151
|
Chen H, Mruk DD, Lui WY, Wong CKC, Lee WM, Cheng CY. Cell polarity and planar cell polarity (PCP) in spermatogenesis. Semin Cell Dev Biol 2017; 81:71-77. [PMID: 28923514 DOI: 10.1016/j.semcdb.2017.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022]
Abstract
In adult mammalian testes, spermatids, most notably step 17-19 spermatids in stage IV-VIII tubules, are aligned with their heads pointing toward the basement membrane and their tails toward the tubule lumen. On the other hand, these polarized spermatids also align across the plane of seminiferous epithelium, mimicking planar cell polarity (PCP) found in other hair cells in cochlea (inner ear). This orderly alignment of developing spermatids during spermiogenesis is important to support spermatogenesis, such that the maximal number of developing spermatids can be packed and supported by a fixed population of differentiated Sertoli cells in the limited space of the seminiferous epithelium in adult testes. In this review, we provide emerging evidence to demonstrate spermatid PCP in the seminiferous epithelium to support spermatogenesis. We also review findings in the field regarding the biology of spermatid cellular polarity (e.g., head-tail polarity and apico-basal polarity) and its inter-relationship to spermatid PCP. Furthermore, we also provide a hypothetical concept on the importance of PCP proteins in endocytic vesicle-mediated protein trafficking events to support spermatogenesis through protein endocytosis and recycling.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Wing-Yee Lui
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
152
|
Hutcheon K, McLaughlin EA, Stanger SJ, Bernstein IR, Dun MD, Eamens AL, Nixon B. Analysis of the small non-protein-coding RNA profile of mouse spermatozoa reveals specific enrichment of piRNAs within mature spermatozoa. RNA Biol 2017; 14:1776-1790. [PMID: 28816603 DOI: 10.1080/15476286.2017.1356569] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Post-testicular sperm maturation and storage within the epididymis is a key determinant of gamete quality and fertilization competence. Here we demonstrate that mouse spermatozoa possess a complex small non-protein-coding RNA (sRNA) profile, the composition of which is markedly influenced by their epididymal transit. Thus, although microRNAs (miRNAs) are highly represented in the spermatozoa of the proximal epididymis, this sRNA class is largely diminished in mature spermatozoa of the distal epididymis. Coincident with this, a substantial enrichment in Piwi-interacting RNA (piRNA) abundance in cauda spermatozoa was detected. Further, features of cauda piRNAs, including; predominantly 29-31 nts in length; preference for uracil at their 5' terminus; no adenine enrichment at piRNA nt 10, and; predominantly mapping to intergenic regions of the mouse genome, indicate that these piRNAs are generated by the PIWIL1-directed primary piRNA production pathway. Accordingly, PIWIL1 was detected via immunoblotting and mass spectrometry in epididymal spermatozoa. These data provide insight into the complexity and dynamic nature of the sRNA profile of spermatozoa and raise the intriguing prospect that piRNAs are generated in situ in maturing spermatozoa. Such information is of particular interest in view of the potential role for paternal sRNAs in influencing conception, embryo development and intergenerational inheritance.
Collapse
Affiliation(s)
- Kate Hutcheon
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia
| | - Eileen A McLaughlin
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia.,b Priority Research Centre for Reproductive Biology , The University of Newcastle , Callaghan , NSW , Australia.,c School of Biological Sciences , University of Auckland , Auckland , New Zealand
| | - Simone J Stanger
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia.,b Priority Research Centre for Reproductive Biology , The University of Newcastle , Callaghan , NSW , Australia
| | - Ilana R Bernstein
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia.,b Priority Research Centre for Reproductive Biology , The University of Newcastle , Callaghan , NSW , Australia
| | - Matthew D Dun
- d Priority Research Centre for Cancer Research, Innovation and Translation , Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle , Callaghan , NSW , Australia
| | - Andrew L Eamens
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia
| | - Brett Nixon
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia.,b Priority Research Centre for Reproductive Biology , The University of Newcastle , Callaghan , NSW , Australia
| |
Collapse
|
153
|
Carnitine/organic cation transporter 2 (OCTN2) contributes to rat epididymal epithelial cell growth and proliferation. Biomed Pharmacother 2017; 93:444-450. [DOI: 10.1016/j.biopha.2017.06.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023] Open
|
154
|
Glycerol-3-phosphate acyltransferase 2 is essential for normal spermatogenesis. Biochem J 2017; 474:3093-3107. [DOI: 10.1042/bcj20161018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 07/04/2017] [Accepted: 07/19/2017] [Indexed: 11/17/2022]
Abstract
Glycerol-3-phosphate acyltransferases (GPATs) catalyze the first and rate-limiting step in the de novo glycerolipid synthesis. The GPAT2 isoform differs from the other isoforms because its expression is restricted to male germ cells and cancer cells. It has been recently reported that GPAT2 expression in mouse testis fluctuates during sexual maturation and that it is regulated by epigenetic mechanisms in combination with vitamin A derivatives. Despite progress made in this field, information about GPAT2 role in the developing male germ cells remains unclear. The aim of the present study was to confirm the hypothesis that GPAT2 is required for the normal physiology of testes and male germ cell maturation. The gene was silenced in vivo by inoculating lentiviral particles carrying the sequence of a short-hairpin RNA targeting Gpat2 mRNA into mouse testis. Histological and gene expression analysis showed impaired spermatogenesis and arrest at the pachytene stage. Defects in reproductive fitness were also observed, and the analysis of apoptosis-related gene expression demonstrated the activation of apoptosis in Gpat2-silenced germ cells. These findings indicate that GPAT2 protein is necessary for the normal development of male gonocytes, and that its absence triggers apoptotic mechanisms, thereby decreasing the number of dividing germ cells.
Collapse
|
155
|
Effects of ascorbic acid on spermatogenesis and sperm parameters in diabetic rats. Cell Tissue Res 2017; 370:305-317. [DOI: 10.1007/s00441-017-2660-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/13/2017] [Indexed: 01/23/2023]
|
156
|
Zhao YQ, Yang HY, Zhang DD, Han YL, Hou CC, Zhu JQ. Dynamic transcription and expression patterns of KIF3A and KIF3B genes during spermiogenesis in the shrimp, Palaemon carincauda. Anim Reprod Sci 2017; 184:59-77. [PMID: 28689636 DOI: 10.1016/j.anireprosci.2017.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/29/2017] [Accepted: 06/22/2017] [Indexed: 01/20/2023]
Abstract
Spermiogenesis is a highly ordered and complex process in the male germ cell differentiation. The microtubule-based motor proteins KIF3A and KIF3B are required for the progression of the stages of spermiogenesis. In this study, the main goal was to determine whether KIF3A and KIF3B have a key role in spermiogenesis in Palaemon carincauda. The complete cDNA of KIF3A/3B from the testis of P. carincauda was cloned by using PCR and rapid amplification of cDNA ends (RACE). The predicted secondary and tertiary structures of KIF3A/3B contained three domains which were the: a) head region, b) stalk region, and c) tail region. Real-time quantitative PCR (qPCR) results revealed that KIF3A and KIF3B mRNAs were obtained for all the tissues examined, with the greatest gene expression in the testis. In situ hybridization indicated the KIF3A and KIF3B mRNAs were distributed in the periphery of the nuclear in the early spermatid of spermiogenesis. In the middle and late spermatid stages, KIF3A and KIF3B mRNAs were gradually upregulated and assembled to one side where acrosome biogenesis begins. In the mature sperm, KIF3A and KIF3B mRNAs were distributed in the acrosome cap and spike. Immunofluorescence studies indicated that KIF3A, tubulin, mitochondria, and Golgi were co-localized in different stages during spermiogenesis in P. carincauda. The temporal and spatial gene expression dynamics of KIF3A/3B indicate that KIF3A and KIF3B proteins may be involved in acrosome formation and nucleus shaping. Moreover, these proteins can transport the mitochondria and Golgi that facilitate acrosome formation in P. carincauda.
Collapse
Affiliation(s)
- Yong-Qiang Zhao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Hai-Yan Yang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Dan-Dan Zhang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Ying-Li Han
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China.
| |
Collapse
|
157
|
Beal MA, Yauk CL, Marchetti F. From sperm to offspring: Assessing the heritable genetic consequences of paternal smoking and potential public health impacts. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2017; 773:26-50. [PMID: 28927533 DOI: 10.1016/j.mrrev.2017.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/16/2022]
Abstract
Individuals who smoke generally do so with the knowledge of potential consequences to their own health. What is rarely considered are the effects of smoking on their future children. The objective of this work was to review the scientific literature on the effects of paternal smoking on sperm and assess the consequences to offspring. A literature search identified over 200 studies with relevant data in humans and animal models. The available data were reviewed to assess the weight of evidence that tobacco smoke is a human germ cell mutagen and estimate effect sizes. These results were used to model the potential increase in genetic disease burden in offspring caused by paternal smoking, with specific focus on aneuploid syndromes and intellectual disability, and the socioeconomic impacts of such an effect. The review revealed strong evidence that tobacco smoking is associated with impaired male fertility, and increases in DNA damage, aneuploidies, and mutations in sperm. Studies support that these effects are heritable and adversely impact the offspring. Our model estimates that, with even a modest 25% increase in sperm mutation frequency caused by smoke-exposure, for each generation across the global population there will be millions of smoking-induced de novo mutations transmitted from fathers to offspring. Furthermore, paternal smoking is estimated to contribute to 1.3 million extra cases of aneuploid pregnancies per generation. Thus, the available evidence makes a compelling case that tobacco smoke is a human germ cell mutagen with serious public health and socio-economic implications. Increased public education should be encouraged to promote abstinence from smoking, well in advance of reproduction, to minimize the transmission of harmful mutations to the next-generation.
