151
|
Du T, Ju G, Wu S, Cheng Z, Cheng J, Zou X, Zhang G, Miao S, Liu G, Zhu Y. Microvesicles derived from human Wharton's jelly mesenchymal stem cells promote human renal cancer cell growth and aggressiveness through induction of hepatocyte growth factor. PLoS One 2014; 9:e96836. [PMID: 24797571 PMCID: PMC4010513 DOI: 10.1371/journal.pone.0096836] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/11/2014] [Indexed: 12/14/2022] Open
Abstract
In our previous study, microvesicles (MVs) released from human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) retard the growth of bladder cancer cells. We would like to know if MVs have a similar effect on human renal cell carcinoma (RCC). By use of cell culture and the BALB/c nu/nu mice xeno-graft model, the influence of MVs upon the growth and aggressiveness of RCC (786-0) was assessed. Cell counting kit-8 (CCK-8) assay, incidence of tumor, tumor size, Ki-67 or TUNEL staining was used to evaluate tumor cell growth in vitro or in vivo. Flow cytometry assay (in vitro) or examination of cyclin D1 expression (in vivo) was carried out to determine the alteration of cell cycle. The aggressiveness was analyzed by Wound Healing Assay (in vitro) or MMP-2 and MMP-9 expression (in vivo). AKT/p-AKT, ERK1/2/p-ERK1/2 or HGF/c-MET expression was detected by real-time PCR or western blot. Our data demonstrated that MVs promote the growth and aggressiveness of RCC both in vitro and in vivo. In addition, MVs facilitated the progression of cell cycle from G0/1 to S. HGF expression in RCC was greatly induced by MVs, associated with activation of AKT and ERK1/2 signaling pathways. RNase pre-treatment abrogated all effects of MVs. In summary, induction of HGF synthesis via RNA transferred by MVs activating AKT and ERK1/2 signaling is one of crucial contributors to the pro-tumor effect.
Collapse
Affiliation(s)
- Tao Du
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Guanqun Ju
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- * E-mail: (GJ); (YZ)
| | - Shuai Wu
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Department of Urology, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Zhongliang Cheng
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jun Cheng
- Department of Urology, Nantong Tongzhou People's Hospital, Jiangsu Province, P.R. China
| | - Xiangyu Zou
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Guangyuan Zhang
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Shuai Miao
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Guohua Liu
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yingjian Zhu
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- * E-mail: (GJ); (YZ)
| |
Collapse
|
152
|
El Omar R, Beroud J, Stoltz JF, Menu P, Velot E, Decot V. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? TISSUE ENGINEERING PART B-REVIEWS 2014; 20:523-44. [PMID: 24552279 DOI: 10.1089/ten.teb.2013.0664] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Due to their self-renewal capacity, multilineage differentiation potential, paracrine effects, and immunosuppressive properties, mesenchymal stromal cells (MSCs) are an attractive and promising tool for regenerative medicine. MSCs can be isolated from various tissues but despite their common immunophenotypic characteristics and functional properties, source-dependent differences in MSCs properties have recently emerged and lead to different clinical applications. Considered for a long time as a medical waste, umbilical cord appears these days as a promising source of MSCs. Several reports have shown that umbilical cord-derived MSCs are more primitive, proliferative, and immunosuppressive than their adult counterparts. In this review, we aim at synthesizing the differences between umbilical cord MSCs and MSCs from other sources (bone marrow, adipose tissue, periodontal ligament, dental pulp,…) with regard to their proliferation capacity, proteic and transcriptomic profiles, and their secretome involved in their regenerative, homing, and immunomodulatory capacities. Although umbilical cord MSCs are until now not particularly used as an MSC source in clinical practice, accumulating evidence shows that they may have a therapeutic advantage to treat several diseases, especially autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Reine El Omar
- 1 CNRS UMR UL 7365 , Bâtiment Biopôle, Faculté de médecine, Vandœuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
153
|
Bayo J, Marrodán M, Aquino JB, Silva M, García MG, Mazzolini G. The therapeutic potential of bone marrow-derived mesenchymal stromal cells on hepatocellular carcinoma. Liver Int 2014; 34:330-42. [PMID: 24112437 DOI: 10.1111/liv.12338] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 09/15/2013] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) are more often obtained from adult and extraembryonic tissues, with the latter sources being likely better from a therapeutic perspective. MSCs show tropism towards inflamed or tumourigenic sites. Mechanisms involved in MSC recruitment into tumours are comprehensively analysed, including chemoattractant signalling axes, endothelial adhesion and transmigration. In addition, signals derived from hepatocellular carcinoma (HCC) tumour microenvironment and their influence in MSC tropism and tumour recruitment are dissected, as well as the present controversy regarding their influence on tumour growth and/or metastasis. Finally, evidences available on the use of MSCs and other selected progenitor/stem cells as vehicles of antitumourigenic genes are discussed. A better knowledge of the mechanisms involved in progenitor/stem cell recruitment to HCC tumours is proposed in order to enhance their tumour targeting which may result in improvements in cell-based gene therapy strategies.
Collapse
Affiliation(s)
- Juan Bayo
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Argentina
| | | | | | | | | | | |
Collapse
|
154
|
Therapeutic potential of transgenic mesenchymal stem cells engineered to mediate anti-high mobility group box 1 activity: targeting of colon cancer. J Surg Res 2014; 190:134-43. [PMID: 24679698 DOI: 10.1016/j.jss.2014.02.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are being developed as a new clinically relevant stem cell type to be recruited into and to repair injured tissue. A number of studies have focused on the therapeutic potential of MSCs by virtue of their immunomodulatory properties. Systemically administered MSCs can also migrate to sites of malignancies. Because of this latter phenomenon, we transfected human MSCs to secrete anti-high mobility group box (HMGB) 1 proteins. They were then injected into mice bearing human colon cancer to evaluate their efficacy as an antineoplastic agent. MATERIALS AND METHODS The ABOX gene was used in this model, which encodes part of the HMGB1 protein and acts as an HMGB1 antagonist. It was cotransduced by electroporation with a FLAG-tag to visualize the secreted ABOX protein, levels of which in supernatants from cultured transfected MSCs were quantified by immunofluorescence imaging using an anti-FLAG antibody. Antiangiogenic effects were evaluated in vitro using a novel optical assay device for the quantitative measurement of cellular chemotaxis assessing the velocity and direction of endothelial cell movement stimulated by supernatant from tumor cells. We found that ABOX proteins released from transfected MSCs suppressed migration in this assay. Finally, MSCs were injected subcutaneously into Nonobese diabetic/severe combined immunodeficiency mice bearing human colon cancer from a cell line, which secreted large amounts of HMGB1. Ten days after MSC injection, mice were sacrificed and tumors evaluated by immunohistochemistry. RESULTS From 12 ho through 7 d after gene transfection, ABOX proteins secreted from MSCs could be detected by immunofluorescence and enzyme-linked immunosorbent assay. Quantitative measurement of cellular chemotaxis demonstrated that ABOX proteins secreted from transfected MSCs decreased the velocity and interfered with the direction of movement of vascular endothelial cells. Moreover, in an in vivo human colon cancer xenograft model, injection of anti-HMGB1-transfected MSCs resulted in a decreased tumor volume due to the antiangiogenic properties of the secreted ABOX proteins. CONCLUSIONS MSC modified to secrete HMGB1 antagonist proteins have therapeutic antineoplastic potential. These findings may contribute to future novel targeting strategies using autologous bone marrow-derived cells as gene delivery vectors.
Collapse
|
155
|
Sun Z, Wang S, Zhao RC. The roles of mesenchymal stem cells in tumor inflammatory microenvironment. J Hematol Oncol 2014; 7:14. [PMID: 24502410 PMCID: PMC3943443 DOI: 10.1186/1756-8722-7-14] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/31/2013] [Indexed: 12/16/2022] Open
Abstract
Tumor behavior is not entirely determined by tumor cells. Studies have demonstrated that a variety of non-tumor cells in the tumor microenvironment affect tumor behavior; thus, a new focus of cancer research has been the development of novel cancer treatment ideas and therapeutic targets based on the effects of these cells. Mesenchymal stem cells (MSCs) are an important component of the tumor microenvironment; however, previous studies have produced controversial results regarding whether MSCs promote or inhibit tumor growth and progression. In particular, Naïve MSCs and tumor-derived MSCs (T-MSCs) have different functions. Naïve MSCs could exert bidirectional effects on tumors because these cells can both promote and inhibit tumor progression while T-MSCs promote tumor progression due to influences from the tumor itself and from the inflammatory tumor microenvironment. As an unhealed wound, tumor produces a continuous source of inflammatory mediators and causes aggregation of numerous inflammatory cells, which constitute an inflammatory microenvironment. Inflammatory factors can induce homing of circulating MSCs and MSCs in adjacent tissues into tumors, which are then being “educated” by the tumor microenvironment to support tumor growth. T-MSCs could recruit more immune cells into the tumor microenvironment, increase the proportion of cancer stem cells and promote tumor angiogenesis, further supporting tumor progression. However, as plasticity is a fundamental feature of MSCs, MSCs can also inhibit tumors by activating various MSC-based signaling pathways. Studies of the mechanisms by which interactions among tumors, MSCs, and the inflammatory microenvironment occur and methods to disrupt these interactions will likely reveal new targets for cancer therapy.
