151
|
Zhang L, Wang W, Xie B, Sun P, Wei S, Wu H, Zhang C, Li J, Li Z, Bai H. PLGA Nanoparticle Rapamycin- or Necrostatin-1-Coated Sutures Inhibit Inflammatory Reactions after Arterial Closure in Rats. ACS APPLIED BIO MATERIALS 2022; 5:1501-1507. [PMID: 35297594 DOI: 10.1021/acsabm.1c01256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: The inflammatory reaction of sutures and oozing after arterial closure depends on the suture material and the amount of oozing surrounding the sutures. Anti-inflammation coatings have been proven to be an effective strategy to decrease this reaction. The aim of this study was to establish an arterial closure oozing model in rats and to test the effect of poly (lactic-co-glycolic acid) (PLGA) nanoparticle (NP) rapamycin- or necrostatin-1(NEC-1)-coated sutures on the inflammatory reaction after arterial closure. Methods and Materials: A 10 mm arteriotomy was carried out on the carotid artery of Sprague-Dawley rats and closed using 11-0 sutures. PLGA NP-rapamycin and NEC-1 were made. The 11/0 nylon sutures were coated with PLGA NP-rapamycin and NEC-1. Sutures were examined by scanning electron microscopy, hemolysis test, and cumulative release. The carotid arteriotomy was closed using uncoated PLGA NP-rapamycin- and NP-NEC-1-coated sutures. The carotid artery was harvested on day 7. Tissues were examined by histology and immunohistochemistry. Results: There were severe inflammatory reactions in the oozing arteries compared to the normal healing arteries (P = 0.0192). PLGA NP-rapamycin- and NEC -1-coated sutures reduced foreign body reaction compared to the uncoated sutures. There were significantly smaller number of CD3 (P = 0.0068), CD45 (P = 0.0300), and CD68 (P = 0.0011) cells in the PLGA NP-rapamycin- and NP-NEC-1-coated groups compared to the uncoated group. There was a smaller number of p-mTOR (P = 0.0198)-positive cells in the PLGA NP-rapamycin-coated group compared to the uncoated group. There was a smaller number of TNFα (P = 0.0198)-positive cells in the PLGA NP-NEC-1-coated group compared to the uncoated group. Conclusions: In this rat carotid artery oozing model, PLGA NP-rapamycin- or NP-NEC-1-coated sutures can inhibit inflammatory reaction and foreign body reaction. Although this was a small rodent animal experiment, this coated suture may have a potential clinical application in the future.
Collapse
Affiliation(s)
- Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China
| | - Wang Wang
- Department of Physiology, Medical School of Zhengzhou University, Henan 450001, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China
| | - Boao Xie
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Haoliang Wu
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Cong Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Jingan Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Henan 450001, China
| | - Zhuo Li
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China.,Department of Neurology, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China
| |
Collapse
|
152
|
Gupta A, Burgess JK, Borghuis T, de Vries MP, Kuipers J, Permentier HP, Bischoff R, Slebos DJ, Pouwels SD. Identification of damage associated molecular patterns and extracellular matrix proteins as major constituents of the surface proteome of lung implantable silicone/nitinol devices. Acta Biomater 2022; 141:209-218. [PMID: 35038586 DOI: 10.1016/j.actbio.2022.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 11/15/2022]
Abstract
Lung implantable devices have been widely adopted as mechanical interventions for a wide variety of pulmonary pathologies. Despite successful initial treatment, long-term efficacy can often be impacted by fibrotic or granulation tissue formation at the implant sites. This study aimed to explore the lung-device interface by identifying the adhered proteome on lung devices explanted from patients with severe emphysema. In this study, scanning electron microscopy is used to visualize the adhesion of cells and proteins to silicone and nitinol surfaces of explanted endobronchial valves. By applying high-resolution mass-spectrometry, the surface proteome of eight explanted valves is characterized, identifying 263 unique protein species to be mutually adsorbed on the valves. This subset is subjected to gene enrichment analysis, matched with known databases and further validated using immunohistochemistry. Enrichment analyses reveal dominant clusters of functionally-related ontology terms associated with coagulation, pattern recognition receptor signaling, immune responses, cytoskeleton organization, cell adhesion and migration. Matching results show that extracellular matrix proteins and damage-associated molecular patterns are cardinal in the formation of the surface proteome. This is the first study investigating the composition of the adhered proteome on explanted lung devices, setting the groundwork for hypothesis generation and further exploration. STATEMENT OF SIGNIFICANCE: This is the first study investigating the composition of the adhered proteome on explanted lung devices. Lung implantable devices have been widely adopted as mechanical interventions for pulmonary pathologies. Despite successful initial treatment, long-term efficacy can often be impacted by fibrotic or granulation tissue formation around the implant sites. We identified the adhered proteome on explanted lung devices using several techniques. We identified 263 unique protein species to be mutually adsorbed on explanted lung devices. Pathway analyses revealed that these proteins are associated with coagulation, pattern recognition receptor signaling, immune responses, cytoskeleton organization, cell adhesion and migration. Furthermore, we identified that especially extracellular matrix proteins and damage-associated molecular patterns were cardinal in the formation of the surface proteome.
Collapse
Affiliation(s)
- Akash Gupta
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, Groningen, the Netherlands
| | - Marcel P de Vries
- Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Jeroen Kuipers
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hjalmar P Permentier
- Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Dirk-Jan Slebos
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Simon D Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands.
| |
Collapse
|
153
|
Atiyeh B, Emsieh S. Effects of Silicone Breast Implants on Human Cell Types In Vitro: A Closer Look on Host and Implant. Aesthetic Plast Surg 2022; 46:2609-2611. [PMID: 35267065 DOI: 10.1007/s00266-022-02821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 11/01/2022]
|
154
|
Liu W, Xiong S, Du J, Song Y, Wang T, Zhang Y, Dong C, Huang Z, He Q, Yu Z, Ma X. Deciphering Key Foreign Body Reaction-Related Transcription Factors and Genes Through Transcriptome Analysis. Front Mol Biosci 2022; 9:843391. [PMID: 35350715 PMCID: PMC8958039 DOI: 10.3389/fmolb.2022.843391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Silicone implants are widely used in the field of plastic surgery for wound repair and cosmetic augmentation. However, molecular mechanisms and signaling pathways underlying the foreign body reaction (FBR) of a host tissue to the silicone require further elucidation. The purpose of this study was to identify key FBR-related transcription factors (TFs) and genes through transcriptome analysis.Methods: We used a rat model with a subcutaneous silicone implant in the scalp and performed high throughput sequencing to determine the transcriptional profiles involved in the FBR. The function was analyzed by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway-enrichment analysis. A protein-protein interaction (PPI) network of differentially expressed mRNAs (DEmRNAs) was constructed to identify the hub genes and key modules and to determine the regulatory TF-mRNA relationships. In addition, the hub gene and transcript expression levels were determined by Quantitative Reverse Transcription polymerase Chain Reaction (qRT-PCR). Myofibroblasts differentiation and macrophage recruitment were identified by immunofluorescence. The protein expression of MMP9 was detected by immunohistochemistry and Western blot.Results: We identified ten hub genes (Fos, Spp1, Fn1, Ctgf, Tlr2, Itgb2, Itgax, Ccl2, Mmp9, and Serpine1) and 3 TFs (FOS, IRF4, and SPI1) that may be crucial (particularly FOS) for the FBR. Furthermore, we identified multiple differentially expressed genes involved in several important biological processes, including leukocyte migration, cytokine‒ cytokine receptor interaction, phagocytosis, extracellular matrix (ECM) organization, and angiogenesis. We also identified potentially significant signaling pathways, including cytokine‒cytokine receptor interaction, phagosome, ECM‒receptor interaction, complement and coagulation cascades, the IL-17 signaling pathway, and the PI3K‒Akt signaling pathway. In addition, qRT-PCR confirmed the expression patterns of the TFs and hub genes, Western blot and immunohistochemistry validated the expression patterns of MMP9.Conclusion: We generated a comprehensive overview of the gene networks underlying the FBR evoked by silicone implants. Moreover, we identified specific molecular and signaling pathways that may perform key functions in the silicone implant-induced FBR. Our results provide significant insights into the molecular mechanisms underlying silicone-induced FBR and determine novel therapeutic targets to reduce complications related to silicone implantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhou Yu
- *Correspondence: Zhou Yu, ; Xianjie Ma,
| | | |
Collapse
|
155
|
Kyriakides TR, Kim HJ, Zheng C, Harkins L, Tao W, Deschenes E. Foreign body response to synthetic polymer biomaterials and the role of adaptive immunity. Biomed Mater 2022; 17:10.1088/1748-605X/ac5574. [PMID: 35168213 PMCID: PMC9159526 DOI: 10.1088/1748-605x/ac5574] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Implanted biomaterials elicit a series of distinct immune and repair-like responses that are collectively known as the foreign body reaction (FBR). These include processes involving innate immune inflammatory cells and wound repair cells that contribute to the encapsulation of biomaterials with a dense collagenous and largely avascular capsule. Numerous studies have shown that the early phase is dominated by macrophages that fuse to form foreign body giant cells that are considered a hallmark of the FBR. With the advent of more precise cell characterization techniques, specific macrophage subsets have been identified and linked to more or less favorable outcomes. Moreover, studies comparing synthetic- and natural-based polymer biomaterials have allowed the identification of macrophage subtypes that distinguish between fibrotic and regenerative responses. More recently, cells associated with adaptive immunity have been shown to participate in the FBR to synthetic polymers. This suggests the existence of cross-talk between innate and adaptive immune cells that depends on the nature of the implants. However, the exact participation of adaptive immune cells, such as T and B cells, remains unclear. In fact, contradictory studies suggest either the independence or dependence of the FBR on these cells. Here, we review the evidence for the involvement of adaptive immunity in the FBR to synthetic polymers with a focus on cellular and molecular components. In addition, we examine the possibility that such biomaterials induce specific antibody responses resulting in the engagement of adaptive immune cells.
Collapse
Affiliation(s)
- Themis R. Kyriakides
- Department of Biomedical Engineering, Yale University. New Haven CT 06405,Department of Pathology, Yale University. New Haven CT 06405,Vascular Biology and Therapeutics Program. Yale University. New Haven CT 06405
| | - Hyun-Je Kim
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Christy Zheng
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Lauren Harkins
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Wanyun Tao
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Emily Deschenes
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| |
Collapse
|
156
|
Griveau L, Lafont M, le Goff H, Drouglazet C, Robbiani B, Berthier A, Sigaudo-Roussel D, Latif N, Visage CL, Gache V, Debret R, Weiss P, Sohier J. Design and characterization of an in vivo injectable hydrogel with effervescently generated porosity for regenerative medicine applications. Acta Biomater 2022; 140:324-337. [PMID: 34843951 DOI: 10.1016/j.actbio.2021.11.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022]
Abstract
Injectable hydrogels that polymerize directly in vivo hold significant promises in clinical settings to support the repair of damaged or failing tissues. Existing systems that allow cellular and tissue ingrowth after injection are limited because of deficient porosity and lack of oxygen and nutrient diffusion inside the hydrogels. Here is reported for the first time an in vivo injectable hydrogel in which the porosity does not pre-exist but is formed concomitantly with its in situ injection by a controlled effervescent reaction. The hydrogel tailorable crosslinking, through the reaction of polyethylene glycol with lysine dendrimers, allows the mixing and injection of precursor solutions from a dual-chamber syringe while entrapping effervescently generated CO2 bubbles to form highly interconnected porous networks. The resulting structures allow preserving modular mechanical properties (from 12.7 ± 0.9 to 29.9 ± 1.7 kPa) while being cytocompatible and conducive to swift cellular attachment, proliferation, in-depth infiltration and extracellular matrix deposition. Most importantly, the subcutaneously injected porous hydrogels are biocompatible, undergo tissue remodeling and support extensive neovascularisation, which is of significant advantage for the clinical repair of damaged tissues. Thus, the porosity and injectability of the described effervescent hydrogels, together with their biocompatibility and versatility of mechanical properties, open broad perspectives for various regenerative medicine or material applications, since effervescence could be combined with a variety of other systems of swift crosslinking. STATEMENT OF SIGNIFICANCE: A major challenge in hydrogel design is the synthesis of injectable formulations allowing easy handling and dispensing in the site of interest. However, the lack of adequate porosity inside hydrogels prevent cellular entry and, therefore, vascularization and tissue ingrowth, limiting the regenerative potential of a vast majority of injectable hydrogels. We describe here the development of an acellular hydrogel that can be injected directly in situ while allowing the simultaneous formation of porosity. Such hydrogel would facilitate handling through injection while providing a porous structure supporting vascularization and tissue ingrowth.