Collapse
Affiliation(s)
- Marc A Beal
- Carleton University, Ottawa, Ontario K1S 5B6, Canada; Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada.
| |
Collapse
|
158
|
Cartier-Michaud A, Bailly AL, Betzi S, Shi X, Lissitzky JC, Zarubica A, Sergé A, Roche P, Lugari A, Hamon V, Bardin F, Derviaux C, Lembo F, Audebert S, Marchetto S, Durand B, Borg JP, Shi N, Morelli X, Aurrand-Lions M. Genetic, structural, and chemical insights into the dual function of GRASP55 in germ cell Golgi remodeling and JAM-C polarized localization during spermatogenesis. PLoS Genet 2017; 13:e1006803. [PMID: 28617811 PMCID: PMC5472279 DOI: 10.1371/journal.pgen.1006803] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 05/05/2017] [Indexed: 01/01/2023] Open
Abstract
Spermatogenesis is a dynamic process that is regulated by adhesive interactions between germ and Sertoli cells. Germ cells express the Junctional Adhesion Molecule-C (JAM-C, encoded by Jam3), which localizes to germ/Sertoli cell contacts. JAM-C is involved in germ cell polarity and acrosome formation. Using a proteomic approach, we demonstrated that JAM-C interacted with the Golgi reassembly stacking protein of 55 kDa (GRASP55, encoded by Gorasp2) in developing germ cells. Generation and study of Gorasp2-/- mice revealed that knock-out mice suffered from spermatogenesis defects. Acrosome formation and polarized localization of JAM-C in spermatids were altered in Gorasp2-/- mice. In addition, Golgi morphology of spermatocytes was disturbed in Gorasp2-/- mice. Crystal structures of GRASP55 in complex with JAM-C or JAM-B revealed that GRASP55 interacted via PDZ-mediated interactions with JAMs and induced a conformational change in GRASP55 with respect of its free conformation. An in silico pharmacophore approach identified a chemical compound called Graspin that inhibited PDZ-mediated interactions of GRASP55 with JAMs. Treatment of mice with Graspin hampered the polarized localization of JAM-C in spermatids, induced the premature release of spermatids and affected the Golgi morphology of meiotic spermatocytes.
Collapse
Affiliation(s)
| | - Anne-Laure Bailly
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Stéphane Betzi
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Xiaoli Shi
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | | | - Ana Zarubica
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Arnauld Sergé
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Philippe Roche
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Adrien Lugari
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Véronique Hamon
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Florence Bardin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Carine Derviaux
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Frédérique Lembo
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Sylvie Marchetto
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Bénédicte Durand
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Institut NeuroMyoGène, Lyon, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Ning Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Xavier Morelli
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Michel Aurrand-Lions
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
- * E-mail:
| |
Collapse
|
159
|
Yang P, Ahmed N, Wang L, Chen H, Waqas Y, Liu T, Haseeb A, Bangulzai N, Huang Y, Chen Q. In vivo autophagy and biogenesis of autophagosomes within male haploid cells during spermiogenesis. Oncotarget 2017; 8:56791-56801. [PMID: 28915631 PMCID: PMC5593602 DOI: 10.18632/oncotarget.18221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/26/2017] [Indexed: 01/04/2023] Open
Abstract
Autophagy is a unique catabolic pathway that is linked to several physiological processes. However, its role in the process of spermiogenesis is largely unknown. The aim of the current study was to determine the in vivo role of autophagy and the origin of autophagosome membrane biogenesis within male haploid cells. Our immunohistochemistry results demonstrated that LC3 and ATG7 localization were increased dramatically in round to elongated spermatids (haploid cells) towards the lumen of seminiferous tubules, however, poorly expressed in the early stages of germ cells near the basal membrane. Moreover, transmission electron microscopy revealed that the numbers of lysosomes and autophagosomes increased in the elongated spermatids as spermiogenesis progressed. However, no evidence was found for the presence of autophagosomes in the Sertoli cells, spermatogonia or early primary spermatocytes (diploid cells). Furthermore, TEM showed that many endoplasmic reticula were transformed into a “chrysanthemum flower center,” from which a double-layered isolation membrane appeared to develop into an autophagosome. This study provides novel evidence about the formation of autophagosomes through the chrysanthemum flower center from the endoplasmic reticulum, and suggests that autophagy may have an important role in the removal of extra cytoplasm within male haploid cells during spermiogenesis.
Collapse
Affiliation(s)
- Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,The Postdoctoral Research Station in Animal Science, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,Department of Veterinary Anatomy & Histology, Faculty of Veterinary and Animal Sciences, LUAWMS, Uthal 90150, Pakistan
| | - Lingling Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yasir Waqas
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengfei Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Abdul Haseeb
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Nasrullah Bangulzai
- Department of Veterinary Anatomy & Histology, Faculty of Veterinary and Animal Sciences, LUAWMS, Uthal 90150, Pakistan
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
160
|
Wen Q, Tang EI, Gao Y, Jesus TT, Chu DS, Lee WM, Wong CKC, Liu YX, Xiao X, Silvestrini B, Cheng CY. Signaling pathways regulating blood-tissue barriers - Lesson from the testis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:141-153. [PMID: 28450047 DOI: 10.1016/j.bbamem.2017.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
Signaling pathways that regulate blood-tissue barriers are important for studying the biology of various blood-tissue barriers. This information, if deciphered and better understood, will provide better therapeutic management of diseases particularly in organs that are sealed by the corresponding blood-tissue barriers from systemic circulation, such as the brain and the testis. These barriers block the access of antibiotics and/or chemotherapeutical agents across the corresponding barriers. Studies in the last decade using the blood-testis barrier (BTB) in rats have demonstrated the presence of several signaling pathways that are crucial to modulate BTB function. Herein, we critically evaluate these findings and provide hypothetical models regarding the underlying mechanisms by which these signaling molecules/pathways modulate BTB dynamics. This information should be carefully evaluated to examine their applicability in other tissue barriers which shall benefit future functional studies in the field. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Qing Wen
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Elizabeth I Tang
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Ying Gao
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Tito T Jesus
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Darren S Chu
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, China
| | | | - C Yan Cheng
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
161
|
Serrano JB, Martins F, Sousa JC, Pereira CD, van Pelt AMM, Rebelo S, da Cruz E Silva OAB. Descriptive Analysis of LAP1 Distribution and That of Associated Proteins throughout Spermatogenesis. MEMBRANES 2017; 7:E22. [PMID: 28387711 PMCID: PMC5489856 DOI: 10.3390/membranes7020022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/12/2017] [Accepted: 04/02/2017] [Indexed: 12/12/2022]
Abstract
Spermatogenesis comprises highly complex differentiation processes. Nuclear envelope (NE) proteins have been associated with these processes, including lamins, lamina-associated polypeptide (LAP) 2 and the lamin B-receptor. LAP1 is an important NE protein whose function has not been fully elucidated, but several binding partners allow predicting putative LAP1 functions. To date, LAP1 had not been associated with spermatogenesis. In this study, LAP1 expression and cellular/subcellular localization during spermatogenesis in human and mouse testes is established for the first time. The fact that LAP1 is expressed during nuclear elongation in spermiogenesis and is located at the spermatids' centriolar pole is singularly important. LAP1 binds to members of the protein phosphatase 1 (PP1) family. Similar localization of LAP1 and PP1γ2, a testis-specific PP1 isoform, suggests a shared function for both proteins during spermiogenesis. Furthermore, this study suggests an involvement of LAP1 in manchette development and chromatin regulation possibly via interaction with acetylated α-tubulin and lamins, respectively. Taken together, the present results indicate that, by moving to the posterior pole in spermatids, LAP1 can contribute to the achievement of non-random, sperm-specific chromatin distribution, as well as modulate cellular remodeling during spermiogenesis. In addition, LAP1 seems to be associated with dynamic microtubule changes related to manchette formation and flagella development.
Collapse
Affiliation(s)
- Joana B Serrano
- Neuroscience and Signaling Laboratory, Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Filipa Martins
- Neuroscience and Signaling Laboratory, Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João C Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal.
| | - Cátia D Pereira
- Neuroscience and Signaling Laboratory, Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Sandra Rebelo
- Neuroscience and Signaling Laboratory, Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Odete A B da Cruz E Silva
- Neuroscience and Signaling Laboratory, Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
162
|
An Orchestrated Intron Retention Program in Meiosis Controls Timely Usage of Transcripts during Germ Cell Differentiation. Dev Cell 2017; 41:82-93.e4. [PMID: 28366282 PMCID: PMC5392497 DOI: 10.1016/j.devcel.2017.03.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/24/2017] [Accepted: 03/03/2017] [Indexed: 12/11/2022]
Abstract
Global transcriptome reprogramming during spermatogenesis ensures timely expression of factors in each phase of male germ cell differentiation. Spermatocytes and spermatids require particularly extensive reprogramming of gene expression to switch from mitosis to meiosis and to support gamete morphogenesis. Here, we uncovered an extensive alternative splicing program during this transmeiotic differentiation. Notably, intron retention was largely the most enriched pattern, with spermatocytes showing generally higher levels of retention compared with spermatids. Retained introns are characterized by weak splice sites and are enriched in genes with strong relevance for gamete function. Meiotic intron-retaining transcripts (IRTs) were exclusively localized in the nucleus. However, differently from other developmentally regulated IRTs, they are stable RNAs, showing longer half-life than properly spliced transcripts. Strikingly, fate-mapping experiments revealed that IRTs are recruited onto polyribosomes days after synthesis. These studies reveal an unexpected function for regulated intron retention in modulation of the timely expression of select transcripts during spermatogenesis.