Collapse
Affiliation(s)
| | | | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
156
|
Mele V, Muraro MG, Calabrese D, Pfaff D, Amatruda N, Amicarella F, Kvinlaug B, Bocelli-Tyndall C, Martin I, Resink TJ, Heberer M, Oertli D, Terracciano L, Spagnoli GC, Iezzi G. Mesenchymal stromal cells induce epithelial-to-mesenchymal transition in human colorectal cancer cells through the expression of surface-bound TGF-β. Int J Cancer 2014; 134:2583-94. [PMID: 24214914 PMCID: PMC4338537 DOI: 10.1002/ijc.28598] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 10/22/2013] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem/stromal cells (MSC) are multipotent precursors endowed with the ability to home to primary and metastatic tumor sites, where they can integrate into the tumor-associated stroma. However, molecular mechanisms and outcome of their interaction with cancer cells have not been fully clarified. In this study, we investigated the effects mediated by bone marrow-derived MSC on human colorectal cancer (CRC) cells in vitro and in vivo. We found that MSC triggered epithelial-to-mesenchymal transition (EMT) in tumor cells in vitro, as indicated by upregulation of EMT-related genes, downregulation of E-cadherin and acquisition of mesenchymal morphology. These effects required cell-to-cell contact and were mediated by surface-bound TGF-β newly expressed on MSC upon coculture with tumor cells. In vivo tumor masses formed by MSC-conditioned CRC cells were larger and characterized by higher vessel density, decreased E-cadherin expression and increased expression of mesenchymal markers. Furthermore, MSC-conditioned tumor cells displayed increased invasiveness in vitro and enhanced capacity to invade peripheral tissues in vivo. Thus, by promoting EMT-related phenomena, MSC appear to favor the acquisition of an aggressive phenotype by CRC cells.
Collapse
Affiliation(s)
- Valentina Mele
- Institute of Surgical Research and Hospital Management (ICFS) and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Institute of Pathology, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Human adipose-derived mesenchymal stromal cell pigment epithelium-derived factor cytotherapy modifies genetic and epigenetic profiles of prostate cancer cells. Cytotherapy 2014; 16:346-56. [PMID: 24424267 DOI: 10.1016/j.jcyt.2013.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/21/2013] [Accepted: 11/28/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND AIMS Adipose-derived mesenchymal stromal cells (ASCs) are promising tools for delivery of cytotherapy against cancer. However, ASCs can exert profound effects on biological behavior of tumor cells. Our study aimed to examine the influence of ASCs on gene expression and epigenetic methylation profiles of prostate cancer cells as well as the impact of expressing a therapeutic gene on modifying the interaction between ASCs and prostate cancer cells. METHODS ASCs were modified by lentiviral transduction to express either green fluorescent protein as a control or pigment epithelium-derived factor (PEDF) as a therapeutic molecule. PC3 prostate cancer cells were cultured in the presence of ASC culture-conditioned media (CCM), and effects on PC3 or DU145. Ras cells were examined by means of real-time quantitative polymerase chain reaction, EpiTect methyl prostate cancer-focused real-time quantitative polymerase chain reaction arrays, and luciferase reporter assays. RESULTS ASCs transduced with lentiviral vectors were able to mediate expression of several tumor-inhibitory genes, some of which correlated with epigenetic methylation changes on cocultured PC3 prostate cancer cells. When PC3 cells were cultured with ASC-PEDF CCM, we observed a shift in the balance of gene expression toward tumor inhibition, which suggests that PEDF reduces the potential tumor-promoting activity of unmodified ASCs. CONCLUSIONS These results suggest that ASC-PEDF CCM can promote reprogramming of tumor cells in a paracrine manner. An improved understanding of genetic and epigenetic events in prostate cancer growth in response to PEDF paracrine therapy would enable a more effective use of ASC-PEDF, with the goal of achieving safer yet more potent anti-tumor effects.
Collapse
|
158
|
Calon A, Tauriello DVF, Batlle E. TGF-beta in CAF-mediated tumor growth and metastasis. Semin Cancer Biol 2014; 25:15-22. [PMID: 24412104 DOI: 10.1016/j.semcancer.2013.12.008] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/19/2013] [Accepted: 12/30/2013] [Indexed: 12/14/2022]
Abstract
TGF-beta signaling is one of the major pathways controlling cell and tissue behavior not only in homeostasis but also in disease. During tumorigenesis TGF-beta orchestrated processes are key due to its dual role as tumor suppressor and tumor promoter. Important functions of this pathway have been described in a context-dependent manner both in epithelial cancer cells and in the tumor microenvironment during tumor progression. Carcinoma-associated fibroblasts (CAFs) are one of the most abundant stromal cell types in virtually all solid tumors. CAFs favor malignant progression by providing cancer cells with proliferative, migratory, survival and invasive capacities. A complex network of signaling pathways underlying their tumor-promoting properties is beginning to take shape. In this review, we examine current evidence on the emerging mechanisms involving TGF-beta in CAF-mediated cancer progression, and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- A Calon
- Oncology Department, Institute for Research in Biomedicine, 08028 Barcelona, Spain.
| | - D V F Tauriello
- Oncology Department, Institute for Research in Biomedicine, 08028 Barcelona, Spain
| | - E Batlle
- Oncology Department, Institute for Research in Biomedicine, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
159
|
De Wever O, Van Bockstal M, Mareel M, Hendrix A, Bracke M. Carcinoma-associated fibroblasts provide operational flexibility in metastasis. Semin Cancer Biol 2014; 25:33-46. [PMID: 24406210 DOI: 10.1016/j.semcancer.2013.12.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 01/11/2023]
Abstract
Malignant cancer cells do not act as lone wolves to achieve metastasis, as they exist within a complex ecosystem consisting of an extracellular matrix scaffold populated by carcinoma-associated fibroblasts (CAFs), endothelial cells and immune cells. We recognize local (primary tumor) and distant ecosystems (metastasis). CAFs, also termed myofibroblasts, may have other functions in the primary tumor versus the metastasis. Cellular origin and tumor heterogeneity lead to the expression of specific markers. The molecular characteristics of a CAF remain in evolution since CAFs show operational flexibility. CAFs respond dynamically to a cancer cell's fluctuating demands by shifting profitable signals necessary in metastasis. Local, tissue-resident fibroblasts and mesenchymal stem cells (MSCs) coming from reservoir sites such as bone marrow and adipose tissue are the main progenitor cells of CAFs. CAFs may induce awakening from metastatic dormancy, a major cause of cancer-specific death. Cancer management protocols influence CAF precursor recruitment and CAF activation. Since CAF signatures represent early changes in metastasis, including formation of pre-metastatic niches, we discuss whether liquid biopsies, including exosomes, may detect and monitor CAF reactions allowing optimized prognosis of cancer patients.
Collapse
Affiliation(s)
- Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium.
| | | | - Marc Mareel
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
160
|
Haddad R, Saldanha-Araujo F. Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: what do we know so far? BIOMED RESEARCH INTERNATIONAL 2014; 2014:216806. [PMID: 25025040 PMCID: PMC4082893 DOI: 10.1155/2014/216806] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/15/2014] [Accepted: 05/31/2014] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells, which can give rise to several cell types including osteoblasts, adipocytes, and chondroblasts. These cells can be found in a variety of adult and fetal tissues, such as bone marrow, adipose tissue, cord blood, and placenta. In recent years, the biological properties of MSCs have attracted the attention of researchers worldwide due to their potential application for treating a series of clinical situations. Among these properties, special attention should be given to the immunoregulatory potential of those cells. MSCs are able to act on all cells of the immune system, which includes the capacity to inhibit the proliferation and function of T-cells. This feature renders them natural candidates to treat several diseases in which cellular immune response is exacerbated. In this review, we outline the main mechanisms by which MSCs immunosuppress T-cell response, focusing on cell-cell contact, secretion of soluble factors, and regulatory T-cell generation. The influence of surface markers in the immunosuppression process and features of MSCs isolated from different sources are also discussed. Finally, the influences of toll-like receptors and cytokines on the inflammatory microenvironment are highlighted regarding the activation of MSCs to exert their immunoregulatory function.
Collapse
Affiliation(s)
- Rodrigo Haddad
- 1Faculty of Ceilandia, University of Brasilia, 72220-900 Brasilia, DF, Brazil
| | - Felipe Saldanha-Araujo
- 2Faculty of Health Sciences, University of Brasilia, 70910-900 Brasilia, DF, Brazil
- *Felipe Saldanha-Araujo:
| |
Collapse
|
161
|
Wnt signaling in adult intestinal stem cells and cancer. Cell Signal 2013; 26:570-9. [PMID: 24308963 DOI: 10.1016/j.cellsig.2013.11.032] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/26/2013] [Indexed: 12/22/2022]
Abstract
Signaling initiated by secreted glycoproteins of the Wnt family regulates many aspects of embryonic development and it is involved in homeostasis of adult tissues. In the gastrointestinal (GI) tract the Wnt pathway maintains the self-renewal capacity of epithelial stem cells. The stem cell attributes are conferred by mutual interactions of the stem cell with its local microenvironment, the stem cell niche. The niche ensures that the threshold of Wnt signaling in the stem cell is kept in physiological range. In addition, the Wnt pathway involves various feedback loops that balance the opposing processes of cell proliferation and differentiation. Today, we have compelling evidence that mutations causing aberrant activation of the Wnt pathway promote expansion of undifferentiated progenitors and lead to cancer. The review summarizes recent advances in characterization of adult epithelial stem cells in the gut. We mainly focus on discoveries related to molecular mechanisms regulating the output of the Wnt pathway. Moreover, we present novel experimental approaches utilized to investigate the epithelial cell signaling circuitry in vivo and in vitro. Pivotal aspects of tissue homeostasis are often deduced from studies of tumor cells; therefore, we also discuss some latest results gleaned from the deep genome sequencing studies of human carcinomas of the colon and rectum.
