151
|
Chai C, Zhang M, Long M, Chu Z, Wang T, Wang L, Guo Y, Yan S, Haacke EM, Shen W, Xia S. Increased brain iron deposition is a risk factor for brain atrophy in patients with haemodialysis: a combined study of quantitative susceptibility mapping and whole brain volume analysis. Metab Brain Dis 2015; 30:1009-16. [PMID: 25796223 DOI: 10.1007/s11011-015-9664-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/04/2015] [Indexed: 12/11/2022]
Abstract
To explore the correlation between increased brain iron deposition and brain atrophy in patients with haemodialysis and their correlation with clinical biomarkers and neuropsychological test. Forty two patients with haemodialysis and forty one age- and gender-matched healthy controls were recruited in this prospective study. 3D whole brain high resolution T1WI and susceptibility weighted imaging were scanned on a 3 T MRI system. The brain volume was analyzed using voxel-based morphometry (VBM) in patients and to compare with that of healthy controls. Quantitative susceptibility mapping was used to measure and compare the susceptibility of different structures between patients and healthy controls. Correlation analysis was used to investigate the relationship between the brain volume, iron deposition and neuropsychological scores. Stepwise multiple regression analysis was used to explore the effect of clinical biomarkers on the brain volumes in patients. Compared with healthy controls, patients with haemodialysis showed decreased volume of bilateral putamen and left insular lobe (All P < 0.05). Susceptibilities of bilateral caudate head, putamen, substantia nigra, red nucleus and dentate nucleus were significantly higher (All P < 0.05). The increased brain iron deposition is negatively correlated with the decreased volume of bilateral putamen (P < 0.01). Neuropsychological scores positively correlated with decreased volume of left insular lobe (P < 0.05). Dialysis duration was negatively associated with decreased volume of bilateral putamen (P < 0.05). Our study indicated increased brain iron deposition and dialysis duration was risk factors for brain atrophy in patients with haemodialysis. The decreased gray matter volume of the left insular lobe was correlated with neurocognitive impairment.
Collapse
Affiliation(s)
- Chao Chai
- Department of Medical Imaging, Tianjin First Central Hospital, Tianjin, 300192, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Reichenbach JR, Schweser F, Serres B, Deistung A. Quantitative Susceptibility Mapping: Concepts and Applications. Clin Neuroradiol 2015. [PMID: 26198880 DOI: 10.1007/s00062-015-0432-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To review the fundamental principles of susceptibility-weighted imaging (SWI) and quantitative susceptibility mapping (QSM), and to discuss recent clinical developments. METHODS SWI is a magnetic resonance imaging method that takes advantage of magnitude signal loss and phase information to reveal anatomic and physiologic information about tissue and venous vasculature. The method enhances image contrast qualitatively, relying on phase shifts due to differences in magnetic susceptibility between tissues. QSM, extending SWI in an elegant way, is a new sophisticated postprocessing technique that numerically solves the inverse source-effect problem to derive local tissue magnetic susceptibility (source) from the measured magnetic field distribution (effect) as it is reflected in the phase images of gradient-echo sequences. RESULTS SWI has meanwhile been established in numerous clinical as well as basic biomedical applications due to its ability to highlight tissue structures and compounds that are difficult to detect by conventional magnetic resonance imaging (MRI), including iron, calcifications, small veins, blood, and bones. The field of QSM has also progressed rapidly, both in terms of optimizing the post-processing strategies and algorithms as well as in gaining ground for new clinical applications that take advantage of its quantitative nature and improved specificity to identify the magnetic signature of lesions. CONCLUSIONS Though magnetic susceptibility may be a major nuisance producing image artifacts in MRI, recent work has transformed it into a useful source of image contrast. Both SWI and QSM are gaining increasing acceptance in clinical practice. In particular, QSM provides new insights into tissue composition and organization due to its more direct relation to the actual physical tissue magnetic properties.
Collapse
Affiliation(s)
- J R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich-Schiller University, Philosophenweg 3, 07743, Jena, Germany. .,Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University, Jena, Germany.
| | - F Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,MRI Clinical and Translational Research Center, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - B Serres
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich-Schiller University, Philosophenweg 3, 07743, Jena, Germany.
| | - A Deistung
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich-Schiller University, Philosophenweg 3, 07743, Jena, Germany
| |
Collapse
|
153
|
Nissi MJ, Tóth F, Wang L, Carlson CS, Ellermann JM. Improved Visualization of Cartilage Canals Using Quantitative Susceptibility Mapping. PLoS One 2015; 10:e0132167. [PMID: 26168296 PMCID: PMC4500468 DOI: 10.1371/journal.pone.0132167] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/10/2015] [Indexed: 11/18/2022] Open
Abstract
Purpose Cartilage canal vessels are critical to the normal function of epiphyseal (growth) cartilage and damage to these vessels is demonstrated or suspected in several important developmental orthopaedic diseases. High-resolution, three-dimensional (3-D) visualization of cartilage canals has recently been demonstrated using susceptibility weighted imaging (SWI). In the present study, a quantitative susceptibility mapping (QSM) approach is evaluated for 3-D visualization of the cartilage canals. It is hypothesized that QSM post-processing improves visualization of the cartilage canals by resolving artifacts present in the standard SWI post-processing while retaining sensitivity to the cartilage canals. Methods Ex vivo distal femoral specimens from 3- and 8-week-old piglets and a 1-month-old human cadaver were scanned at 9.4 T with a 3-D gradient recalled echo sequence suitable for SWI and QSM post-processing. The human specimen and the stifle joint of a live, 3-week-old piglet also were scanned at 7.0 T. Datasets were processed using the standard SWI method and truncated k-space division QSM approach. To compare the post-processing methods, minimum/maximum intensity projections and 3-D reconstructions of the processed datasets were generated and evaluated. Results Cartilage canals were successfully visualized using both SWI and QSM approaches. The artifactual splitting of the cartilage canals that occurs due to the dipolar phase, which was present in the SWI post-processed data, was eliminated by the QSM approach. Thus, orientation-independent visualization and better localization of the cartilage canals was achieved with the QSM approach. Combination of GRE with a mask based on QSM data further improved visualization. Conclusions Improved and artifact-free 3-D visualization of the cartilage canals was demonstrated by QSM processing of the data, especially by utilizing susceptibility data as an enhancing mask. Utilizing tissue-inherent contrast, this method allows noninvasive assessment of the vasculature in the epiphyseal cartilage in the developing skeleton and potentially increases the opportunity to diagnose disease of this tissue in the preclinical stages, when treatment likely will have increased efficacy.
Collapse
Affiliation(s)
- Mikko J. Nissi
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States of America
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN, United States of America
- Research Group of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| | - Ferenc Tóth
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Luning Wang
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States of America
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Cathy S. Carlson
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Jutta M. Ellermann
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
154
|
Ding J, Xing W, Wu D, Chen J, Pan L, Sun J, Xing S, Dai Y. Evaluation of Renal Oxygenation Level Changes after Water Loading Using Susceptibility-Weighted Imaging and T2* Mapping. Korean J Radiol 2015; 16:827-34. [PMID: 26175582 PMCID: PMC4499547 DOI: 10.3348/kjr.2015.16.4.827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 04/08/2015] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To assess the feasibility of susceptibility-weighted imaging (SWI) while monitoring changes in renal oxygenation level after water loading. MATERIALS AND METHODS Thirty-two volunteers (age, 28.0 ± 2.2 years) were enrolled in this study. SWI and multi-echo gradient echo sequence-based T2(*) mapping were used to cover the kidney before and after water loading. Cortical and medullary parameters were measured using small regions of interest, and their relative changes due to water loading were calculated based on baseline and post-water loading data. An intraclass correlation coefficient analysis was used to assess inter-observer reliability of each parameter. A receiver operating characteristic curve analysis was conducted to compare the performance of the two methods for detecting renal oxygenation changes due to water loading. RESULTS Both medullary phase and medullary T2(*) values increased after water loading (p < 0.001), although poor correlations were found between the phase changes and the T2(*) changes (p > 0.05). Interobserver reliability was excellent for the T2(*) values, good for SWI cortical phase values, and moderate for the SWI medullary phase values. The area under receiver operating characteristic curve of the SWI medullary phase values was 0.85 and was not different from the medullary T2(*) value (0.84). CONCLUSION Susceptibility-weighted imaging enabled monitoring changes in the oxygenation level in the medulla after water loading, and may allow comparable feasibility to detect renal oxygenation level changes due to water loading compared with that of T2(*) mapping.
Collapse
Affiliation(s)
- Jiule Ding
- Department of Radiology, Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu 213003, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu 213003, China
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance Imaging, East China Normal University, Shanghai 200241, China
| | - Jie Chen
- Department of Radiology, Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu 213003, China
| | - Liang Pan
- Department of Radiology, Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu 213003, China
| | - Jun Sun
- Department of Radiology, Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu 213003, China
| | - Shijun Xing
- Department of Radiology, Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu 213003, China
| | | |
Collapse
|
155
|
Prominent vessel sign on susceptibility-weighted imaging in acute stroke: prediction of infarct growth and clinical outcome. PLoS One 2015; 10:e0131118. [PMID: 26110628 PMCID: PMC4481350 DOI: 10.1371/journal.pone.0131118] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/28/2015] [Indexed: 01/22/2023] Open
Abstract
Background and Purpose Predicting the risk of further infarct growth in stroke patients is critical to therapeutic decision making. We aimed to predict early infarct growth and clinical outcome from prominent vessel sign (PVS) identified on the first susceptibility-weighted image (SWI) after acute stroke. Materials and Methods Twenty-two patients with middle cerebral artery (MCA) infarction had diffusion-weighted imaging, SWI, MR angiography, and clinical evaluation using the National Institutes of Health Stroke Scale at 7–60 hours and 5–14 days after stroke onset. Late-stage clinical evaluation at 1 and 3 months used the modified Rankin Scale. The infarct area and growth were scored from 10 (none) to 0 (infarct or growth in all 10 zones) using the Alberta Stroke Program Early CT Score (ASPECTS) system. Results Infarct growth on the second MRI occurred in 13 of 15 patients with PVS on the first MRI and not in any patient without PVS (n=7; r=0.86, P<0.001). The extent of PVS was significantly correlated with infarct growth (r=0.82, P<0.001) and early-stage outcome (P=0.02). No between-group difference in late-stage clinical outcome was found. Conclusion PVS on the first SWI after acute MCA territory stroke is a useful predictor of early infarct growth. Extensive PVS within the large MCA territory is related to poor early-stage outcome and could be useful for clinical assessment of stroke.
