151
|
Inhibitory and excitatory mechanisms in the human cingulate-cortex support reinforcement learning: A functional Proton Magnetic Resonance Spectroscopy study. Neuroimage 2018; 184:25-35. [PMID: 30201464 DOI: 10.1016/j.neuroimage.2018.09.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/10/2018] [Accepted: 09/07/2018] [Indexed: 12/26/2022] Open
Abstract
The dorsal anterior cingulate cortex (dACC) is crucial for motivation, reward- and error-guided decision-making, yet its excitatory and inhibitory mechanisms remain poorly explored in humans. In particular, the balance between excitation and inhibition (E/I), demonstrated to play a role in animal studies, is difficult to measure in behaving humans. Here, we used functional magnetic-resonance-spectroscopy (1H-fMRS) to measure the brain's major inhibitory (GABA) and excitatory (Glutamate) neurotransmitters during reinforcement learning with three different conditions: high cognitive load (uncertainty); probabilistic discrimination learning; and a control null-condition. Participants learned to prefer the gain option in the discrimination phase and had no preference in the other conditions. We found increased GABA levels during the uncertainty condition, potentially reflecting recruitment of inhibitory systems during high cognitive load when trying to learn. Further, higher GABA levels during the null (baseline) condition correlated with improved discrimination learning. Finally, glutamate and GABA levels were correlated during high cognitive load. These results suggest that availability of dACC inhibitory resources enables successful learning. Our approach helps elucidate the potential contribution of the balance between excitation and inhibition to learning and motivation in behaving humans.
Collapse
|
152
|
Del Tufo SN, Frost SJ, Hoeft F, Cutting LE, Molfese PJ, Mason GF, Rothman DL, Fulbright RK, Pugh KR. Neurochemistry Predicts Convergence of Written and Spoken Language: A Proton Magnetic Resonance Spectroscopy Study of Cross-Modal Language Integration. Front Psychol 2018; 9:1507. [PMID: 30233445 PMCID: PMC6131664 DOI: 10.3389/fpsyg.2018.01507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022] Open
Abstract
Recent studies have provided evidence of associations between neurochemistry and reading (dis)ability (Pugh et al., 2014). Based on a long history of studies indicating that fluent reading entails the automatic convergence of the written and spoken forms of language and our recently proposed Neural Noise Hypothesis (Hancock et al., 2017), we hypothesized that individual differences in cross-modal integration would mediate, at least partially, the relationship between neurochemical concentrations and reading. Cross-modal integration was measured in 231 children using a two-alternative forced choice cross-modal matching task with three language conditions (letters, words, and pseudowords) and two levels of difficulty within each language condition. Neurometabolite concentrations of Choline (Cho), Glutamate (Glu), gamma-Aminobutyric (GABA), and N- acetyl-aspartate (NAA) were then measured in a subset of this sample (n = 70) with Magnetic Resonance Spectroscopy (MRS). A structural equation mediation model revealed that the effect of cross-modal word matching mediated the relationship between increased Glu (which has been proposed to be an index of neural noise) and poorer reading ability. In addition, the effect of cross-modal word matching fully mediated a relationship between increased Cho and poorer reading ability. Multilevel mixed effects models confirmed that lower Cho predicted faster cross-modal matching reaction time, specifically in the hard word condition. These Cho findings are consistent with previous work in both adults and children showing a negative association between Cho and reading ability. We also found two novel neurochemical relationships. Specifically, lower GABA and higher NAA predicted faster cross-modal matching reaction times. We interpret these results within a biochemical framework in which the ability of neurochemistry to predict reading ability may at least partially be explained by cross-modal integration.