Collapse
|
162
|
Zimmerlin L, Park TS, Zambidis ET, Donnenberg VS, Donnenberg AD. Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie 2013; 95:2235-45. [PMID: 23747841 PMCID: PMC3825748 DOI: 10.1016/j.biochi.2013.05.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/26/2013] [Indexed: 02/06/2023]
Abstract
Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or disfiguring defects. These post-therapy impairments require the development of safe regenerative therapy strategies during cancer remission. Many current tissue repair approaches exploit paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells (MSC). Yet, a major concern in the application of regenerative therapies during cancer remission remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in specific niches awaiting reactivation via unknown stimuli. Many of the components required for successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue growth promotion) are also critical for tumor progression and metastasis. While bi-directional crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of local or systemic MSC delivery for regenerative purposes on persisting cancer cells during remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells which benefited from the presence of supportive MSC. The secretome of MSC isolated from various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6, TGFβ, VEGF), which have been implicated in tumor growth and/or metastasis. This article reviews published models for studying interactions between MSC and cancer cells with a focus on the impact of MSC secretome on cancer cell activity, and discusses the implications for regenerative therapy after cancer.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Tea Soon Park
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Elias T. Zambidis
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Vera S. Donnenberg
- University of Pittsburgh School of Medicine, Department of Cardiothoracic Surgery, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Albert D. Donnenberg
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Hematology/Oncology, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
163
|
Yagi H, Kitagawa Y. The role of mesenchymal stem cells in cancer development. Front Genet 2013; 4:261. [PMID: 24348516 PMCID: PMC3842093 DOI: 10.3389/fgene.2013.00261] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022] Open
Abstract
The role of mesenchymal stem cells (MSCs) in cancer development is still controversial. MSCs may promote tumor progression through immune modulation, but other tumor suppressive effects of MSCs have also beendescribed. The discrepancy between these results may arise from issues related to different tissue sources, individual donor variability, and injection timing of MSCs. The expression of critical receptors such as Toll-like receptor is variable a teach time point of treatment, which may also determine the effects of MSCs on tumor progression. However, factors released from malignant cells, as well as surrounding tissues and the vasculature, are still regarded as a “black box. ” Thus, it is still difficult to clarify the specific role of MSCs in cancer development. Whether MSCs support or suppress tumor progression is currently unclear, but it is clear that systemically administered MSCs can be recruited and migrate toward tumors. These findings are important because they can be used as a basis for initiating studies to explore the incorporation of engineered MSCs as novel anti-tumor carriers, for the development of tumor-targeted therapies.
Collapse
Affiliation(s)
- Hiroshi Yagi
- Department of Surgery, School of Medicine, Keio University Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, School of Medicine, Keio University Tokyo, Japan
| |
Collapse
|
164
|
Trofin EA, Monsarrat P, Kémoun P. Cell therapy of periodontium: from animal to human? Front Physiol 2013; 4:325. [PMID: 24298258 PMCID: PMC3828527 DOI: 10.3389/fphys.2013.00325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/19/2013] [Indexed: 12/30/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease affecting the soft and hard tissues supporting the teeth, which often leads to tooth loss. Its significant impact on the patient's general health and quality of life point to a need for more effective management of this condition. Existing treatments include scaling/root planning and surgical approaches but their overall effects are relatively modest and restricted in application. The goal of regenerative therapy of periodontal defects is to enhance endogenous progenitors and thus promote optimal wound healing. Considering that the host or tissue might be defective in the periodontitis context, it has been proposed that grafting exogenous stem cells would produce new tissues and create a suitable microenvironment for tissue regeneration. Thus, cell therapy of periodontium has been assessed in many animal models and promising results have been reported. However, the methodological diversity of these studies makes the conversion to clinical practice difficult. The aim of this review is to highlight the primary requirements to be satisfied before the leap to clinical trials can be made. We therefore review cell therapy applications for periodontal regeneration in animal models and the concerns to be addressed before undertaking human experiments.
Collapse
Affiliation(s)
- Elena A Trofin
- Department of Biology, Toulouse Faculty of Dentistry - Paul Sabatier University, Toulouse University Hospital - CHU de Toulouse Toulouse, France ; Department of Pathology, Faculty of Medicine and Odontology, University of Valencia Valencia, Spain
| | | | | |
Collapse
|
165
|
Marcucci F, Bellone M, Caserta CA, Corti A. Pushing tumor cells towards a malignant phenotype: stimuli from the microenvironment, intercellular communications and alternative roads. Int J Cancer 2013; 135:1265-76. [PMID: 24174383 DOI: 10.1002/ijc.28572] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 09/26/2013] [Accepted: 10/24/2013] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment produces different types of stimuli capable of endowing tumor cells with an aggressive behavior that is characterized by increased motility, invasiveness and propensity to metastasize, gain of a tumor-initiating phenotype, and drug resistance. The following classes of stimuli have been reported to promote such a malignant phenotype: (i) solid- or fluid-induced stress; (ii) altered composition of the extracellular matrix; (iii) hypoxia and low pH; (iv) innate and adaptive immune responses; (v) antitumor drugs. The simultaneous presence of more than one of these stimuli, as likely occurs in vivo, may lead to synergistic interactions in the induction of malignant traits. In many cases, the gain of a malignant phenotype is not the result of a direct effect of the stimuli on tumor cells but, rather, a stimulus-promoted cross-talk between tumor cells and other cell types within the tumor microenvironment. This cross-talk is mainly mediated by two classes of molecules: paracrine factors and adhesion receptors. Stimuli that promote a malignant phenotype can promote additional outcomes in tumor cells, including autophagy and cell death. We summarize here the available evidence about the variables that induce tumor cells to take one or the other of these roads in response to the same stimuli. At the end of this review, we address some unanswered questions in this domain and indicate future directions of research.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Centro Nazionale di Epidemiologia Sorveglianza e Promozione della Salute (CNESPS), Istituto Superiore di Sanita' (ISS), Roma, Italy; Hepatology Association of Calabria (ACE), Reggio Calabria, Italy
| | | | | | | |
Collapse
|
166
|
Katsuno T, Ochi M, Tominaga K, Tanaka F, Sogawa M, Tanigawa T, Yamagami H, Shiba M, Watanabe K, Watanabe T, Fujiwara Y, Arakawa T. Mesenchymal stem cells administered in the early phase of tumorigenesis inhibit colorectal tumor development in rats. J Clin Biochem Nutr 2013; 53:170-5. [PMID: 24249972 PMCID: PMC3818273 DOI: 10.3164/jcbn.13-68] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/16/2013] [Indexed: 12/26/2022] Open
Abstract
To investigate the differences between the effects of mesenchymal stem cells (MSCs) administered in the early and late phases of tumorigenesis, MSCs were isolated from bone marrow and colorectal tumors were produced by exposing 7-week-old F344 rats to 1,2-dimethylhydrazine and dextran sulfate sodium. We evaluated tumor number and volume (week 25), MSC localization, number of aberrant crypt foci (ACF), transforming growth factor (TGF)-β1 protein levels in the rectum after administration of MSCs (week 5 or 15), and the effects of MSC-conditioned medium on ACL15 cell proliferation. Administered MSCs labeled with PKH26 were observed in the rectum. Administered MSCs in the early phase (week 5) before tumor occurrence (week 12) significantly decreased tumor number and volume (1.5 vs 4 and 21 mm3 vs 170 mm3; p<0.01), but not administered MSCs in the late phase (week 15). Administered MSCs in the early phase reduced ACF number on days 14 and 35 (1.9 vs 4.1 and 3.7 vs 7.3; p<0.01). Rectal TGF-β1 increased 1.3 fold on day 3, and MSC-conditioned medium containing TGF-β1 abundantly inhibited ACL15 cell proliferation. MSCs administered in the early phase but not late phase inhibited colorectal tumor development in a rat model.
Collapse
Affiliation(s)
- Takayuki Katsuno
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Barcellos-de-Souza P, Gori V, Bambi F, Chiarugi P. Tumor microenvironment: bone marrow-mesenchymal stem cells as key players. Biochim Biophys Acta Rev Cancer 2013; 1836:321-35. [PMID: 24183942 DOI: 10.1016/j.bbcan.2013.10.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/15/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023]
Abstract
Tumor progression is a multistep phenomenon in which tumor-associated stromal cells perform an intricate cross-talk with tumor cells, supplying appropriate signals that may promote tumor aggressiveness. Among several cell types that constitute the tumor stroma, the discovery that bone marrow-derived mesenchymal stem cells (BM-MSC) have a strong tropism for tumors has achieved notoriety in recent years. Not only are the BM-MSC recruited, but they can also engraft at tumor sites and transdifferentiate into cells such as activated fibroblasts, perivascular cells and macrophages, which will perform a key role in tumor progression. Whether the BM-MSC and their derived cells promote or suppress the tumor progression is a controversial issue. Recently, it has been proposed that proinflammatory stimuli can be decisive in driving BM-MSC polarization into cells with either tumor-supportive or tumor-repressive phenotypes (MSC1/MSC2). These considerations are extremely important both to an understanding of tumor biology and to the putative use of BM-MSC as "magic bullets" against tumors. In this review, we discuss the role of BM-MSC in many steps in tumor progression, focusing on the factors that attract BM-MSC to tumors, BM-MSC differentiation ability, the role of BM-MSC in tumor support or inhibition, the immunomodulation promoted by BM-MSC and metastatic niche formation by these cells.