Collapse
|
156
|
Borrelli P, Palma G, Tedeschi E, Cocozza S, Comerci M, Alfano B, Haacke EM, Salvatore M. Improving Signal-to-Noise Ratio in Susceptibility Weighted Imaging: A Novel Multicomponent Non-Local Approach. PLoS One 2015; 10:e0126835. [PMID: 26030293 PMCID: PMC4452483 DOI: 10.1371/journal.pone.0126835] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/08/2015] [Indexed: 01/14/2023] Open
Abstract
In susceptibility-weighted imaging (SWI), the high resolution required to obtain a proper contrast generation leads to a reduced signal-to-noise ratio (SNR). The application of a denoising filter to produce images with higher SNR and still preserve small structures from excessive blurring is therefore extremely desirable. However, as the distributions of magnitude and phase noise may introduce biases during image restoration, the application of a denoising filter is non-trivial. Taking advantage of the potential multispectral nature of MR images, a multicomponent approach using a Non-Local Means (MNLM) denoising filter may perform better than a component-by-component image restoration method. Here we present a new MNLM-based method (Multicomponent-Imaginary-Real-SWI, hereafter MIR-SWI) to produce SWI images with high SNR and improved conspicuity. Both qualitative and quantitative comparisons of MIR-SWI with the original SWI scheme and previously proposed SWI restoring pipelines showed that MIR-SWI fared consistently better than the other approaches. Noise removal with MIR-SWI also provided improvement in contrast-to-noise ratio (CNR) and vessel conspicuity at higher factors of phase mask multiplications than the one suggested in the literature for SWI vessel imaging. We conclude that a proper handling of noise in the complex MR dataset may lead to improved image quality for SWI data.
Collapse
Affiliation(s)
- Pasquale Borrelli
- Advanced Biomedical Sciences Department, University of Napoli “Federico II”, Napoli, Italy
- IRCCS SDN, Naples, Italy
- * E-mail:
| | - Giuseppe Palma
- Institute of Biostructures and Bioimaging, National Research Council, Napoli, Italy
| | - Enrico Tedeschi
- Advanced Biomedical Sciences Department, University of Napoli “Federico II”, Napoli, Italy
| | - Sirio Cocozza
- Advanced Biomedical Sciences Department, University of Napoli “Federico II”, Napoli, Italy
| | - Marco Comerci
- Institute of Biostructures and Bioimaging, National Research Council, Napoli, Italy
| | - Bruno Alfano
- Institute of Biostructures and Bioimaging, National Research Council, Napoli, Italy
| | - E. Mark Haacke
- The MRI Institute for Biomedical Research, Detroit, MI, United States of America
| | | |
Collapse
|
157
|
Liu J, Xia S, Hanks R, Wiseman N, Peng C, Zhou S, Haacke EM, Kou Z. Susceptibility Weighted Imaging and Mapping of Micro-Hemorrhages and Major Deep Veins after Traumatic Brain Injury. J Neurotrauma 2015; 33:10-21. [PMID: 25789581 DOI: 10.1089/neu.2014.3856] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Micro-hemorrhages are a common result of traumatic brain injury (TBI), which can be quantified with susceptibility weighted imaging and mapping (SWIM), a quantitative susceptibility mapping approach. A total of 23 TBI patients (five women, 18 men; median age, 41.25 years old; range, 21.69-67.75 years) with an average Glasgow Coma Scale score of 7 (range, 3-15) at admission were recruited at mean 149 d (range, 57-366) after injury. Susceptibility-weighted imaging data were collected and post-processed to create SWIM images. The susceptibility value of small hemorrhages (diameter ≤10 mm) and major deep veins (right septal, left septal, central septal, right thalamostriate, left thalamostriate, internal cerebral, right basal vein of Rosenthal, left basal vein of Rosenthal, and pial veins) were evaluated. Different susceptibility thresholds were tested to determine SWIM's sensitivity and specificity for differentiating hemorrhages from the veins. A total of 253 deep veins and 173 small hemorrhages were identified and evaluated. The mean susceptibility of hemorrhages was 435±206 parts per billion (ppb) and the mean susceptibility of deep veins was 108±56 ppb. Hemorrhages showed a significantly higher susceptibility than all deep veins (p<0.001). With different thresholds (250, 227 and 200 ppb), the specificity was 97%, 95%, and 92%, and the sensitivity was 84%, 90%, and 92%, respectively. These results show that SWIM could be used to differentiate hemorrhages from veins in TBI patients in a semi-automated manner with reasonable sensitivity and specificity. A larger cohort will be needed to validate these findings.
Collapse
Affiliation(s)
- Jun Liu
- 1 Department of Radiology, Second Xiangya Hospital, Central South University , Hunan Province, China .,2 Department of Biomedical Engineering, Wayne State University School of Medicine , Detroit, Michigan
| | - Shuang Xia
- 3 Department of Radiology, Tianjin First Central Hospital , Tianjin, China
| | - Robin Hanks
- 4 Department of Physical Medicine and Rehabilitation, Wayne State University School of Medicine , Detroit, Michigan
| | - Natalie Wiseman
- 5 Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine , Detroit, Michigan
| | - Changya Peng
- 6 Department of Neurological Surgery, Wayne State University School of Medicine , Detroit, Michigan
| | - Shunke Zhou
- 1 Department of Radiology, Second Xiangya Hospital, Central South University , Hunan Province, China
| | - E Mark Haacke
- 2 Department of Biomedical Engineering, Wayne State University School of Medicine , Detroit, Michigan.,7 Department of Radiology, Wayne State University School of Medicine , Detroit, Michigan
| | - Zhifeng Kou
- 2 Department of Biomedical Engineering, Wayne State University School of Medicine , Detroit, Michigan.,7 Department of Radiology, Wayne State University School of Medicine , Detroit, Michigan
| |
Collapse
|
158
|
Nonlinear magnitude and linear phase behaviors of T2* imaging: theoretical approximation and Monte Carlo simulation. Magn Reson Imaging 2015; 33:390-400. [DOI: 10.1016/j.mri.2015.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/14/2015] [Accepted: 01/18/2015] [Indexed: 11/24/2022]
|
159
|
Krishnamurthy LC, Mao D, King KS, Lu H. Correction and optimization of a T2-based approach to map blood oxygenation in small cerebral veins. Magn Reson Med 2015; 75:1100-9. [PMID: 25846113 DOI: 10.1002/mrm.25686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/28/2015] [Accepted: 02/17/2015] [Indexed: 12/11/2022]
Abstract
PURPOSE Cerebral venous blood oxygenation (Yv ) is an important biomarker in brain physiology and function. The present study proposes a procedure to provide a quantitative map of the brain's intravascular Yv. THEORY AND METHODS The method is based on a pulse sequence, T2 -Relaxation-Under-Phase-Contrast (TRU-PC) MRI, with postprocessing approaches to correct eddy-current effects. A complete scan protocol consists of four TRU-PC scans sensitized to large and small vessels with anterior-posterior and foot-head flow-encoding directions, and the data are analyzed conjunctively. Eddy-current correction was performed by fitting the tissue phase to a hyperplane, and then subtracting the eddy-current phase from the measured vessel phase. The reproducibility of the Yv-maps was examined in five participants. Sensitivity of the Yv map to a caffeine challenge was studied in another five participants. RESULTS Removal of eddy-current induced artifact allowed for the correction of T2 measurements, as demonstrated in vivo and with simulation. A Yv-map depicting all vessels in the slice can be obtained with the proposed protocol. Test-retest variability of the Yv -map was 3.7 ± 1.2%. Yv reduction can be reliably detected (P < 0.001) following the caffeine ingestion. CONCLUSION With the proposed TRU-PC protocol and eddy-current correction procedure, an accurate, vessel-specific Yv map of the human brain can be obtained.
Collapse
Affiliation(s)
- Lisa C Krishnamurthy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biomedical Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Deng Mao
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin S King
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
160
|
Chai C, Yan S, Chu Z, Wang T, Wang L, Zhang M, Zuo C, Haacke EM, Xia S, Shen W. Quantitative measurement of brain iron deposition in patients with haemodialysis using susceptibility mapping. Metab Brain Dis 2015; 30:563-71. [PMID: 25182196 DOI: 10.1007/s11011-014-9608-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/12/2014] [Indexed: 10/24/2022]
Abstract
To compare the susceptibility of different brain structures in patients with haemodialysis with that in healthy controls using susceptibility mapping and explore the correlations with neuropsychiatric tests and clinical parameters. Fifty three patients with haemodialysis and forty-five age-and sex-matched healthy controls were recruited in this prospective study. Susceptibility maps (SM) were reconstructed from original phase data and used to compare the susceptibility of different brain structures between patients and healthy controls. The SM was compared with iron predictions from a classic cadaver brain study. Spearman's correlation and stepwise multiple regression analysis between susceptibility and neuropsychiatric tests and clinical parameters were calculated. In patients with haemodialysis, the susceptibility of the bilateral caudate head, putamen, substantia nigra, red nucleus and dentate nucleus were significantly higher than those in healthy controls (P < 0.01). There was positive correlation between susceptibility both from normal controls and patients and iron concentration from a classic post-mortem brain study (both r = 0.900, both P = 0.037). In patients with haemodialysis, the susceptibility of the left putamen (r = 0.944), right putamen (r = 0.882) and right thalamus (r = 0.852) were correlated to dialysis duration (all P < 0.05). The susceptibility of the left caudate head (r = -0.415) and right caudate head (r = -0.311) were mildly negatively correlated with neuropsychiatric test scores (all P < 0.05). In summary, our findings indicated that increased brain iron deposition does occur in patients with haemodialysis and correlated with duration of dialysis.
Collapse
Affiliation(s)
- Chao Chai
- Department of Medical Imaging, Tianjin First Central Hospital, Tianjin, 300192, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Wen Y, Wang Y, Liu T. Enhancing k-space quantitative susceptibility mapping by enforcing consistency on the cone data (CCD) with structural priors. Magn Reson Med 2015; 75:823-30. [PMID: 25752805 DOI: 10.1002/mrm.25652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/09/2014] [Accepted: 01/20/2015] [Indexed: 11/09/2022]
Abstract
PURPOSE The inversion from the magnetic field to the magnetic susceptibility distribution is ill-posed because the dipole kernel, which relates the magnetic susceptibility to the magnetic field, has zeroes at a pair of cone surfaces in the k-space, leading to streaking artifacts on the reconstructed quantitative susceptibility maps (QSM). A method to impose consistency on the cone data (CCD) with structural priors is proposed to improve the solutions of k-space methods. METHODS The information in the cone region is recovered by enforcing structural consistency with structural prior, while information in the noncone trust region is enforced to be consistent with the magnetic field measurements in k-space. This CCD method was evaluated by comparing the initial results of existing QSM algorithms to the QSM results after CCD enhancement with respect to the COSMOS results in simulation, phantom, and in vivo human brain. RESULTS The proposed method demonstrated suppression of streaking artifacts and the resulting QSM showed better agreement with reference standard QSM compared with other k-space based methods. CONCLUSION By enforcing consistency with structural priors in the cone region, the missing data in the cone can be recovered and the streaking artifacts in QSM can be suppressed.