Collapse
Affiliation(s)
- Louise Griveau
- Laboratory for tissue biology and therapeutic engineering (LBTI), CNRS, Université de Lyon, UMR 5305, 7 Passage du Vercors, Lyon cedex 7 69367, France
| | - Marianne Lafont
- Université de Nantes, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes F-44000, France
| | - Héloïse le Goff
- Université de Lyon, INSA-Lyon, MATEIS, UMR CNRS 5510-7 avenue Jean Capelle, F-69621, Villeurbanne, France
| | - Clémence Drouglazet
- Université de Lyon, INSA-Lyon, MATEIS, UMR CNRS 5510-7 avenue Jean Capelle, F-69621, Villeurbanne, France
| | - Baptiste Robbiani
- Université de Lyon, INSA-Lyon, MATEIS, UMR CNRS 5510-7 avenue Jean Capelle, F-69621, Villeurbanne, France
| | - Aurore Berthier
- Laboratory for tissue biology and therapeutic engineering (LBTI), CNRS, Université de Lyon, UMR 5305, 7 Passage du Vercors, Lyon cedex 7 69367, France
| | - Dominique Sigaudo-Roussel
- Laboratory for tissue biology and therapeutic engineering (LBTI), CNRS, Université de Lyon, UMR 5305, 7 Passage du Vercors, Lyon cedex 7 69367, France
| | - Najma Latif
- Imperial College London, Heart Science Centre, Harefield Hospital, Harefield, Middlesex UB9 6JH, UK
| | - Catherine Le Visage
- Université de Nantes, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes F-44000, France
| | - Vincent Gache
- Institut NeuroMyogène (INMG), Muscle Nuclear and Cytoskeleton Architecture (MNCA), CNRS UMR 5310-INSERM U1217-UCBL1-Université de Lyon, 8 avenue Rockefeller, Lyon 69008. France
| | - Romain Debret
- Laboratory for tissue biology and therapeutic engineering (LBTI), CNRS, Université de Lyon, UMR 5305, 7 Passage du Vercors, Lyon cedex 7 69367, France
| | - Pierre Weiss
- Université de Nantes, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes F-44000, France
| | - Jérôme Sohier
- Laboratory for tissue biology and therapeutic engineering (LBTI), CNRS, Université de Lyon, UMR 5305, 7 Passage du Vercors, Lyon cedex 7 69367, France.
| |
Collapse
|
157
|
Effect of naturally derived surgical hemostatic materials on the proliferation of A549 human lung adenocarcinoma cells. Mater Today Bio 2022; 14:100233. [PMID: 35280330 PMCID: PMC8913356 DOI: 10.1016/j.mtbio.2022.100233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022]
Abstract
Hemostatic materials are generally applied in surgical operations for cancer, but their effects on the growth and recurrence of tumors are unclear. Herein, three commonly used naturally derived hemostatic materials, gelatin sponge, Surgicel (oxidized regenerated cellulose), and biopaper (mixture of sodium hyaluronate and carboxymethyl chitosan), were cocultured with A549 human lung adenocarcinoma cells in vitro. Furthermore, the performance of hemostatic materials and the tumorigenicity of the materials with A549 cells were observed after subcutaneous implantation into BALB/c mice. The in vitro results showed that biopaper was dissolved quickly, with the highest cell numbers at 2 and 4 days of culture. Gelatin sponges retained their structure and elicited the least cell infiltration during the 2- to 10-day culture. Surgicel partially dissolved and supported cell growth over time. The in vivo results showed that biopaper degraded rapidly and elicited an acute Th1 lymphocyte reaction at 3 days after implantation, which was decreased at 7 days after implantation. The gelatin sponge resisted degradation and evoked a hybrid M1/M2 macrophage reaction at 7–21 days after implantation, and a protumor M2d subset was confirmed. Surgicel resisted early degradation and caused obvious antitumor M2a macrophage reactions. Mice subjected to subcutaneous implantation of A549 cells and hemostatic materials in the gelatin sponge group had the largest tumor volumes and the shortest overall survival (OS), while the Surgicel and the biopaper group had the smallest volumes and the longest OS. Therefore, although gelatin sponges exhibited cytotoxicity to A549 cells in vitro, they promoted the growth of A549 cells in vivo, which was related to chronic M2d macrophage reaction. Surgicel and biopaper inhibited A549 cell growth in vivo, which is associated with chronic M2a macrophage reaction or acute Th1 lymphocyte reaction. The gelatin sponge, Surgicel and biopaper had different effects on A549 cell growth and proliferation. Biopaper degraded rapidly in vivo and elicited an antitumor Th1 lymphocyte reaction at acute inflammatory phase. The gelatin sponge resisted degradation and evoked a protumor M2d macrophage reactions. Surgicel resisted early degradation and caused obvious antitumor M2a macrophage reactions.
Collapse
|
158
|
Kovacevic B, Jones M, Ionescu C, Walker D, Wagle S, Chester J, Foster T, Brown D, Mikov M, Mooranian A, Al-Salami H. The emerging role of bile acids as critical components in nanotechnology and bioengineering: Pharmacology, formulation optimizers and hydrogel-biomaterial applications. Biomaterials 2022; 283:121459. [PMID: 35303546 DOI: 10.1016/j.biomaterials.2022.121459] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
|
159
|
Zheng N, Fitzpatrick V, Cheng R, Shi L, Kaplan DL, Yang C. Photoacoustic Carbon Nanotubes Embedded Silk Scaffolds for Neural Stimulation and Regeneration. ACS NANO 2022; 16:2292-2305. [PMID: 35098714 DOI: 10.1021/acsnano.1c08491] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Neural interfaces using biocompatible scaffolds provide crucial properties, such as cell adhesion, structural support, and mass transport, for the functional repair of nerve injuries and neurodegenerative diseases. Neural stimulation has also been found to be effective in promoting neural regeneration. This work provides a generalized strategy to integrate photoacoustic (PA) neural stimulation into hydrogel scaffolds using a nanocomposite hydrogel approach. Specifically, polyethylene glycol (PEG)-functionalized carbon nanotubes (CNT), highly efficient photoacoustic agents, are embedded into silk fibroin to form biocompatible and soft photoacoustic materials. We show that these photoacoustic functional scaffolds enable nongenetic activation of neurons with a spatial precision defined by the area of light illumination, promoting neuron regeneration. These CNT/silk scaffolds offered reliable and repeatable photoacoustic neural stimulation, and 94% of photoacoustic-stimulated neurons exhibit a fluorescence change larger than 10% in calcium imaging in the light-illuminated area. The on-demand photoacoustic stimulation increased neurite outgrowth by 1.74-fold in a rat dorsal root ganglion model, when compared to the unstimulated group. We also confirmed that promoted neurite outgrowth by photoacoustic stimulation is associated with an increased concentration of neurotrophic factor (BDNF). As a multifunctional neural scaffold, CNT/silk scaffolds demonstrated nongenetic PA neural stimulation functions and promoted neurite outgrowth, providing an additional method for nonpharmacological neural regeneration.
Collapse
Affiliation(s)
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | | | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | | |
Collapse
|
160
|
Buchaim DV, Andreo JC, Pomini KT, Barraviera B, Ferreira RS, Duarte MAH, Alcalde MP, Reis CHB, Teixeira DDB, Bueno CRDS, Detregiachi CRP, Araujo AC, Buchaim RL. A biocomplex to repair experimental critical size defects associated with photobiomodulation therapy. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210056. [PMID: 35261617 PMCID: PMC8863337 DOI: 10.1590/1678-9199-jvatitd-2021-0056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/16/2021] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND The association of scaffolds to repair extensive bone defects can contribute to their evolution and morphophysiological recomposition. The incorporation of particulate biomaterials into three-dimensional fibrin bioproducts together with photobiomodulation therapy (PBM) has potential and can improve regenerative medicine procedures. The objective of this experiment was to evaluate the effects of PBM therapy on critical size defects filled with xenogenic bone substitute associated with fibrin biopolymer. METHODS A critical defect of 8 mm was performed in 36 Wistar male adult rats that were divided into four groups. Groups BC and BC-PBM were defined as controls with defects filled by a clot (without or with PBM, respectively) and groups XS and XS-PBM that comprised those filled with biocomplex Bio-OssTM in association with fibrin biopolymer. PBM was applied immediately after the surgery and three times a week every other day, with the parameters: wavelength of 830 nm, energy density 6.2 J/cm2, output power 30 mW, beam area of 0.116 cm2, irradiance 0.258,62 W/cm2, energy/point 0.72 J, total energy 2.88 J. Fourteen and 42 days after the surgery, animals were euthanatized and subjected to microtomography, qualitative and quantitative histological analysis. RESULTS The BC-PBM and XS-PBM groups had a similar evolution in the tissue repair process, with a higher density of the volume of new formed bone in relation to the groups without PBM (p = 0.04086; p = 0.07093, respectively). Intense vascular proliferation and bone deposition around the biomaterial particles were observed in the animals of the groups in which biocomplex was applied (XS and XS-PBM). CONCLUSION PBM therapy allowed an improvement in the formation of new bone, with a more organized deposition of collagen fibers in the defect area. Biocomplex favored the insertion and permanence of the particulate material in bone defects, creating a favorable microenvironment for accelerate repair process.
Collapse
Affiliation(s)
- Daniela Vieira Buchaim
- Graduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, SP, Brazil
- Medical School, University Center of Adamantina (UniFAI), Adamantina, SP, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | - Karina Torres Pomini
- Graduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, SP, Brazil
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
- Graduate Program in Clinical Research, Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
- Graduate Program in Clinical Research, Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
- Graduate Program in Applied Dental Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | | | - Carlos Henrique Bertoni Reis
- Graduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, SP, Brazil
| | - Daniel de Bortoli Teixeira
- Graduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, SP, Brazil
| | - Cleuber Rodrigo de Souza Bueno
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | | | - Adriano Cressoni Araujo
- Graduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília, SP, Brazil
| | - Rogério Leone Buchaim
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
- Graduate Program in Applied Dental Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| |
Collapse
|
161
|
Chagas ADLD, de Oliveira LP, Cruz MV, de Melo RM, Miguel MP, Fernandes KF, de Menezes LB. Polysaccharide-Based Membrane Biocompatibility Study of Anacardium occidentale L. and Polyvinyl Alcohol after Subcutaneous Implant in Rats. MATERIALS 2022; 15:ma15041296. [PMID: 35207837 PMCID: PMC8878544 DOI: 10.3390/ma15041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 02/05/2023]
Abstract
Polymeric membranes are a viable and sustainable option for the biotechnology industry from an economic and environmental point of view. In this study, we evaluated tissue response and tolerance to the implantation of a polymeric membrane prepared with cashew gum polysaccharide (CGP) associated with polyvinyl alcohol (PVA). The objective was to characterize the biocompatibility of the CGP/PVA membrane in vivo. Following the evaluation criteria of the ISO 10993-6 standard, we demonstrated that the CGP/PVA membrane showed moderate tissue reaction, with a non-irritating ISO pattern, a thinner fibrous capsule, and a smaller amount of collagen compared to the positive control group. At 30 and 60 days, the membrane presented a similar amount of mast cells to that observed in the negative control group. The data demonstrate that the CGP/PVA membrane presents biocompatibility in accordance with the ISO 10993-6 standard.