Collapse
|
163
|
Pothana L, Devi L, Goel S. Cryopreservation of adult cervid testes. Cryobiology 2017; 74:103-109. [DOI: 10.1016/j.cryobiol.2016.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/21/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023]
|
164
|
Heat Shock Protein A2 (HSPA2): Regulatory Roles in Germ Cell Development and Sperm Function. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 222:67-93. [PMID: 28389751 DOI: 10.1007/978-3-319-51409-3_4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among the numerous families of heat shock protein (HSP) that have been implicated in the regulation of reproductive system development and function, those belonging to the 70 kDa HSP family have emerged as being indispensable for male fertility. In particular, the testis-enriched heat shock 70 kDa protein 2 (HSPA2) has been shown to be critical for the progression of germ cell differentiation during spermatogenesis in the mouse model. Beyond this developmentally important window, mounting evidence has also implicated HSPA2 in the functional transformation of the human sperm cell during their ascent of the female reproductive tract. Specifically, HSPA2 appears to coordinate the remodelling of specialised sperm domains overlying the anterior region of the sperm head compatible with their principle role in oocyte recognition. The fact that levels of the HSPA2 protein in mature spermatozoa tightly correlate with the efficacy of oocyte binding highlight its utility as a powerful prognostic biomarker of male fertility. In this chapter, we consider the unique structural and biochemical characteristics of HSPA2 that enable this heat shock protein to fulfil its prominent roles in orchestrating the morphological differentiation of male germ cells during spermatogenesis as well as their functional transformation during post-testicular sperm maturation.
Collapse
|
165
|
Cardoso AM, Alves MG, Mathur PP, Oliveira PF, Cavaco JE, Rato L. Obesogens and male fertility. Obes Rev 2017; 18:109-125. [PMID: 27776203 DOI: 10.1111/obr.12469] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 12/28/2022]
Abstract
In the last decades, several studies evidenced a decrease in male fertility in developed countries. Although the aetiology of this trend in male reproductive health remains a matter of debate, environmental compounds that predispose to weight gain, namely obesogens, are appointed as contributors because of their action as endocrine disruptors. Obesogens favour adipogenesis by an imbalance of metabolic processes and can be found virtually everywhere. These compounds easily accumulate in tissues with high lipid content. Obesogens change the functioning of male reproductive axis, and, consequently, the testicular physiology and metabolism that are pivotal for spermatogenesis. The disruption of these tightly regulated metabolic pathways leads to adverse reproductive outcomes. Notably, adverse effects of obesogens may also promote disturbances in the metabolic performance of the following generations, through epigenetic modifications passed by male gametes. Thus, unveiling the molecular pathways by which obesogens induce toxicity that may end up in epigenetic modifications is imperative. Otherwise, a transgenerational susceptibility to metabolic diseases may be favoured. We present an up-to-date overview of the impact of obesogens on testicular physiology, with a particular focus on testicular metabolism. We also address the effects of obesogens on male reproductive parameters and the subsequent consequences for male fertility.
Collapse
Affiliation(s)
- A M Cardoso
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - M G Alves
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - P P Mathur
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India.,KIIT University, Bhubaneswar, India
| | - P F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - J E Cavaco
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - L Rato
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
166
|
Tavares RS, Portela JMD, Sousa MI, Mota PC, Ramalho-Santos J, Amaral S. High glucose levels affect spermatogenesis: an in vitro approach. Reprod Fertil Dev 2017; 29:1369-1378. [DOI: 10.1071/rd15475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 05/04/2016] [Indexed: 01/04/2023] Open
Abstract
Besides known factors that may cause male infertility, systemic diseases such as diabetes mellitus may further exacerbate a decline in male fertility. This metabolic disease, clinically characterised by a hyperglycaemic phenotype, has devastating consequences in terms of human health, with reproductive dysfunction being one of the associated clinical complications. Nonetheless, the mechanisms responsible for such alterations are still poorly understood due to the multiplicity of factors involved in the induced pathophysiological changes. With this in mind, we focused on the main mediator of diabetes-associated alterations and performed an in vitro approach to address the effects of high glucose conditions on spermatogenesis, avoiding other confounding in vivo factors. Mouse (5 days post partum) testis fragments were cultured on agar gel stands at a gas–liquid interface with either 5, 25 or 50 mM D-glucose for 3 weeks. Stereological analysis revealed that high D-glucose levels increased Sertoli cell number (P < 0.05) and decreased tubular luminal area (P < 0.01), suggesting an impairment of this somatic cell type. Moreover, higher proliferative activity in a TM4 Sertoli cell line exposed to high D-glucose was found (P < 0.05) without compromising cell viability (P > 0.05), further suggesting altered Sertoli cell maturation. Overall, high D-glucose concentrations may lead to impairment of Sertoli cell function, which, given their significant role in spermatogenic control, may compromise male fertility.
Collapse
|
167
|
Abstract
Drebrin is a family of actin-binding proteins with two known members called drebrin A and E. Apart from the ability to stabilize F-actin microfilaments via their actin-binding domains near the N-terminus, drebrin also regulates multiple cellular functions due to its unique ability to recruit multiple binding partners to a specific cellular domain, such as the seminiferous epithelium during the epithelial cycle of spermatogenesis. Recent studies have illustrated the role of drebrin E in the testis during spermatogenesis in particular via its ability to recruit branched actin polymerization protein known as actin-related protein 3 (Arp3), illustrating its involvement in modifying the organization of actin microfilaments at the ectoplasmic specialization (ES) which includes the testis-specific anchoring junction at the Sertoli-spermatid (apical ES) interface and at the Sertoli cell-cell (basal ES) interface. These data are carefully evaluated in light of other recent findings herein regarding the role of drebrin in actin filament organization at the ES. We also provide the hypothetical model regarding its involvement in germ cell transport during the epithelial cycle in the seminiferous epithelium to support spermatogenesis.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - Michelle W M Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA.
| |
Collapse
|
168
|
Champroux A, Torres-Carreira J, Gharagozloo P, Drevet JR, Kocer A. Mammalian sperm nuclear organization: resiliencies and vulnerabilities. Basic Clin Androl 2016; 26:17. [PMID: 28031843 PMCID: PMC5175393 DOI: 10.1186/s12610-016-0044-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/12/2016] [Indexed: 01/07/2023] Open
Abstract
Sperm cells are remarkably complex and highly specialized compared to somatic cells. Their function is to deliver to the oocyte the paternal genomic blueprint along with a pool of proteins and RNAs so a new generation can begin. Reproductive success, including optimal embryonic development and healthy offspring, greatly depends on the integrity of the sperm chromatin structure. It is now well documented that DNA damage in sperm is linked to reproductive failures both in natural and assisted conception (Assisted Reproductive Technologies [ART]). This manuscript reviews recent important findings concerning - the unusual organization of mammalian sperm chromatin and its impact on reproductive success when modified. This review is focused on sperm chromatin damage and their impact on embryonic development and transgenerational inheritance.
Collapse
Affiliation(s)
- A. Champroux
- GReD “Genetics, Reproduction & Development” Laboratory, UMR CNRS 6293, INSERM U1103, Clermont Université, BP60026 - TSA60026, 63178 Aubière cedex, France
| | - J. Torres-Carreira
- Centro Universitário Rio Preto, UNIRP, Rodovia Br153, Km 69, CEP15093-450 São José do Rio Preto, São Paulo Brazil
| | - P. Gharagozloo
- CellOxess LLC, 830 Bear Tavern Road, Ewing, NJ 08628 USA
| | - J. R. Drevet
- GReD “Genetics, Reproduction & Development” Laboratory, UMR CNRS 6293, INSERM U1103, Clermont Université, BP60026 - TSA60026, 63178 Aubière cedex, France
| | - A. Kocer
- GReD “Genetics, Reproduction & Development” Laboratory, UMR CNRS 6293, INSERM U1103, Clermont Université, BP60026 - TSA60026, 63178 Aubière cedex, France
| |
Collapse
|
169
|
du Plessis L, Soley JT. Sperm head shaping in ratites: New insights, yet more questions. Tissue Cell 2016; 48:605-615. [DOI: 10.1016/j.tice.2016.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
|
170
|
Wen Q, Tang EI, Xiao X, Gao Y, Chu DS, Mruk DD, Silvestrini B, Cheng CY. Transport of germ cells across the seminiferous epithelium during spermatogenesis-the involvement of both actin- and microtubule-based cytoskeletons. Tissue Barriers 2016; 4:e1265042. [PMID: 28123928 DOI: 10.1080/21688370.2016.1265042] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022] Open
Abstract
The transport of germ cells from the base of the seminiferous epithelium toward the luminal edge of the tubule lumen in the adluminal compartment during the epithelial cycle is an essential cellular event to support spermatogenesis. Thus, fully developed elongated spermatids (i.e., spermatozoa) can be released at spermiation in late stage VIII in rodents versus late stage II in humans. Earlier studies to examine the molecular mechanism(s) that support germ cell transport, most notably the transport of preleptotene spermatocytes across the blood-testis barrier (BTB), and the transport of elongating spermatids across the adluminal compartment during spermiogenesis, is focused on the adhesion protein complexes at the cell-cell interface. It is generally accepted that cell junctions at the Sertoli cell-cell interface at the BTB, including the actin-based tight junction (TJ), basal ectoplasmic specialization (basal ES, a testis-specific adherens junction) and gap junction (GJ), as well as the intermediate filament-based desmosome undergo constant remodeling to accommodate the transport of preleptotene spermatocytes across the barrier. On the other hand, similar junction dynamics (i.e., disassembly, reassembly and stabilization/maintenance) take place at the Sertoli-spermatid interface. Emerging evidence has shown that junction dynamics at the Sertoli cell-cell vs. Sertoli-germ cell interface are supported by the 2 intriguingly coordinated cytoskeletons, namely the F-actin- and microtubule (MT)-based cytoskeletons. Herein, we provide a brief summary and critically evaluate the recent findings. We also provide an updated hypothetical concept regarding germ cell transport in the testis utilizing the MT-conferred tracks and the MT-specific motor proteins. Furthermore, this cellular event is also supported by the F-actin-based cytoskeleton.