Collapse
Affiliation(s)
- Yan Wen
- MedImageMetric LLC, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Medical College of Cornell University, New York, New York, USA
| | - Tian Liu
- MedImageMetric LLC, New York, New York, USA
| |
Collapse
|
162
|
Xia S, Zheng G, Shen W, Liu S, Zhang LJ, Haacke EM, Lu GM. Quantitative measurements of brain iron deposition in cirrhotic patients using susceptibility mapping. Acta Radiol 2015; 56:339-46. [PMID: 24646625 DOI: 10.1177/0284185114525374] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Susceptibility-weighted imaging (SWI) has been used to detect micro-bleeds and iron deposits in the brain. However, no reports have been published on the application of SWI in studying iron changes in the brain of cirrhotic patients. PURPOSE To compare the susceptibility of different brain structures in cirrhotic patients with that in healthy controls and to evaluate susceptibility as a potential biomarker and correlate the measured susceptibility and cadaveric brain iron concentration for a variety of brain structures. MATERIAL AND METHODS Forty-three cirrhotic patients (27 men, 16 women; mean age, 50 ± 9 years) and 34 age- and sex-matched healthy controls (22 men, 12 women; mean age, 47 ± 7 years) were included in this retrospective study. Susceptibility was measured in the frontal white matter, basal ganglia, midbrain, and dentate nucleus and compared with results gathered from two postmortem brain studies. Correlation between susceptibility and clinical biomarkers and neuropsychiatric tests scores was calculated. RESULTS In cirrhotic patients, the susceptibility of left frontal white matter, bilateral caudate head, and right substantia nigra was higher than that in healthy controls (P < 0.05). There was a positive correlation between susceptibility and iron concentration from one postmortem brain study (r = 0.835, P = 0.01) in eight deep grey matter structures and another in five brain structures (r = 0.900, P = 0.03). The susceptibility of right caudate head (r = 0.402) and left caudate head (r = 0.408) correlated with neuropsychological test scores (both P < 0.05). CONCLUSION Abnormal iron deposits occur in cirrhotic patients and abnormal susceptibility of some brain regions appears to reflect neurocognitive changes.
Collapse
Affiliation(s)
- Shuang Xia
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, PR China
- Department of Medical Imaging, Tianjin First Central Hospital, Tianjin, PR China
| | - Gang Zheng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, PR China
| | - Wen Shen
- Department of Medical Imaging, Tianjin First Central Hospital, Tianjin, PR China
| | - Saifeng Liu
- McMaster University, Hamilton, Ontario, PR China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, PR China
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, PR China
| |
Collapse
|
163
|
Barbosa JHO, Santos AC, Tumas V, Liu M, Zheng W, Haacke EM, Salmon CEG. Quantifying brain iron deposition in patients with Parkinson's disease using quantitative susceptibility mapping, R2 and R2. Magn Reson Imaging 2015; 33:559-65. [PMID: 25721997 DOI: 10.1016/j.mri.2015.02.021] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/19/2014] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
Abstract
PURPOSE To evaluate the sensitivity and specificity of quantitative magnetic resonance (MR) iron mapping including R2, R2* and magnetic susceptibility to differentiate patients with Parkinson's disease (PD) from healthy controls. MATERIALS AND METHODS Thirty (30) healthy controls (HC) (64±7years old) and 20 patients with idiopathic PD (66±8years old) were studied using a 3T MR imaging scanner. R2 maps were generated from GRASE sequence while R2*, and quantitative susceptibility mapping (QSM) were obtained from a conventional multi-echo gradient-echo sequence. R2, R2* and relative susceptibility (Δχ) values of structures in the basal ganglia were measured for each patient and control. An analysis of sensitivity and specificity and unpaired t-test was applied to the two groups. RESULTS A significant difference (p<0.05) was found for R2 and ∆χ values in the substantia nigra as a whole and in the pars compacta for PD patients. The R2* values were different significantly (p<0.05) only on the substantia nigra pars compacta. QSM presented the highest sensitivity and specificity to differentiate the two populations. CONCLUSION The QSM map was the most sensitive quantitative technique for detecting a significant increase of iron for PD. The highest significant difference between controls and patients was found in the substantia nigra pars compacta using QSM.
Collapse
Affiliation(s)
- Jeam Haroldo Oliveira Barbosa
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Antonio Carlos Santos
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vitor Tumas
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Manju Liu
- MRI Institute for Biomedical Research, Detroit, MI, United States
| | - Weili Zheng
- MRI Institute for Biomedical Research, Detroit, MI, United States
| | - E Mark Haacke
- MRI Institute for Biomedical Research, Detroit, MI, United States; Wayne State University, Detroit, MI, United States
| | - Carlos Ernesto Garrido Salmon
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
164
|
Doshi H, Wiseman N, Liu J, Wang W, Welch RD, O’Neil BJ, Zuk C, Wang X, Mika V, Szaflarski JP, Haacke EM, Kou Z. Cerebral hemodynamic changes of mild traumatic brain injury at the acute stage. PLoS One 2015; 10:e0118061. [PMID: 25659079 PMCID: PMC4320047 DOI: 10.1371/journal.pone.0118061] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/05/2015] [Indexed: 12/03/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is a significant public health care burden in the United States. However, we lack a detailed understanding of the pathophysiology following mTBI and its relation to symptoms and recovery. With advanced magnetic resonance imaging (MRI), we can investigate brain perfusion and oxygenation in regions known to be implicated in symptoms, including cortical gray matter and subcortical structures. In this study, we assessed 14 mTBI patients and 18 controls with susceptibility weighted imaging and mapping (SWIM) for blood oxygenation quantification. In addition to SWIM, 7 patients and 12 controls had cerebral perfusion measured with arterial spin labeling (ASL). We found increases in regional cerebral blood flow (CBF) in the left striatum, and in frontal and occipital lobes in patients as compared to controls (p = 0.01, 0.03, 0.03 respectively). We also found decreases in venous susceptibility, indicating increases in venous oxygenation, in the left thalamostriate vein and right basal vein of Rosenthal (p = 0.04 in both). mTBI patients had significantly lower delayed recall scores on the standardized assessment of concussion, but neither susceptibility nor CBF measures were found to correlate with symptoms as assessed by neuropsychological testing. The increased CBF combined with increased venous oxygenation suggests an increase in cerebral blood flow that exceeds the oxygen demand of the tissue, in contrast to the regional hypoxia seen in more severe TBI. This may represent a neuroprotective response following mTBI, which warrants further investigation.
Collapse
Affiliation(s)
- Hardik Doshi
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Natalie Wiseman
- Department of Psychiatry and Behavioral Neurosciences Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jun Liu
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
- Department of Radiology, Second Xiangya Hospital, School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Wentao Wang
- College of Computer Science, South-Central University for Nationalities, Wuhan, China
| | - Robert D. Welch
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Brian J. O’Neil
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Conor Zuk
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Xiao Wang
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan Province, China
| | - Valerie Mika
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jerzy P. Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - E. Mark Haacke
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Zhifeng Kou
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
165
|
Dong J, Liu T, Chen F, Zhou D, Dimov A, Raj A, Cheng Q, Spincemaille P, Wang Y. Simultaneous phase unwrapping and removal of chemical shift (SPURS) using graph cuts: application in quantitative susceptibility mapping. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:531-540. [PMID: 25312917 DOI: 10.1109/tmi.2014.2361764] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging technique that reveals tissue magnetic susceptibility. It relies on having a high quality field map, typically acquired with a relatively long echo spacing and long final TE. Applications of QSM outside the brain require the removal of fat contributions to the total signal phase. However, current water/fat separation methods applied on typical data acquired for QSM suffer from three issues: inadequacy when using large echo spacing, over-smoothing of the field maps and high computational cost. In this paper, the general phase wrap and chemical shift problem is formulated using a single species fitting and is solved using graph cuts with conditional jump moves. This method is referred as simultaneous phase unwrapping and removal of chemical shift (SPURS). The result from SPURS is then used as the initial guess for a voxel-wise iterative decomposition of water and fat with echo asymmetric and least-squares estimation (IDEAL). The estimated 3-D field maps are used to compute QSM in body regions outside of the brain, such as the liver. Experimental results show substantial improvements in field map estimation, water/fat separation and reconstructed QSM compared to two existing water/fat separation methods on 1.5T and 3T magnetic resonance human data with long echo spacing and rapid field map variation.
Collapse
|
166
|
Intrinsic functional brain mapping in reconstructed 4D magnetic susceptibility (χ) data space. J Neurosci Methods 2015; 241:85-93. [DOI: 10.1016/j.jneumeth.2014.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 11/18/2022]
|
167
|
Hsieh CY, Cheng YCN, Neelavalli J, Haacke EM, Stafford RJ. An improved method for susceptibility and radius quantification of cylindrical objects from MRI. Magn Reson Imaging 2015; 33:420-36. [PMID: 25633922 DOI: 10.1016/j.mri.2015.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 12/12/2014] [Accepted: 01/09/2015] [Indexed: 02/06/2023]
Abstract
A new method is developed to measure the magnetic susceptibilities and radii of small cylinder-like objects at arbitrary orientations accurately. This method for most biological substances only requires a standard gradient echo sequence with one or two echo times, depending on the orientation of an object relative to the main magnetic field. For objects oriented at the magic angle, however, this method is not applicable. As a byproduct of this method, the cross-sectional area as well as signals inside and outside the object can be determined. The uncertainty of each measurement is estimated from the error propagation method. Partial volume, dephasing, and phase aliasing effects are naturally included in the equations of this method. A number of simulations, phantom, and pilot in-vivo human studies are carried out to validate the theory. When the maximal phase value at the boundary of a given cylindrical object is larger than 3 radians, and the phase inside the object is more than 1 radian, the susceptibility can be accurately quantified within 15%. The radius of the object can be determined to subpixel accuracy. This is the case when the signal-to-noise ratio inside the object is about 6:1 or higher and the radius of the object is about one pixel or larger. These conditions are realistic when considering medullary and pial veins for example.
Collapse
Affiliation(s)
- Ching-Yi Hsieh
- Medical Physics Program, Wayne State University, Detroit, MI 48201
| | - Yu-Chung N Cheng
- Department of Radiology, Wayne State University, Detroit, MI 48201.
| | | | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI 48201
| | - R Jason Stafford
- Department of Imaging Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
168
|
Fan AP, Govindarajan ST, Kinkel RP, Madigan NK, Nielsen AS, Benner T, Tinelli E, Rosen BR, Adalsteinsson E, Mainero C. Quantitative oxygen extraction fraction from 7-Tesla MRI phase: reproducibility and application in multiple sclerosis. J Cereb Blood Flow Metab 2015; 35:131-9. [PMID: 25352043 PMCID: PMC4294406 DOI: 10.1038/jcbfm.2014.187] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/08/2014] [Accepted: 09/19/2014] [Indexed: 01/04/2023]
Abstract
Quantitative oxygen extraction fraction (OEF) in cortical veins was studied in patients with multiple sclerosis (MS) and healthy subjects via magnetic resonance imaging (MRI) phase images at 7 Tesla (7 T). Flow-compensated, three-dimensional gradient-echo scans were acquired for absolute OEF quantification in 23 patients with MS and 14 age-matched controls. In patients, we collected T2*-weighted images for characterization of white matter, deep gray matter, and cortical lesions, and also assessed cognitive function. Variability of OEF across readers and scan sessions was evaluated in a subset of volunteers. OEF was averaged from 2 to 3 pial veins in the sensorimotor, parietal, and prefrontal cortical regions for each subject (total of ~10 vessels). We observed good reproducibility of mean OEF, with intraobserver coefficient of variation (COV)=2.1%, interobserver COV=5.2%, and scan-rescan COV=5.9%. Patients exhibited a 3.4% reduction in cortical OEF relative to controls (P=0.0025), which was not different across brain regions. Although oxygenation did not relate with measures of structural tissue damage, mean OEF correlated with a global measure of information processing speed. These findings suggest that cortical OEF from 7-T MRI phase is a reproducible metabolic biomarker that may be sensitive to different pathologic processes than structural MRI in patients with MS.