Collapse
Affiliation(s)
- Angelica de Lima das Chagas
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil;
- Programa de Pós-Graduação em Ciências Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia 74001-970, GO, Brazil; (L.P.d.O.); (M.P.M.)
| | - Leiny Paula de Oliveira
- Programa de Pós-Graduação em Ciências Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia 74001-970, GO, Brazil; (L.P.d.O.); (M.P.M.)
| | - Mauricio Vicente Cruz
- Departamento de Áreas Acadêmicas II, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia, Goiania 74055-120, GO, Brazil;
| | - Renato Miranda de Melo
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil;
| | - Marina Pacheco Miguel
- Programa de Pós-Graduação em Ciências Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia 74001-970, GO, Brazil; (L.P.d.O.); (M.P.M.)
| | - Katia Flavia Fernandes
- Laboratório de Química de Polímeros, Instituto de Ciências Biológicas, ICB2, Campus Samambaia, Universidade Federal de Goiás, Goiania 74690-900, GO, Brazil;
| | - Liliana Borges de Menezes
- Programa de Pós-Graduação em Ciências Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia 74001-970, GO, Brazil; (L.P.d.O.); (M.P.M.)
- Setor de Patologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, s/n, Setor Universitário, Goiânia 74605-050, GO, Brazil
- Correspondence: ; Tel.:+55-62-3209-6110
| |
Collapse
|
162
|
Chen H, Agrawal DK, Thankam FG. Biomaterials-Driven Sterile Inflammation. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:22-34. [PMID: 33213285 PMCID: PMC8892963 DOI: 10.1089/ten.teb.2020.0253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Performance of the biomaterials used for regenerative medicine largely depends on biocompatibility; however, the biological mechanisms underlying biocompatibility of a biomaterial within the host system is poorly understood. In addition to the classical immune response against non-self-entities, the sterile inflammatory response could limit the compatibility of biological scaffolds. Whereas the immediate to short-term host response to a biomaterial implant have been characterized, the long-term progression of host-biomaterial relationship has not been described. This article explores the novel concept of biomaterials-driven sterile inflammation (BSI) in long-term biodegradable implants and throws light for possible explanation for the onset of BSI and the associated damage-associated molecular patterns. The understanding of BSI would advance the current strategies to improve biomaterial-host tissue integration and open novel translational avenues in biomaterials-based tissue regeneration. Impact statement Understanding the novel concept of biomaterials-driven sterile inflammation and associated damage-associated molecular patterns in long-term biodegradable implants would determine their success and improves the tissue engineering and regenerative strategies.
Collapse
Affiliation(s)
- Henry Chen
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Finosh G. Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
- Address correspondence to: Finosh G. Thankam, PhD, Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766-1854, USA
| |
Collapse
|
163
|
Characterization and Biocompatibility Properties In Vitro of Gel Beads Based on the Pectin and κ-Carrageenan. Mar Drugs 2022; 20:md20020094. [PMID: 35200624 PMCID: PMC8878971 DOI: 10.3390/md20020094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to investigate the influence of kappa (κ)-carrageenan on the initial stages of the foreign body response against pectin gel. Pectin-carrageenan (P-Car) gel beads were prepared from the apple pectin and κ-carrageenan using gelling with calcium ions. The inclusion of 0.5% κ-carrageenan (Car0.5) in the 1.5 (P1.5) and 2% pectin (P2) gel formulations decreased the gel strength by 2.5 times. Car0.5 was found to increase the swelling of P2 gel beads in the cell culture medium. P2 gel beads adsorbed 30–42 mg/g of bovine serum albumin (BSA) depending on pH. P2-Car0.2, P2-Car0.5, and P1.5-Car0.5 beads reduced BSA adsorption by 3.1, 5.2, and 4.0 times compared to P2 beads, respectively, at pH 7. The P1.5-Car0.5 beads activated complement and induced the haemolysis less than gel beads of pure pectin. Moreover, P1.5-Car0.5 gel beads allowed less adhesion of mouse peritoneal macrophages, TNF-α production, and NF-κB activation than the pure pectin gel beads. There were no differences in TLR4 and ICAM-1 levels in macrophages treated with P and P-Car gel beads. P2-Car0.5 hydrogel demonstrated lower adhesion to serous membrane than P2 hydrogel. Thus, the data obtained indicate that the inclusion of κ-carrageenan in the apple pectin gel improves its biocompatibility.
Collapse
|
164
|
Naujokat H, Gökkaya AI, Açil Y, Loger K, Klüter T, Fuchs S, Wiltfang J. In vivo biocompatibility evaluation of 3D-printed nickel-titanium fabricated by selective laser melting. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:13. [PMID: 35061114 PMCID: PMC8782805 DOI: 10.1007/s10856-022-06641-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/03/2022] [Indexed: 05/09/2023]
Abstract
Nickel-titanium (NiTi) belongs to the group of shape-memory alloys (SMAs), which are characterized by flexibility and reversible deformability. Advanced techniques in 3D printing by selective laser-melting (SLM) process allow the manufacturing of complex patient-specific implants from SMAs. Osteosynthesis materials made of NiTi could be used for minimally invasive surgical approaches in oral- and maxillofacial surgery. However, the in vivo biocompatibility has not yet been fully investigated, especially in load-sharing and load-bearing implants. The aim of this study was to evaluate the in vivo biocompatibility of SLM-produced NiTi for intraosseous and subperiosteal applications. Test specimens were implanted into the frontonasal bone of ten miniature pigs. To assess peri-implant bone metabolism, fluorescent dye was administered after 2, 4, 6, 10, 12, and 14 weeks intraperitoneally. Specimens and the surrounding tissues were harvested after 8 and 16 weeks for histological analysis. While the NiTi implants presented a higher bone-to-implant contact ratio (BIC) after 8 than after 16 weeks (43.3 vs. 40.3%), the titanium implants had a significantly higher BIC after 16 weeks (33.6 vs. 67.7%). Histologically, no signs of peri-implant inflammation or foreign-body reaction were detectable. With respect to this preliminary study design, 3D-printed NiTi shows sufficient biocompatibility for intraosseous and subperiosteal implant placement.
Collapse
Affiliation(s)
- Hendrik Naujokat
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany.
| | - Ali Ihsan Gökkaya
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Yahya Açil
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Klaas Loger
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Tim Klüter
- Department of Trauma Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Sabine Fuchs
- Department of Trauma Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| |
Collapse
|
165
|
Chen Y, Zhou X, Huang S, Lan Y, Yan R, Shi X, Li X, Zhang Y, Lei Z, Fan D. Effect of Microgroove Structure in PDMS-Based Silicone Implants on Biocompatibility. Front Bioeng Biotechnol 2022; 9:793778. [PMID: 35127669 PMCID: PMC8812998 DOI: 10.3389/fbioe.2021.793778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Capsule and capsule contracture around implants are important concerns in a clinic. The physical topology of the material surface regulates the formation of the capsule, but the specific regulatory mechanism is unclear. In this study, four types of silicone implant materials with different microgroove structures (groove depths of 10 and 50 μm and widths of 50 and 200 μm) were constructed using lithography to form different gradient surface topologies. Mass spectrometry, Cell Counting Kit-8, 5-ethynyl-2′-deoxycytidine (EdU), enzyme-linked immunosorbent assay, western blot, immunofluorescence, and immunohistochemistry were used to explore the changes in protein adsorption, cell adhesion, cell proliferation, and collagen deposition on the surface of the materials. At the same time, RNA-seq was used to detect transcriptome differences caused by different structures. Furthermore, collagen deposition and capsule formation were observed in the rats. The groove structure was observed to significantly increase the surface roughness of the material. The deeper groove and the narrower width of the polydimethylsiloxane would increase the surface roughness of the material and the surface water contact angle but reduce the total amount of adsorbed protein in the first two hours. In vitro cell experiments revealed that microtopology affected cell proliferation and adhesion and regulated collagen secretion. Further analysis indicated the deeper and narrower groove (group 50–50) on the surface of the material caused more evident collagen deposition around the material, forming a thicker envelope. Surface roughness of the material was thus related to collagen deposition and envelope thickness. The thickness of the envelope tissue around smooth materials does not exceed that of the materials with surface roughness. In conclusion, the narrower and deeper grooves in the micron range exhibited poor histocompatibility and led to formation of thicker envelopes around the materials. The appropriate grooves can reduce envelope thickness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zeyuan Lei
- *Correspondence: Dongli Fan, ; Zeyuan Lei,
| | - Dongli Fan
- *Correspondence: Dongli Fan, ; Zeyuan Lei,
| |
Collapse
|
166
|
Mu Y, Shao A, Shi L, Du B, Zhang Y, Luo J, Xu L, Qu S. Immunological Risk Assessment of Xenogeneic Dural Patch by Comparing with Raw Material via GTKO Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7950834. [PMID: 35083333 PMCID: PMC8786519 DOI: 10.1155/2022/7950834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE In this study, α-Gal epitope-deficient (GGTA1 knockout (GTKO)) mice were used to assess the immunological risks of xenogeneic dural patch by comparing with raw material. METHODS The xenogeneic dural patch (T2) was prepared from bovine pericardium (T1, raw material) through decellularization and carboxymethyl chitosan (CMCS) coating. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to characterize the collagen fibers and surface microstructural changes in the T1 and T2 samples. The remnant α-Gal epitopes and DNA of implants were detected by standardized method. T1 and T2 were implanted subcutaneously into GTKO mice for 4 and 12 weeks, respectively, and the negative control group (Con) was only performed sham operation. The total serum antibody, anti-Gal antibody, and splenic lymphocyte subtypes were analyzed by ELISA or flow cytometry, and histological analysis of implant-tissue was performed by H&E and Masson stain. RESULTS TEM and Sirius red staining showed that the collagen fibers in the dural patch were closely arranged, and SEM showed that a loose three-dimensional structure was successfully constructed on the surface of the dural patch after CMCS coating. The remnant DNA in T2 was 24.64 ± 8.73 ng/mg (dry weight), and clearance of α-Gal epitope was up to 99.83% compared to T1. The significant increases in serum total IgM, anti-Gal IgG, and anti-Gal IgM at 4 weeks and the significant changes in anti-Gal IgG and spleen lymphocyte at 12 weeks were observed in the T1 group, but no significant change was observed in the T2 group, compared to the control group. Histological semiquantitative analysis showed severe cell and tissue responses at 4 weeks and a moderate response at 12 weeks in the T1 group, while a moderate response at 4 weeks and a slight response at 12 weeks in the T2 group. CONCLUSIONS The results demonstrated that the xenogeneic dural patch has a lower and acceptable immunological risk compared to the raw material and control, respectively. On the other hand, it was suggested that GTKO mice are useful experimental model for immunological risk assessment of animal tissue-derived biomaterials.
Collapse
Affiliation(s)
- Yufeng Mu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Anliang Shao
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Li Shi
- Shaanxi Bioregenerative Medicine Co., Ltd., Xi'an 710100, China
| | - Bin Du
- Shaanxi Bioregenerative Medicine Co., Ltd., Xi'an 710100, China
| | - Yongjie Zhang
- Shaanxi Bioregenerative Medicine Co., Ltd., Xi'an 710100, China
| | - Jie Luo
- Shaanxi Bioregenerative Medicine Co., Ltd., Xi'an 710100, China
| | - Liming Xu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Shuxin Qu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
167
|
Divakar P, Reeves J, Gong J, Kolling FW, Jack Hoopes P, Wegst UG. High-plex expression profiling reveals that implants drive spatiotemporal protein production and innate immune activation for tissue repair. Acta Biomater 2022; 138:342-350. [PMID: 34673228 DOI: 10.1016/j.actbio.2021.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/01/2022]
Abstract
Surprisingly little clarity exists concerning effects of biomaterial properties on spatially localized protein expression, which drives implant success. Wound healing and tissue regeneration must be optimally supported by the implant, adsorbed proteins, immune cells, and fibroblasts; cells determine repair and functional recovery through protein production and regulation. However, not yet fully understood is how implants differentially drive spatial quantities of individual proteins both within the implant interior and the tissue surrounding it. Here we apply GeoMxⓇ digital spatial profiling to site-specifically investigate protein production in porous implants. Data is collected on the location and quantity of 40+ proteins from formalin-fixed, paraffin-embedded tissue slides of anisotropic tissue scaffolds (n = 18) with differing pore sizes (35 µm, 53 µm) and implantation durations (2, 14, 28 days); matching bulk gene expression data (700+ genes) is measured for identical implants. Notably, we discover fundamental spatial relationships in protein localization that in both the implant interior and the exterior are either uniquely independent or dependent of implant microstructure: dendritic cell marker CD11c and fibronectin significantly dominate the scaffold interior, while cell-to-cell adhesion marker CD34 and anti-inflammatory M2 polarization marker CD163 localize in the exterior. Lastly, collating spatial and bulk information, unique spatiotemporal expression patterns are identified for markers such as fibronectin, which are only uncoverable through spatial profiling and are otherwise hidden in bulk expression results. Together, these discoveries illustrate the critical importance of quantifying spatial expression patterns for implants, facilitating a paradigm shift in the iterative design, mechanistic understanding, and rapid assessment of biomaterials. STATEMENT OF SIGNIFICANCE: Spatial localization and expression of proteins, which determine implant success, are not fully understood because quantitative high-plex profiling is challenging. Applying GeoMxⓇ digital spatial profiling to site-specifically investigate protein production in porous implants, data is collected on the location and quantity of 40+ protein targets from tissue scaffolds with differing pore sizes (35 µm, 53 µm) and implantation durations (2, 14, 28 days). Collecting in parallel matched bulk gene expression data (700+ genes) for identical implants, we discover significant spatiotemporal expression patterns that remain otherwise hidden in differential bulk results. This new approach for the rapid assessment of biomaterials offers an enhanced mechanistic understanding and enables the tailoring of implants for superior regenerative outcomes.