Collapse
Affiliation(s)
- Pedro Barcellos-de-Souza
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Tuscany Tumor Institute and Center for Research, Transfer and High Education DenoTHE, Florence, Italy; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil.
| | | | | | | |
Collapse
|
168
|
Salo S, Bitu C, Merkku K, Nyberg P, Bello IO, Vuoristo J, Sutinen M, Vähänikkilä H, Costea DE, Kauppila JH, Kauppila J, Lehenkari P, Dayan D, Vered M, Risteli J, Salo T. Human bone marrow mesenchymal stem cells induce collagen production and tongue cancer invasion. PLoS One 2013; 8:e77692. [PMID: 24204919 PMCID: PMC3804615 DOI: 10.1371/journal.pone.0077692] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/02/2013] [Indexed: 01/05/2023] Open
Abstract
Tumor microenvironment (TME) is an active player in carcinogenesis and changes in its composition modify cancer growth. Carcinoma-associated fibroblasts, bone marrow-derived multipotent mesenchymal stem cells (BMMSCs), and inflammatory cells can all affect the composition of TME leading to changes in proliferation, invasion and metastasis formation of carcinoma cells. In this study, we confirmed an interaction between BMMSCs and oral tongue squamous cell carcinoma (OTSCC) cells by analyzing the invasion progression and gene expression pattern. In a 3-dimensional myoma organotypic invasion model the presence of BMMSCs inhibited the proliferation but increased the invasion of OTSCC cells. Furthermore, the signals originating from OTSCC cells up-regulated the expression of inflammatory chemokines by BMMSCs, whereas BMMSC products induced the expression of known invasion linked molecules by carcinoma cells. Particularly, after the cell-cell interactions, the chemokine CCL5 was abundantly secreted from BMMSCs and a function blocking antibody against CCL5 inhibited BMMSC enhanced cancer invasion area. However, CCL5 blocking antibody did not inhibit the depth of invasion. Additionally, after exposure to BMMSCs, the expression of type I collagen mRNA in OTSCC cells was markedly up-regulated. Interestingly, also high expression of type I collagen N-terminal propeptide (PINP) in vivo correlated with the cancer-specific mortality of OTSCC patients, whereas there was no association between cancer tissue CCL5 levels and the clinical parameters. In conclusion, our results suggest that the interaction between BMMSC and carcinoma cells induce cytokine and matrix molecule expression, of which high level of type I collagen production correlates with the prognosis of OTSCC patients.
Collapse
Affiliation(s)
- Sirpa Salo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Human mesenchymal stem cells and their paracrine factors for the treatment of brain tumors. Cancer Gene Ther 2013; 20:539-43. [PMID: 24052128 DOI: 10.1038/cgt.2013.59] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/16/2013] [Accepted: 08/18/2013] [Indexed: 12/20/2022]
Abstract
Glioblastoma multiforme (GBM or World Health Organization (WHO) grade IV) is the most malignant tumor of the brain. Despite conventional combination treatment of surgery, radiotherapy and chemotherapy, the survival of patients with GBM is generally <1 year. It is a great challenge to identify an effective drug that could efficiently inhibit (i) the growth of cancer cells; (ii) angiogenesis; (iii) metastasis; (iv) tumor-associated inflammation; (v) inactivate proliferative signal, (vi) induce specific apoptosis, and yet causes minimal harm to normal cells. Mesenchymal stem cells (MSCS) do possess some unique features (inherent tumor tropism; anti-inflammatory and immunosuppressive properties) that are not commonly found in current anticancer agents. These cells are known to secrete a vast array of proteins including growth factors, cytokines, chemokines and so on that regulate their biology in an autocrine or paracrine manner in accordance to the surrounding microenvironment. This review briefly summarizes the biology of MSCs and discusses their properties and new development for brain cancer treatment.
Collapse
|
170
|
Amsterdam A. Reply to the letter to the editor of Nicholas Wright. Acta Histochem 2013; 115:772-3. [PMID: 23522103 DOI: 10.1016/j.acthis.2013.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/10/2013] [Indexed: 10/27/2022]
|
171
|
Lim C, Cauchy F, Azoulay D, Farges O, Ronot M, Pocard M. Tumour progression and liver regeneration--insights from animal models. Nat Rev Gastroenterol Hepatol 2013; 10:452-62. [PMID: 23567217 DOI: 10.1038/nrgastro.2013.55] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Surgery remains the only curative treatment for colorectal liver metastases. For patients with multiple bilobar spread, extended hepatectomy might be required to achieve complete margin-free resection. In such cases, portal vein occlusion has been developed to induce preoperative hypertrophy of the future remnant liver and increase the resectability rate. Evidence now suggests that liver regeneration after hepatectomy and portal vein occlusion has a protumorigenic role, either through an upregulation of growth factors and cytokines or by haemodynamic changes in the blood supply to the liver. Experimental studies have reported a stimulatory effect of liver regeneration on the tumoral volume of liver metastases and on the metastatic potential of cells engrafted in the liver; this effect seems to depend on the timing of hepatectomy and portal vein occlusion. However, the variability of animal tumour models that are used for research in experimental colorectal liver metastases might account for some of the inconsistent and conflicting results. This Review presents clinical and experimental data pertaining to whether liver regeneration causes proliferation of tumour cells. We also analyse the different animal models of colorectal liver metastases in use and discuss current controversies in the field.
Collapse
Affiliation(s)
- Chetana Lim
- Unité INSERM U965 (Université Paris 7), Angiogénèse et Recherche Translationnelle, Hôpital Lariboisière, 2 Rue Ambroise Paré, 75010 Paris, France
| | | | | | | | | | | |
Collapse
|
172
|
Wong RSY, Cheong SK. Role of mesenchymal stem cells in leukaemia: Dr. Jekyll or Mr. Hyde? Clin Exp Med 2013; 14:235-48. [DOI: 10.1007/s10238-013-0247-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 06/08/2013] [Indexed: 01/19/2023]
|
173
|
Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther 2013; 4:70. [PMID: 23763837 PMCID: PMC3707041 DOI: 10.1186/scrt221] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 06/03/2013] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are known to migrate to tumor tissues. This behavior of MSCs has been exploited as a tumor-targeting strategy for cell-based cancer therapy. However, the effects of MSCs on tumor growth are controversial. This study was designed to determine the effect of MSCs on the growth of breast and prostate tumors. METHODS Bone marrow-derived MSCs (BM-MSCs) were isolated and characterized. Effects of BM-MSCs on tumor cell proliferation were analyzed in a co-culture system with mouse breast cancer cell 4T1 or human prostate cancer cell DU145. Tumor cells were injected into nude mice subcutaneously either alone or coupled with BM-MSCs. The expression of cell proliferation and angiogenesis-related proteins in tumor tissues were immunofluorescence analyzed. The angiogenic effect of BM-MSCs was detected using a tube formation assay. The effects of the crosstalk between tumor cells and BM-MSCs on expression of angiogenesis related markers were examined by immunofluorescence and real-time PCR. RESULTS Both co-culturing with mice BM-MSCs (mBM-MSCs) and treatment with mBM-MSC-conditioned medium enhanced the growth of 4T1 cells. Co-injection of 4T1 cells and mBM-MSCs into nude mice led to increased tumor size compared with injection of 4T1 cells alone. Similar experiments using DU145 cells and human BM-MSCs (hBM-MSCs) instead of 4T1 cells and mBM-MSCs obtained consistent results. Compared with tumors induced by injection of tumor cells alone, the blood vessel area was greater in tumors from co-injection of tumor cells with BM-MSCs, which correlated with decreased central tumor necrosis and increased tumor cell proliferation. Furthermore, both conditioned medium from hBM-MSCs alone and co-cultures of hBM-MSCs with DU145 cells were able to promote tube formation ability of human umbilical vein endothelial cells. When hBM-MSCs are exposed to the DU145 cell environment, the expression of markers associated with neovascularization (macrophage inflammatory protein-2, vascular endothelial growth factor, transforming growth factor-beta and IL-6) was increased. CONCLUSION These results indicate that BM-MSCs promote tumor growth and suggest that the crosstalk between tumor cells and BM-MSCs increased the expression of pro-angiogenic factors, which may have induced tumor cell proliferation and angiogenesis thereby increasing solid tumor growth.