Collapse
Affiliation(s)
- Audrey P Fan
- 1] Massachussets Institute of Technology, Cambridge, Massachusetts, USA [2] Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sindhuja T Govindarajan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - R Philip Kinkel
- 1] Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA [2] Harvard Medical School, Boston, Massachusetts, USA
| | - Nancy K Madigan
- 1] Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA [2] Harvard Medical School, Boston, Massachusetts, USA
| | - A Scott Nielsen
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Thomas Benner
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emanuele Tinelli
- Department of Neurology and Psychiatry, University of Rome 'La Sapienza', Rome, Italy
| | - Bruce R Rosen
- 1] Massachussets Institute of Technology, Cambridge, Massachusetts, USA [2] Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA [3] Harvard Medical School, Boston, Massachusetts, USA
| | - Elfar Adalsteinsson
- 1] Massachussets Institute of Technology, Cambridge, Massachusetts, USA [2] Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Caterina Mainero
- 1] Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA [2] Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
169
|
Wang Y, Liu T. Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magn Reson Med 2015; 73:82-101. [PMID: 25044035 PMCID: PMC4297605 DOI: 10.1002/mrm.25358] [Citation(s) in RCA: 577] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/13/2014] [Accepted: 06/18/2014] [Indexed: 01/03/2023]
Abstract
In MRI, the main magnetic field polarizes the electron cloud of a molecule, generating a chemical shift for observer protons within the molecule and a magnetic susceptibility inhomogeneity field for observer protons outside the molecule. The number of water protons surrounding a molecule for detecting its magnetic susceptibility is vastly greater than the number of protons within the molecule for detecting its chemical shift. However, the study of tissue magnetic susceptibility has been hindered by poor molecular specificities of hitherto used methods based on MRI signal phase and T2* contrast, which depend convolutedly on surrounding susceptibility sources. Deconvolution of the MRI signal phase can determine tissue susceptibility but is challenged by the lack of MRI signal in the background and by the zeroes in the dipole kernel. Recently, physically meaningful regularizations, including the Bayesian approach, have been developed to enable accurate quantitative susceptibility mapping (QSM) for studying iron distribution, metabolic oxygen consumption, blood degradation, calcification, demyelination, and other pathophysiological susceptibility changes, as well as contrast agent biodistribution in MRI. This paper attempts to summarize the basic physical concepts and essential algorithmic steps in QSM, to describe clinical and technical issues under active development, and to provide references, codes, and testing data for readers interested in QSM.
Collapse
Affiliation(s)
- Yi Wang
- Radiology, Weill Medical College of Cornell UniversityNew York, New York, USA
- Biomedical Engineering, Cornell UniversityIthaca, New York, USA
- Biomedical Engineering, Kyung Hee UniversitySeoul, South Korea
| | - Tian Liu
- MedImageMetric, LLCNew York, New York, USA
| |
Collapse
|
170
|
Goodwin JA, Kudo K, Shinohe Y, Higuchi S, Uwano I, Yamashita F, Sasaki M. Susceptibility-Weighted Phase Imaging and Oxygen Extraction Fraction Measurement during Sedation and Sedation Recovery using 7T MRI. J Neuroimaging 2014; 25:575-81. [DOI: 10.1111/jon.12192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 08/01/2014] [Accepted: 09/13/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jonathan A. Goodwin
- Division of Ultrahigh Field MRI; Iwate Medical University; Iwate Japan
- Department of Radiology; Hokkaido University Hospital; Hokkaido Japan
| | - Kohsuke Kudo
- Division of Ultrahigh Field MRI; Iwate Medical University; Iwate Japan
- Department of Radiology; Hokkaido University Hospital; Hokkaido Japan
| | - Yutaka Shinohe
- Division of Dental Anesthesiology; Department of Oral and Maxillofacial Surgery; Iwate Medical University; Iwate Japan
| | - Satomi Higuchi
- Division of Ultrahigh Field MRI; Iwate Medical University; Iwate Japan
| | - Ikuko Uwano
- Division of Ultrahigh Field MRI; Iwate Medical University; Iwate Japan
| | - Fumio Yamashita
- Division of Ultrahigh Field MRI; Iwate Medical University; Iwate Japan
| | - Makoto Sasaki
- Division of Ultrahigh Field MRI; Iwate Medical University; Iwate Japan
| |
Collapse
|
171
|
Phase-corrected bipolar gradients in multi-echo gradient-echo sequences for quantitative susceptibility mapping. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2014; 28:347-55. [PMID: 25408108 DOI: 10.1007/s10334-014-0470-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/25/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Large echo spacing of unipolar readout gradients in current multi-echo gradient-echo (GRE) sequences for mapping fields in quantitative susceptibility mapping (QSM) can be reduced using bipolar readout gradients thereby improving acquisition efficiency. MATERIALS AND METHODS Phase discrepancies between odd and even echoes in the bipolar readout gradients caused by non-ideal gradient behaviors were measured, modeled as polynomials in space and corrected for accordingly in field mapping. The bipolar approach for multi-echo GRE field mapping was compared with the unipolar approach for QSM. RESULTS The odd-even-echo phase discrepancies were approximately constant along the phase encoding direction and linear along the readout and slice-selection directions. A simple linear phase correction in all three spatial directions was shown to enable accurate QSM of the human brain using a bipolar multi-echo GRE sequence. Bipolar multi-echo acquisition provides QSM in good quantitative agreement with unipolar acquisition while also reducing noise. CONCLUSION With a linear phase correction between odd-even echoes, bipolar readout gradients can be used in multi-echo GRE sequences for QSM.
Collapse
|
172
|
Bilgic B, Fan AP, Polimeni JR, Cauley SF, Bianciardi M, Adalsteinsson E, Wald LL, Setsompop K. Fast quantitative susceptibility mapping with L1-regularization and automatic parameter selection. Magn Reson Med 2014; 72:1444-59. [PMID: 24259479 PMCID: PMC4111791 DOI: 10.1002/mrm.25029] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 11/06/2022]
Abstract
PURPOSE To enable fast reconstruction of quantitative susceptibility maps with total variation penalty and automatic regularization parameter selection. METHODS ℓ(1) -Regularized susceptibility mapping is accelerated by variable splitting, which allows closed-form evaluation of each iteration of the algorithm by soft thresholding and fast Fourier transforms. This fast algorithm also renders automatic regularization parameter estimation practical. A weighting mask derived from the magnitude signal can be incorporated to allow edge-aware regularization. RESULTS Compared with the nonlinear conjugate gradient (CG) solver, the proposed method is 20 times faster. A complete pipeline including Laplacian phase unwrapping, background phase removal with SHARP filtering, and ℓ(1) -regularized dipole inversion at 0.6 mm isotropic resolution is completed in 1.2 min using MATLAB on a standard workstation compared with 22 min using the CG solver. This fast reconstruction allows estimation of regularization parameters with the L-curve method in 13 min, which would have taken 4 h with the CG algorithm. The proposed method also permits magnitude-weighted regularization, which prevents smoothing across edges identified on the magnitude signal. This more complicated optimization problem is solved 5 times faster than the nonlinear CG approach. Utility of the proposed method is also demonstrated in functional blood oxygen level-dependent susceptibility mapping, where processing of the massive time series dataset would otherwise be prohibitive with the CG solver. CONCLUSION Online reconstruction of regularized susceptibility maps may become feasible with the proposed dipole inversion.
Collapse
Affiliation(s)
- Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Audrey P. Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, MA, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen F. Cauley
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Marta Bianciardi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elfar Adalsteinsson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, MA, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
173
|
Driver ID, Wharton SJ, Croal PL, Bowtell R, Francis ST, Gowland PA. Global intravascular and local hyperoxia contrast phase-based blood oxygenation measurements. Neuroimage 2014; 101:458-65. [PMID: 25091128 PMCID: PMC4176654 DOI: 10.1016/j.neuroimage.2014.07.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 12/12/2022] Open
Abstract
The measurement of venous cerebral blood oxygenation (Yv) has potential applications in the study of patient groups where oxygen extraction and/or metabolism are compromised. It is also useful for fMRI studies to assess the stimulus-induced changes in Yv, particularly since basal Yv partially accounts for inter-subject variation in the haemodynamic response to a stimulus. A range of MRI-based methods of measuring Yv have been developed recently. Here, we use a method based on the change in phase in the MR image arising from the field perturbation caused by deoxygenated haemoglobin in veins. We build on the existing phase based approach (Method I), where Yv is measured in a large vein (such as the superior sagittal sinus) based on the field shift inside the vein with assumptions as to the vein's shape and orientation. We demonstrate two novel modifications which address limitations of this method. The first modification (Method II), maps the actual form of the vein, rather than assume a given shape and orientation. The second modification (Method III) uses the intra and perivascular phase change in response to a known change in Yv on hyperoxia to measure normoxic Yv in smaller veins. Method III can be applied to veins whose shape, size and orientation are not accurately known, thus allowing more localised measures of venous oxygenation. Results demonstrate that the use of an overly fine spatial filter caused an overestimation in Yv for Method I, whilst the measurement of Yv using Method II was less sensitive to this bias, giving Yv = 0.62 ± 0.03. Method III was applied to mapping of Yv in local veins across the brain, yielding a distribution of values with a mode of Yv = 0.661 ± 0.008.
Collapse
Affiliation(s)
- Ian D Driver
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Samuel J Wharton
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Paula L Croal
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Richard Bowtell
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Susan T Francis
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Penny A Gowland
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
174
|
Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging 2014; 33:1-25. [PMID: 25267705 DOI: 10.1016/j.mri.2014.09.004] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/14/2014] [Accepted: 09/22/2014] [Indexed: 01/13/2023]
Abstract
Quantitative susceptibility mapping (QSM) is a new technique for quantifying magnetic susceptibility. It has already found various applications in quantifying in vivo iron content, calcifications and changes in venous oxygen saturation. The accuracy of susceptibility mapping is dependent on several factors. In this review, we evaluate the entire process of QSM from data acquisition to individual data processing steps. We also show preliminary results of several new concepts introduced in this review in an attempt to improve the quality and accuracy for certain steps. The uncertainties in estimating susceptibility differences using susceptibility maps, phase images, and T2* maps are analyzed and compared. Finally, example clinical applications are presented. We conclude that QSM holds great promise in quantifying iron and becoming a standard clinical tool.