Collapse
|
168
|
Thermal treatment at 500°C significantly reduces the reaction to irregular tricalcium phosphate granules as foreign bodies: An in vivo study. Acta Biomater 2022. [DOI: 10.1016/j.actbio.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
169
|
Zhang X, Zhao R, Wang G, Chen Y, Ding P, Yang X, Zhao Z, Zhang Y. Island sternocleidomastoid myocutaneous flap for posterior pharyngeal wall defect repair after anterior cervical spine surgery. Int Wound J 2022; 19:169-177. [PMID: 33999495 PMCID: PMC8684854 DOI: 10.1111/iwj.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/04/2022] Open
Abstract
Injuries and tumours of the cervical spine represent therapeutic challenges to the treating surgeon due to the complex anatomical relationships and biomechanical features. The anterior cervical midline (ACM) and anterior cervical retropharyngeal (ACR) approaches are effective and safe surgical approaches for certain cervical spine lesions, such as cervical spine neoplasms, atlantoaxial subluxation, and certain odontoid fractures. Posterior pharyngeal wall defects (PPWDs) is one of the most frequently encountered surgical morbidities after anterior cervical spine surgery (ACSS). However, limited information has been published concerning effective approaches for PPWD reconstruction after ACSS. The manuscript aimed to describe a novel application of the island sternocleidomastoid myocutaneous flap (ISMF) in the management of PPWDs after ACSS, including surgery with the ACM approach and ACR approach. From April 2015 to November 2019, the clinical data of three patients with PPWDs repaired using the ISMF in Peking university third hospital were retrospectively analysed. The observational indexes are as follows: postoperative survival of the flap, wound healing 2 weeks after surgery, eating and pronunciation function 2 months after surgery. The above indexes of these three cases recovered well. Three patients did not have any persistent PPWD after repair with the ISMF and did not require any further surgical procedures related to the cervical spine.
Collapse
Affiliation(s)
- Xinling Zhang
- Department of Plastic SurgeryPeking University Third HospitalBeijingChina
| | - Runlei Zhao
- Department of Plastic SurgeryPeking University Third HospitalBeijingChina
| | - Guanhuier Wang
- Department of Plastic SurgeryPeking University Third HospitalBeijingChina
| | - Yujie Chen
- Department of Plastic SurgeryPeking University Third HospitalBeijingChina
| | - Pengbing Ding
- Department of Plastic SurgeryPeking University Third HospitalBeijingChina
| | - Xin Yang
- Department of Plastic SurgeryPeking University Third HospitalBeijingChina
| | - Zhenmin Zhao
- Department of Plastic SurgeryPeking University Third HospitalBeijingChina
| | - Yuan Zhang
- Department of OtolaryngologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
170
|
Ma Z, Sun J, Dong X, Gan D, Peng W, Li Y, Qian W, Liu P, Shen J. Zwitterionic/active ester block polymers as multifunctional coating for polyurethane-based substrates. J Mater Chem B 2022; 10:3687-3695. [DOI: 10.1039/d2tb00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial associated infection, blood coagulation, and tissue adhesion are severe issues associated with biomedical implants & devices in clinic applications. Here, we report a general strategy to simultaneously tackle these...
Collapse
|
171
|
Ma Q, Bian L, Zhao X, Tian X, Yin H, Wang Y, Shi A, Wu J. Novel glucose-responsive nanoparticles based on p-hydroxyphenethyl anisate and 3-acrylamidophenylboronic acid reduce blood glucose and ameliorate diabetic nephropathy. Mater Today Bio 2021; 13:100181. [PMID: 34927045 PMCID: PMC8649392 DOI: 10.1016/j.mtbio.2021.100181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022] Open
Abstract
An insulin delivery system that self-regulates blood sugar levels, mimicking the human pancreas, can improve hyperglycaemia. At present, a glucose-responsive insulin delivery system combining AAPBA with long-acting slow release biomaterials has been developed. However, the safety of sustained-release materials and the challenges of preventing diabetic complications remain. In this study, we developed a novel polymer slow release material using a plant extract—p-hydroxyphenylethyl anisate (HPA). After block copolymerisation with AAPBA, the prepared nanoparticles had good pH sensitivity, glucose sensitivity, insulin loading rate and stability under physiological conditions and had high biocompatibility. The analysis of streptozotocin-induced diabetic nephropathy (DN) mouse model showed that the insulin-loaded injection of nanoparticles stably regulated the blood glucose levels of DN mice within 48 h. Importantly, with the degradation of the slow release material HPA in vivo, the renal function improved, the inflammatory response reduced, and antioxidation levels in DN mice improved. This new type of nanoparticles provides a new idea for hypoglycaemic nano-drug delivery system and may have potential in the prevention and treatment of diabetic complications. We established a new glucose-responsive intelligent system with HPA. p(AAPBA-b-HPA) shows good pH and glucose sensitivity. p(AAPBA-b-HPA) nanoparticles can slowly release HPA and insulin. This system can be used to regulate blood glucose. p(AAPBA-b-HPA) nanoparticles can aid in diabetic nephropathy prevention and treatment.
Collapse
Affiliation(s)
- Qiong Ma
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Ligong Bian
- Department of Medical Biology, College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Xi Zhao
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Xuexia Tian
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Hang Yin
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Yutian Wang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Anhua Shi
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, PR China
| |
Collapse
|
172
|
Brown SJ, Surti F, Sibbons P, Hook L. Wound healing properties of a fibrin-based dermal replacement scaffold. Biomed Phys Eng Express 2021; 8. [PMID: 34883468 DOI: 10.1088/2057-1976/ac4176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/09/2021] [Indexed: 11/11/2022]
Abstract
When serious cutaneous injury occurs, the innate wound healing process attempts to restore the skin's appearance and function. Wound healing outcome is affected by factors such as contraction, revascularisation, regeneration versus fibrosis and re-epithelialisation and is also strongly influenced by the pattern and extent of damage to the dermal layer. Dermal replacement scaffolds have been designed to substitute for lost tissue, provide a structure to promote dermal regeneration, and aid skin grafting, resulting in a superior healing outcome. In this study the wound healing properties of a novel fibrin-alginate dermal scaffold were assessed in the porcine wound healing model and also compared to two widely used dermal scaffolds and grafting alone. The fibrin-alginate scaffold, unlike the other scaffolds tested, is not used in combination with an overlying skin graft. Fibrin scaffold treated wounds showed increased, sustained superficial blood flow and reduced contraction during early healing while showing comparable wound closure, re-epithelialisation and final wound outcome to other treatments. The increase in early wound vascularisation coupled with a decrease in contraction and no requirement for a skin graft suggest that the fibrin-based scaffold could provide an effective, distinctive treatment option to improve healing outcomes in human patients.
Collapse
Affiliation(s)
- Stuart J Brown
- Centre for Stem Cells and Regenerative Medicine, 28th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom.,RAFT Institute, 475 Salisbury House, London Wall, London EC2M 5QQ, United Kingdom
| | - Farhana Surti
- The Griffin Institute , Northwick Park and St Mark's Hospital, Y Block, Watford Road, Harrow, Middlesex, HA1 3UJ, United Kingdom
| | - Paul Sibbons
- The Griffin Institute , Northwick Park and St Mark's Hospital, Y Block, Watford Road, Harrow, Middlesex, HA1 3UJ, United Kingdom
| | - Lilian Hook
- Smart Matrix Ltd, 3rd Floor, 207 Regent Street , London W1B 3HH, United Kingdom
| |
Collapse
|
173
|
Diesch ST, Jung F, Prantl L, Jung EM. Surface imaging of breast implants using modern high-frequency ultrasound technology in comparison to high-end sonography with power analyses for B-scan optimization1. Clin Hemorheol Microcirc 2021; 80:487-495. [PMID: 34897080 DOI: 10.3233/ch-219204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIM This study aims to evaluate optimized breast implant surface-structure analysis by comparing high-end ultrasound technology with a new high frequency technique. This comparative study used new breast implants with different surfaces in an in vitro setting. METHODS Nine idle silicon or polyurethane (PU) breast implants were examined by two investigators in an experimental in vitro study using two high-end ultrasound devices with multi-frequency transducers (6-15 MHz, 9-16 MHz, 12.5-33 MHz).The ultrasound B-Mode was optimized using tissue harmonic imaging (THI), speckle reduction imaging (SRI, level 0-5), cross beam (high, medium, low) and photopic.Using a standardized ultrasound protocol, the implants were examined in the middle (point of highest projection) and lateral, by two independent examiners.Image evaluation was performed on anonymized digital images in the PACS. The aim was to achieve an artifact-free recording of the surface structure, the surface coating, the total image structures and, as far as possible, an artifact-free internal representation of the implants.For independent surface evaluation a score was used (0 = undetectability of surface structures, rich in artifacts, 5 = best possible, artifact free image quality). RESULTS The quality of ultrasound imaging of breast implant surfaces after the optimization of B-Scan differed significantly comparing high-end ultrasound technology with modern high-frequency ultrasound technology (p < 0,05).The following setting has been found to be the best setting with the highest image quality:B-Mode, SRI value 3, Crossbeam high level with color coded imaging for B- mode. In the total examined frequency range of 6-33 MHz, the highest image quality was found in the average frequency range of 12.5-33 MHz at both measured points. For both devices, device 1 (high-end) and device 2 (high frequency) ultrasound, the image quality was in the12.5-33 MHz frequency range with an average image quality of 3.236. It was significantly higher, than in the lower frequency ranges and the same frequency range with THI. (p < 0,05). The image quality of the high-end sonography device was superior to the conventional high-frequency ultrasound device in all frequency ranges. CONCLUSION High-end ultrasound imaging technology was superior in the quality of implant surface evaluation in comparison to high-frequency ultrasound sonography. The gained knowledge can serve as a basis for further multicenter clinical application and studies with the aim to develop an objective, precise tool to evaluate the implant and the surrounding tissue with ultrasound.