Collapse
|
174
|
Lin JT, Wang JY, Chen MK, Chen HC, Chang TH, Su BW, Chang PJ. Colon cancer mesenchymal stem cells modulate the tumorigenicity of colon cancer through interleukin 6. Exp Cell Res 2013; 319:2216-29. [PMID: 23751564 DOI: 10.1016/j.yexcr.2013.06.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/28/2013] [Accepted: 06/01/2013] [Indexed: 12/12/2022]
Abstract
Multipotent mesenchymal stem cells (MSCs) have been isolated from several tumors and are implicated to play critical roles to increase malignant cell growth, invasion and metastasis. Here, we show that the MSC-like cells were isolated from human colon cancer tissues. These isolated hCC-MSCs (human colon cancer-derived mesenchymal stem cells) shared similar characteristic features with bone marrow-derived MSCs, which include cell morphology, surface antigens and specific gene expression. Additionally, the hCC-MSCs could differentiate into osteocytes or adipocytes under appropriate culture conditions. The conditioned medium collected from the cultured hCC-MSCs was shown to enhance the migration and invasive activity of HCT-116 colon cancer cells in vitro. Besides, transplantation of HCT-116 cells along with hCC-MSCs in nude mice increased the tumor growth and metastasis. Further study revealed that IL-6 present in the hCC-MSC-conditioned medium sufficiently induced the levels of Notch-1 and CD44 in HCT-116 and HT-29 cells, which contribute to enhance tumorigenic activity of HCT-116 and HT-29 cells. By using immunohistochemical staining, the intense co-expression of IL-6, Notch-1 and CD44 was predominantly detected in human colon cancer tissues. Taken together, our findings suggest the importance of the IL-6/Notch-1/CD44 signaling axis in the interaction between hCC-MSCs and colon cancer cells.
Collapse
Affiliation(s)
- Jen-Tsun Lin
- Division of Hematology and Oncology, Department of Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | | | | | | | | | | | | |
Collapse
|
175
|
Belmar-Lopez C, Mendoza G, Oberg D, Burnet J, Simon C, Cervello I, Iglesias M, Ramirez JC, Lopez-Larrubia P, Quintanilla M, Martin-Duque P. Tissue-derived mesenchymal stromal cells used as vehicles for anti-tumor therapy exert different in vivo effects on migration capacity and tumor growth. BMC Med 2013; 11:139. [PMID: 23710709 PMCID: PMC3670996 DOI: 10.1186/1741-7015-11-139] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 04/19/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been promoted as an attractive option to use as cellular delivery vehicles to carry anti-tumor agents, owing to their ability to home into tumor sites and secrete cytokines. Multiple isolated populations have been described as MSCs, but despite extensive in vitro characterization, little is known about their in vivo behavior.The aim of this study was to investigate the efficacy and efficiency of different MSC lineages derived from five different sources (bone marrow, adipose tissue, epithelial endometrium, stroma endometrium, and amniotic membrane), in order to assess their adequacy for cell-based anti-tumor therapies. Our study shows the crucial importance of understanding the interaction between MSCs and tumor cells, and provides both information and a methodological approach, which could be used to develop safer and more accurate targeted therapeutic applications. METHODS We first measured the in vivo migration capacity and effect on tumor growth of the different MSCs using two imaging techniques: (i) single-photon emission computed tomography combined with computed tomography (SPECT-CT), using the human sodium iodine symporter gene (hNIS) and (ii) magnetic resonance imaging using superparamagnetic iron oxide. We then sought correlations between these parameters and expression of pluripotency-related or migration-related genes. RESULTS Our results show that migration of human bone marrow-derived MSCs was significantly reduced and slower than that obtained with the other MSCs assayed and also with human induced pluripotent stem cells (hiPSCs). The qPCR data clearly show that MSCs and hiPSCs exert a very different pluripotency pattern, which correlates with the differences observed in their engraftment capacity and with their effects on tumor growth. CONCLUSION This study reveals differences in MSC recruitment/migration toward the tumor site and the corresponding effects on tumor growth. Three observations stand out: 1) tracking of the stem cell is essential to check the safety and efficacy of cell therapies; 2) the MSC lineage to be used in the cell therapy needs to be carefully chosen to balance efficacy and safety for a particular tumor type; and 3) different pluripotency and mobility patterns can be linked to the engraftment capacity of the MSCs, and should be checked as part of the clinical characterization of the lineage.
Collapse
|
176
|
Hogan NM, Joyce MR, Murphy JM, Barry FP, O'Brien T, Kerin MJ, Dwyer RM. Impact of mesenchymal stem cell secreted PAI-1 on colon cancer cell migration and proliferation. Biochem Biophys Res Commun 2013; 435:574-9. [PMID: 23685140 DOI: 10.1016/j.bbrc.2013.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/04/2013] [Indexed: 12/25/2022]
Abstract
Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs+antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1 and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67-88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the significant functional impact of Mesenchymal Stem Cell-secreted PAI-1 on colon cancer cells.
Collapse
Affiliation(s)
- Niamh M Hogan
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | |
Collapse
|
177
|
Kéramidas M, de Fraipont F, Karageorgis A, Moisan A, Persoons V, Richard MJ, Coll JL, Rome C. The dual effect of mesenchymal stem cells on tumour growth and tumour angiogenesis. Stem Cell Res Ther 2013; 4:41. [PMID: 23628074 PMCID: PMC3706993 DOI: 10.1186/scrt195] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/11/2013] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Understanding the multiple biological functions played by human mesenchymal stem cells (hMSCs) as well as their development as therapeutics in regenerative medicine or in cancer treatment are major fields of research. Indeed, it has been established that hMSCs play a central role in the pathogenesis and progression of tumours, but their impact on tumour growth remains controversial. METHODS In this study, we investigated the influence of hMSCs on the growth of pre-established tumours. We engrafted nude mice with luciferase-positive mouse adenocarcinoma cells (TSA-Luc+) to obtain subcutaneous or lung tumours. When tumour presence was confirmed by non-invasive bioluminescence imaging, hMSCs were injected into the periphery of the SC tumours or delivered by systemic intravenous injection in mice bearing either SC tumours or lung metastasis. RESULTS Regardless of the tumour model and mode of hMSC injection, hMSC administration was always associated with decreased tumour growth due to an inhibition of tumour cell proliferation, likely resulting from deep modifications of the tumour angiogenesis. Indeed, we established that although hMSCs can induce the formation of new blood vessels in a non-tumoural cellulose sponge model in mice, they do not modify the overall amount of haemoglobin delivered into the SC tumours or lung metastasis. We observed that these tumour vessels were reduced in number but were longer. CONCLUSIONS Our results suggest that hMSCs injection decreased solid tumour growth in mice and modified tumour vasculature, which confirms hMSCs could be interesting to use for the treatment of pre-established tumours.
Collapse
|
178
|
Kong BH, Shin HD, Kim SH, Mok HS, Shim JK, Lee JH, Shin HJ, Huh YM, Kim EH, Park EK, Chang JH, Kim DS, Hong YK, Kim SH, Lee SJ, Kang SG. Increased in vivo angiogenic effect of glioma stromal mesenchymal stem-like cells on glioma cancer stem cells from patients with glioblastoma. Int J Oncol 2013; 42:1754-62. [PMID: 23483121 DOI: 10.3892/ijo.2013.1856] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/21/2013] [Indexed: 11/06/2022] Open
Abstract
The presence of glioma stromal mesenchymal stem‑like cells (GS-MSLCs) in tumors from glioma patients has been previously reported. The mechanisms through which these cells function as a part of the glioma microenvironment, however, remain incompletely understood. We investigated the biological effects of GS-MSLCs on glioma cancer stem cells (gCSCs), testing the hypothesis that GS-MSLCs alter the biological characteristics of gCSCs. GS-MSLCs and gCSCs were isolated from different glioblastoma (GBM) specimens obtained from patients. In in vitro experiments, gCSCs were cultured alone or co-cultured with GS-MSLCs, and gCSCs cell counts were compared between the two groups. In addition, two groups of orthotopic GBM xenografts in mice were created, one using gCSCs from the monoculture group and one using gCSCs isolated from the co-culture group, and tumor volume and survival were analyzed. Furthermore, in vivo proliferation, apoptosis and vessel formation were examined using immunohistochemical analyses. In vitro cell counts for gCSCs co-cultured with GS-MSLCs increased 3-fold compared to gCSCs cultured alone. In orthotopic xenograft experiments, mice injected with gCSCs isolated from the co-culture group had significantly larger tumor volume, measured on day 40 after injection, and their survival times were shorter. Immunohistochemical analysis showed increased tumor expression of CD31, indicative of enhanced microvessel formation in mice injected with gCSCs co-cultured with GS-MSLCs compared to mice injected with gCSCs cultured alone. However, proliferation (PCNA) and apoptosis (TUNEL) markers showed no significant difference between the two groups. In conclusion, GS-MSLCs may influence the biological properties of gCSCs, shifting them towards a more aggressive status; moreover, increased angiogenesis may be a critical component of this mechanism.