Collapse
Affiliation(s)
- E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA; School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.
| | - Saifeng Liu
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Sagar Buch
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Weili Zheng
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Yongquan Ye
- Department of Radiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
175
|
Dusek P, Tovar Martinez EM, Madai VI, Jech R, Sobesky J, Paul F, Niendorf T, Wuerfel J, Schneider SA. 7-Tesla Magnetic Resonance Imaging for Brain Iron Quantification in Homozygous and Heterozygous PANK2 Mutation Carriers. Mov Disord Clin Pract 2014; 1:329-335. [PMID: 30363918 DOI: 10.1002/mdc3.12080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 01/18/2023] Open
Abstract
Pantothenate-kinase-associated neurodegeneration (PKAN) is an autosomal recessive disorder characterized by iron deposits in basal ganglia. The aim of this study was to quantify iron concentrations of deep gray matter structures in heterozygous PANK2 mutation carriers and in PKAN patients using quantitative susceptibility mapping MRI. By determining iron concentration, we intended to find mutation-specific brain parenchymal stigmata in heterozygous PANK2 mutation carriers in comparison to age-matched healthy volunteers. We studied 11 heterozygous PANK2 gene mutation carriers (mean age: 43.4 years; standard deviation [SD]: 10.5), who were found to be clinically asymptomatic by neurological examination. These carriers were compared to 2 clinically affected PKAN patients 21 and 32 years of age and to 13 age-matched, healthy controls (mean age: 39.7; SD, 13.6). Scanning was performed on a 7.0-Tesla whole-body scanner applying three-dimensional susceptibility-weighted gradient echo acquisitions. Susceptibility maps were calculated by threshold-based k-space division with single-orientation acquisition. Magnetic susceptibility values, relative to the occipital white matter, were determined for the following regions of interest (ROI): globus pallidus (GP), thalamus, putamen, internal capsule (IC), caudate nucleus, substantia nigra (SN), and red nucleus. Heterozygous PANK2 mutation carriers did not show increased brain iron concentrations, compared to healthy controls (P > 0.05), in any of the examined ROIs. In PKAN patients, more than 3 times higher concentrations of iron were found in the GP, SN, and IC. Our results suggest that heterozygous mutations in PANK2 gene do not cause brain iron accumulation nor do they cause movement disorders.
Collapse
Affiliation(s)
- Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience Charles University in Prague First Faculty of Medicine and General University Hospital in Prague Prague Czech Republic.,Institute of Neuroradiology University Medicine Goettingen Goettingen Germany
| | | | - Vince Istvan Madai
- Department of Neurology and Center for Stroke Research Berlin Charité-Universitaetsmedizin Berlin Germany
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience Charles University in Prague First Faculty of Medicine and General University Hospital in Prague Prague Czech Republic
| | - Jan Sobesky
- Department of Neurology and Center for Stroke Research Berlin Charité-Universitaetsmedizin Berlin Germany.,Experimental and Clinical Research Center Charité-Universitaetsmedizin and Max Delbrueck Center for Molecular Medicine Berlin Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center Charité University Medicine Berlin Berlin Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility Max-Delbrueck Center for Molecular Medicine Berlin Germany.,Experimental and Clinical Research Center Charité-Universitaetsmedizin and Max Delbrueck Center for Molecular Medicine Berlin Germany
| | - Jens Wuerfel
- Institute of Neuroradiology University Medicine Goettingen Goettingen Germany.,Berlin Ultrahigh Field Facility Max-Delbrueck Center for Molecular Medicine Berlin Germany.,Experimental and Clinical Research Center Charité-Universitaetsmedizin and Max Delbrueck Center for Molecular Medicine Berlin Germany.,NeuroCure Clinical Research Center Charité University Medicine Berlin Berlin Germany
| | | |
Collapse
|
176
|
Lin PY, Chao TC, Wu ML. Quantitative susceptibility mapping of human brain at 3T: a multisite reproducibility study. AJNR Am J Neuroradiol 2014; 36:467-74. [PMID: 25339652 DOI: 10.3174/ajnr.a4137] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Quantitative susceptibility mapping of the human brain has demonstrated strong potential in examining iron deposition, which may help in investigating possible brain pathology. This study assesses the reproducibility of quantitative susceptibility mapping across different imaging sites. MATERIALS AND METHODS In this study, the susceptibility values of 5 regions of interest in the human brain were measured on 9 healthy subjects following calibration by using phantom experiments. Each of the subjects was imaged 5 times on 1 scanner with the same procedure repeated on 3 different 3T systems so that both within-site and cross-site quantitative susceptibility mapping precision levels could be assessed. Two quantitative susceptibility mapping algorithms, similar in principle, one by using iterative regularization (iterative quantitative susceptibility mapping) and the other with analytic optimal solutions (deterministic quantitative susceptibility mapping), were implemented, and their performances were compared. RESULTS Results show that while deterministic quantitative susceptibility mapping had nearly 700 times faster computation speed, residual streaking artifacts seem to be more prominent compared with iterative quantitative susceptibility mapping. With quantitative susceptibility mapping, the putamen, globus pallidus, and caudate nucleus showed smaller imprecision on the order of 0.005 ppm, whereas the red nucleus and substantia nigra, closer to the skull base, had a somewhat larger imprecision of approximately 0.01 ppm. Cross-site errors were not significantly larger than within-site errors. Possible sources of estimation errors are discussed. CONCLUSIONS The reproducibility of quantitative susceptibility mapping in the human brain in vivo is regionally dependent, and the precision levels achieved with quantitative susceptibility mapping should allow longitudinal and multisite studies such as aging-related changes in brain tissue magnetic susceptibility.
Collapse
Affiliation(s)
- P-Y Lin
- From the Department of Computer Science and Information Engineering (P.-Y.L., T.-C.C., M.-L.W.)
| | - T-C Chao
- From the Department of Computer Science and Information Engineering (P.-Y.L., T.-C.C., M.-L.W.) Institute of Medical Informatics (T.-C.C., M.-L.W.), National Cheng Kung University, Tainan, Taiwan
| | - M-L Wu
- From the Department of Computer Science and Information Engineering (P.-Y.L., T.-C.C., M.-L.W.) Institute of Medical Informatics (T.-C.C., M.-L.W.), National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
177
|
Fan AP, Evans KC, Stout JN, Rosen BR, Adalsteinsson E. Regional quantification of cerebral venous oxygenation from MRI susceptibility during hypercapnia. Neuroimage 2014; 104:146-55. [PMID: 25300201 DOI: 10.1016/j.neuroimage.2014.09.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/18/2014] [Accepted: 09/30/2014] [Indexed: 12/27/2022] Open
Abstract
There is an unmet medical need for noninvasive imaging of regional brain oxygenation to manage stroke, tumor, and neurodegenerative diseases. Oxygenation imaging from magnetic susceptibility in MRI is a promising new technique to measure local venous oxygen extraction fraction (OEF) along the cerebral venous vasculature. However, this approach has not been tested in vivo at different levels of oxygenation. The primary goal of this study was to test whether susceptibility imaging of oxygenation can detect OEF changes induced by hypercapnia, via CO2 inhalation, within selected a priori brain regions. Ten healthy subjects were scanned at 3T with a 32-channel head coil. The end-tidal CO2 (ETCO2) was monitored continuously and inspired gases were adjusted to achieve steady-state conditions of eucapnia (41±3mmHg) and hypercapnia (50±4mmHg). Gradient echo phase images and pseudo-continuous arterial spin labeling (pcASL) images were acquired to measure regional OEF and CBF respectively during eucapnia and hypercapnia. By assuming constant cerebral oxygen consumption throughout both gas states, regional CBF values were computed to predict the local change in OEF in each brain region. Hypercapnia induced a relative decrease in OEF of -42.3% in the straight sinus, -39.9% in the internal cerebral veins, and approximately -50% in pial vessels draining each of the occipital, parietal, and frontal cortical areas. Across volunteers, regional changes in OEF correlated with changes in ETCO2. The reductions in regional OEF (via phase images) were significantly correlated (P<0.05) with predicted reductions in OEF derived from CBF data (via pcASL images). These findings suggest that susceptibility imaging is a promising technique for OEF measurements, and may serve as a clinical biomarker for brain conditions with aberrant regional oxygenation.
Collapse
Affiliation(s)
- Audrey P Fan
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA; Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, USA.
| | - Karleyton C Evans
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA; Psychiatry, Massachusetts General Hospital East, 149 Thirteenth Street, Charlestown, MA, USA.
| | - Jeffrey N Stout
- Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, USA; Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| | - Bruce R Rosen
- Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, USA; Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| | - Elfar Adalsteinsson
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA; Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, USA; Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| |
Collapse
|
178
|
Liu J, Kou Z, Tian Y. Diffuse axonal injury after traumatic cerebral microbleeds: an evaluation of imaging techniques. Neural Regen Res 2014; 9:1222-30. [PMID: 25206786 PMCID: PMC4146289 DOI: 10.4103/1673-5374.135330] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 12/11/2022] Open
Abstract
Previous neuropathological studies regarding traumatic brain injury have primarily focused on changes in large structures, for example, the clinical prognosis after cerebral contusion, intracerebral hematoma, and epidural and subdural hematoma. In fact, many smaller injuries can also lead to severe neurological disorders. For example, cerebral microbleeds result in the dysfunction of adjacent neurons and the disassociation between cortex and subcortical structures. These tiny changes cannot be adequately visualized on CT or conventional MRI. In contrast, gradient echo sequence-based susceptibility-weighted imaging is very sensitive to blood metabolites and microbleeds, and can be used to evaluate traumatic cerebral microbleeds with high sensitivity and accuracy. Cerebral microbleed can be considered as an important imaging marker for diffuse axonal injury with potential relevance for prognosis. For this reason, based on experimental and clinical studies, this study reviews the role of imaging data showing traumatic cerebral microbleeds in the evaluation of cerebral neuronal injury and neurofunctional loss.
Collapse
Affiliation(s)
- Jun Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China ; Department of Biomedical Engineering and Radiology, School of Medicine, Wayne State University, 3990 John R St, Detroit, MI, USA ; School of Public Administration, Central South University, Changsha, Hunan Province, China
| | - Zhifeng Kou
- Department of Biomedical Engineering and Radiology, School of Medicine, Wayne State University, 3990 John R St, Detroit, MI, USA
| | - Yongquan Tian
- School of Public Administration, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
179
|
Sharma SD, Hernando D, Horng DE, Reeder SB. Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload. Magn Reson Med 2014; 74:673-83. [PMID: 25199788 DOI: 10.1002/mrm.25448] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 01/19/2023]
Abstract
PURPOSE The purpose of this work was to develop and demonstrate feasibility and initial clinical validation of quantitative susceptibility mapping (QSM) in the abdomen as an imaging biomarker of hepatic iron overload. THEORY AND METHODS In general, QSM is faced with the challenges of background field removal and dipole inversion. Respiratory motion, the presence of fat, and severe iron overload further complicate QSM in the abdomen. We propose a technique for QSM in the abdomen that addresses these challenges. Data were acquired from 10 subjects without hepatic iron overload and 33 subjects with known or suspected iron overload. The proposed technique was used to estimate the susceptibility map in the abdomen, from which hepatic iron overload was measured. As a reference, spin-echo data were acquired for R2-based LIC estimation. Liver R2* was measured for correlation with liver susceptibility estimates. RESULTS Correlation between susceptibility and R2-based LIC estimation was R(2) = 0.76 at 1.5 Tesla (T) and R(2) = 0.83 at 3T. Furthermore, high correlation between liver susceptibility and liver R2* (R(2) = 0.94 at 1.5T; R(2) = 0.93 at 3T) was observed. CONCLUSION We have developed and demonstrated initial validation of QSM in the abdomen as an imaging biomarker of hepatic iron overload.