Collapse
Affiliation(s)
- Qing Wen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, NY, USA
| | - Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, NY, USA
| | - Xiang Xiao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA; Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, NY, USA
| | - Darren S Chu
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, NY, USA
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, NY, USA
| | | | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, NY, USA
| |
Collapse
|
171
|
The control of male fertility by spermatid-specific factors: searching for contraceptive targets from spermatozoon's head to tail. Cell Death Dis 2016; 7:e2472. [PMID: 27831554 PMCID: PMC5260884 DOI: 10.1038/cddis.2016.344] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Male infertility due to abnormal spermatozoa has been reported in both animals and humans, but its pathogenic causes, including genetic abnormalities, remain largely unknown. On the other hand, contraceptive options for men are limited, and a specific, reversible and safe method of male contraception has been a long-standing quest in medicine. Some progress has recently been made in exploring the effects of spermatid-specifical genetic factors in controlling male fertility. A comprehensive search of PubMed for articles and reviews published in English before July 2016 was carried out using the search terms 'spermiogenesis failure', 'globozoospermia', 'spermatid-specific', 'acrosome', 'infertile', 'manchette', 'sperm connecting piece', 'sperm annulus', 'sperm ADAMs', 'flagellar abnormalities', 'sperm motility loss', 'sperm ion exchanger' and 'contraceptive targets'. Importantly, we have opted to focus on articles regarding spermatid-specific factors. Genetic studies to define the structure and physiology of sperm have shown that spermatozoa appear to be one of the most promising contraceptive targets. Here we summarize how these spermatid-specific factors regulate spermiogenesis and categorize them according to their localization and function from spermatid head to tail (e.g., acrosome, manchette, head-tail conjunction, annulus, principal piece of tail). In addition, we emphatically introduce small-molecule contraceptives, such as BRDT and PPP3CC/PPP3R2, which are currently being developed to target spermatogenic-specific proteins. We suggest that blocking the differentiation of haploid germ cells, which rarely affects early spermatogenic cell types and the testicular microenvironment, is a better choice than spermatogenic-specific proteins. The studies described here provide valuable information regarding the genetic and molecular defects causing male mouse infertility to improve our understanding of the importance of spermatid-specific factors in controlling fertility. Although a male contraceptive 'pill' is still many years away, research into the production of new small-molecule contraceptives targeting spermatid-specific proteins is the right avenue.
Collapse
|
172
|
Lin Z, Bao J, Kong Q, Bai Y, Luo F, Songyang Z, Wu Y, Huang J. Effective production of recipient male pigs for spermatogonial stem cell transplantation by intratesticular injection with busulfan. Theriogenology 2016; 89:365-373.e2. [PMID: 27919445 DOI: 10.1016/j.theriogenology.2016.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/24/2016] [Accepted: 10/22/2016] [Indexed: 01/15/2023]
Abstract
Germ cell transplantation has facilitated spermatogonial stem cell (SSC) and spermatogenesis research and shown great potential in the seed-breeding of domestic livestock. However, little progress has been made in large animals, primarily reflecting the difficulties in preparing sterile recipients. Here, we developed a novel protocol to prepare recipient pigs through the direct injection of busulfan into the cavum vaginale of the scrotums of Landrace-Large bi-crossbreeding male pigs and Seghers male pigs, two economically-important types of pigs, to eliminate endogenous spermatogonia. No severe diseases or weight loss was observed in either pig type after the injection with busulfan. Histologic analysis showed an advanced and dose-dependent germ cell loss, with complete germ cell loss observed in the highest dose group, 3.0 mg/kg in the Landrace-Large bi-crossbreeding pigs and 2.0 mg/kg in the Seghers pigs. A smaller seminiferous tubule diameter, a vacuolized seminiferous epithelium and the overproliferation interstitial cells, frequently observed in mouse germ cell deficiency models, were present in the most of the high-dose busulfan-treated groups. Molecular markers detected in Seghers pigs further confirmed the depletion of endogenous germ cells, providing an accessible niche for exogenous SSCs. This study provides a basis to prepare the transplantation recipients of SSCs in pigs.
Collapse
Affiliation(s)
- Zhuoheng Lin
- Guangdong Province Key Laboratory of Reproductive Medicine, the First Affiliated Hospital and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jiajing Bao
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Qunfang Kong
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Yaofu Bai
- Guangdong Province Key Laboratory of Reproductive Medicine, the First Affiliated Hospital and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Fenhua Luo
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Zhou Songyang
- Guangdong Province Key Laboratory of Reproductive Medicine, the First Affiliated Hospital and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yingji Wu
- The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, China.
| | - Junjiu Huang
- Guangdong Province Key Laboratory of Reproductive Medicine, the First Affiliated Hospital and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
173
|
Redgrove KA, Bernstein IR, Pye VJ, Mihalas BP, Sutherland JM, Nixon B, McCluskey A, Robinson PJ, Holt JE, McLaughlin EA. Dynamin 2 is essential for mammalian spermatogenesis. Sci Rep 2016; 6:35084. [PMID: 27725702 PMCID: PMC5057128 DOI: 10.1038/srep35084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/26/2016] [Indexed: 11/09/2022] Open
Abstract
The dynamin family of proteins play important regulatory roles in membrane remodelling and endocytosis, especially within brain and neuronal tissues. In the context of reproduction, dynamin 1 (DNM1) and dynamin 2 (DNM2) have recently been shown to act as key mediators of sperm acrosome formation and function. However, little is known about the roles that these proteins play in the developing testicular germ cells. In this study, we employed a DNM2 germ cell-specific knockout model to investigate the role of DNM2 in spermatogenesis. We demonstrate that ablation of DNM2 in early spermatogenesis results in germ cell arrest during prophase I of meiosis, subsequent loss of all post-meiotic germ cells and concomitant sterility. These effects become exacerbated with age, and ultimately result in the demise of the spermatogonial stem cells and a Sertoli cell only phenotype. We also demonstrate that DNM2 activity may be temporally regulated by phosphorylation of DNM2 via the kinase CDK1 in spermatogonia, and dephosphorylation by phosphatase PPP3CA during meiotic and post-meiotic spermatogenesis.
Collapse
Affiliation(s)
- Kate A Redgrove
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ilana R Bernstein
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Victoria J Pye
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Bettina P Mihalas
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jessie M Sutherland
- School of Biomedical Sciences &Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett Nixon
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Adam McCluskey
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Sydney, NSW 2145, Australia
| | - Janet E Holt
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
174
|
Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci Rep 2016; 6:31794. [PMID: 27549865 PMCID: PMC4994100 DOI: 10.1038/srep31794] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022] Open
Abstract
Recent evidence has shown that the sperm epigenome is vulnerable to dynamic modifications arising from a variety of paternal environment exposures and that this legacy can serve as an important determinant of intergenerational inheritance. It has been postulated that such exchange is communicated to maturing spermatozoa via the transfer of small non-protein-coding RNAs (sRNAs) in a mechanism mediated by epididymosomes; small membrane bound vesicles released by the soma of the male reproductive tract (epididymis). Here we confirm that mouse epididymosomes encapsulate an impressive cargo of >350 microRNAs (miRNAs), a developmentally important sRNA class, the majority (~60%) of which are also represented by the miRNA signature of spermatozoa. This includes >50 miRNAs that were found exclusively in epididymal sperm and epididymosomes, but not in the surrounding soma. We also documented substantial changes in the epididymosome miRNA cargo, including significant fold changes in almost half of the miRNAs along the length of the epididymis. Finally, we provide the first direct evidence for the transfer of several prominent miRNA species between mouse epididymosomes and spermatozoa to afford novel insight into a mechanism of intercellular communication by which the sRNA payload of sperm can be selectively modified during their post-testicular maturation.
Collapse
|
175
|
Howida A, Salaheldeen E, Iida H. Molecular Cloning of Spergen-4, Encoding a Spermatogenic Cell-Specific Protein Associated with Sperm Flagella and the Acrosome Region in Rat Spermatozoa. Zoolog Sci 2016; 33:195-203. [PMID: 27032685 DOI: 10.2108/zs150104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We used a differential display in combination with complementary DNA (cDNA) cloning approach to isolate a novel rat gene LOC690919 with an open reading frame of 1227-length nucleotides encoding a protein of 409 amino acids. This gene was designated as Spergen-4 (a spermatogenic cell-specific gene-4). Spergen-4 mRNA was highly expressed in testis, and its expression was detected in rat testis starting at three weeks of postnatal development and persisting up to adulthood. Mouse and human orthologs, which lack N-terminal 77 amino acid residues of rat Spegen-4, were found in the database. Immunofluorescence microscopy and immunoblot analysis demonstrated that Spergen-4 was not expressed in spermatogonia, spermatocytes, and round spermatids, but was restrictedly detected at sperm head, cytoplasm, and developing flagella of elongated spermatids in rat testis. In mature spermatozoa, Spergen-4 was detected at the acrosome region as well as the principal piece of flagella. Spergen-4 immunosignal disappeared from sperm heads on acrosome reaction induced by progesterone. These data suggest that Spergen-4 integrated into elongated spermatids during spermiogenesis serves as a constituent for acrosome region and flagella of rat spermatozoa.