Collapse
Affiliation(s)
- Byung Ho Kong
- Department of Medical Science, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R. Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci 2013; 14:5338-66. [PMID: 23466882 PMCID: PMC3634447 DOI: 10.3390/ijms14035338] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 12/21/2022] Open
Abstract
Cell to cell communication is essential for the coordination and proper organization of different cell types in multicellular systems. Cells exchange information through a multitude of mechanisms such as secreted growth factors and chemokines, small molecules (peptides, ions, bioactive lipids and nucleotides), cell-cell contact and the secretion of extracellular matrix components. Over the last few years, however, a considerable amount of experimental evidence has demonstrated the occurrence of a sophisticated method of cell communication based on the release of specialized membranous nano-sized vesicles termed exosomes. Exosome biogenesis involves the endosomal compartment, the multivesicular bodies (MVB), which contain internal vesicles packed with an extraordinary set of molecules including enzymes, cytokines, nucleic acids and different bioactive compounds. In response to stimuli, MVB fuse with the plasma membrane and vesicles are released in the extracellular space where they can interact with neighboring cells and directly induce a signaling pathway or affect the cellular phenotype through the transfer of new receptors or even genetic material. This review will focus on exosomes as intercellular signaling organelles involved in a number of physiological as well as pathological processes and their potential use in clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Chiara Corrado
- Department of Biopathology and Biomedical and Forensic Biotechnologies, Section of Biology and Genetics, Università di Palermo, Palermo 90133, Italy; E-Mails: (C.C.); (S.R.); (G.D.L.)
| | - Stefania Raimondo
- Department of Biopathology and Biomedical and Forensic Biotechnologies, Section of Biology and Genetics, Università di Palermo, Palermo 90133, Italy; E-Mails: (C.C.); (S.R.); (G.D.L.)
| | | | - Francesco Ciccia
- Department of Internal and Specialistic Medicine, Section of Rheumatology, Università di Palermo, Palermo 90129, Italy; E-Mail:
| | - Giacomo De Leo
- Department of Biopathology and Biomedical and Forensic Biotechnologies, Section of Biology and Genetics, Università di Palermo, Palermo 90133, Italy; E-Mails: (C.C.); (S.R.); (G.D.L.)
| | - Riccardo Alessandro
- Department of Biopathology and Biomedical and Forensic Biotechnologies, Section of Biology and Genetics, Università di Palermo, Palermo 90133, Italy; E-Mails: (C.C.); (S.R.); (G.D.L.)
| |
Collapse
|
180
|
Falavigna A, da Costa JC. Mesenchymal autologous stem cells. World Neurosurg 2013; 83:236-50. [PMID: 23402865 DOI: 10.1016/j.wneu.2013.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 01/24/2013] [Accepted: 02/05/2013] [Indexed: 02/07/2023]
Abstract
The use of cell-based therapies for spinal cord injuries has recently gained prominence as a potential therapy or component of a combination strategy. Experimental and clinical studies have been performed using mesenchymal stem cell therapy to treat spinal cord injuries with encouraging results. However, there have been reports on the adverse effects of these stem cell-based therapies, especially in the context of tumor modulation. This article surveys the literature relevant to the potential of mesenchymal autologous stem cells for spinal cord injuries and their clinical implications.
Collapse
Affiliation(s)
- Asdrubal Falavigna
- Department of Neurosurgery, Medical School of the University of Caxias do Sul, Caxias do Sul, Brazil.
| | - Jaderson Costa da Costa
- Neurology Service and Instituto do Cérebro, Pontifical Catholic University of Rio Grande do Sul, Brazil
| |
Collapse
|
181
|
Keung EZ, Nelson PJ, Conrad C. Concise Review: Genetically Engineered Stem Cell Therapy Targeting Angiogenesis and Tumor Stroma in Gastrointestinal Malignancy. Stem Cells 2013; 31:227-35. [DOI: 10.1002/stem.1269] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/11/2012] [Indexed: 12/13/2022]
|
182
|
Yang X, Hou J, Han Z, Wang Y, Hao C, Wei L, Shi Y. One cell, multiple roles: contribution of mesenchymal stem cells to tumor development in tumor microenvironment. Cell Biosci 2013; 3:5. [PMID: 23336752 PMCID: PMC3693909 DOI: 10.1186/2045-3701-3-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/20/2012] [Indexed: 12/13/2022] Open
Abstract
The discovery of tissue reparative and immunosuppressive abilities of mesenchymal stem cells (MSCs) has drawn more attention to tumor microenvironment and its role in providing the soil for the tumor cell growth. MSCs are recruited to tumor which is referred as the never healing wound and altered by the inflammation environment, thereby helping to construct the tumor microenvironment. The environment orchestrated by MSCs and other factors can be associated with angiogenesis, immunosuppression, inhibition of apoptosis, epithelial-mesenchymal transition (EMT), survival of cancer stem cells, which all contribute to tumor growth and progression. In this review, we will discuss how MSCs are recruited to the tumor microenvironment and what effects they have on tumor progression.
Collapse
Affiliation(s)
- Xue Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medicial University, 225 Changhai Road, Shanghai 200438, China.
| | | | | | | | | | | | | |
Collapse
|
183
|
Mognetti B, La Montagna G, Perrelli MG, Pagliaro P, Penna C. Bone marrow mesenchymal stem cells increase motility of prostate cancer cells via production of stromal cell-derived factor-1α. J Cell Mol Med 2013; 17:287-92. [PMID: 23301946 PMCID: PMC3822591 DOI: 10.1111/jcmm.12010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/06/2012] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer frequently metastasizes to the bone, and the interaction between cancer cells and bone microenvironment has proven to be crucial in the establishment of new metastases. Bone marrow mesenchymal stem cells (BM-MSCs) secrete various cytokines that can regulate the behaviour of neighbouring cell. However, little is known about the role of BM-MSCs in influencing the migration and the invasion of prostate cancer cells. We hypothesize that the stromal cell-derived factor-1α released by BM-MSCs may play a pivotal role in these processes. To study the interaction between factors secreted by BM-MSCs and prostate cancer cells we established an in vitro model of transwell co-culture of BM-MSCs and prostate cancer cells DU145. Using this model, we have shown that BM-MSCs produce soluble factors which increase the motility of prostate cancer cells DU145. Neutralization of stromal cell-derived factor-1α (SDF1α) via a blocking antibody significantly limits the chemoattractive effect of bone marrow MSCs. Moreover, soluble factors produced by BM-MSCs greatly activate prosurvival kinases, namely AKT and ERK 1/2. We provide further evidence that SDF1α is involved in the interaction between prostate cancer cells and BM-MSCs. Such interaction may play an important role in the migration and the invasion of prostate cancer cells within bone.
Collapse
Affiliation(s)
- Barbara Mognetti
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy.
| | | | | | | | | |
Collapse
|
184
|
Pessina A, Coccè V, Pascucci L, Bonomi A, Cavicchini L, Sisto F, Ferrari M, Ciusani E, Crovace A, Falchetti ML, Zicari S, Caruso A, Navone S, Marfia G, Benetti A, Ceccarelli P, Parati E, Alessandri G. Mesenchymal stromal cells primed with Paclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemia-bearing mice. Br J Haematol 2013; 160:766-78. [DOI: 10.1111/bjh.12196] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/19/2012] [Indexed: 01/14/2023]
Affiliation(s)
- Augusto Pessina
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Milan Italy
| | - Valentina Coccè
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Milan Italy
| | - Luisa Pascucci
- Section of Veterinary Anatomy; Department of Biopathological Sciences and Hygiene of Animal and Food Productions; University of Perugia; Milan Italy
| | - Arianna Bonomi
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Milan Italy
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases; Fondazione IRCCS Neurological Institute Carlo Besta; Milan Italy
| | - Loredana Cavicchini
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Milan Italy
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Milan Italy
| | - Maura Ferrari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna; Brescia Italy
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Neurogenetic Medicine; Fondazione IRCCS Neurological Institute Carlo Besta; Milan Italy
| | - Antonio Crovace
- Dipartimento dell'Emergenza e dei Trapianti di Organi (D.E.T.O.), Sezione di Chirurgia Veterinaria; Università degli Studi di Bari Aldo Moro; Bari Italy
| | | | - Sonia Zicari
- Department of Microbiology; University of Brescia and Spedali Civili; Brescia Italy
| | - Arnaldo Caruso
- Department of Microbiology; University of Brescia and Spedali Civili; Brescia Italy
| | - Stefania Navone
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases; Fondazione IRCCS Neurological Institute Carlo Besta; Milan Italy
| | - Giovanni Marfia
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases; Fondazione IRCCS Neurological Institute Carlo Besta; Milan Italy
| | - Anna Benetti
- 2nd Department of Pathology; University of Brescia and Spedali Civili; Brescia Italy
| | - Piero Ceccarelli
- Section of Veterinary Anatomy; Department of Biopathological Sciences and Hygiene of Animal and Food Productions; University of Perugia; Milan Italy
| | - Eugenio Parati
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases; Fondazione IRCCS Neurological Institute Carlo Besta; Milan Italy
| | - Giulio Alessandri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases; Fondazione IRCCS Neurological Institute Carlo Besta; Milan Italy
| |
Collapse
|
185
|
Oncostatin M Modulates the Mesenchymal–Epithelial Transition of Lung Adenocarcinoma Cells by a Mesenchymal Stem Cell-Mediated Paracrine Effect. Cancer Res 2012; 72:6051-64. [DOI: 10.1158/0008-5472.can-12-1568] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
186
|
Bianchi G, Morandi F, Cilli M, Daga A, Bocelli-Tyndall C, Gambini C, Pistoia V, Raffaghello L. Close interactions between mesenchymal stem cells and neuroblastoma cell lines lead to tumor growth inhibition. PLoS One 2012; 7:e48654. [PMID: 23119082 PMCID: PMC3485378 DOI: 10.1371/journal.pone.0048654] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 09/28/2012] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted much interest in oncology since they exhibit marked tropism for the tumor microenvironment and support or suppress malignant cell growth depending on the tumor model tested. The aim of this study was to investigate the role of MSCs in the control of the growth of neuroblastoma (NB), which is the second most common solid tumor in children. In vivo experiments showed that systemically administered MSCs, under our experimental conditions, did not home to tumor sites and did not affect tumor growth or survival. However, MSCs injected intratumorally in an established subcutaneous NB model reduced tumor growth through inhibition of proliferation and induction of apoptosis of NB cells and prolonged the survival of hMSC-treated mice. The need for contact between MSCs and NB cells was further supported by in vitro experiments. In particular, MSCs were found to be attracted by NB cells, and to affect NB cell proliferation with different results depending on the cell line tested. Moreover, NB cells, after pre-incubation with hMSCs, acquired a more invasive behavior towards CXCL12 and the bone marrow, i.e., the primary site of NB metastases. In conclusion, this study demonstrates that functional cross-talk between MSCs and NB cell lines used in our experiments can occur only within short range interaction. Thus, this report does not support the clinical use of MSCs as vehicles for selective delivery of antitumor drugs at the NB site unless chemotherapy and/or radiotherapy create suitable local conditions for MSCs recruitment.