Collapse
Affiliation(s)
- S T Diesch
- Center for Plastic, Aesthetic, Hand & Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany.,Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, Senftenberg, Germany.,Department of Diagnostic Radiology and Interdisciplinary Ultrasound Department, University Hospital Regensburg, Regensburg, Germany
| | - F Jung
- Center for Plastic, Aesthetic, Hand & Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany.,Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, Senftenberg, Germany.,Department of Diagnostic Radiology and Interdisciplinary Ultrasound Department, University Hospital Regensburg, Regensburg, Germany
| | - L Prantl
- Center for Plastic, Aesthetic, Hand & Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany.,Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, Senftenberg, Germany.,Department of Diagnostic Radiology and Interdisciplinary Ultrasound Department, University Hospital Regensburg, Regensburg, Germany
| | - E M Jung
- Center for Plastic, Aesthetic, Hand & Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany.,Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, Senftenberg, Germany.,Department of Diagnostic Radiology and Interdisciplinary Ultrasound Department, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
174
|
Antmen E, Vrana NE, Hasirci V. The role of biomaterials and scaffolds in immune responses in regenerative medicine: macrophage phenotype modulation by biomaterial properties and scaffold architectures. Biomater Sci 2021; 9:8090-8110. [PMID: 34762077 DOI: 10.1039/d1bm00840d] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scaffolds are an integral part of the regenerative medicine field. The contact of biomaterials with tissue, as was clearly observed over the years, induces immune reactions in a material and patient specific manner, where both surface and bulk properties of scaffolds, together with their 3D architecture, have a significant influence on the outcome. This review presents an overview of the reactions to the biomaterials with a specific focus on clinical complications with the implants in the context of immune reactions and an overview of the studies involving biomaterial properties and interactions with innate immune system cells. We emphasize the impact of these studies on scaffold selection and upscaling of microenvironments created by biomaterials from 2D to 3D using immune cell encapsulation, seeding in a 3D scaffold and co-culture with relevant tissue cells. 3D microenvironments are covered with a specific focus on innate cells since a large proportion of these studies used innate immune cells. Finally, the recent studies on the incorporation of adaptive immune cells in immunomodulatory systems are covered in this review. Biomaterial-immune cell interactions are a critical part of regenerative medicine applications. Current efforts in establishing the ground rules for such interactions following implantation can control immune response during all phases of inflammation. Thus, in the near future for complete functional recovery, tissue engineering and control over biomaterials must be considered at the first step of immune modulation and this review covers these interactions, which have remained elusive up to now.
Collapse
Affiliation(s)
- Ezgi Antmen
- BIOMATEN, Middle East Technical University, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey.
| | - Nihal Engin Vrana
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France. .,INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey. .,Biomaterials A&R Center, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
175
|
Assessing the Effects of VEGF Releasing Microspheres on the Angiogenic and Foreign Body Response to a 3D Printed Silicone-Based Macroencapsulation Device. Pharmaceutics 2021; 13:pharmaceutics13122077. [PMID: 34959358 PMCID: PMC8704798 DOI: 10.3390/pharmaceutics13122077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Macroencapsulation systems have been developed to improve islet cell transplantation but can induce a foreign body response (FBR). The development of neovascularization adjacent to the device is vital for the survival of encapsulated islets and is a limitation for long-term device success. Previously we developed additive manufactured multi-scale porosity implants, which demonstrated a 2.5-fold increase in tissue vascularity and integration surrounding the implant when compared to a non-textured implant. In parallel to this, we have developed poly(ε-caprolactone-PEG-ε-caprolactone)-b-poly(L-lactide) multiblock copolymer microspheres containing VEGF, which exhibited continued release of bioactive VEGF for 4-weeks in vitro. In the present study, we describe the next step towards clinical implementation of an islet macroencapsulation device by combining a multi-scale porosity device with VEGF releasing microspheres in a rodent model to assess prevascularization over a 4-week period. An in vivo estimation of vascular volume showed a significant increase in vascularity (* p = 0.0132) surrounding the +VEGF vs. −VEGF devices, however, histological assessment of blood vessels per area revealed no significant difference. Further histological analysis revealed significant increases in blood vessel stability and maturity (** p = 0.0040) and vessel diameter size (*** p = 0.0002) surrounding the +VEGF devices. We also demonstrate that the addition of VEGF microspheres did not cause a heightened FBR. In conclusion, we demonstrate that the combination of VEGF microspheres with our multi-scale porous macroencapsulation device, can encourage the formation of significantly larger, stable, and mature blood vessels without exacerbating the FBR.
Collapse
|
176
|
Zeimaran E, Pourshahrestani S, Fathi A, Razak NABA, Kadri NA, Sheikhi A, Baino F. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomater 2021; 136:1-36. [PMID: 34562661 DOI: 10.1016/j.actbio.2021.09.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Successful tissue regeneration requires a scaffold with tailorable biodegradability, tissue-like mechanical properties, structural similarity to extracellular matrix (ECM), relevant bioactivity, and cytocompatibility. In recent years, injectable hydrogels have spurred increasing attention in translational medicine as a result of their tunable physicochemical properties in response to the surrounding environment. Furthermore, they have the potential to be implanted via minimally invasive procedures while enabling deep penetration, which is considered a feasible alternative to traditional open surgical procedures. However, polymeric hydrogels may lack sufficient stability and bioactivity in physiological environments. Composite hydrogels containing bioactive glass (BG) particulates, synergistically combining the advantages of their constituents, have emerged as multifunctional biomaterials with tailored mechanical properties and biological functionalities. This review paper highlights the recent advances in injectable composite hydrogel systems based on biodegradable polymers and BGs. The influence of BG particle geometry, composition, and concentration on gel formation, rheological and mechanical behavior as well as hydration and biodegradation of injectable hydrogels have been discussed. The applications of these composite hydrogels in tissue engineering are additionally described, with particular attention to bone and skin. Finally, the prospects and current challenges in the development of desirable injectable bioactive hydrogels for tissue regeneration are discussed to outline a roadmap for future research. STATEMENT OF SIGNIFICANCE: Developing a biomaterial that can be readily available for surgery, implantable via minimally invasive procedures, and be able to effectively stimulate tissue regeneration is one of the grand challenges in modern biomedicine. This review summarizes the state-of-the-art of injectable bioactive glass-polymer composite hydrogels to address several challenges in bone and soft tissue repair. The current limitations and the latest evolutions of these composite biomaterials are critically examined, and the roles of design parameters, such as composition, concentration, and size of the bioactive phase, and polymer-glass interactions on the rheological, mechanical, biological, and overall functional performance of hydrogels are detailed. Existing results and new horizons are discussed to provide a state-of-the-art review that may be useful for both experienced and early-stage researchers in the biomaterials community.
Collapse
|
177
|
Ozpinar EW, Frey AL, Cruse G, Freytes DO. Mast Cell-Biomaterial Interactions and Tissue Repair. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:590-603. [PMID: 33164714 PMCID: PMC8739845 DOI: 10.1089/ten.teb.2020.0275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Tissue engineers often use biomaterials to provide structural support along with mechanical and chemical signals to modulate the wound healing process. Biomaterials that are implanted into the body interact with a heterogeneous and dynamic inflammatory environment that is present at the site of injury. Whether synthetically derived, naturally derived, or a combination of both, it is important to assess biomaterials for their ability to modulate inflammation to understand their potential clinical use. One important, but underexplored cell in the context of biomaterials is the mast cell (MC). MCs are granulocytic leukocytes that engage in a variety of events in both the innate and adaptive immune systems. Although highly recognized for their roles in allergic reactions, MCs play an important role in wound healing by recognizing antigens through pattern recognition receptors and the high-affinity immunoglobulin E receptor (FceRI) and releasing granules that affect cell recruitment, fibrosis, extracellular matrix deposition, angiogenesis, and vasculogenesis. MCs also mediate the foreign body response, contributing to the incorporation or rejection of implants. Studies of MC-biomaterial interactions can aid in the elucidation of MC roles during the host tissue response and tissue repair. This review is designed for those in the tissue engineering and biomaterial fields who are interested in exploring the role MCs may play in wound-biomaterial interactions and wound healing. With this review, we hope to inspire more research in the MC-biomaterial space to accelerate the design and construction of optimized implants. Impact statement Mast cells (MCs) are highly specialized inflammatory cells that have crucial, but not fully understood, roles in wound healing and tissue repair. Upon stimulation, they recognize foreign antigens and release granules that help orchestrate the inflammatory response after tissue damage or biomaterial implantation. This review summarizes the current use of MCs in biomaterial research along with literature from the past decade focusing on MC interactions with materials used for tissue repair and regeneration. Studying MC-biomaterial interactions will help (i) further understand the process of inflammation and (ii) design biomaterials and tissue-engineered constructs for optimal repair and regeneration.
Collapse
Affiliation(s)
- Emily W Ozpinar
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Ariana L Frey
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
| | - Glenn Cruse
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Donald O Freytes
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
178
|
Suppression of the fibrotic encapsulation of silicone implants by inhibiting the mechanical activation of pro-fibrotic TGF-β. Nat Biomed Eng 2021; 5:1437-1456. [PMID: 34031559 DOI: 10.1038/s41551-021-00722-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The fibrotic encapsulation of implants involves the mechanical activation of myofibroblasts and of pro-fibrotic transforming growth factor beta 1 (TGF-β1). Here, we show that both softening of the implant surfaces and inhibition of the activation of TGF-β1 reduce the fibrotic encapsulation of subcutaneous silicone implants in mice. Conventionally stiff silicones (elastic modulus, ~2 MPa) coated with a soft silicone layer (elastic modulus, ~2 kPa) reduced collagen deposition as well as myofibroblast activation without affecting the numbers of macrophages and their polarization states. Instead, fibroblasts around stiff implants exhibited enhanced intracellular stress, increased the recruitment of αv and β1 integrins, and activated TGF-β1 signalling. In vitro, the recruitment of αv integrin to focal adhesions and the activation of β1 integrin and of TGF-β were higher in myofibroblasts grown on latency-associated peptide (LAP)-coated stiff silicones than on soft silicones. Antagonizing αv integrin binding to LAP through the small-molecule inhibitor CWHM-12 suppressed active TGF-β signalling, myofibroblast activation and the fibrotic encapsulation of stiff subcutaneous implants in mice.
Collapse
|
179
|
Zhang X, Wang G, Sun Y, Ding P, Yang X, Zhao Z. The Z-plasty contributes to the coalescence of a chronic non-healing wound. Int Wound J 2021; 18:796-804. [PMID: 33733609 PMCID: PMC8613384 DOI: 10.1111/iwj.13583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/23/2022] Open
Abstract
This study aimed to explore the treatment effect of Z-plasty on a non-healing wound. A total of 72 patients diagnosed with a chronic non-healing wound in Peking University Third Hospital from November 2009 to August 2019 were retrospectively analysed. Among them, 27 patients were treated with Z-plasty, and 45 patients were treated with the general method. Detailed patient information was retrieved from medical records, including age, gender, body mass index (BMI), alcohol, smoking, and comorbidities (diabetes mellitus, hypertension, heart disease). Surgical parameters included operation time and intraoperative blood loss. Wound swelling, epidermal blisters, wound edge colour, and skin temperature at 1 day after surgery were assessed to evaluate the blood supply of the wound. Surgical complications included infection, haematoma, dehiscence, and non-healing within 2 weeks postoperatively. Student t test (for continuous data) and Chi-square test (for categorical data) were conducted to determine the statistical difference. We found no significant differences in age, gender, BMI, alcohol, smoking, and comorbidities between the two groups. Z-plasty did not show any advantages in the surgical time, invasive blood loss, hospital days, and hospitalisation expenses. The incidence of abnormal wound edge colour with Z-plasty was significantly lower than that with the general treatment (P < .05), and the Z-plasty enables better healing of the patient's wound (P < .05). Z-plasty promoted better recovery of chronic non-healing wounds than direct suturing.
Collapse
Affiliation(s)
- Xinling Zhang
- Department of Plastic SurgeryPeking University Third HospitalBeijingChina
| | - Guanhuier Wang
- Department of Plastic SurgeryPeking University Third HospitalBeijingChina
| | - Yidan Sun
- Department of Plastic SurgeryPeking University Third HospitalBeijingChina
| | - Pengbing Ding
- Department of Plastic SurgeryPeking University Third HospitalBeijingChina
| | - Xin Yang
- Department of Plastic SurgeryPeking University Third HospitalBeijingChina
| | - Zhenmin Zhao
- Department of Plastic SurgeryPeking University Third HospitalBeijingChina
| |
Collapse
|
180
|
Chen X, Chen J, Huang N. The structure, formation, and effect of plasma protein layer on the blood contact materials: A review. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Xiao Chen
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials Ministry of Education Southwest Jiaotong University Chengdu China
| | - Jiang Chen
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials Ministry of Education Southwest Jiaotong University Chengdu China
| | - Nan Huang
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials Ministry of Education Southwest Jiaotong University Chengdu China
| |
Collapse
|
181
|
Doyle SE, Snow F, Duchi S, O’Connell CD, Onofrillo C, Di Bella C, Pirogova E. 3D Printed Multiphasic Scaffolds for Osteochondral Repair: Challenges and Opportunities. Int J Mol Sci 2021; 22:12420. [PMID: 34830302 PMCID: PMC8622524 DOI: 10.3390/ijms222212420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Osteochondral (OC) defects are debilitating joint injuries characterized by the loss of full thickness articular cartilage along with the underlying calcified cartilage through to the subchondral bone. While current surgical treatments can provide some relief from pain, none can fully repair all the components of the OC unit and restore its native function. Engineering OC tissue is challenging due to the presence of the three distinct tissue regions. Recent advances in additive manufacturing provide unprecedented control over the internal microstructure of bioscaffolds, the patterning of growth factors and the encapsulation of potentially regenerative cells. These developments are ushering in a new paradigm of 'multiphasic' scaffold designs in which the optimal micro-environment for each tissue region is individually crafted. Although the adoption of these techniques provides new opportunities in OC research, it also introduces challenges, such as creating tissue interfaces, integrating multiple fabrication techniques and co-culturing different cells within the same construct. This review captures the considerations and capabilities in developing 3D printed OC scaffolds, including materials, fabrication techniques, mechanical function, biological components and design.