Collapse
Affiliation(s)
- Samir D Sharma
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Diego Hernando
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Debra E Horng
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
180
|
Xia S, Utriainen D, Tang J, Kou Z, Zheng G, Wang X, Shen W, Haacke EM, Lu G. Decreased oxygen saturation in asymmetrically prominent cortical veins in patients with cerebral ischemic stroke. Magn Reson Imaging 2014; 32:1272-6. [PMID: 25131626 DOI: 10.1016/j.mri.2014.08.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/08/2014] [Indexed: 01/28/2023]
Abstract
Decreased oxygen saturation in asymmetrically prominent cortical veins (APCV) seen in ischemic stroke has been hypothesized to correlate with an increase of de-oxygenated hemoglobin. Our goal is to quantify magnetic susceptibility to define APCV by establishing a cutoff above which the deoxyhemoglobin levels are considered abnormal. A retrospective study was conducted on 26 patients with acute ischemic stroke in one cerebral hemisphere that exhibited APCV with 30 age- and sex-matched healthy controls. Quantitative susceptibility mapping (QSM) was used to calculate the magnetic susceptibility of the cortical veins. A paired t-test was used to compare the susceptibility of the cortical veins in the left and right hemispheres for healthy controls as well as in the contralateral hemisphere for stroke patients with APCV. The change in oxygen saturation in the APCV relative to the contralateral side was calculated after thresholding the susceptibility using the mean plus two standard deviations of the contralateral side for each individual. The thresholded susceptibility value of the APCVs in the stroke hemisphere was 254±48 ppb which was significantly higher (p<0.05) than that in the contralateral hemisphere (123±12 ppb) and in healthy controls (125±8 ppb). There was a decrease of oxygen saturation in the APCV ranging from 16% to 44% relative to the veins of the contralateral hemisphere. In conclusion, APCV seen in SWI correspond to reduced levels of oxygen saturation and these abnormal veins can be identified using a susceptibility threshold on the QSM data.
Collapse
Affiliation(s)
- Shuang Xia
- Department of Radiology, Nanjing Jinling Hospital,Clinical School, Medical College, Nanjing University, 305 Eastern Zhongshan Rd. Nanjing, China 210002; Department of Radiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - David Utriainen
- Department of Radiology, Magnetic Resonance Imaging Institute for Biomedical Research, Detroit, MI 48202
| | - Jin Tang
- Department of Radiology, Magnetic Resonance Imaging Institute for Biomedical Research, Detroit, MI 48202
| | - Zhifeng Kou
- Department of Radiology, Wayne State University, Detroit, MI 48201
| | - Gang Zheng
- Department of Radiology, Nanjing Jinling Hospital,Clinical School, Medical College, Nanjing University, 305 Eastern Zhongshan Rd. Nanjing, China 210002
| | - Xuesong Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - E Mark Haacke
- Department of Radiology, Magnetic Resonance Imaging Institute for Biomedical Research, Detroit, MI 48202; Department of Radiology, Wayne State University, Detroit, MI 48201
| | - Guangming Lu
- Department of Radiology, Nanjing Jinling Hospital,Clinical School, Medical College, Nanjing University, 305 Eastern Zhongshan Rd. Nanjing, China 210002.
| |
Collapse
|
181
|
Dai Y, Dong S, Zhu M, Wu D, Zhong Y. Visualizing cerebral veins in fetal brain using susceptibility-weighted MRI. Clin Radiol 2014; 69:e392-7. [PMID: 25060932 DOI: 10.1016/j.crad.2014.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/12/2023]
Abstract
AIM To explore the feasibility of two-dimensional (2D) susceptibility-weighted imaging (SWI) in the visualization of cerebral veins in the foetal brain. MATERIALS AND METHODS Forty-two pregnant healthy women (gestational age: 19-37 weeks, mean: 28.5 ± 7.1 weeks) underwent SWI examination using a 1.5 T MRI system. Two neurologists independently analysed all magnetic resonance imaging (MRI) studies. The relationship between the veins detected and the gestational age was investigated. The prominence of veins was assessed using a categorical score. RESULTS In total, 167 veins were detected by SWI in 29 subjects with a symmetric hemisphere distribution (p > 0.05). An additional vein was detected by SWI biweekly from 24 weeks of gestation. Most veins of Galen and internal cerebral veins on SWI images were prominent, whereas others were faint or moderate. CONCLUSION SWI appears to be a feasible method of detecting cerebral veins in the foetal brain.
Collapse
Affiliation(s)
- Y Dai
- Philips Healthcare, People's Republic of China
| | - S Dong
- Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, People's Republic of China
| | - M Zhu
- Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, People's Republic of China.
| | - D Wu
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, People's Republic of China
| | - Y Zhong
- Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, People's Republic of China
| |
Collapse
|
182
|
Sedation agents differentially modulate cortical and subcortical blood oxygenation: evidence from ultra-high field MRI at 17.2 T. PLoS One 2014; 9:e100323. [PMID: 25050866 PMCID: PMC4106755 DOI: 10.1371/journal.pone.0100323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/23/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Sedation agents affect brain hemodynamic and metabolism leading to specific modifications of the cerebral blood oxygenation level. We previously demonstrated that ultra-high field (UHF) MRI detects changes in cortical blood oxygenation following the administration of sedation drugs commonly used in animal research. Here we applied the UHF-MRI method to study clinically relevant sedation drugs for their effects on cortical and subcortical (thalamus, striatum) oxygenation levels. METHODS We acquired T2*-weighted images of Sprague-Dawley rat brains at 17.2T in vivo. During each MRI session, rats were first anesthetized with isoflurane, then with a second sedative agent (sevoflurane, propofol, midazolam, medetomidine or ketamine-xylazine) after stopping isoflurane. We computed a T2*-oxygenation-ratio that aimed at estimating cerebral blood oxygenation level for each sedative agent in each region of interest: cortex, hippocampus, thalamus and striatum. RESULTS The T2*-oxygenation-ratio was consistent across scan sessions. This ratio was higher with inhalational agents than with intravenous agents. Under sevoflurane and medetomidine, T2*-oxygenation-ratio was homogenous across the brain regions. Intravenous agents (except medetomidine) induced a T2*-oxygenation-ratio imbalance between cortex and subcortical regions: T2*-oxygenation-ratio was higher in the cortex than the subcortical areas under ketamine-xylazine; T2*-oxygenation-ratio was higher in subcortical regions than in the cortex under propofol or midazolam. CONCLUSION Preclinical UHF MRI is a powerful method to monitor the changes in cerebral blood oxygenation level induced by sedative agents across brain structures. This approach also allows for a classification of sedative agents based on their differential effects on cerebral blood oxygenation level.
Collapse
|
183
|
Buch S, Liu S, Ye Y, Cheng YCN, Neelavalli J, Haacke EM. Susceptibility mapping of air, bone, and calcium in the head. Magn Reson Med 2014; 73:2185-94. [DOI: 10.1002/mrm.25350] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Sagar Buch
- School of Biomedical Engineering; McMaster University; Hamilton ON Canada
| | - Saifeng Liu
- School of Biomedical Engineering; McMaster University; Hamilton ON Canada
| | - Yongquan Ye
- Department of Radiology; Wayne State University; Detroit Michigan USA
| | | | | | - E. Mark Haacke
- School of Biomedical Engineering; McMaster University; Hamilton ON Canada
- Department of Radiology; Wayne State University; Detroit Michigan USA
- The MRI Institute for Biomedical Research; Detroit Michigan USA
| |
Collapse
|
184
|
Bilgic B, Gagoski BA, Cauley SF, Fan AP, Polimeni JR, Grant PE, Wald LL, Setsompop K. Wave-CAIPI for highly accelerated 3D imaging. Magn Reson Med 2014; 73:2152-62. [PMID: 24986223 DOI: 10.1002/mrm.25347] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/18/2014] [Accepted: 06/11/2014] [Indexed: 12/13/2022]
Abstract
PURPOSE To introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties. METHODS The wave-CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the readout of each kx encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high-quality image reconstruction with wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and quantitative susceptibility mapping. RESULTS Wave-CAIPI enables full-brain gradient echo acquisition at 1 mm isotropic voxel size and R = 3 × 3 acceleration with maximum g-factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D-CAIPI and bunched phase encoding) wave-CAIPI yields up to two-fold reduction in maximum g-factor for nine-fold acceleration at both field strengths. CONCLUSION Wave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging.
Collapse
Affiliation(s)
- Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Borjan A Gagoski
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen F Cauley
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Audrey P Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
185
|
Sun H, Wilman AH. Quantitative susceptibility mapping using single-shot echo-planar imaging. Magn Reson Med 2014; 73:1932-8. [DOI: 10.1002/mrm.25316] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/01/2014] [Accepted: 05/22/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Hongfu Sun
- Department of Biomedical Engineering; University of Alberta; Edmonton Canada
| | - Alan H. Wilman
- Department of Biomedical Engineering; University of Alberta; Edmonton Canada
| |
Collapse
|
186
|
Krishnamurthy U, Szalai G, Neelavalli J, Shen Y, Chaiworapongsa T, Hernandez-Andrade E, Than NG, Xu Z, Yeo L, Haacke M, Romero R. Quantitative T2 changes and susceptibility-weighted magnetic resonance imaging in murine pregnancy. Gynecol Obstet Invest 2014; 78:33-40. [PMID: 24861575 PMCID: PMC4119876 DOI: 10.1159/000362552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To evaluate gestational age-dependent changes in the T2 relaxation time in normal murine placentas in vivo. The role of susceptibility-weighted imaging (SWI) in visualization of the murine fetal anatomy was also elucidated. METHODS Timed-pregnant CD-1 mice at gestational day (GD) 12 and GD17 underwent magnetic resonance imaging. Multi-echo spin echo and SWI data were acquired. The placental T2 values on GD12 and GD17 were quantified. To account for the influence of systemic maternal physiological factors on placental perfusion, maternal muscle was used as a reference for T2 normalization. A linear mixed-effects model was used to fit the normalized T2 values, and the significance of the coefficients was tested. Fetal SWI images were processed and reviewed for venous vasculature and skeletal structures. RESULTS The average placental T2 value decreased significantly on GD17 (40.17 ± 4.10 ms) compared to the value on GD12 (55.78 ± 8.13 ms). The difference in normalized T2 values also remained significant (p = 0.001). Using SWI, major fetal venous structures like the cardinal vein, the subcardinal vein, and the portal vein were visualized on GD12. In addition, fetal skeletal structures could also be discerned on GD17. CONCLUSION The T2 value of a normal murine placenta decreases with advancing gestation. SWI provided clear visualization of the fetal venous vasculature and bony structures. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Uday Krishnamurthy
- Department of Radiology, Wayne State University School of Medicine, Detroit, Mich., USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Meoded A, Poretti A, Benson JE, Tekes A, Huisman TA. Evaluation of the ischemic penumbra focusing on the venous drainage: The role of susceptibility weighted imaging (SWI) in pediatric ischemic cerebral stroke. J Neuroradiol 2014; 41:108-16. [DOI: 10.1016/j.neurad.2013.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 03/31/2013] [Accepted: 04/04/2013] [Indexed: 11/30/2022]
|
188
|
Bamm VV, Harauz G. Hemoglobin as a source of iron overload in multiple sclerosis: does multiple sclerosis share risk factors with vascular disorders? Cell Mol Life Sci 2014; 71:1789-98. [PMID: 24504127 PMCID: PMC11113400 DOI: 10.1007/s00018-014-1570-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/12/2022]
Abstract
Although iron is known to be essential for the normal development and health of the central nervous system, abnormal iron deposits are found in and around multiple sclerosis (MS) lesions that themselves are closely associated with the cerebral vasculature. However, the origin of this excess iron is unknown, and it is not clear whether this is one of the primary causative events in the pathogenesis of MS, or simply another consequence of the long-lasting inflammatory conditions. Here, applying a systems biology approach, we propose an additional way for understanding the neurodegenerative component of the disease caused by chronic subclinical extravasation of hemoglobin, in combination with multiple other factors including, but not limited to, dysfunction of different cellular protective mechanisms against extracellular hemoglobin reactivity and oxidative stress. Moreover, such considerations could also shed light on and explain the higher susceptibility of MS patients to a wide range of cardiovascular disorders.