Collapse
Affiliation(s)
- Stephanie N Del Tufo
- Department of Special Education, Peabody College, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, United States.,Haskins Laboratories, New Haven, CT, United States
| | | | - Fumiko Hoeft
- Haskins Laboratories, New Haven, CT, United States.,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Laurie E Cutting
- Department of Special Education, Peabody College, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, United States.,Haskins Laboratories, New Haven, CT, United States.,Peabody College of Education and Human Development, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, United States
| | - Peter J Molfese
- Haskins Laboratories, New Haven, CT, United States.,Section on Functional Imaging Methods, Laboratory of Brain and Cognition, Department of Health and Human Services, National Institutes of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Graeme F Mason
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.,Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, United States
| | - Robert K Fulbright
- Haskins Laboratories, New Haven, CT, United States.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, United States.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.,Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
153
|
Psychostimulant drug effects on glutamate, Glx, and creatine in the anterior cingulate cortex and subjective response in healthy humans. Neuropsychopharmacology 2018; 43:1498-1509. [PMID: 29511334 PMCID: PMC5983539 DOI: 10.1038/s41386-018-0027-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022]
Abstract
Prescription psychostimulants produce rapid changes in mood, energy, and attention. These drugs are widely used and abused. However, their effects in human neocortex on glutamate and glutamine (pooled as Glx), and key neurometabolites such as N-acetylaspartate (tNAA), creatine (tCr), choline (Cho), and myo-inositol (Ins) are poorly understood. Changes in these compounds could inform the mechanism of action of psychostimulant drugs and their abuse potential in humans. We investigated the acute impact of two FDA-approved psychostimulant drugs on neurometabolites using magnetic resonance spectroscopy (1H MRS). Single clinically relevant doses of d-amphetamine (AMP, 20 mg oral), methamphetamine (MA, 20 mg oral; Desoxyn®), or placebo were administered to healthy participants (n = 26) on three separate test days in a placebo-controlled, double-blinded, within-subjects crossover design. Each participant experienced all three conditions and thus served as his/her own control. 1H MRS was conducted in the dorsal anterior cingulate cortex (dACC), an integrative neocortical hub, during the peak period of drug responses (140-150 m post ingestion). D-amphetamine increased the level of Glu (p = .0001), Glx (p = .003), and tCr (p = .0067) in the dACC. Methamphetamine increased Glu in females, producing a significant crossover interaction pattern with gender (p = .02). Drug effects on Glu, tCr, and Glx were positively correlated with subjective drug responses, predicting both the duration of AMP liking (Glu: r = +.49, p = .02; tCr: r = +.41, p = .047) and the magnitude of peak drug high to MA (Glu: r = +.52, p = .016; Glx: r = +.42, p = .049). Neither drug affected the levels of tNAA, Cho, or Ins after correction for multiple comparisons. We conclude that d-amphetamine increased the concentration of glutamate, Glx, and tCr in the dACC in male and female volunteers 21/2 hours after drug consumption. There was evidence that methamphetamine differentially affects dACC Glu levels in women and men. These findings provide the first experimental evidence that specific psychostimulants increase the level of glutamatergic compounds in the human brain, and that glutamatergic changes predict the extent and magnitude of subjective responses to psychostimulants.
Collapse
|
154
|
Oeltzschner G, Zöllner HJ, Jonuscheit M, Lanzman RS, Schnitzler A, Wittsack HJ. J-difference-edited MRS measures of γ-aminobutyric acid before and after acute caffeine administration. Magn Reson Med 2018; 80:2356-2365. [PMID: 29752742 DOI: 10.1002/mrm.27233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/28/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE The aim of this study was to investigate potential effects of acute caffeine intake on J-difference-edited MRS measures of the primary inhibitory neurotransmitter γ-aminobutyric acid (GABA). METHODS J-difference-edited Mescher-Garwood PRESS (MEGA-PRESS) and conventional PRESS data were acquired at 3T from voxels in the anterior cingulate and occipital area of the brain in 15 healthy subjects, before and after oral intake of a 200-mg caffeine dose. MEGA-PRESS data were analyzed with the MATLAB-based Gannet tool to estimate GABA+ macromolecule (GABA+) levels, while PRESS data were analyzed with LCModel to estimate levels of glutamate, glutamate+glutamine, N-acetylaspartate, and myo-inositol. All metabolites were quantified with respect to the internal reference compounds creatine and tissue water, and compared between the pre- and post-caffeine intake condition. RESULTS For both MRS voxels, mean GABA+ estimates did not differ before and after caffeine intake. Slightly lower estimates of myo-inositol were observed after caffeine intake in both voxels. N-acetylaspartate, glutamate, and glutamate+glutamine did not show significant differences between conditions. CONCLUSION Mean GABA+ estimates from J-difference-edited MRS in two different brain regions are not altered by acute oral administration of caffeine. These findings may increase subject recruitment efficiency for MRS studies.