Collapse
Affiliation(s)
- Stephanie E. Doyle
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
| | - Finn Snow
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
| | - Serena Duchi
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Cathal D. O’Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
| | - Carmine Onofrillo
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Claudia Di Bella
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
| |
Collapse
|
182
|
Xie B, Bai X, Sun P, Zhang L, Wei S, Bai H. A Novel Plant Leaf Patch Absorbed With IL-33 Antibody Decreases Venous Neointimal hyperplasia. Front Bioeng Biotechnol 2021; 9:742285. [PMID: 34778224 PMCID: PMC8585764 DOI: 10.3389/fbioe.2021.742285] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/12/2021] [Indexed: 01/11/2023] Open
Abstract
Introduction: We recently showed that a decellularized leaf scaffold can be loaded with polylactic-co-glycolic acid (PLGA)-based rapamycin nanoparticles, this leaf patch can then inhibit venous neointimal hyperplasia in a rat inferior vena cava (IVC) venoplasty model. IL-33 plays a role in the neointimal formation after vascular injury. We hypothesized that plant leaves can absorb therapeutic drug solution and can be used as a patch with drug delivery capability, and plant leaves absorbed with IL-33 antibody can decrease venous neointimal hyperplasia in the rat IVC venoplasty model. Method: A human spiral saphenous vein (SVG) graft implanted in the popliteal vein was harvested from a patient with trauma and analyzed by immunofluorescence. Male Sprague-Dawley rats (aged 6-8 weeks) were used to create the IVC patch venoplasty model. Plant leaves absorbed with rhodamine, distilled water (control), rapamycin, IL-33, and IL-33 antibody were cut into patches (3 × 1.5 mm2) and implanted into the rat IVC. Patches were explanted at day 14 for analysis. Result: At day 14, in the patch absorbed with rhodamine group, immunofluorescence showed rhodamine fluorescence in the neointima, inside the patch, and in the adventitia. There was a significantly thinner neointima in the plant patch absorbed with rapamycin (p = 0.0231) compared to the patch absorbed with distilled water. There was a significantly large number of IL-33 (p = 0.006) and IL-1β (p = 0.012) positive cells in the human SVG neointima compared to the human great saphenous vein. In rats, there was a significantly thinner neointima, a smaller number of IL-33 (p = 0.0006) and IL-1β (p = 0.0008) positive cells in the IL-33 antibody-absorbed patch group compared to the IL-33-absorbed patch group. Conclusion: We found that the natural absorption capability of plant leaves means they can absorb drug solution efficiently and can also be used as a novel drug delivery system and venous patch. IL-33 plays a role in venous neointimal hyperplasia both in humans and rats; neutralization of IL-33 by IL-33 antibody can be a therapeutic method to decrease venous neointimal hyperplasia.
Collapse
Affiliation(s)
- Boao Xie
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| | - Xiche Bai
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China.,The First Zhongyuan Middle School, Zhengzhou, China
| | - Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| |
Collapse
|
183
|
Xu Y, Li Z, Liu Y, Pan B, Peng R, Shao W, Yang W, Chen M, Kan H, Ying Z, Zhang Y. Differential Roles of Water-Insoluble and Water-Soluble Fractions of Diesel Exhaust Particles in the Development of Adverse Health Effects Due to Chronic Instillation of Diesel Exhaust Particles. Chem Res Toxicol 2021; 34:2450-2459. [PMID: 34780166 DOI: 10.1021/acs.chemrestox.1c00199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ambient fine particulate matter (PM2.5) has a marked temporospatial variation in chemical composition, but how the composition of PM2.5 influences its toxicity remains elusive. To explore the roles of individual PM2.5 components in the pathogenesis following PM2.5 exposure, we prepared water-soluble (WS-DEP) and water-insoluble (WIS-DEP) fractions of diesel exhaust particles (DEP) and performed 15-week intratracheal instillation on C57Bl/6J mice using these fractions. Their effects on pulmonary and systemic inflammation, hepatic steatosis and insulin resistance, systemic glucose homeostasis, and gut microbiota were then assessed. Compared to control, instillation of DEP or WIS-DEP, but not WS-DEP, significantly increased pulmonary inflammatory scores and expression of inflammatory markers, bronchoalveolar lavage fluid cell number, and circulating pro-inflammatory cytokines. Consistently, DEP- or WIS-DEP-instilled but not WS-DEP-instilled mice versus control had significant hepatic steatosis and insulin resistance and systemic glucose intolerance. In contrast, instillation of WS-DEP versus instillation of WIS-DEP had effects on the gut microbiota more comparable to that of instillations of DEP. The pulmonary and systemic inflammation, hepatic steatosis and insulin resistance, and systemic glucose intolerance following chronic DEP instillation are all attributable to the WIS-DEP, suggesting that PM2.5 may have a solubility-dependent basal toxicity.
Collapse
Affiliation(s)
- Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhouzhou Li
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Ying Liu
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Bin Pan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Renzheng Peng
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenpu Shao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenhui Yang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Minjie Chen
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland 21202, United States
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland 21202, United States
| | - Yuhao Zhang
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.,Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
184
|
Hydrogel, Electrospun and Composite Materials for Bone/Cartilage and Neural Tissue Engineering. MATERIALS 2021; 14:ma14226899. [PMID: 34832300 PMCID: PMC8624846 DOI: 10.3390/ma14226899] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Injuries of the bone/cartilage and central nervous system are still a serious socio-economic problem. They are an effect of diversified, difficult-to-access tissue structures as well as complex regeneration mechanisms. Currently, commercially available materials partially solve this problem, but they do not fulfill all of the bone/cartilage and neural tissue engineering requirements such as mechanical properties, biochemical cues or adequate biodegradation. There are still many things to do to provide complete restoration of injured tissues. Recent reports in bone/cartilage and neural tissue engineering give high hopes in designing scaffolds for complete tissue regeneration. This review thoroughly discusses the advantages and disadvantages of currently available commercial scaffolds and sheds new light on the designing of novel polymeric scaffolds composed of hydrogels, electrospun nanofibers, or hydrogels loaded with nano-additives.
Collapse
|
185
|
Inflammatory and regenerative processes in bioresorbable synthetic pulmonary valves up to two years in sheep-Spatiotemporal insights augmented by Raman microspectroscopy. Acta Biomater 2021; 135:243-259. [PMID: 34509697 DOI: 10.1016/j.actbio.2021.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
In situ heart valve tissue engineering is an emerging approach in which resorbable, off-the-shelf available scaffolds are used to induce endogenous heart valve restoration. Such scaffolds are designed to recruit endogenous cells in vivo, which subsequently resorb polymer and produce and remodel new valvular tissue in situ. Recently, preclinical studies using electrospun supramolecular elastomeric valvular grafts have shown that this approach enables in situ regeneration of pulmonary valves with long-term functionality in vivo. However, the evolution and mechanisms of inflammation, polymer absorption and tissue regeneration are largely unknown, and adverse valve remodeling and intra- and inter-valvular variability have been reported. Therefore, the goal of the present study was to gain a mechanistic understanding of the in vivo regenerative processes by combining routine histology and immunohistochemistry, using a comprehensive sheep-specific antibody panel, with Raman microspectroscopy for the spatiotemporal analysis of in situ tissue-engineered pulmonary valves with follow-up to 24 months from a previous preclinical study in sheep. The analyses revealed a strong spatial heterogeneity in the influx of inflammatory cells, graft resorption, and foreign body giant cells. Collagen maturation occurred predominantly between 6 and 12 months after implantation, which was accompanied by a progressive switch to a more quiescent phenotype of infiltrating cells with properties of valvular interstitial cells. Variability among specimens in the extent of tissue remodeling was observed for follow-up times after 6 months. Taken together, these findings advance the understanding of key events and mechanisms in material-driven in situ heart valve tissue engineering. STATEMENT OF SIGNIFICANCE: This study describes for the first time the long-term in vivo inflammatory and regenerative processes that underly in situ heart valve tissue engineering using resorbable synthetic scaffolds. Using a unique combinatorial analysis of immunohistochemistry and Raman microspectroscopy, important spatiotemporal variability in graft resorption and tissue formation was pinpointed in in situ tissue-engineered heart valves, with a follow-up time of up to 24 months in sheep. This variability was correlated to heterogenous regional cellular repopulation, most likely instigated by region-specific differences in surrounding tissue and hemodynamics. The findings of this research contribute to the mechanistic understanding of in situ tissue engineering using resorbable synthetics, which is necessary to enable rational design of improved grafts, and ensure safe and robust clinical translation.
Collapse
|
186
|
Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021; 178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.
Collapse
|
187
|
Zhen L, Creason SA, Simonovsky FI, Snyder JM, Lindhartsen SL, Mecwan MM, Johnson BW, Himmelfarb J, Ratner BD. Precision-porous polyurethane elastomers engineered for application in pro-healing vascular grafts: Synthesis, fabrication and detailed biocompatibility assessment. Biomaterials 2021; 279:121174. [PMID: 34715636 DOI: 10.1016/j.biomaterials.2021.121174] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 01/22/2023]
Abstract
Unmet needs for small diameter, non-biologic vascular grafts and the less-than-ideal performance of medium diameter grafts suggest opportunities for major improvements. Biomaterials that are mechanically matched to native blood vessels, reduce the foreign body capsule (FBC) and demonstrate improved integration and healing are expected to improve graft performance. In this study, we developed biostable, crosslinked polyurethane formulations and used them to fabricate scaffolds with precision-engineered 40 μm pores. We matched the scaffold mechanical properties with those of native blood vessels by optimizing the polyurethane compositions. We hypothesized that such scaffolds promote healing and mitigate the FBC. To test our hypothesis, polyurethanes with 40 μm pores, 100 μm pores, and non-porous slabs were implanted subcutaneously in mice for 3 weeks, and then were examined histologically. Our results show that 40 μm porous scaffolds elicit the highest level of angiogenesis, cellularization, and the least severe foreign body capsule (based on a refined assessment method). This study presents the first biomaterial with tuned mechanical properties and a precision engineered porous structure optimized for healing, thus can be ideal for pro-healing vascular grafts and in situ vascular engineering. In addition, these scaffolds may have wide applications in tissue engineering, drug delivery, and implantable device.