Collapse
Affiliation(s)
- Ali Howida
- 1 Laboratory of Zoology, Graduate School of Agriculture, Kyushu University,Higashiku Hakozaki 6-10-1, Fukuoka 812-8581, Japan.,2 Zoology Department, Faculty of Science, Sohag University, Sohag, Naser City, Egypt, PO. 82524
| | - Elsaid Salaheldeen
- 1 Laboratory of Zoology, Graduate School of Agriculture, Kyushu University,Higashiku Hakozaki 6-10-1, Fukuoka 812-8581, Japan.,2 Zoology Department, Faculty of Science, Sohag University, Sohag, Naser City, Egypt, PO. 82524
| | - Hiroshi Iida
- 1 Laboratory of Zoology, Graduate School of Agriculture, Kyushu University,Higashiku Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| |
Collapse
|
176
|
Wang CY, Tang MC, Chang WC, Furushima K, Jang CW, Behringer RR, Chen CM. PiggyBac Transposon-Mediated Mutagenesis in Rats Reveals a Crucial Role of Bbx in Growth and Male Fertility. Biol Reprod 2016; 95:51. [PMID: 27465138 PMCID: PMC5394979 DOI: 10.1095/biolreprod.116.141739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/14/2016] [Indexed: 12/14/2022] Open
Abstract
Bobby sox homolog (Bbx) is an evolutionally conserved gene, but its biological function remains elusive. Here, we characterized defects of Bbx mutant rats that were created by PiggyBac-mediated insertional mutagenesis. Smaller body size and male infertility were the two major phenotypes of homozygous Bbx mutants. Bbx expression profile analysis showed that Bbx was more highly expressed in the testis and pituitary gland than in other organs. Histology and hormonal gene expression analysis of control and Bbx-null pituitary glands showed that loss of Bbx appeared to be dispensable for pituitary histogenesis and the expression of major hormones. BBX was localized in the nuclei of postmeiotic spermatids and Sertoli cells in wild-type testes, but absent in mutant testes. An increased presence of aberrant multinuclear giant cells and apoptotic cells was observed in mutant seminiferous tubules. TUNEL-positive cells costained with CREM (round spermatid marker), but not PLZF (spermatogonia marker), gammaH2Ax (meiotic spermatocyte marker), or GATA4 (Sertoli cell marker). Finally, there were drastically reduced numbers and motility of epididymal sperm from Bbx-null rats. These results suggest that loss of BBX induces apoptosis of postmeiotic spermatids and results in spermiogenesis defects and infertility.
Collapse
Affiliation(s)
- Chieh-Ying Wang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Chu Tang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan Laboratory Animal Center, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Chi Chang
- Laboratory Animal Center, National Yang-Ming University, Taipei, Taiwan
| | - Kenryo Furushima
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Chuan-Wei Jang
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Richard R Behringer
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Chun-Ming Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan Laboratory Animal Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
177
|
Abstract
The purpose of this review is to describe the endocrine and local testicular factors that contribute to the regulation of the blood-testis barrier (BTB), using information gained from in vivo and in vitro models of BTB formation during/after puberty, and from the maintenance of BTB function during adulthood. In vivo the BTB, in part comprised of tight junctions between adjacent somatic Sertoli cells, compartmentalizes meiotic spermatocytes and post-meiotic spermatids away from the vasculature, and therefore prevents autoantibody production by the immune system against these immunogenic germ cells. This adluminal compartment also features a unique biochemical milieu required for the completion of germ cell development. During the normal process of spermatogenesis, earlier germ cells continually cross into the adluminal compartment, but the regulatory mechanisms and changes in junctional proteins that allow this translocation step without causing a 'leak' remain poorly understood. Recent data describing the roles of FSH and androgen on the regulation of Sertoli cell tight junctions and tight junction proteins will be discussed, followed by an examination of the role of paracrine factors, including members of the TGFβ superfamily (TGFβ3, activin A) and retinoid signalling, as potential mediators of junction assembly and disassembly during the translocation process.
Collapse
Affiliation(s)
- Peter G Stanton
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Dept. of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
178
|
Fontelles CC, Carney E, Clarke J, Nguyen NM, Yin C, Jin L, Cruz MI, Ong TP, Hilakivi-Clarke L, de Assis S. Paternal overweight is associated with increased breast cancer risk in daughters in a mouse model. Sci Rep 2016; 6:28602. [PMID: 27339599 PMCID: PMC4919621 DOI: 10.1038/srep28602] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022] Open
Abstract
While many studies have shown that maternal weight and nutrition in pregnancy affects offspring's breast cancer risk, no studies have investigated the impact of paternal body weight on daughters' risk of this disease. Here, we show that diet-induced paternal overweight around the time of conception can epigenetically reprogram father's germ-line and modulate their daughters' birth weight and likelihood of developing breast cancer, using a mouse model. Increased body weight was associated with changes in the miRNA expression profile in paternal sperm. Daughters of overweight fathers had higher rates of carcinogen-induced mammary tumors which were associated with delayed mammary gland development and alterations in mammary miRNA expression. The hypoxia signaling pathway, targeted by miRNAs down-regulated in daughters of overweight fathers, was activated in their mammary tissues and tumors. This study provides evidence that paternal peri-conceptional body weight may affect daughters' mammary development and breast cancer risk and warrants further studies in other animal models and humans.
Collapse
Affiliation(s)
- Camile Castilho Fontelles
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.,Departament of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo and Food Research Center, São Paulo, SP, Brazil
| | - Elissa Carney
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Johan Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Nguyen M Nguyen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Chao Yin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Lu Jin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - M Idalia Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Thomas Prates Ong
- Departament of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo and Food Research Center, São Paulo, SP, Brazil
| | - Leena Hilakivi-Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Sonia de Assis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
179
|
Shang Y, Wang H, Jia P, Zhao H, Liu C, Liu W, Song Z, Xu Z, Yang L, Wang Y, Li W. Autophagy regulates spermatid differentiation via degradation of PDLIM1. Autophagy 2016; 12:1575-92. [PMID: 27310465 DOI: 10.1080/15548627.2016.1192750] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spermiogenesis is a complex and highly ordered spermatid differentiation process that requires reorganization of cellular structures. We have previously found that Atg7 is required for acrosome biogenesis. Here, we show that autophagy regulates the round and elongating spermatids. Specifically, we found that Atg7 is required for spermatozoa flagella biogenesis and cytoplasm removal during spermiogenesis. Spermatozoa motility of atg7-null mice dropped significantly with some extra-cytoplasm retained on the mature sperm head. These defects are associated with an impairment of the cytoskeleton organization. Functional screening revealed that the negative cytoskeleton organization regulator, PDLIM1 (PDZ and LIM domain 1 [elfin]), needs to be degraded by the autophagy-lysosome-dependent pathway to facilitate the proper organization of the cytoskeleton. Our results thus provide a novel mechanism showing that autophagy regulates cytoskeleton organization mainly via degradation of PDLIM1 to facilitate the differentiation of spermatids.
Collapse
Affiliation(s)
- Yongliang Shang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Hongna Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Pengfei Jia
- c State Key Laboratory of Molecular Developmental Biology and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China
| | - Haichao Zhao
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Chao Liu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Weixiao Liu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Zhenhua Song
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Zhiliang Xu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Lin Yang
- c State Key Laboratory of Molecular Developmental Biology and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China
| | - Yanfang Wang
- d State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing , China
| | - Wei Li
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
180
|
Au CE, Hermo L, Byrne E, Smirle J, Fazel A, Kearney RE, Smith CE, Vali H, Fernandez-Rodriguez J, Simon PHG, Mandato C, Nilsson T, Bergeron JJM. Compartmentalization of membrane trafficking, glucose transport, glycolysis, actin, tubulin and the proteasome in the cytoplasmic droplet/Hermes body of epididymal sperm. Open Biol 2016; 5:rsob.150080. [PMID: 26311421 PMCID: PMC4554921 DOI: 10.1098/rsob.150080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Discovered in 1909 by Retzius and described mainly by morphology, the cytoplasmic droplet of sperm (renamed here the Hermes body) is conserved among all mammalian species but largely undefined at the molecular level. Tandem mass spectrometry of the isolated Hermes body from rat epididymal sperm characterized 1511 proteins, 43 of which were localized to the structure in situ by light microscopy and two by quantitative electron microscopy localization. Glucose transporter 3 (GLUT-3) glycolytic enzymes, selected membrane traffic and cytoskeletal proteins were highly abundant and concentrated in the Hermes body. By electron microscope gold antibody labelling, the Golgi trafficking protein TMED7/p27 localized to unstacked flattened cisternae of the Hermes body, as did GLUT-3, the most abundant protein. Its biogenesis was deduced through the mapping of protein expression for all 43 proteins during male germ cell differentiation in the testis. It is at the terminal step 19 of spermiogenesis that the 43 characteristic proteins accumulated in the nascent Hermes body.
Collapse
Affiliation(s)
- Catherine E Au
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| | - Elliot Byrne
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - Jeffrey Smirle
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - Ali Fazel
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - Robert E Kearney
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada H3A 1A1
| | - Charles E Smith
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| | - Julia Fernandez-Rodriguez
- Centre for Cellular Imaging, Sahlgrenska Academy at the University of Gothenburg, PO Box 435, 40530 Gothenburg, Sweden
| | - Paul H G Simon
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - Craig Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| | - Tommy Nilsson
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - John J M Bergeron
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1 Royal Victoria Hospital, Center for Translational Biology, RI-MUHC, Glen Site, 1001 Decarie Blvd, Bloc E, Room E02.7210, Montreal, Quebec, Canada H4A 3J1
| |
Collapse
|
181
|
Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol 2016; 59:10-26. [PMID: 27143445 DOI: 10.1016/j.semcdb.2016.04.009] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/13/2022]
Abstract
Spermatogenesis is an extraordinary complex process. The differentiation of spermatogonia into spermatozoa requires the participation of several cell types, hormones, paracrine factors, genes and epigenetic regulators. Recent researches in animals and humans have furthered our understanding of the male gamete differentiation, and led to clinical tools for the better management of male infertility. There is still much to be learned about this intricate process. In this review, the critical steps of human spermatogenesis are discussed together with its main affecting factors.