Collapse
Affiliation(s)
| | - Fabio Morandi
- Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | - Michele Cilli
- Technology Transfer, Animal Research Facility, San Martino-National Institute for Cancer Research, Genoa, Italy
| | - Antonio Daga
- Department of Translational Oncology, National Institute for Cancer Research, Genoa, Italy
| | | | - Claudio Gambini
- Laboratory of Pathology, Istituto Giannina Gaslini, Genoa, Italy
| | - Vito Pistoia
- Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | - Lizzia Raffaghello
- Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
- * E-mail:
| |
Collapse
|
187
|
Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene 2012; 32:4343-54. [PMID: 23085755 DOI: 10.1038/onc.2012.458] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 07/30/2012] [Accepted: 08/09/2012] [Indexed: 12/27/2022]
Abstract
Though the early integration of mesenchymal stem cells (MSCs) into tumor-associated stroma of cancer has been demonstrated, the functional contributions and underlying mechanisms of these cells to tumor growth and angiogenesis remain to be clarified. Using a xenograft model, human colorectal cancer cells, MSCs, and their cell mixture were introduced to a subcutaneous site of immunodeficient mice. The tumor growth rate and angiogenesis of each transplantation was then compared. We demonstrate that a variety of colorectal cancer cells, when mixed with otherwise non-tumorigenic MSCs, increase the tumor growth rate and angiogenesis more than that when mixed with carcinoma-associated fibroblasts or normal colonic fibroblasts. The secretion of interleukin-6 (IL-6) from MSCs increases the secretion of endothelin-1 (ET-1) in cancer cells, which induces the activation of Akt and ERK in endothelial cells, thereby enhancing their capacities for recruitment and angiogenesis to tumor. The IL-6/ET-1/Akt or ERK pathway of tumor-stroma interaction can be targeted by an antibody against IL-6 or Lentiviral-mediated RNAi against IL-6 in MSCs, by inhibition or knockdown of ET-1 in cancer cells, or by inhibition of ERK and Akt in host endothelial cells. These demonstrate that attempts to interrupt the interaction of MSCs and cancer cells help to abrogate angiogenesis and inhibit tumor growth in tumors formed by cancer cells admixed with MSCs. These data demonstrate that the tumor microenvironment, namely, MSCs-secreted IL-6, may enrich the proangiognic factors secreted by cancer cells to increase angiogenesis and tumor growth and that targeting this interaction may lead to novel therapeutic and preventive strategies.
Collapse
|
188
|
Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS One 2012; 7:e45590. [PMID: 23029122 PMCID: PMC3447765 DOI: 10.1371/journal.pone.0045590] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/23/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs) in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2. METHODOLOGY/PRINCIPAL FINDINGS Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation. CONCLUSION/SIGNIFICANCE These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.
Collapse
|
189
|
MSC and Tumors: Homing, Differentiation, and Secretion Influence Therapeutic Potential. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 130:209-66. [PMID: 22990585 DOI: 10.1007/10_2012_150] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
: Mesenchymal stromal/stem cells (MSC) are adult multipotent progenitors with fibroblast-like morphology able to differentiate into adipocytic, osteogenic, chondrogenic, and myogenic lineages. Due to these properties, MSC have been studied and introduced as therapeutics in regenerative medicine. Preliminary studies have also shown a possible involvement of MSC as precursors of cellular elements within tumor microenvironments, in particular tumor-associated fibroblasts (TAF). Among a number of different possible origins, TAF may originate from a pool of circulating progenitors from bone marrow or adipose tissue-derived MSC. There is growing evidence to corroborate that cells immunophenotypically defined as MSC are able to reside as TAF influencing the tumor microenvironment in a potentially bi-phasic and obscure manner: either promoting or inhibiting growth depending on tumor context and MSC sources. Here we focus on relationships between the tumor microenvironment, cancer cells, and MSC, analyzing their diverse ability to influence neoplastic development. Associated activities include MSC homing driven by the secretion of various mediators, differentiation towards TAF phenotypes, and reciprocal interactions with the tumor cells. These are reviewed here with the aim of understanding the biological functions of MSC that can be exploited for innovative cancer therapy.
Collapse
|
190
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|
191
|
The pro-metastatic role of bone marrow-derived cells: a focus on MSCs and regulatory T cells. EMBO Rep 2012; 13:412-22. [PMID: 22473297 DOI: 10.1038/embor.2012.41] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/05/2012] [Indexed: 12/15/2022] Open
Abstract
Several bone marrow-derived cells have been shown to promote tumour growth and progression. These cells can home to the primary tumour and become active components of the tumour microenvironment. Recent studies have also identified bone marrow-derived cells—such as mesenchymal stem cells and regulatory T cells—as contributors to cancer metastasis. The innate versatility of these cells provides diverse functional aid to promote malignancy, ranging from structural support to signal-mediated suppression of the host immune response. Here, we review the role of mesenchymal stem cells and regulatory T cells in cancer metastasis. A better understanding of the bipolar nature of these bone marrow-derived cells in physiological and malignant contexts could pave the way for new therapeutics against metastatic disease.
Collapse
|
192
|
Do EK, Kim YM, Heo SC, Kwon YW, Shin SH, Suh DS, Kim KH, Yoon MS, Kim JH. Lysophosphatidic acid-induced ADAM12 expression mediates human adipose tissue-derived mesenchymal stem cell-stimulated tumor growth. Int J Biochem Cell Biol 2012; 44:2069-76. [PMID: 22903068 DOI: 10.1016/j.biocel.2012.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/13/2012] [Accepted: 08/05/2012] [Indexed: 02/07/2023]
Abstract
Lysophosphatidic acid (LPA) is involved in mesenchymal stem cell-stimulated tumor growth in vivo. However, the molecular mechanism by which mesenchymal stem cells promote tumorigenesis remains elusive. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells (A549 CM) induced the expression of ADAM12, a disintegrin and metalloproteases family member, in human adipose tissue-derived mesenchymal stem cells (hASCs). A549 CM-stimulated ADAM12 expression was abrogated by pretreatment of hASCs with the LPA receptor 1 inhibitor Ki16425 or by small interfering RNA-mediated silencing of LPA receptor 1, suggesting a key role for the LPA-LPA receptor 1 signaling axis in A549 CM-stimulated ADAM12 expression. Silencing of ADAM12 expression using small interfering RNA or short hairpin RNA abrogated LPA-induced expression of both α-smooth muscle actin, a marker of carcinoma-associated fibroblasts, and ADAM12 in hASCs. Using a xenograft transplantation model of A549 cells, we demonstrated that silencing of ADAM12 inhibited the hASC-stimulated in vivo growth of A549 xenograft tumors and the differentiation of transplanted hASCs to α-smooth muscle actin-positive carcinoma-associated fibroblasts. LPA-conditioned medium from hASCs induced the adhesion of A549 cells and silencing of ADAM12 inhibited LPA-induced expression of extracellular matrix proteins, periostin and βig-h3, in hASCs and LPA-conditioned medium-stimulated adhesion of A549 cells. These results suggest a pivotal role for LPA-stimulated ADAM12 expression in tumor growth and the differentiation of hASCs to carcinoma-associated fibroblasts expressing α-smooth muscle actin, periostin, and βig-h3.
Collapse
Affiliation(s)
- Eun Kyoung Do
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Stroma-directed imatinib therapy impairs the tumor-promoting effect of bone marrow-derived mesenchymal stem cells in an orthotopic transplantation model of colon cancer. Int J Cancer 2012; 132:813-23. [DOI: 10.1002/ijc.27735] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 06/28/2012] [Indexed: 12/18/2022]
|
194
|
Hogan NM, Dwyer RM, Joyce MR, Kerin MJ. Mesenchymal stem cells in the colorectal tumor microenvironment: recent progress and implications. Int J Cancer 2012; 131:1-7. [PMID: 22290082 DOI: 10.1002/ijc.27458] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/20/2011] [Accepted: 01/12/2012] [Indexed: 01/06/2025]
Abstract
Mesenchymal stem cells (MSCs) are nonhematopoietic multipotent adult stem cells. They have been shown to have a natural tropism for many tumors types, including colorectal, and are capable of escaping host immune surveillance. MSCs are known to engraft at tumors and integrate into their architecture, potentially as carcinoma-associated fibroblasts. In contrast with other malignancies, our understanding of the interactions between colorectal cancer cells and MSCs remains limited. Considering the established importance of inflammation in the colorectal cancer primary tumor microenvironment and the role of stromal cells in this process, there is a potential wealth of information to be gleaned from further investigation of interactions between these cell populations. Epithelial-mesenchymal transition is central to colorectal cancer progression and MSCs have also been implicated in this process. This review explores the current knowledge (both in vitro and in vivo) of interactions between colorectal cancer cells and MSCs. It highlights potential effects of cell source, number and ratio on outcome of in vivo studies and explores strategies to more accurately explore their role in the primary tumor microenvironment. As our understanding of the underlying molecular processes in colorectal cancer develops, elucidation of these interactions will be central to development of novel therapeutic strategies for this prevalent disease.