Collapse
Affiliation(s)
- Le Zhen
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Sharon A Creason
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Felix I Simonovsky
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Sarah L Lindhartsen
- Histology and Imaging Core, University of Washington, Seattle, WA, 98195, USA
| | - Marvin M Mecwan
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Brian W Johnson
- Histology and Imaging Core, University of Washington, Seattle, WA, 98195, USA
| | - Jonathan Himmelfarb
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA; Department of Medicine, Division of Nephrology, University of Washington, Seattle, WA, 98195, USA; Kidney Research Institute, Seattle, WA, 98104, USA; Center for Dialysis Innovation, University of Washington, WA, 98195, USA
| | - Buddy D Ratner
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA; Center for Dialysis Innovation, University of Washington, WA, 98195, USA.
| |
Collapse
|
188
|
Oliveira H, Médina C, Labrunie G, Dusserre N, Catros S, Magnan L, Handschin C, Stachowicz ML, Fricain JC, L'Heureux N. Cell-assembled extracellular matrix (CAM): a human biopaper for the biofabrication of pre-vascularized tissues able to connect to the host circulation in vivo. Biofabrication 2021; 14. [PMID: 34695012 DOI: 10.1088/1758-5090/ac2f81] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/13/2021] [Indexed: 01/18/2023]
Abstract
When considering regenerative approaches, the efficient creation of a functional vasculature, that can support the metabolic needs of bioengineered tissues, is essential for their survival after implantation. However, it is widely recognized that the post-implantation microenvironment of the engineered tissues is often hypoxic due to insufficient vascularization, resulting in ischemia injury and necrosis. This is one of the main limitations of current tissue engineering applications aiming at replacing significant tissue volumes. Here, we have explored the use of a new biomaterial, the cell-assembled extracellular matrix (CAM), as a biopaper to biofabricate a vascular system. CAM sheets are a unique, fully biological and fully human material that has already shown stable long-term implantation in humans. We demonstrated, for the first time, the use of this unprocessed human ECM as a microperforated biopaper. Using microvalve dispensing bioprinting, concentrated human endothelial cells (30 millions ml-1) were deposited in a controlled geometry in CAM sheets and cocultured with HSFs. Following multilayer assembly, thick ECM-based constructs fused and supported the survival and maturation of capillary-like structures for up to 26 d of culture. Following 3 weeks of subcutaneous implantation in a mice model, constructs showed limited degradative response and the pre-formed vasculature successfully connected with the host circulatory system to establish active perfusion.This mechanically resilient tissue equivalent has great potential for the creation of more complex implantable tissues, where rapid anastomosis is sine qua non for cell survival and efficient tissue integration.
Collapse
Affiliation(s)
- H Oliveira
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France.,University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, ART BioPrint, F-33076 Bordeaux, France
| | - C Médina
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France.,University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, ART BioPrint, F-33076 Bordeaux, France
| | - G Labrunie
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France
| | - N Dusserre
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France.,University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, ART BioPrint, F-33076 Bordeaux, France
| | - S Catros
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France.,University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, ART BioPrint, F-33076 Bordeaux, France.,CHU Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076 Bordeaux, France
| | - L Magnan
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France
| | - C Handschin
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France.,University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, ART BioPrint, F-33076 Bordeaux, France
| | - M L Stachowicz
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France.,University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, ART BioPrint, F-33076 Bordeaux, France
| | - J-C Fricain
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France.,University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, ART BioPrint, F-33076 Bordeaux, France.,CHU Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076 Bordeaux, France
| | - N L'Heureux
- University of Bordeaux, Laboratory for the Bioengineering of Tissues (BIOTIS), UMR1026 INSERM, F-33076 Bordeaux, France
| |
Collapse
|
189
|
Strohbach A, Busch R. Predicting the In Vivo Performance of Cardiovascular Biomaterials: Current Approaches In Vitro Evaluation of Blood-Biomaterial Interactions. Int J Mol Sci 2021; 22:ijms222111390. [PMID: 34768821 PMCID: PMC8583792 DOI: 10.3390/ijms222111390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022] Open
Abstract
The therapeutic efficacy of a cardiovascular device after implantation is highly dependent on the host-initiated complement and coagulation cascade. Both can eventually trigger thrombosis and inflammation. Therefore, understanding these initial responses of the body is of great importance for newly developed biomaterials. Subtle modulation of the associated biological processes could optimize clinical outcomes. However, our failure to produce truly blood compatible materials may reflect our inability to properly understand the mechanisms of thrombosis and inflammation associated with biomaterials. In vitro models mimicking these processes provide valuable insights into the mechanisms of biomaterial-induced complement activation and coagulation. Here, we review (i) the influence of biomaterials on complement and coagulation cascades, (ii) the significance of complement-coagulation interactions for the clinical success of cardiovascular implants, (iii) the modulation of complement activation by surface modifications, and (iv) in vitro testing strategies.
Collapse
Affiliation(s)
- Anne Strohbach
- Department of Internal Medicine B Cardiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Fleischmannstr. 42-44, 17489 Greifswald, Germany
- Correspondence:
| | - Raila Busch
- Department of Internal Medicine B Cardiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Fleischmannstr. 42-44, 17489 Greifswald, Germany
| |
Collapse
|
190
|
Stricher M, Sarde CO, Guénin E, Egles C, Delbecq F. Cellulosic/Polyvinyl Alcohol Composite Hydrogel: Synthesis, Characterization and Applications in Tissue Engineering. Polymers (Basel) 2021; 13:3598. [PMID: 34685357 PMCID: PMC8539384 DOI: 10.3390/polym13203598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 12/29/2022] Open
Abstract
The biomedical field still requires composite materials for medical devices and tissue engineering model design. As part of the pursuit of non-animal and non-proteic scaffolds, we propose here a cellulose-based material. In this study, 9%, 18% and 36% dialdehyde-functionalized microcrystalline celluloses (DAC) were synthesized by sodium periodate oxidation. The latter was subsequently coupled to PVA at ratios 1:2, 1:1 and 2:1 by dissolving in N-methyl pyrrolidone and lithium chloride. Moulding and successive rehydration in ethanol and water baths formed soft hydrogels. While oxidation effectiveness was confirmed by dialdehyde content determination for all DAC, we observed increasing hydrolysis associated with particle fragmentation. Imaging, FTIR and XDR analysis highlighted an intertwined DAC/PVA network mainly supported by electrostatic interactions, hemiacetal and acetal linkage. To meet tissue engineering requirements, an interconnected porosity was optimized using 0-50 µm salts. While the role of DAC in strengthening the hydrogel was identified, the oxidation ratio of DAC showed no distinct trend. DAC 9% material exhibited the highest indirect and direct cytocompatibility creating spheroid-like structures. DAC/PVA hydrogels showed physical stability and acceptability in vivo that led us to propose our DAC 9%/PVA based material for soft tissue graft application.
Collapse
Affiliation(s)
- Mathilde Stricher
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (M.S.); (C.E.)
| | - Claude-Olivier Sarde
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (C.-O.S.); (E.G.)
| | - Erwann Guénin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (C.-O.S.); (E.G.)
| | - Christophe Egles
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (M.S.); (C.E.)
| | - Frédéric Delbecq
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (C.-O.S.); (E.G.)
| |
Collapse
|
191
|
Watchorn J, Burns D, Stuart S, Gu FX. Investigating the Molecular Mechanism of Protein-Polymer Binding with Direct Saturation Compensated Nuclear Magnetic Resonance. Biomacromolecules 2021; 23:67-76. [PMID: 34647719 DOI: 10.1021/acs.biomac.1c00944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we describe a new technique, direct saturation compensated transfer (DISCO) NMR, to characterize protein-macromolecule interactions. DISCO enables the direct observation of intermolecular interactions and is used to investigate mucoadhesion, a type of polymer-protein interaction that is widely implemented in drug delivery but remains poorly understood. In a model system of bovine submaxillary mucin and poly(acrylic acid), DISCO identifies selective backbone interactions that facilitate mucoadhesion through chain interpenetration. DISCO demonstrated distinct patterns of molecular selectivity between mucoadhesive polymers when applied to hydroxypropyl cellulose and carboxymethyl cellulose and that functionalizing adhesive polymers with strongly interacting moieties may be detrimental to the overall adhesive interaction. Additionally, DISCO was used to estimate polymer-protein dissociation constants using individual proton signals as reporters. Overall, DISCO can be used as a label-free screening tool to generate polymer-specific binding fingerprints to map and quantify interactions between macromolecules.
Collapse
Affiliation(s)
- Jeffrey Watchorn
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Darcy Burns
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Samantha Stuart
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Frank X Gu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
192
|
Wiesmann N, Mendler S, Buhr CR, Ritz U, Kämmerer PW, Brieger J. Zinc Oxide Nanoparticles Exhibit Favorable Properties to Promote Tissue Integration of Biomaterials. Biomedicines 2021; 9:biomedicines9101462. [PMID: 34680579 PMCID: PMC8533365 DOI: 10.3390/biomedicines9101462] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022] Open
Abstract
Due to the demographic change, medicine faces a growing demand for tissue engineering solutions and implants. Often, satisfying tissue regeneration is difficult to achieve especially when co-morbidities hamper the healing process. As a novel strategy, we propose the incorporation of zinc oxide nanoparticles (ZnO NPs) into biomaterials to improve tissue regeneration. Due to their wide range of biocompatibility and their antibacterial properties, ZnO NPs are already discussed for different medical applications. As there are versatile possibilities of modifying their form, size, and function, they are becoming increasingly attractive for tissue engineering. In our study, in addition to antibacterial effects of ZnO NPs, we show for the first time that ZnO NPs can foster the metabolic activity of fibroblasts as well as endothelial cells, both cell types being crucial for successful implant integration. With the gelatin sponge method performed on the chicken embryo’s chorioallantoic membrane (CAM), we furthermore confirmed the high biocompatibility of ZnO NPs. In summary, we found ZnO NPs to have very favorable properties for the modification of biomaterials. Here, incorporation of ZnO NPs could help to guide the tissue reaction and promote complication-free healing.
Collapse
Affiliation(s)
- Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany;
- Correspondence: ; Tel.: +49-6131-17-4034
| | - Simone Mendler
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
| | - Christoph R. Buhr
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | - Peer W. Kämmerer
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany;
| | - Juergen Brieger
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
| |
Collapse
|
193
|
Wenzel AN, Apel PJ, Gosnell HL, Grider DJ. Fortuitous Eradication of an Aggressive Basal Cell Carcinoma Via Foreign Body Reaction to a Polyurethane Vacuum-Assisted Closure Sponge. Am J Dermatopathol 2021; 43:740-745. [PMID: 33534210 DOI: 10.1097/dad.0000000000001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT The foreign body reaction (FBR) is a well-documented immune reaction. Much of the literature on FBRs has focused on minimizing this immune response to mitigate the impact on medical implants. Here, we present a case that illustrates a serendipitous oncologic outcome from an FBR. A 54-year-old man presented with an aggressive basal cell carcinoma (BCC). At the first resection, he had broadly positive surgical margins. The surgical wound was temporized with a polyurethane wound vacuum assisted closure (VAC) device. He was lost to follow-up having retained a VAC sponge for a total of 12 weeks. A wide re-resection was performed 7 months after the initial resection. Exhaustive examination of the resected specimen was performed. There was an absence of any BCC, replaced by a widespread chronic FBR to polyurethane VAC sponge particles. This suggests that the foreign body immune response was sufficiently intense to eradicate any remaining BCC. This case illustrates the concept of an FBR as a novel method of local immunotherapy.
Collapse
Affiliation(s)
| | - Peter J Apel
- Virginia Tech Carilion School of Medicine, Roanoke, VA
- Department of Orthopaedic Surgery, Carilion Clinic, Roanoke, VA; and
| | | | - Douglas J Grider
- Virginia Tech Carilion School of Medicine, Roanoke, VA
- Dominion Pathology Associates, Roanoke VA
| |
Collapse
|
194
|
Keskin D, Zu G, Forson AM, Tromp L, Sjollema J, van Rijn P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 2021; 6:3634-3657. [PMID: 33898869 PMCID: PMC8047124 DOI: 10.1016/j.bioactmat.2021.03.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
The implementation of nanotechnology to develop efficient antimicrobial systems has a significant impact on the prospects of the biomedical field. Nanogels are soft polymeric particles with an internally cross-linked structure, which behave as hydrogels and can be reversibly hydrated/dehydrated (swollen/shrunken) by the dispersing solvent and external stimuli. Their excellent properties, such as biocompatibility, colloidal stability, high water content, desirable mechanical properties, tunable chemical functionalities, and interior gel-like network for the incorporation of biomolecules, make them fascinating in the field of biological/biomedical applications. In this review, various approaches will be discussed and compared to the newly developed nanogel technology in terms of efficiency and applicability for determining their potential role in combating infections in the biomedical area including implant-associated infections.