Collapse
|
182
|
Sutovsky P. New Approaches to Boar Semen Evaluation, Processing and Improvement. Reprod Domest Anim 2016; 50 Suppl 2:11-9. [PMID: 26174914 DOI: 10.1111/rda.12554] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/09/2015] [Indexed: 11/27/2022]
Abstract
The improvement of boar reproductive performance may be the next frontier in reproductive management of swine herd in Unites States, facilitated by better understanding of boar sperm function and by the introduction of new advanced instrumentation in the andrology field. Objective single ejaculate evaluation and individual boar fertility prediction may be possible by introducing automated flow cytometric semen analysis with vital stains (e.g. acrosomal integrity and mito-potential), DNA fragmentation analysis and biomarkers (ubiquitin, PAWP, ALOX15, aggresome) associated with normal or defective sperm phenotypes. Measurement of sperm-produced reactive oxygen species (ROS) is a helpful indicator of normal semen sample. Semen ROS levels could be managed by the addition of ROS-scavenging antioxidants. Alternative energy regeneration substrates and sperm stimulants such as inorganic pyrophosphate and caffeine could increase sperm lifespan in extended semen and within the female reproductive system. Such technology could be combined with timed sperm release in the female reproductive system after artificial insemination. Sperm phenotype analysis by the image-based flow cytometry will go hand in hand with the advancement of swine genomics, linking aberrant sperm phenotype to the fertility influencing gene polymorphisms. Finally, poor-quality ejaculates could be rescued and acceptable ejaculates improved by semen purification methods such as the nanoparticle-based semen purification and magnetic-activated sperm sorting. Altogether, these scientific and technological advances could benefit swine industry, provided that the challenges of new technology adoption, dissemination and cost reduction are met.
Collapse
Affiliation(s)
- P Sutovsky
- Division of Animal Science, Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
183
|
Chojnacka K, Hejmej A, Zarzycka M, Tworzydlo W, Bilinski S, Pardyak L, Kaminska A, Bilinska B. Flutamide induces alterations in the cell-cell junction ultrastructure and reduces the expression of Cx43 at the blood-testis barrier with no disturbance in the rat seminiferous tubule morphology. Reprod Biol Endocrinol 2016; 14:14. [PMID: 27036707 PMCID: PMC4818424 DOI: 10.1186/s12958-016-0144-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Present study was designed to establish a causal connection between changes in the cell-cell junction protein expression at the blood-testis barrier and alterations in the adult rat testis histology following an anti-androgen flutamide exposure. Particular emphasis was placed on the basal ectoplasmic specialization (ES) in the seminiferous epithelium and expression of gap junction protein, connexin 43 (Cx43). METHODS Flutamide (50 mg/kg body weight) was administered to male rats daily from 82 to 88 postnatal day. Testes from 90-day-old control and flutamide-exposed rats were used for all analyses. Testis morphology was analyzed using light and electron microscopy. Gene and protein expressions were analyzed by real-time RT-PCR and Western blotting, respectively, protein distribution by immunohistochemistry, and steroid hormone concentrations by radioimmunoassay. RESULTS Seminiferous epithelium of both groups of rats displayed normal histology without any loss of germ cells. In accord, no difference in the apoptosis and proliferation level was found between control and treated groups. As shown by examination of semi-thin and ultrathin sections, cell surface occupied by the basal ES connecting neighboring Sertoli cells and the number of gap and tight junctions coexisting with the basal ES were apparently reduced in flutamide-treated rats. Moreover, the appearance of unconventional circular ES suggests enhanced internalization and degradation of the basal ES. These changes were accompanied by decreased Cx43 and ZO-1 expression (p < 0.01) and a loss of linear distribution of these proteins at the region of the blood-testis barrier. On the other hand, Cx43 expression in the interstitial tissue of flutamide-treated rats increased (p < 0.01), which could be associated with Leydig cell hypertrophy. Concomitantly, both intratesticular testosterone and estradiol concentrations were elevated (p < 0.01), but testosterone to estradiol ratio decreased significantly (p < 0.05) in flutamide-treated rats compared to the controls. CONCLUSIONS Short-term treatment with flutamide applied to adult rats exerts its primary effect on the basal ES, coexisting junctional complexes and their constituent proteins Cx43 and ZO-1, without any apparent morphological alterations in the seminiferous epithelium. In the interstitial compartment, however, short-term exposure leads to both histological and functional changes of the Leydig cells.
Collapse
Affiliation(s)
- Katarzyna Chojnacka
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Marta Zarzycka
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Szczepan Bilinski
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Alicja Kaminska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
184
|
Proteasome activators, PA28γ and PA200, play indispensable roles in male fertility. Sci Rep 2016; 6:23171. [PMID: 27003159 PMCID: PMC4802386 DOI: 10.1038/srep23171] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/25/2016] [Indexed: 01/26/2023] Open
Abstract
Protein degradation mediated by the proteasome is important for the protein homeostasis. Various proteasome activators, such as PA28 and PA200, regulate the proteasome function. Here we show double knockout (dKO) mice of Psme3 and Psme4 (genes for PA28γ and PA200), but not each single knockout mice, are completely infertile in male. The dKO sperms exhibited remarkable defects in motility, although most of them showed normal appearance in morphology. The proteasome activity of the mutant sperms decreased notably, and the sperms were strongly positive with ubiquitin staining. Quantitative analyses of proteins expressed in dKO sperms revealed up-regulation of several proteins involved in oxidative stress response. Furthermore, increased 8-OHdG staining was observed in dKO sperms head, suggesting defective response to oxidative damage. This report verified PA28γ and PA200 play indispensable roles in male fertility, and provides a novel insight into the role of proteasome activators in antioxidant response.
Collapse
|
185
|
Nixon B, Bromfield EG, Dun MD, Redgrove KA, McLaughlin EA, Aitken RJ. The role of the molecular chaperone heat shock protein A2 (HSPA2) in regulating human sperm-egg recognition. Asian J Androl 2016; 17:568-73. [PMID: 25865850 PMCID: PMC4492046 DOI: 10.4103/1008-682x.151395] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
One of the most common lesions present in the spermatozoa of human infertility patients is an idiopathic failure of sperm-egg recognition. Although this unique cellular interaction can now be readily by-passed by assisted reproductive strategies such as intracytoplasmic sperm injection (ICSI), recent large-scale epidemiological studies have encouraged the cautious use of this technology and highlighted the need for further research into the mechanisms responsible for defective sperm-egg recognition. Previous work in this field has established that the sperm domains responsible for oocyte interaction are formed during spermatogenesis prior to being dynamically modified during epididymal maturation and capacitation in female reproductive tract. While the factors responsible for the regulation of these sequential maturational events are undoubtedly complex, emerging research has identified the molecular chaperone, heat shock protein A2 (HSPA2), as a key regulator of these events in human spermatozoa. HSPA2 is a testis-enriched member of the 70 kDa heat shock protein family that promotes the folding, transport, and assembly of protein complexes and has been positively correlated with in vitro fertilization (IVF) success. Furthermore, reduced expression of HSPA2 from the human sperm proteome leads to an impaired capacity for cumulus matrix dispersal, sperm-egg recognition and fertilization following both IVF and ICSI. In this review, we consider the evidence supporting the role of HSPA2 in sperm function and explore the potential mechanisms by which it is depleted in the spermatozoa of infertile patients. Such information offers novel insights into the molecular mechanisms governing sperm function.
Collapse
Affiliation(s)
- Brett Nixon
- Priority Research Centre in Reproductive Science; Priority Research Centre in Chemical Biology, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | | | |
Collapse
|
186
|
Al-Maghrebi M, Renno WM, Al-Somali HF, Botras MS, Qadhi IN. Lutein modulates transcription dysregulation of adhesion molecules and spermatogenesis transcription factors induced by testicular ischemia reperfusion injury: it could be SAFE. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:539-51. [DOI: 10.1007/s00210-016-1223-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022]
|
187
|
Soley JT. A comparative overview of the sperm centriolar complex in mammals and birds: Variations on a theme. Anim Reprod Sci 2016; 169:14-23. [PMID: 26907939 DOI: 10.1016/j.anireprosci.2016.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 12/01/2022]
Abstract
This paper presents an overview of the structure, function and anomalies of the sperm centriolar complex (CC) on a comparative basis between mammals and birds. The information is based on selected references from the literature supplemented by original observations on spermiogenesis and sperm structure in disparate mammalian (cheetah and cane rat) and avian (ostrich, rhea and emu) species. Whereas the basic structure of the CC (a diplosome surrounded by pericentriolar material) is similar in Aves and Mammalia, certain differences are apparent. Centriole reduction does not generally occur in birds, but when present as in oscines, involves the loss of the proximal centriole. In ratites, the distal centriole forms the core of the entire midpiece and incorporates the outer dense fibres in addition to initiating axoneme formation. The elements of the connecting piece are not segmented in birds and less complex in basic design than in mammals. The functions of the various components of the CC appear to be similar in birds and mammals. Despite obvious differences in sperm head shape, the centrosomal anomalies afflicting both vertebrate groups demonstrate structural uniformity across species and display a similar range of defects. Most abnormalities result from defective migration and alignment of the CC relative to the nucleus. The most severe manifestation is that of acephalic sperm, while angled tail attachment, abaxial and multiflagellate sperm reflect additional defective forms. The stump-tail defect is not observed in birds. A comparison of defective sperm formation and centrosomal dysfunction at the molecular level is currently difficult owing to the paucity of relevant information on avian sperm.
