PMC3595516 DOI: 10.3389/fncel.2013.00022] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/21/2013] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and age-related macular degeneration (AMD), share two characteristics in common: (1) a disease prevalence that increases markedly with advancing age, and (2) neuroinflammatory changes in which microglia, the primary resident immune cell of the CNS, feature prominently. These characteristics have led to the hypothesis that pathogenic mechanisms underlying age-related neurodegenerative disease involve aging changes in microglia. If correct, targeting features of microglial senescence may constitute a feasible therapeutic strategy. This review explores this hypothesis and its implications by considering the current knowledge on how microglia undergo change during aging and how the emergence of these aging phenotypes relate to significant alterations in microglial function. Evidence and theories on cellular mechanisms implicated in driving senescence in microglia are reviewed, as are “rejuvenative” measures and strategies that aim to reverse or ameliorate the aging microglial phenotype. Understanding and controlling microglial aging may represent an opportunity for elucidating disease mechanisms and for formulating novel therapies.
Collapse
Affiliation(s)
- Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
198
|
Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: new roles for the synaptic stripper. Neuron 2013; 77:10-8. [PMID: 23312512 DOI: 10.1016/j.neuron.2012.12.023] [Citation(s) in RCA: 844] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2012] [Indexed: 01/23/2023]
Abstract
Any pathologic event in the brain leads to the activation of microglia, the immunocompetent cells of the central nervous system. In recent decades diverse molecular pathways have been identified by which microglial activation is controlled and by which the activated microglia affects neurons. In the normal brain microglia were considered "resting," but it has recently become evident that they constantly scan the brain environment and contact synapses. Activated microglia can remove damaged cells as well as dysfunctional synapses, a process termed "synaptic stripping." Here we summarize evidence that molecular pathways characterized in pathology are also utilized by microglia in the normal and developing brain to influence synaptic development and connectivity, and therefore should become targets of future research. Microglial dysfunction results in behavioral deficits, indicating that microglia are essential for proper brain function. This defines a new role for microglia beyond being a mere pathologic sensor.
Collapse
|
199
|
Glibenclamide enhances neurogenesis and improves long-term functional recovery after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2013; 33:356-64. [PMID: 23149556 PMCID: PMC3587805 DOI: 10.1038/jcbfm.2012.166] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glibenclamide is neuroprotective against cerebral ischemia in rats. We studied whether glibenclamide enhances long-term brain repair and improves behavioral recovery after stroke. Adult male Wistar rats were subjected to transient middle cerebral artery occlusion (MCAO) for 90 minutes. A low dose of glibenclamide (total 0.6 μg) was administered intravenously 6, 12, and 24 hours after reperfusion. We assessed behavioral outcome during a 30-day follow-up and animals were perfused for histological evaluation. In vitro specific binding of glibenclamide to microglia increased after pro-inflammatory stimuli. In vivo glibenclamide was associated with increased migration of doublecortin-positive cells in the striatum toward the ischemic lesion 72 hours after MCAO, and reactive microglia expressed sulfonylurea receptor 1 (SUR1) and Kir6.2 in the medial striatum. One month after MCAO, glibenclamide was also associated with increased number of NeuN-positive and 5-bromo-2-deoxyuridine-positive neurons in the cortex and hippocampus, and enhanced angiogenesis in the hippocampus. Consequently, glibenclamide-treated MCAO rats showed improved performance in the limb-placing test on postoperative days 22 to 29, and in the cylinder and water-maze test on postoperative day 29. Therefore, acute blockade of SUR1 by glibenclamide enhanced long-term brain repair in MCAO rats, which was associated with improved behavioral outcome.
Collapse
|
200
|
Saclier M, Yacoub-Youssef H, Mackey AL, Arnold L, Ardjoune H, Magnan M, Sailhan F, Chelly J, Pavlath GK, Mounier R, Kjaer M, Chazaud B. Differentially Activated Macrophages Orchestrate Myogenic Precursor Cell Fate During Human Skeletal Muscle Regeneration. Stem Cells 2013; 31:384-96. [DOI: 10.1002/stem.1288] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/28/2012] [Indexed: 12/24/2022]
|