Collapse
Affiliation(s)
- Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Helge J Zöllner
- Institute for Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marc Jonuscheit
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rotem S Lanzman
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute for Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
155
|
Glutamate quantification by PRESS or MEGA-PRESS: Validation, repeatability, and concordance. Magn Reson Imaging 2018; 48:107-114. [DOI: 10.1016/j.mri.2017.12.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/15/2017] [Accepted: 12/29/2017] [Indexed: 12/31/2022]
|
156
|
Czéh B, Nagy SA. Clinical Findings Documenting Cellular and Molecular Abnormalities of Glia in Depressive Disorders. Front Mol Neurosci 2018. [PMID: 29535607 PMCID: PMC5835102 DOI: 10.3389/fnmol.2018.00056] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Depressive disorders are complex, multifactorial mental disorders with unknown neurobiology. Numerous theories aim to explain the pathophysiology. According to the “gliocentric theory”, glial abnormalities are responsible for the development of the disease. The aim of this review article is to summarize the rapidly growing number of cellular and molecular evidences indicating disturbed glial functioning in depressive disorders. We focus here exclusively on the clinical studies and present the in vivo neuroimaging findings together with the postmortem molecular and histopathological data. Postmortem studies demonstrate glial cell loss while the in vivo imaging data reveal disturbed glial functioning and altered white matter microstructure. Molecular studies report on altered gene expression of glial specific genes. In sum, the clinical findings provide ample evidences on glial pathology and demonstrate that all major glial cell types are affected. However, we still lack convincing theories explaining how the glial abnormalities develop and how exactly contribute to the emotional and cognitive disturbances. Abnormal astrocytic functioning may lead to disturbed metabolism affecting ion homeostasis and glutamate clearance, which in turn, affect synaptic communication. Abnormal oligodendrocyte functioning may disrupt the connectivity of neuronal networks, while microglial activation indicates neuroinflammatory processes. These cellular changes may relate to each other or they may indicate different endophenotypes. A theory has been put forward that the stress-induced inflammation—mediated by microglial activation—triggers a cascade of events leading to damaged astrocytes and oligodendroglia and consequently to their dysfunctions. The clinical data support the “gliocentric” theory, but future research should clarify whether these glial changes are truly the cause or simply the consequences of this devastating disorder.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,Department of Laboratory Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Szilvia A Nagy
- Neurobiology of Stress Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,Department of Neurosurgery, University of Pécs, Medical School, Pécs, Hungary.,MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary.,Pécs Diagnostic Centre, Pécs, Hungary
| |
Collapse
|
157
|
Barbagallo G, Arabia G, Novellino F, Nisticò R, Salsone M, Morelli M, Rocca F, Quattrone A, Caracciolo M, Sabatini U, Cherubini A, Quattrone A. Increased glutamate + glutamine levels in the thalamus of patients with essential tremor: A preliminary proton MR spectroscopic study. Parkinsonism Relat Disord 2018; 47:57-63. [DOI: 10.1016/j.parkreldis.2017.11.345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/12/2017] [Accepted: 11/27/2017] [Indexed: 11/30/2022]
|
158
|
Glutamine/glutamate (Glx) concentration in prefrontal cortex predicts reversal learning performance in the marmoset. Behav Brain Res 2018; 346:11-15. [PMID: 29378291 DOI: 10.1016/j.bbr.2018.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/08/2018] [Accepted: 01/21/2018] [Indexed: 01/07/2023]
Abstract
This study used Magnetic Resonance Spectroscopy (MRS) to identify potential neurometabolitic markers of cognitive performance in male (n = 7) and female (n = 8) middle-aged (∼5 years old) common marmosets (Callithrix jacchus). Anesthetized marmosets were scanned with a 4.7 T/40 cm horizontal magnet equipped with 450 mT/m magnetic field gradients and a 20 G/cm magnetic field gradient insert, within 3 months of completing the CANTAB serial Reversal Learning task. Neurometabolite concentrations of N-Acetyl Asparate, Myo-Inositol, Choline, Phosphocreatine + creatine, Glutamate and Glutamine were acquired from a 3 mm3 voxel positioned in the Prefrontal Cortex (PFC). Males acquired the reversals (but not simple discriminations) faster than the females. Higher PFC Glx (glutamate + glutamine) concentration was associated with faster acquisition of the reversals. Interestingly, the correlation between cognitive performance and Glx was significant in males, but not in females. These results suggest that MRS is a useful tool to identify biochemical markers of cognitive performance in the healthy nonhuman primate brain and that biological sex modulates the relationship between neurochemical composition and cognition.