Collapse
Affiliation(s)
- John T Soley
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| |
Collapse
|
188
|
Dissecting the structural basis of MEIG1 interaction with PACRG. Sci Rep 2016; 6:18278. [PMID: 26726850 PMCID: PMC4698733 DOI: 10.1038/srep18278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/16/2015] [Indexed: 11/21/2022] Open
Abstract
The product of the meiosis-expressed gene 1 (MEIG1) is found in the cell bodies of spermatocytes and recruited to the manchette, a structure unique to elongating spermatids, by Parkin co-regulated gene (PACRG). This complex is essential for targeting cargo to the manchette during sperm flagellum assembly. Here we show that MEIG1 adopts a unique fold that provides a large surface for interacting with other proteins. We mutated 12 exposed and conserved amino acids and show that four of these mutations (W50A, K57E, F66A, Y68A) dramatically reduce binding to PACRG. These four amino acids form a contiguous hydrophobic patch on one end of the protein. Furthermore, each of these four mutations diminishes the ability of MEIG1 to stabilize PACRG when expressed in bacteria. Together these studies establish the unique structure and key interaction surface of MEIG1 and provide a framework to explore how MEIG1 recruits proteins to build the sperm tail.
Collapse
|
189
|
Chojnacka K, Zarzycka M, Mruk DD. Biology of the Sertoli Cell in the Fetal, Pubertal, and Adult Mammalian Testis. Results Probl Cell Differ 2016; 58:225-251. [PMID: 27300181 DOI: 10.1007/978-3-319-31973-5_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A healthy man typically produces between 50 × 10(6) and 200 × 10(6) spermatozoa per day by spermatogenesis; in the absence of Sertoli cells in the male gonad, this individual would be infertile. In the adult testis, Sertoli cells are sustentacular cells that support germ cell development by secreting proteins and other important biomolecules that are essential for germ cell survival and maturation, establishing the blood-testis barrier, and facilitating spermatozoa detachment at spermiation. In the fetal testis, on the other hand, pre-Sertoli cells form the testis cords, the future seminiferous tubules. However, the role of pre-Sertoli cells in this process is much less clear than the function of Sertoli cells in the adult testis. Within this framework, we provide an overview of the biology of the fetal, pubertal, and adult Sertoli cell, highlighting relevant cell biology studies that have expanded our understanding of mammalian spermatogenesis.
Collapse
Affiliation(s)
- Katarzyna Chojnacka
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Marta Zarzycka
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Dolores D Mruk
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
190
|
Non-coding RNA in Spermatogenesis and Epididymal Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:95-120. [PMID: 26659489 DOI: 10.1007/978-94-017-7417-8_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Testicular germ and somatic cells express many classes of small ncRNAs, including Dicer-independent PIWI-interacting RNAs, Dicer-dependent miRNAs, and endogenous small interfering RNA. Several studies have identified ncRNAs that are highly, exclusively, or preferentially expressed in the testis and epididymis in specific germ and somatic cell types. Temporal and spatial expression of proteins is a key requirement of successful spermatogenesis and large-scale gene transcription occurs in two key stages, just prior to transcriptional quiescence in meiosis and then during spermiogenesis just prior to nuclear silencing in elongating spermatids. More than 60 % of these transcripts are then stockpiled for subsequent translation. In this capacity ncRNAs may act to interpret and transduce cellular signals to either maintain the undifferentiated stem cell population and/or drive cell differentiation during spermatogenesis and epididymal maturation. The assignation of specific roles to the majority of ncRNA species implicated as having a role in spermatogenesis and epididymal function will underpin fundamental understanding of normal and disease states in humans such as infertility and the development of germ cell tumours.
Collapse
|
191
|
Promoting effect of licorice extract on spermatogonial proliferation and spermatocytes differentiation of neonatal mice in vitro. In Vitro Cell Dev Biol Anim 2015; 52:149-55. [PMID: 26676954 DOI: 10.1007/s11626-015-9966-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/12/2015] [Indexed: 01/23/2023]
Abstract
Licorice (glycyrrhiza uralensis) is known as an herb with detoxication, and it has been widely used in clinical prescription of Oriental herbal medicine. Studies on the effects of licorice in the reproductive system were very rare, especially in spermatogenesis. In order to elucidate the effects of licorice on spermatogonial proliferation and spermatocyte differentiation during neonatal mice spermatogenesis, the organ culture model of testis tissue from neonatal C57BL/6N mice (born 6 d) was established. Then, in the presence of licorice extract (LE), the proliferation activity of spermatogonia was identified with the positive rate quantitative analysis of 5-bromo-2-deoxyuridine (BrdU) and anti-proliferating cell nuclear antigen (PCNA) antibody by immunohistochemical staining. The results showed that, compared to the control group, the percentage of positive cells by BrdU staining enhanced dramatically and that the expression of PCNA protein increased significantly in the spermatogonia from the LE group and showed a concentration-dependent manner (P < 0.05). This indicated that the LE can significantly promote the proliferation of spermatogonia in the spermatogenesis of neonatal mice. Furthermore, proteins related to spermatocyte differentiation, synaptonemal complex protein 3 (SCP3) and meiotic recombinant protein Spo11, were detected by immunohistochemical staining. The results showed that the differentiated spermatocyte in the LE group was significantly increased compared with that of the control group and showed a concentration-dependent manner (P < 0.05). The above results suggested that the LE can significantly accelerate the proliferation of spermatogonia and the differentiation of spermatocytes in the testicular tissue of the neonatal mice, which may be a potential drug for male infertility.
Collapse
|
192
|
Advances in cryopreservation of spermatogonial stem cells and restoration of male fertility. Microsc Res Tech 2015; 79:122-9. [DOI: 10.1002/jemt.22605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/07/2015] [Indexed: 11/07/2022]
|
193
|
Sigala J, Jumeau F, Buée L, Sergeant N, Mitchell V. [The testicular microtubule-associated protein Tau: Where, when during spermatogenesis?]. Morphologie 2015; 99:141-148. [PMID: 25908520 DOI: 10.1016/j.morpho.2015.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
The Tau protein (Tubulin Associated Unit) is a phosphoprotein of the microtubule-associated protein family (MAPs). Its role is the regulation of the microtubule polymerization. The Tau protein is naturally present in brain, heart, muscle, lung, kidney, pancreas and liver. An expression of Tau protein and RNA messengers was also highlighted in the testis that is an organ rich in microtubules. The role of microtubules is essential in the stabilization of the cellular shape and in cell divisions. In the testis, Tau protein could be involved in the division process of the spermatogenesis by acting on the microtubular dynamics in the arrangement of the spermatozoon polarity. This review synthesizes the current knowledge, the localization and the main functions of the Tau protein focused on the testis. The localization and the potential roles of the Tau protein during the spermatogenesis are discussed by emphasizing the link with the microtubular structures of seminiferous tubules.
Collapse
Affiliation(s)
- J Sigala
- Institut de biologie de la reproduction-spermiologie, CECOS, hôpital Jeanne-de-Flandre, centre hospitalier régional universitaire de Lille, avenue Eugène-Avinée, 59037 Lille cedex, France; EA 4308 gamétogenèse et qualité du gamète, France; Inserm UMR-S 1172 Alzheimer et tauopathies, place de Verdun, 59045 Lille cedex, France
| | - F Jumeau
- EA 4308 gamétogenèse et qualité du gamète, France; Inserm UMR-S 1172 Alzheimer et tauopathies, place de Verdun, 59045 Lille cedex, France; Laboratoire de biologie de la reproduction, CECOS, centre hospitalier universitaire de Rouen, 1, rue de Germont, 76031 Rouen cedex, France
| | - L Buée
- Inserm UMR-S 1172 Alzheimer et tauopathies, place de Verdun, 59045 Lille cedex, France
| | - N Sergeant
- Inserm UMR-S 1172 Alzheimer et tauopathies, place de Verdun, 59045 Lille cedex, France
| | - V Mitchell
- Institut de biologie de la reproduction-spermiologie, CECOS, hôpital Jeanne-de-Flandre, centre hospitalier régional universitaire de Lille, avenue Eugène-Avinée, 59037 Lille cedex, France; EA 4308 gamétogenèse et qualité du gamète, France.
| |
Collapse
|
194
|
Pasch E, Link J, Beck C, Scheuerle S, Alsheimer M. The LINC complex component Sun4 plays a crucial role in sperm head formation and fertility. Biol Open 2015; 4:1792-802. [PMID: 26621829 PMCID: PMC4736043 DOI: 10.1242/bio.015768] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LINC complexes are evolutionarily conserved nuclear envelope bridges, physically connecting the nucleus to the peripheral cytoskeleton. They are pivotal for dynamic cellular and developmental processes, like nuclear migration, anchoring and positioning, meiotic chromosome movements and maintenance of cell polarity and nuclear shape. Active nuclear reshaping is a hallmark of mammalian sperm development and, by transducing cytoskeletal forces to the nuclear envelope, LINC complexes could be vital for sperm head formation as well. We here analyzed in detail the behavior and function of Sun4, a bona fide testis-specific LINC component. We demonstrate that Sun4 is solely expressed in spermatids and there localizes to the posterior nuclear envelope, likely interacting with Sun3/Nesprin1 LINC components. Our study revealed that Sun4 deficiency severely impacts the nucleocytoplasmic junction, leads to mislocalization of other LINC components and interferes with the formation of the microtubule manchette, which finally culminates in a globozoospermia-like phenotype. Together, our study provides direct evidence for a critical role of LINC complexes in mammalian sperm head formation and male fertility.