Collapse
Affiliation(s)
- Vladimir V. Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
189
|
Naik D, Viswamitra S, Kumar AA, Srinath MG. Susceptibility weighted magnetic resonance imaging of brain: A multifaceted powerful sequence that adds to understanding of acute stroke. Ann Indian Acad Neurol 2014; 17:58-61. [PMID: 24753661 PMCID: PMC3992771 DOI: 10.4103/0972-2327.128555] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/28/2013] [Accepted: 04/25/2013] [Indexed: 01/14/2023] Open
Abstract
Context: To evaluate the additional information that susceptibility weighted sequences and datasets would provide in acute stroke. Aims: The aim of this study were to assess the value addition of susceptibility weighted magnetic resonance imaging (SWI) of brain in patients with acute arterial infarct. Materials and Methods: All patients referred for a complete brain magnetic resonance imaging (MRI) between March 2010 and March 2011 at our institution had SWI as part of routine MRI (T1, T2, and diffusion imaging). Retrospective study of 62 consecutive patients with acute arterial infarct was evaluated for the presence of macroscopic hemorrhage, petechial micro-bleeds, dark middle cerebral artery (MCA) sign and prominent vessels in the vicinity of infarct. Results: SWI was found to detect hemorrhage not seen on other routine MRI sequences in 22 patients. Out of 62 patients, 17 (10 petechial) had hemorrhage less than 50% and 5 patients had greater than 50% area of hemorrhage. A “dark artery sign” due to thrombus within the artery was seen in 8 out of 62 patients. Prominent cortical and intraparenchymal veins were seen in 14 out of 62 patients. Conclusions: SWI has been previously shown to be sensitive in detecting hemorrhage; however is not routinely used in stroke evaluation. Our study shows that SWI, by virtue of identifying unsuspected hemorrhage, central occluded vessel, and venous congestion is additive in value to the routine MR exam and should be part of a routine MR brain in patients suspected of having an acute infarct.
Collapse
Affiliation(s)
- Deepti Naik
- Department of Radiodiagnosis, MS Ramaiah Medical College and Hospitals, Bangalore, Karnataka, India
| | - Sanjaya Viswamitra
- Department of Radiodiagnosis, MS Ramaiah Medical College and Hospitals, Bangalore, Karnataka, India
| | - Ashok A Kumar
- Department of Radiodiagnosis, MS Ramaiah Medical College and Hospitals, Bangalore, Karnataka, India
| | - M G Srinath
- Department of Radiodiagnosis, MS Ramaiah Medical College and Hospitals, Bangalore, Karnataka, India
| |
Collapse
|
190
|
Xu B, Spincemaille P, Liu T, Prince MR, Dutruel S, Gupta A, Thimmappa ND, Wang Y. Quantification of cerebral perfusion using dynamic quantitative susceptibility mapping. Magn Reson Med 2014; 73:1540-8. [PMID: 24733457 DOI: 10.1002/mrm.25257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 11/08/2022]
Abstract
PURPOSE The purpose of this study is to develop a dynamic quantitative susceptibility mapping (QSM) technique with sufficient temporal resolution to map contrast agent concentration in cerebral perfusion imaging. METHODS The dynamic QSM used a multiecho three-dimensional (3D) spoiled gradient echo golden angle interleaved spiral sequence during contrast bolus injection. Four-dimensional (4D) space-time resolved magnetic field reconstruction was performed using the temporal resolution acceleration with constrained evolution reconstruction method. Deconvolution of the gadolinium-induced field was performed at each time point with the morphology enabled dipole inversion method to generate a 4D gadolinium concentration map, from which three-dimensional spatial distributions of cerebral blood volume and cerebral blood flow were computed. RESULTS Initial in vivo brain imaging demonstrated the feasibility of using dynamic QSM for generating quantitative 4D contrast agent maps and imaging three-dimensional perfusion. The cerebral blood flow obtained with dynamic QSM agreed with that obtained using arterial spin labeling. CONCLUSION Dynamic QSM can be used to perform 4D mapping of contrast agent concentration in contrast-enhanced magnetic resonance imaging. The perfusion parameters derived from this 4D contrast agent concentration map were in good agreement with those obtained using arterial spin labeling.
Collapse
Affiliation(s)
- Bo Xu
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA; Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Differentiation Between Calcification and Hemorrhage in Brain Tumors Using Susceptibility-Weighted Imaging: A Pilot Study. AJR Am J Roentgenol 2014; 202:847-50. [DOI: 10.2214/ajr.13.10745] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
192
|
Neelavalli J, Kumar Jella P, Krishnamurthy U, Buch S, Haacke EM, Yeo L, Mody S, Katkuri Y, Bahado-Singh R, Hassan SS, Romero R, Thomason ME. Measuring venous blood oxygenation in fetal brain using susceptibility-weighted imaging. J Magn Reson Imaging 2014; 39:998-1006. [PMID: 24783243 PMCID: PMC4007351 DOI: 10.1002/jmri.24245] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To evaluate fetal cerebral venous blood oxygenation, Yv, using principles of MR susceptometry. MATERIALS AND METHODS A cohort of 19 pregnant subjects, with a mean gestational age of 31.6 ± 4.7 weeks were imaged using a modified susceptibility-weighted imaging (SWI) sequence. Data quality was first assessed for feasibility of oxygen saturation measurement, and data from five subjects (mean ± std gestational age of 33.7 ± 3.6 weeks) were then chosen for further quantitative analysis. SWI phase in the superior sagittal sinus was used to evaluate oxygen saturation using the principles of MR susceptometry. Systematic error in the measured Y(v) values was studied through simulations. RESULTS Simulations showed that the systematic error in Yv depended upon the assumed angle of the vessel, θ, relative to the main magnetic field and the error in that vessel angle δθ. For the typical vessel angle of θ = 30° encountered in the fetal data analyzed, a δθ as large as ±20° led to an absolute error, δYv, of less than 11%. The measured mean oxygen saturation across the five fetuses was 66% ± 9.4%. This average cerebral venous blood oxygenation value is in close agreement with values in the published literature. CONCLUSION We have reported the first in vivo measurement of human fetal cerebral venous oxygen saturation using MRI.
Collapse
Affiliation(s)
| | - Pavan Kumar Jella
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | | | - Sagar Buch
- Department of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - E. Mark Haacke
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Lami Yeo
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Swati Mody
- Department of Pediatric Imaging, Children’s Hospital of Michigan, Detroit, Michigan, USA
| | - Yashwanth Katkuri
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Ray Bahado-Singh
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | | | - D. Med Sci.
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Moriah E Thomason
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Department of Pediatrics, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
193
|
Li W, Avram AV, Wu B, Xiao X, Liu C. Integrated Laplacian-based phase unwrapping and background phase removal for quantitative susceptibility mapping. NMR IN BIOMEDICINE 2014; 27:219-27. [PMID: 24357120 PMCID: PMC3947438 DOI: 10.1002/nbm.3056] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/03/2013] [Accepted: 11/04/2013] [Indexed: 05/08/2023]
Abstract
Quantitative susceptibility mapping (QSM) is a recently developed MRI technique that provides a quantitative measure of tissue magnetic susceptibility. To compute tissue magnetic susceptibilities based on gradient echoes, QSM requires reliable unwrapping of the measured phase images and removal of contributions caused by background susceptibilities. Typically, the two steps are performed separately. Here, we present a method that simultaneously performs phase unwrapping and HARmonic (background) PhasE REmovaL using the LAplacian operator (HARPERELLA). Both numerical simulations and in vivo human brain images show that HARPERELLA effectively removes both phase wraps and background phase, whilst preserving all low spatial frequency components originating from brain tissues. When compared with other QSM phase preprocessing techniques, such as path-based phase unwrapping followed by background phase removal, HARPERELLA preserves the tissue phase signal in gray matter, white matter and cerebrospinal fluid with excellent robustness, providing a convenient and accurate solution for QSM. The proposed algorithm is provided, together with QSM and susceptibility tensor imaging (STI) tools, in a shared software package named 'STI Suite'.
Collapse
Affiliation(s)
- Wei Li
- Brain Imaging and Analysis Center, School of Medicine, Duke University, Durham, NC, USA
| | | | | | | | | |
Collapse
|
194
|
Lim IAL, Li X, Jones CK, Farrell JAD, Vikram DS, van Zijl PCM. Quantitative magnetic susceptibility mapping without phase unwrapping using WASSR. Neuroimage 2014; 86:265-79. [PMID: 24113625 PMCID: PMC3947267 DOI: 10.1016/j.neuroimage.2013.09.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/03/2013] [Accepted: 09/28/2013] [Indexed: 01/06/2023] Open
Abstract
The magnetic susceptibility of tissue within and around an image voxel affects the magnetic field and thus the local frequency in that voxel. Recently, it has been shown that spatial maps of frequency can be used to quantify local susceptibility if the contributions of surrounding tissue can be deconvolved. Currently, such quantitative susceptibility mapping (QSM) methods employ gradient recalled echo (GRE) imaging to measure spatial differences in the signal phase evolution as a function of echo time, from which frequencies can be deduced. Analysis of these phase images, however, is complicated by phase wraps, despite the availability and usage of various phase unwrapping algorithms. In addition, lengthy high-resolution GRE scanning often heats the magnet bore, causing the magnetic field to drift over several Hertz, which is on the order of the frequency differences between tissues. Here, we explore the feasibility of applying the WAter Saturation Shift Referencing (WASSR) method for 3D whole brain susceptibility imaging. WASSR uses direct saturation of water protons as a function of frequency irradiation offset to generate frequency maps without phase wraps, which can be combined with any image or spectroscopy acquisition. By utilizing a series of fast short-echo-time direct saturation images with multiple radiofrequency offsets, a frequency correction for field drift can be applied based on the individual image phases. Regions of interest were delineated with an automated atlas-based method, and the average magnetic susceptibilities calculated from frequency maps obtained from WASSR correlated well with those from the phase-based multi-echo GRE approach at 3T.