Collapse
Affiliation(s)
- Niamh M Hogan
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
195
|
Bao Q, Zhao Y, Niess H, Conrad C, Schwarz B, Jauch KW, Huss R, Nelson PJ, Bruns CJ. Mesenchymal stem cell-based tumor-targeted gene therapy in gastrointestinal cancer. Stem Cells Dev 2012; 21:2355-63. [PMID: 22530882 DOI: 10.1089/scd.2012.0060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associated with the utility of MSC-based therapy such as biosafety, immunoprivilege, transfection methods, and distribution in the host.
Collapse
Affiliation(s)
- Qi Bao
- Department of Surgery, University of Munich, Campus Großhadern, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Xu S, Menu E, De Becker A, Van Camp B, Vanderkerken K, Van Riet I. Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells 2012; 30:266-79. [PMID: 22102554 DOI: 10.1002/stem.787] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells that are predominantly localized in the bone marrow (BM). Mesenchymal stromal cells (MSCs) give rise to most BM stromal cells that interact with MM cells. However, the direct involvement of MSCs in the pathophysiology of MM has not been well addressed. In this study, in vitro and in vivo migration assays revealed that MSCs have tropism toward MM cells, and CCL25 was identified as a major MM cell-produced chemoattractant for MSCs. By coculture experiments, we found that MSCs favor the proliferation of stroma-dependent MM cells through soluble factors and cell to cell contact, which was confirmed by intrafemoral coengraftment experiments. We also demonstrated that MSCs protected MM cells against spontaneous and Bortezomib-induced apoptosis. The tumor-promoting effect of MSCs correlated with their capacity to enhance AKT and ERK activities in MM cells, accompanied with increased expression of CyclinD2, CDK4, and Bcl-XL and decreased cleaved caspase-3 and poly(ADP-ribose) polymerase expression. In turn, MM cells upregulated interleukin-6 (IL-6), IL-10, insulin growth factor-1, vascular endothelial growth factor, and dickkopf homolog 1 expression in MSCs. Finally, infusion of in vitro-expanded murine MSCs in 5T33MM mice resulted in a significantly shorter survival. MSC infusion is a promising way to support hematopoietic recovery and to control graft versus host disease in patients after allogeneic hematopoietic stem cell transplantation. However, our data suggest that MSC-based cytotherapy has a potential risk for MM disease progression or relapse and should be considered with caution in MM patients.
Collapse
Affiliation(s)
- Song Xu
- Stem Cell Laboratory, Division of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
197
|
Identification of cancer stem cells provides novel tumor models for drug discovery. Front Med 2012; 6:112-21. [PMID: 22573222 DOI: 10.1007/s11684-012-0199-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/30/2012] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) have received considerable attention from the research community since they were first reported in human acute myeloid leukemia 15 years ago. Accumulating evidence suggests that CSCs are responsible for tumor initiation and progression, drug resistance, and metastasis in both liquid and solid tumors. These findings lead to the development of novel compounds targeting CSC populations that is becoming increasingly important for eradicating CSCs in heterogeneous tumor masses and to cure the cancer. Since 2003, we have participated in CSC studies and encountered crucial early events in the field. This article reviews the history of CSC biology, clarifies the term and its definition, and further addresses the issue of how to utilize CSCs in therapeutic target discovery and drug development based on our substantial experience.
Collapse
|
198
|
Cuiffo BG, Karnoub AE. Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh Migr 2012; 6:220-30. [PMID: 22863739 DOI: 10.4161/cam.20875] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that participate in the structural and functional maintenance of connective tissues under normal homeostasis. They also act as trophic mediators during tissue repair, generating bioactive molecules that help in tissue regeneration following injury. MSCs serve comparable roles in cases of malignancy and are becoming increasingly appreciated as critical components of the tumor microenvironment. MSCs home to developing tumors with great affinity, where they exacerbate cancer cell proliferation, motility, invasion and metastasis, foster angiogenesis, promote tumor desmoplasia and suppress anti-tumor immune responses. These multifaceted roles emerge as a product of reciprocal interactions occurring between MSCs and cancer cells and serve to alter the tumor milieu, setting into motion a dynamic co-evolution of both tumor and stromal tissues that favors tumor progression. Here, we summarize our current knowledge about the involvement of MSCs in cancer pathogenesis and review accumulating evidence that have placed them at the center of the pro-malignant tumor stroma.
Collapse
Affiliation(s)
- Benjamin G Cuiffo
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
199
|
Hsiao WC, Sung SY, Liao CH, Wu HC, Hsieh CL. Vitamin D3-inducible mesenchymal stem cell-based delivery of conditionally replicating adenoviruses effectively targets renal cell carcinoma and inhibits tumor growth. Mol Pharm 2012; 9:1396-408. [PMID: 22480282 DOI: 10.1021/mp200649g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell-based carriers were recently exploited as a tumor-targeting tool to improve systemic delivery of oncolytic viruses for cancer therapy. However, the slow clearance of carrier cells from normal organs indicates the need for a controllable system which allows viral delivery only when the carrier cells reach the tumor site. In this study, we sought to develop a pharmaceutically inducible cell-based oncolytic adenovirus delivery strategy for effective targeting and treatment of renal cell carcinoma (RCC), which is one of the most malignant tumor types with an unfavorable prognosis. Herein, we demonstrated the intrinsic tumor homing property of human bone marrow-derived mesenchymal stem cells (hMSCs) to specifically localize primary and metastatic RCC tumors after systemic administration in a clinically relevant orthotopic animal model. The platelet derived growth factor AA (PDGF-AA) secreted from RCC was identified as a chemoattractant responsible for the recruitment of hMSCs. Like endogenous osteocalcin whose barely detectable level of expression was dramatically induced by vitamin D(3), the silenced replication of human osteocalcin promoter-directed Ad-hOC-E1 oncolytic adenoviruses loaded in hMSCs was rapidly activated, and the released oncolytic adenoviruses sequentially killed cocultured RCC cells upon vitamin D(3) exposure. Moreover, the systemic treatment of RCC tumor-bearing mice with hMSC cell carriers loaded with Ad-hOC-E1 had very limited effects on tumor growth, but the loaded hMSCs combined with vitamin D(3) treatment induced effective viral delivery to RCC tumors and significant tumor regression. Therapeutic effects of hMSC-based Ad-hOC-E1 delivery were confirmed to be significantly greater than those of injection of carrier-free Ad-hOC-E1. Our results presented the first preclinical demonstration of a novel controllable cell-based gene delivery strategy that combines the advantages of tumor tropism and vitamin D(3)-regulatable human osteocalcin promoter-directed gene expression of hMSCs to improve oncolytic virotherapy for advanced RCC.
Collapse
Affiliation(s)
- Wan-Chi Hsiao
- Graduate Institute of Cancer Biology, China Medical University, Taichung 40447, Taiwan
| | | | | | | | | |
Collapse
|
200
|
Mesenchymal stromal cells orchestrate follicular lymphoma cell niche through the CCL2-dependent recruitment and polarization of monocytes. Blood 2012; 119:2556-67. [PMID: 22289889 DOI: 10.1182/blood-2011-08-370908] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence indicates that infiltrating stromal cells contribute directly and indirectly to tumor growth in a wide range of cancers. In follicular lymphoma (FL), malignant B cells are found admixed with heterogeneous lymphoid-like stromal cells within invaded lymph nodes and BM. In addition, mesenchymal stromal cells (MSCs) support in vitro FL B-cell survival, in particular after their engagement toward lymphoid differentiation. We show here that BM-MSCs obtained from patients with FL (FL-MSCs) display a specific gene expression profile compared with MSCs obtained from healthy age-matched donors (HD-MSCs). This FL-MSC signature is significantly enriched for genes associated with a lymphoid-like commitment. Interestingly, CCL2 could be detected at a high level within the FL-cell niche, is up-regulated in HD-MSCs by coculture with malignant B cells, and is overexpressed by FL-MSCs, in agreement with their capacity to recruit monocytes more efficiently than HD-MSCs. Moreover, FL-MSCs and macrophages cooperate to sustain malignant B-cell growth, whereas FL-MSCs drive monocyte differentiation toward a proangiogenic and lipopolysaccharide-unresponsive phenotype close to that of tumor-associated macrophages. Altogether, these results highlight the complex role of FL stromal cells that promote direct tumor B-cell growth and orchestrate FL-cell niche, thus emerging as a potential therapeutic target in this disease.
Collapse
|