Collapse
Affiliation(s)
- Elisabeth Pasch
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg D-97074, Germany
| | - Jana Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg D-97074, Germany
| | - Carolin Beck
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg D-97074, Germany
| | - Stefanie Scheuerle
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg D-97074, Germany
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg D-97074, Germany
| |
Collapse
|
195
|
Manku G, Hueso A, Brimo F, Chan P, Gonzalez-Peramato P, Jabado N, Gayden T, Bourgey M, Riazalhosseini Y, Culty M. Changes in the expression profiles of claudins during gonocyte differentiation and in seminomas. Andrology 2015; 4:95-110. [PMID: 26588606 DOI: 10.1111/andr.12122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/15/2022]
Abstract
Testicular germ cell tumors (TGCTs) are the most common type of cancer in young men and their incidence has been steadily increasing for the past decades. TGCTs and their precursor carcinoma in situ (CIS) are thought to arise from the deficient differentiation of gonocytes, precursors of spermatogonial stem cells. However, the mechanisms relating failed gonocyte differentiation to CIS formation remain unknown. The goal of this study was to uncover genes regulated during gonocyte development that would show abnormal patterns of expression in testicular tumors, as prospective links between failed gonocyte development and TGCT. To identify common gene and protein signatures between gonocytes and seminomas, we first performed gene expression analyses of transitional rat gonocytes, spermatogonia, human normal testicular, and TGCT specimens. Gene expression arrays, pathway analysis, and quantitative real-time PCR analysis identified cell adhesion molecules as a functional gene category including genes downregulated during gonocyte differentiation and highly expressed in seminomas. In particular, the mRNA and protein expressions of claudins 6 and 7 were found to decrease during gonocyte transition to spermatogonia, and to be abnormally elevated in seminomas. The dynamic changes in these genes suggest that they may play important physiological roles during gonocyte development. Moreover, our findings support the idea that TGCTs arise from a disruption of gonocyte differentiation, and position claudins as interesting genes to further study in relation to testicular cancer.
Collapse
Affiliation(s)
- G Manku
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - A Hueso
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - F Brimo
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.,Pathology, McGill University, Montreal, QC, Canada
| | - P Chan
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.,Surgery, McGill University, Montreal, QC, Canada
| | - P Gonzalez-Peramato
- Department of Pathology, La Paz University Hospital, Universidad Autonoma de Madrid, Madrid, Spain
| | - N Jabado
- Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - T Gayden
- Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - M Bourgey
- Department of Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Y Riazalhosseini
- Department of Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - M Culty
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
196
|
Zhang L, Yang P, Bian X, Zhang Q, Ullah S, Waqas Y, Chen X, Liu Y, Chen W, Le Y, Chen B, Wang S, Chen Q. Modification of sperm morphology during long-term sperm storage in the reproductive tract of the Chinese soft-shelled turtle, Pelodiscus sinensis. Sci Rep 2015; 5:16096. [PMID: 26537569 PMCID: PMC4633597 DOI: 10.1038/srep16096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/09/2015] [Indexed: 12/28/2022] Open
Abstract
Sperm storage in vivo extends the time window for fertilisation in several animal species, from a few days to several years. The underlying storage mechanisms, however, are largely unknown. In this study, spermatozoa from the epididymis and oviduct of Chinese soft-shelled turtles were investigated to identify potentially relevant morphological features and transformations at different stages of sperm storage. Large cytoplasmic droplets (CDs) containing lipid droplets (LDs) were attached to the midpiece of most spermatozoa in the epididymis, without migrating down the sperm tail. However, they were absent from the oviductal spermatozoa, suggesting that CDs with LDs may be a source of endogenous energy for epididymal spermatozoa. The onion-like mitochondria recovered their double-membrane morphology, with typical cristae, within the oviduct at a later stage of storage, thus implying that mitochondrial metabolism undergoes alterations during storage. Furthermore, a well developed fibrous sheath on the long principal piece was the integrating ultrastructure for glycolytic enzymes and substrates. These novel morphological characteristics may allow turtle spermatozoa to use diverse energy metabolism pathways at different stages of storage.
Collapse
Affiliation(s)
- Linli Zhang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xunguang Bian
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qian Zhang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Shakeeb Ullah
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yasir Waqas
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaowu Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yi Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yuan Le
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Bing Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Shuai Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
197
|
Chojnacka K, Mruk DD. The Src non-receptor tyrosine kinase paradigm: New insights into mammalian Sertoli cell biology. Mol Cell Endocrinol 2015; 415:133-42. [PMID: 26296907 DOI: 10.1016/j.mce.2015.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/27/2015] [Accepted: 08/09/2015] [Indexed: 11/23/2022]
Abstract
Src kinases are non-receptor tyrosine kinases that phosphorylate diverse substrates, which control processes such as cell proliferation, differentiation and survival; cell adhesion; and cell motility. c-Src, the prototypical member of this protein family, is widely expressed by several organs that include the testis. In the seminiferous epithelium of the adult rat testis, c-Src is highest at the tubule lumen during the release of mature spermatids. Other studies show that testosterone regulates spermatid adhesion to Sertoli cells via c-Src, indicating Src phosphorylates key substrates that prompt the disassembly of Sertoli cell-spermatid junctions. A more recent in vitro study reveals that c-Src participates in the internalization of proteins that constitute the blood-testis barrier, which is present between Sertoli cells, suggesting a similar mechanism of junction disassembly is at play during spermiation. In this review, we discuss recent findings on c-Src, with an emphasis on its role in spermatogenesis in the mammalian testis.
Collapse
Affiliation(s)
| | - Dolores D Mruk
- Center for Biomedical Research, Population Council, New York, USA.
| |
Collapse
|
198
|
Culty M, Liu Y, Manku G, Chan WY, Papadopoulos V. Expression of steroidogenesis-related genes in murine male germ cells. Steroids 2015; 103:105-14. [PMID: 26302977 DOI: 10.1016/j.steroids.2015.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/14/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022]
Abstract
For decades, only few tissues and cell types were defined as steroidogenic, capable of de novo steroid synthesis from cholesterol. However, with the refinement of detection methods, several tissues have now been added to the list of steroidogenic tissues. Besides their critical role as long-range acting hormones, steroids are also playing more discreet roles as local mediators and signaling molecules within the tissues they are produced. In testis, steroidogenesis is carried out by the Leydig cells through a broad network of proteins, mediating cholesterol delivery to CYP11A1, the first cytochrome of the steroidogenic cascade, and the sequential action of enzymes insuring the production of active steroids, the main one being testosterone. The knowledge that male germ cells can be directly regulated by steroids and that they express several steroidogenesis-related proteins led us to hypothesize that germ cells could produce steroids, acting as autocrine, intracrine and juxtacrine modulators, as a way to insure synchronized progression within spermatogenic cycles, and preventing inappropriate cell behaviors between neighboring cells. Gene expression and protein analyses of mouse and rat germ cells from neonatal gonocytes to spermatozoa showed that most steroidogenesis-associated genes are expressed in germ cells, showing cell type-, spermatogenic cycle-, and age-specific expression profiles. Highly expressed genes included genes involved in steroidogenesis and other cell functions, such as Acbd1 and 3, Tspo and Vdac1-3, and genes involved in fatty acids metabolism or synthesis, including Hsb17b4 10 and 12, implying broader roles than steroid synthesis in germ cells. These results support the possibility of an additional level of regulation of spermatogenesis exerted between adjacent germ cells.
Collapse
Affiliation(s)
- Martine Culty
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| | - Ying Liu
- Section of Experimental Atherosclerosis, Center of Molecular Medicine, NHLBI, NIH, Bethesda, MD, USA
| | - Gurpreet Manku
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Wai-Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
199
|
Testicular expression of the Lin28/let-7 system: Hormonal regulation and changes during postnatal maturation and after manipulations of puberty. Sci Rep 2015; 5:15683. [PMID: 26494358 PMCID: PMC4616161 DOI: 10.1038/srep15683] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/29/2015] [Indexed: 01/17/2023] Open
Abstract
The Lin28/let-7 system, which includes the RNA-binding proteins, Lin28a/Lin28b, and let-7 miRNAs, has emerged as putative regulator of puberty and male gametogenesis; yet, its expression pattern and regulation in postnatal testis remain ill defined. We report herein expression profiles of Lin28 and let-7 members, and related mir-145 and mir-132, in rat testis during postnatal maturation and in models of altered puberty and hormonal deregulation. Neonatal expression of Lin28a and Lin28b was low and rose markedly during the infantile period; yet, expression patterns diverged thereafter, with persistently elevated levels only for Lin28b, which peaked at puberty. Let-7a, let-7b, mir-132 and mir-145 showed profiles opposite to Lin28b. In fact, let-7b and mir-145 were abundant in pachytene spermatocytes, but absent in elongating spermatids, where high expression of Lin28b was previously reported. Perturbation of puberty by neonatal estrogenization reverted the Lin28/let-7 expression ratio; expression changes were also detected in other models of delayed puberty, due to early photoperiod or nutritional manipulations. In addition, hypophysectomy or growth hormone (GH) deficiency revealed regulation of this system by gonadotropins and GH. Our data document the expression profiles of the Lin28/let-7 system in rat testis along postnatal/pubertal maturation, and their perturbation in models of pubertal and hormonal manipulation.
Collapse
|
200
|
Abstract
Vertebrate reproduction requires a myriad of precisely orchestrated events-in particular, the maternal production of oocytes, the paternal production of sperm, successful fertilization, and initiation of early embryonic cell divisions. These processes are governed by a host of signaling pathways. Protein kinase and phosphatase signaling pathways involving Mos, CDK1, RSK, and PP2A regulate meiosis during maturation of the oocyte. Steroid signals-specifically testosterone-regulate spermatogenesis, as does signaling by G-protein-coupled hormone receptors. Finally, calcium signaling is essential for both sperm motility and fertilization. Altogether, this signaling symphony ensures the production of viable offspring, offering a chance of genetic immortality.
Collapse
Affiliation(s)
- Sally Kornbluth
- Duke University School of Medicine, Durham, North Carolina 27710
| | - Rafael Fissore
- University of Massachusetts, Amherst, Veterinary and Animal Sciences, Amherst, Massachusetts 01003
| |
Collapse
|