Collapse
Affiliation(s)
- Issel Anne L Lim
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Xu Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Craig K Jones
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jonathan A D Farrell
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Deepti S Vikram
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
195
|
Li W, Avram AV, Wu B, Xiao X, Liu C. Integrated Laplacian-based phase unwrapping and background phase removal for quantitative susceptibility mapping. NMR IN BIOMEDICINE 2014; 27:219-227. [PMID: 24357120 DOI: 10.1002/-nbm.3056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/03/2013] [Accepted: 11/04/2013] [Indexed: 05/24/2023]
Abstract
Quantitative susceptibility mapping (QSM) is a recently developed MRI technique that provides a quantitative measure of tissue magnetic susceptibility. To compute tissue magnetic susceptibilities based on gradient echoes, QSM requires reliable unwrapping of the measured phase images and removal of contributions caused by background susceptibilities. Typically, the two steps are performed separately. Here, we present a method that simultaneously performs phase unwrapping and HARmonic (background) PhasE REmovaL using the LAplacian operator (HARPERELLA). Both numerical simulations and in vivo human brain images show that HARPERELLA effectively removes both phase wraps and background phase, whilst preserving all low spatial frequency components originating from brain tissues. When compared with other QSM phase preprocessing techniques, such as path-based phase unwrapping followed by background phase removal, HARPERELLA preserves the tissue phase signal in gray matter, white matter and cerebrospinal fluid with excellent robustness, providing a convenient and accurate solution for QSM. The proposed algorithm is provided, together with QSM and susceptibility tensor imaging (STI) tools, in a shared software package named 'STI Suite'.
Collapse
Affiliation(s)
- Wei Li
- Brain Imaging and Analysis Center, School of Medicine, Duke University, Durham, NC, USA
| | | | | | | | | |
Collapse
|
196
|
Chang K, Barnes S, Haacke EM, Grossman RI, Ge Y. Imaging the effects of oxygen saturation changes in voluntary apnea and hyperventilation on susceptibility-weighted imaging. AJNR Am J Neuroradiol 2013; 35:1091-5. [PMID: 24371029 DOI: 10.3174/ajnr.a3818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Cerebrovascular oxygenation changes during respiratory challenges have clinically important implications for brain function, including cerebral autoregulation and the rate of brain metabolism. SWI is sensitive to venous oxygenation level by exploitation of the magnetic susceptibility of deoxygenated blood. We assessed cerebral venous blood oxygenation changes during simple voluntary breath-holding (apnea) and hyperventilation by use of SWI at 3T. MATERIALS AND METHODS We performed SWI scans (3T; acquisition time of 1 minute, 28 seconds; centered on the anterior commissure and the posterior commissure) on 10 healthy male volunteers during baseline breathing as well as during simple voluntary hyperventilation and apnea challenges. The hyperventilation and apnea tasks were separated by a 5-minute resting period. SWI venograms were generated, and the signal changes on SWI before and after the respiratory stress tasks were compared by means of a paired Student t test. RESULTS Changes in venous vasculature visibility caused by the respiratory challenges were directly visualized on the SWI venograms. The venogram segmentation results showed that voluntary apnea decreased the mean venous blood voxel number by 1.6% (P < .0001), and hyperventilation increased the mean venous blood voxel number by 2.7% (P < .0001). These results can be explained by blood CO2 changes secondary to the respiratory challenges, which can alter cerebrovascular tone and cerebral blood flow and ultimately affect venous oxygen levels. CONCLUSIONS These results highlight the sensitivity of SWI to simple and noninvasive respiratory challenges and its potential utility in assessing cerebral hemodynamics and vasomotor responses.
Collapse
Affiliation(s)
- K Chang
- From the Department of Radiology (K.C., R.I.G., Y.G.), Center for Biomedical Imaging, New York University School of Medicine, New York, New York
| | - S Barnes
- Division of Biology (S.B.), Caltech, Pasadena, California
| | - E M Haacke
- Department of Radiology (E.M.H.), Wayne State University School of Medicine, Detroit, Michigan
| | - R I Grossman
- From the Department of Radiology (K.C., R.I.G., Y.G.), Center for Biomedical Imaging, New York University School of Medicine, New York, New York
| | - Y Ge
- From the Department of Radiology (K.C., R.I.G., Y.G.), Center for Biomedical Imaging, New York University School of Medicine, New York, New York
| |
Collapse
|
197
|
Christen T, Pannetier NA, Ni WW, Qiu D, Moseley ME, Schuff N, Zaharchuk G. MR vascular fingerprinting: A new approach to compute cerebral blood volume, mean vessel radius, and oxygenation maps in the human brain. Neuroimage 2013; 89:262-70. [PMID: 24321559 DOI: 10.1016/j.neuroimage.2013.11.052] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 11/29/2022] Open
Abstract
In the present study, we describe a fingerprinting approach to analyze the time evolution of the MR signal and retrieve quantitative information about the microvascular network. We used a Gradient Echo Sampling of the Free Induction Decay and Spin Echo (GESFIDE) sequence and defined a fingerprint as the ratio of signals acquired pre- and post-injection of an iron-based contrast agent. We then simulated the same experiment with an advanced numerical tool that takes a virtual voxel containing blood vessels as input, then computes microscopic magnetic fields and water diffusion effects, and eventually derives the expected MR signal evolution. The parameter inputs of the simulations (cerebral blood volume [CBV], mean vessel radius [R], and blood oxygen saturation [SO2]) were varied to obtain a dictionary of all possible signal evolutions. The best fit between the observed fingerprint and the dictionary was then determined by using least square minimization. This approach was evaluated in 5 normal subjects and the results were compared to those obtained by using more conventional MR methods, steady-state contrast imaging for CBV and R and a global measure of oxygenation obtained from the superior sagittal sinus for SO2. The fingerprinting method enabled the creation of high-resolution parametric maps of the microvascular network showing expected contrast and fine details. Numerical values in gray matter (CBV=3.1±0.7%, R=12.6±2.4μm, SO2=59.5±4.7%) are consistent with literature reports and correlated with conventional MR approaches. SO2 values in white matter (53.0±4.0%) were slightly lower than expected. Numerous improvements can easily be made and the method should be useful to study brain pathologies.
Collapse
Affiliation(s)
- T Christen
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - N A Pannetier
- Center for Imaging of Neurodegenerative Diseases, Veterans Affairs Medical Centre, San Francisco, USA; Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - W W Ni
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - D Qiu
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - M E Moseley
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - N Schuff
- Center for Imaging of Neurodegenerative Diseases, Veterans Affairs Medical Centre, San Francisco, USA; Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - G Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
198
|
Wang S, Liu T, Chen W, Spincemaille P, Wisnieff C, Tsiouris AJ, Zhu W, Pan C, Zhao L, Wang Y. Noise Effects in Various Quantitative Susceptibility Mapping Methods. IEEE Trans Biomed Eng 2013; 60:3441-8. [PMID: 23751950 PMCID: PMC5553691 DOI: 10.1109/tbme.2013.2266795] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Various regularization methods have been proposed for single-orientation quantitative susceptibility mapping (QSM), which is an ill-posed magnetic field to susceptibility source inverse problem. Noise amplification, a major issue in inverse problems, manifests as streaking artifacts and quantification errors in QSM and has not been comparatively evaluated in these algorithms. In this paper, various QSM methods were systematically categorized for noise analysis. Six representative QSM methods were selected from four categories: two non-Bayesian methods with alteration or approximation of the dipole kernel to overcome the ill conditioning; four Bayesian methods using a general mathematical prior or a specific physical structure prior to select a unique solution, and using a data fidelity term with or without noise weighting. The effects of noise in these QSM methods were evaluated by reconstruction errors in simulation and image quality in 50 consecutive human subjects. Bayesian QSM methods with noise weighting consistently reduced root mean squared errors in numerical simulations and increased image quality scores in the human brain images, when compared to non-Bayesian methods and to corresponding Bayesian methods without noise weighting (p ≤ 0.001). In summary, noise effects in QSM can be reduced using Bayesian methods with proper noise weighting.
Collapse
|
199
|
Neelavalli J, Mody S, Yeo L, Jella PK, Korzeniewski SJ, Saleem S, Katkuri Y, Bahado-Singh RO, Hassan SS, Haacke EM, Romero R, Thomason ME. MR venography of the fetal brain using susceptibility weighted imaging. J Magn Reson Imaging 2013; 40:949-57. [PMID: 24989457 DOI: 10.1002/jmri.24476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 09/04/2013] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To evaluate the feasibility of performing fetal brain magnetic resonance venography using susceptibility weighted imaging (SWI). MATERIALS AND METHODS After obtaining informed consent, pregnant women in the second and third trimester were imaged using a modified SWI sequence. Fetal SWI acquisition was repeated when fetal or maternal motion was encountered. The median and maximum number of times an SWI sequence was repeated was four and six respectively. All SWI image data were systematically evaluated by a pediatric neuroradiologist for image quality using an ordinal scoring scheme: 1. diagnostic; 2. diagnostic with artifacts; and 3. nondiagnostic. The best score in an individual fetus was used for further statistical analysis. Visibility of venous vasculature was also scored using a dichotomous variable. A subset of SWI data was re-evaluated by the first and independently by a second pediatric neuroradiologist. Kappa coefficients were computed to assess intra-rater and inter-rater reliability. RESULTS SWI image data from a total of 22 fetuses were analyzed. Median gestational age and interquartile range of the fetuses imaged were 32 (29.9-34.9) weeks. In 68.2% of the cases (n = 15), there was no artifact; 22.7% (n = 5) had minor artifacts and 9.1% (n = 2) of the data was of nondiagnostic quality. Cerebral venous vasculature was visible in 86.4% (n = 19) of the cases. Substantial agreement (Kappa = 0.73; 95% confidence interval 0.44-1.00)) was observed for intra-rater reliability and moderate agreement (Kappa = 0.48; 95% confidence interval 0.19-0.77) was observed for inter-rater reliability. CONCLUSION It is feasible to perform fetal brain venography in humans using SWI.
Collapse
|
200
|
Wen Y, Zhou D, Liu T, Spincemaille P, Wang Y. An iterative spherical mean value method for background field removal in MRI. Magn Reson Med 2013; 72:1065-71. [PMID: 24254415 DOI: 10.1002/mrm.24998] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 11/11/2022]
Abstract
PURPOSE The sophisticated harmonic artifact reduction for phase data (SHARP) method has been proposed for the removal of background field in MRI phase data. It relies on the spherical mean value (SMV) property of harmonic functions, and its accuracy depends on the radius of the sphere used for computing the SMV and truncation threshold needed for deconvolution. The goal of this study was to develop an alternative SMV-based background field removal method with reduced dependences on these parameters. METHODS The proposed background field removal method, termed iterative SMV (iSMV), consists of applying the SMV operation repeatedly on the field map. It was validated in a phantom and in vivo brain data of five healthy volunteers. RESULTS The iSMV method demonstrates accurate background field removal in the phantom. Compared with SHARP, the iSMV method shows a significantly reduced dependence on the SMV radius both in phantom and in human data. Because a smaller radius can be chosen, the iSMV method allows retaining a larger part of the region of interest compared with SHARP. CONCLUSION The iSMV method is an effective background field removal method with a reduced dependence on method parameters. Magn Reson Med 72:1065-1071, 2014. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yan Wen
- Radiology, Weill Medical College of Cornell University, New York, NY, USA; State University of New York at Stony Brook, Stony Brook, New York, USA
| | | | | | | | | |
Collapse
|