Collapse
Affiliation(s)
| | | | | | - Lisa Tromp
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| |
Collapse
|
195
|
Spiller S, Wippold T, Bellmann-Sickert K, Franz S, Saalbach A, Anderegg U, Beck-Sickinger AG. Protease-Triggered Release of Stabilized CXCL12 from Coated Scaffolds in an Ex Vivo Wound Model. Pharmaceutics 2021; 13:pharmaceutics13101597. [PMID: 34683890 PMCID: PMC8539926 DOI: 10.3390/pharmaceutics13101597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Biomaterials are designed to improve impaired healing of injured tissue. To accomplish better cell integration, we suggest to coat biomaterial surfaces with bio-functional proteins. Here, a mussel-derived surface-binding peptide is used and coupled to CXCL12 (stromal cell-derived factor 1α), a chemokine that activates CXCR4 and consequently recruits tissue-specific stem and progenitor cells. CXCL12 variants with either non-releasable or protease-mediated-release properties were designed and compared. Whereas CXCL12 was stabilized at the N-terminus for protease resistance, a C-terminal linker was designed that allowed for specific cleavage-mediated release by matrix metalloproteinase 9 and 2, since both enzymes are frequently found in wound fluid. These surface adhesive CXCL12 derivatives were produced by expressed protein ligation. Functionality of the modified chemokines was assessed by inositol phosphate accumulation and cell migration assays. Increased migration of keratinocytes and primary mesenchymal stem cells was demonstrated. Immobilization and release were studied for bioresorbable PCL-co-LC scaffolds, and accelerated wound closure was demonstrated in an ex vivo wound healing assay on porcine skin grafts. After 24 h, a significantly improved CXCL12-specific growth stimulation of the epithelial tips was already observed. The presented data display a successful application of protein-coated biomaterials for skin regeneration.
Collapse
Affiliation(s)
- Sabrina Spiller
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany; (S.S.); (K.B.-S.)
| | - Tom Wippold
- Department of Dermatology, Venerology and Allergology, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (T.W.); (S.F.); (A.S.)
| | - Kathrin Bellmann-Sickert
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany; (S.S.); (K.B.-S.)
| | - Sandra Franz
- Department of Dermatology, Venerology and Allergology, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (T.W.); (S.F.); (A.S.)
| | - Anja Saalbach
- Department of Dermatology, Venerology and Allergology, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (T.W.); (S.F.); (A.S.)
| | - Ulf Anderegg
- Department of Dermatology, Venerology and Allergology, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (T.W.); (S.F.); (A.S.)
- Correspondence: (U.A.); (A.G.B.-S.); Tel.: +49-341-972-5881 (U.A.); +49-341-973-6900 (A.G.B.-S.); Fax: +49-341-972-5878 (U.A.); +49-341-973-6909 (A.G.B.-S.)
| | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany; (S.S.); (K.B.-S.)
- Correspondence: (U.A.); (A.G.B.-S.); Tel.: +49-341-972-5881 (U.A.); +49-341-973-6900 (A.G.B.-S.); Fax: +49-341-972-5878 (U.A.); +49-341-973-6909 (A.G.B.-S.)
| |
Collapse
|
196
|
Roodenburg SA, Pouwels SD, Slebos DJ. Airway granulation response to lung-implantable medical devices: a concise overview. Eur Respir Rev 2021; 30:210066. [PMID: 34348981 PMCID: PMC9488845 DOI: 10.1183/16000617.0066-2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/26/2021] [Indexed: 12/02/2022] Open
Abstract
Increasing numbers of endoscopically implantable devices are implanted in the airways, such as airway stents, one-way valves and coils, to treat both malignant and benign diseases. They significantly improve patient outcomes, but their long-term effectiveness and sustainability is hampered by the reaction of the formation of granulation tissue. Factors including procedural-related tissue injury; micro-organism presence; device-related factors, such as the material, design and sizing in relation to the airway; and patient-related factors, including genetic susceptibility, comorbidities and medication use, might all effect the severity of the tissue response and the subsequent degree of granulation tissue formation. However, research into the underlying mechanism and risk factors is scarce and therefore our knowledge is limited. Joint efforts from the scientific community, both pre-clinical and clinical, are needed to gain a deeper understanding and eventually improve the long-term treatment effectiveness of lung-implantable devices.
Collapse
Affiliation(s)
- Sharyn A Roodenburg
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Simon D Pouwels
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Dept of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dirk-Jan Slebos
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
197
|
Safran T, Nepon H, Chu CK, Winocour S, Murphy AM, Davison PG, Dionisopolos T, Vorstenbosch J. Current Concepts in Capsular Contracture: Pathophysiology, Prevention, and Management. Semin Plast Surg 2021; 35:189-197. [PMID: 34526867 DOI: 10.1055/s-0041-1731793] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Over 400,000 women in the United States alone will have breast implant surgery each year. Although capsular contracture represents the most common complication of breast implant surgery, surgeons continue to debate the precise etiology. General agreement exists concerning the inflammatory origin of capsular fibrosis, but the inciting events triggering the inflammatory cascade appear to be multifactorial, making it difficult to predict why one patient may develop capsular contracture while another will not. Accordingly, researchers have explored many different surgical, biomaterial, and medical therapies to address these multiple factors in an attempt to prevent and treat capsular contracture. In the current paper, we aim to inform the reader on the most up-to-date understanding of the pathophysiology, prevention, and treatment of capsular contracture.
Collapse
Affiliation(s)
- Tyler Safran
- Division of Plastic Surgery, McGill University, Montreal, Quebec, Canada
| | - Hillary Nepon
- Division of Experimental Surgery, McGill University, Montreal, Quebec, Canada
| | - Carrie K Chu
- Department of Plastic Surgery, MD Anderson Cancer Center, Houston, Texas
| | - Sebastian Winocour
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Amanda M Murphy
- Division of Plastic Surgery, McGill University, Montreal, Quebec, Canada
| | - Peter G Davison
- Division of Plastic Surgery, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
198
|
Ribeiro WG, Nascimento ACC, Ferreira LB, Marchi DDD, Rego GM, Maeda CT, Silva GEB, Artigiani Neto R, Torres OJM, Pitombo MB. Analysis of tissue inflammatory response, fibroplasia, and foreign body reaction between the polyglactin suture of abdominal aponeurosis in rats and the intraperitoneal implant of polypropylene, polypropylene/polyglecaprone and polyester/porcine collagen meshes. Acta Cir Bras 2021; 36:e360706. [PMID: 34495141 PMCID: PMC8428674 DOI: 10.1590/acb360706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/22/2021] [Indexed: 01/05/2023] Open
Abstract
Purpose To compare tissue inflammatory response, foreign body reaction, fibroplasia,
and proportion of type I/III collagen between closure of abdominal wall
aponeurosis using polyglactin suture and intraperitoneal implant of
polypropylene, polypropylene/polyglecaprone, and polyester/porcine collagen
meshes to repair defects in the abdominal wall of rats. Methods Forty Wistar rats were placed in four groups, ten animals each, for the
intraperitoneal implant of polypropylene, polypropylene/polyglecaprone, and
polyester/porcine collagen meshes or suture with polyglactin (sham) after
creation of defect in the abdominal wall. Twenty-one days later,
histological analysis was performed after staining with hematoxylin-eosin
and picrosirius red. Results The groups with meshes had a higher inflammation score (p < 0.05) and
higher number of gigantocytes (p < 0.05) than the sham group, which had a
better fibroplasia with a higher proportion of type I/III collagen than the
tissue separating meshes (p < 0.05). There were no statistically
significant differences between the three groups with meshes. Conclusions The intraperitoneal implant of polypropylene/polyglecaprone and
polyester/porcine collagen meshes determined a more intense tissue
inflammatory response with exuberant foreign body reaction, immature
fibroplasia and low tissue proportion of type I/III collagen compared to
suture with polyglactin of abdominal aponeurosis. However, there were no
significant differences in relation to the polypropylene mesh group.
Collapse
|
199
|
Jannasch A, Rix J, Welzel C, Schackert G, Kirsch M, König U, Koch E, Matschke K, Tugtekin SM, Dittfeld C, Galli R. Brillouin confocal microscopy to determine biomechanical properties of SULEEI-treated bovine pericardium for application in cardiac surgery. Clin Hemorheol Microcirc 2021; 79:179-192. [PMID: 34487036 DOI: 10.3233/ch-219119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Heart valves are exposed to a highly dynamic environment and underlie high tensile and shear forces during opening and closing. Therefore, analysis of mechanical performance of novel heart valve bioprostheses materials, like SULEEI-treated bovine pericardium, is essential and usually carried out by uniaxial tensile tests. Nevertheless, major drawbacks are the unidirectional strain, which does not reflect the in vivo condition and the deformation of the sample material. An alternative approach for measurement of biomechanical properties is offered by Brillouin confocal microscopy (BCM), a novel, non-invasive and three-dimensional method based on the interaction of light with acoustic waves. OBJECTIVE BCM is a powerful tool to determine viscoelastic tissue properties and is, for the first time, applied to characterize novel biological graft materials, such as SULEEI-treated bovine pericardium. Therefore, the method has to be validated as a non-invasive alternative to conventional uniaxial tensile tests. METHODS Vibratome sections of SULEEI-treated bovine pericardium (decellularized, riboflavin/UV-cross-linked and low-energy electron irradiated) as well as native and GA-fixed controls (n = 3) were analyzed by BCM. In addition, uniaxial tensile tests were performed on equivalent tissue samples and Young's modulus as well as length of toe region were analyzed from stress-strain diagrams. The structure of the extracellular matrix (ECM), especially collagen and elastin, was investigated by multiphoton microscopy (MPM). RESULTS SULEEI-treated pericardium exhibited a significantly higher Brillouin shift and hence higher tissue stiffness in comparison to native and GA-fixed controls (native: 5.6±0.2 GHz; GA: 5.5±0.1 GHz; SULEEI: 6.3±0.1 GHz; n = 3, p < 0.0001). Similarly, a significantly higher Young's modulus was detected in SULEEI-treated pericardia in comparison to native tissue (native: 30.0±10.4 MPa; GA: 31.8±10.7 MPa; SULEEI: 42.1±7.0 MPa; n = 3, p = 0.027). Native pericardia showed wavy and non-directional collagen fibers as well as thin, linear elastin fibers generating a loose matrix. The fibers of GA-fixed and SULEEI-treated pericardium were aligned in one direction, whereat the SULEEI-sample exhibited a much denser matrix. CONCLUSION BCM is an innovative and non-invasive method to analyze elastic properties of novel pericardial graft materials with special mechanical requirements, like heart valve bioprostheses.
Collapse
Affiliation(s)
- Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Jan Rix
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Cindy Welzel
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Gabriele Schackert
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Matthias Kirsch
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Klinik für Neurochirurgie, Asklepios Kliniken Schildautal, Seesen, Germany
| | - Ulla König
- Department of Medical and Biotechnological Applications, Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology, Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Klaus Matschke
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Sems Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Claudia Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Roberta Galli
- Department of Medical Physics and Biomedical Technology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
200
|
Wang Z, Guo Y, Zhang P. A rapid quantitation of cell attachment and spreading based on digital image analysis: Application for cell affinity and compatibility assessment of synthetic polymers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112267. [PMID: 34474826 DOI: 10.1016/j.msec.2021.112267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 11/26/2022]
Abstract
Accurate and rapid quantitation of cell attachment, spreading, and growth on a polymer thin film coated glass cover slide was developed by analyzing the digital images of cells stained with dyes. A biodegradable block copolymer poly(ethylene glycol)-block-poly(l-lactide-co-2-methyl-2-carboxyl-propylene carbonate) [PEG-b-P(LA-co-MCC)] was synthesized as model polymer with poly(L-lactic acid) [PLLA] as a control polymer. Only a small quantity of polymer (~5 mg) was needed in this method through dissolving in a solvent and casting on cover slides which were previously modified with dimethyl dichlorosilane (DMDC). Then it was seeded with cells and taken pictures with a digital camera under an optical microscope and analyzed with ImageJ software. Cell number and a series of morphological data were obtained, including cell area, circularity, perimeter and Feret's diameter, etc. The quantitative analysis results indicated that cells preferred to attach and spread on the surface of the copolymer PEG-b-P(LA-co-MCC) compared to PLLA during 24 h of cell culture. This efficient procedure provides a series of convincing statistical data to evaluate the direct interaction between cells and polymers with only an optical microscope, a digital camera and ImageJ software. It's a rapid, economic way for assessing cell affinity and compatibility of novel synthetic polymers by cell culture in vitro.
Collapse
Affiliation(s)
- Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yueming Guo
- Department of Orthopaedics, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, PR China.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|