Collapse
|
159
|
Wong A, Lucas-Torres C. High-resolution Magic-angle Spinning (HR-MAS) NMR Spectroscopy. NMR-BASED METABOLOMICS 2018. [DOI: 10.1039/9781782627937-00133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Since the beginning of high-resolution magic-angle spinning (HR-MAS) NMR spectroscopy in 1990s, we have witnessed tremendous instrumentation and methodological advancements in the HR-MAS NMR technique for semisolids. With HR-MAS, it is now possible to acquire reliable high-quality spectra in a routine and high-throughput fashion, and it has become a well-integrated metabolic screening tool for ex vivo biospecimens such as tissue biopsies, cells and organisms for NMR-based metabolomics research. This chapter provides the basic principles of HR-MAS and describes a few recent noteworthy developments that could strengthen the role of HR-MAS as a frontline NMR technique for metabolomics.
Collapse
Affiliation(s)
- Alan Wong
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette France
| | | |
Collapse
|
160
|
Sharma B, Lawrence DW, Hutchison MG. Branched Chain Amino Acids (BCAAs) and Traumatic Brain Injury: A Systematic Review. J Head Trauma Rehabil 2018; 33:33-45. [DOI: 10.1097/htr.0000000000000280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
161
|
Abstract
In vivo Magnetic Resonance Spectroscopy (MRS) allows the non-invasive detection and quantification of a number of metabolites from localized volumes within a living organism. MRS localization techniques can be divided into two main groups, single voxel and multi-voxel. Single voxel techniques provide the metabolic profile from a specific small volume, whereas multi-voxel techniques are used to obtain the spatial distribution of metabolites throughout a large volume subdivided into small contiguous voxels. This chapter describes standard protocols for the acquisition and processing of in vivo single voxel1H MRS data from the rodent brain.
Collapse
Affiliation(s)
- M Carmen Muñoz-Hernández
- BIONAND, Andalusian Centre for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - María Luisa García-Martín
- BIONAND, Andalusian Centre for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, Málaga, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Málaga, Spain.
| |
Collapse
|
162
|
Dobberthien BJ, Tessier AG, Yahya A. Improved resolution of glutamate, glutamine and γ-aminobutyric acid with optimized point-resolved spectroscopy sequence timings for their simultaneous quantification at 9.4 T. NMR IN BIOMEDICINE 2018; 31:e3851. [PMID: 29105187 DOI: 10.1002/nbm.3851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/15/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Glutamine (Gln), glutamate (Glu) and γ-aminobutyric acid (GABA) are relevant brain metabolites that can be measured with magnetic resonance spectroscopy (MRS). This work optimizes the point-resolved spectroscopy (PRESS) sequence echo times, TE1 and TE2 , for improved simultaneous quantification of the three metabolites at 9.4 T. Quantification was based on the proton resonances of Gln, Glu and GABA at ≈2.45, ≈2.35 and ≈2.28 ppm, respectively. Glu exhibits overlap with both Gln and GABA; in addition, the Gln peak is contaminated by signal from the strongly coupled protons of N-acetylaspartate (NAA), which resonate at about 2.49 ppm. J-coupling evolution of the protons was characterized numerically and verified experimentally. A {TE1 , TE2 } combination of {106 ms, 16 ms} minimized the NAA signal in the Gln spectral region, whilst retaining Gln, Glu and GABA peaks. The efficacy of the technique was verified on phantom solutions and on rat brain in vivo. LCModel was employed to analyze the in vivo spectra. The average T2 -corrected Gln, Glu and GABA concentrations were found to be 3.39, 11.43 and 2.20 mM, respectively, assuming a total creatine concentration of 8.5 mM. LCModel Cramér-Rao lower bounds (CRLBs) for Gln, Glu and GABA were in the ranges 14-17%, 4-6% and 16-19%, respectively. The optimal TE resulted in concentrations for Gln and GABA that agreed more closely with literature concentrations compared with concentrations obtained from short-TE spectra acquired with a {TE1 , TE2 } combination of {12 ms, 9 ms}. LCModel estimations were also evaluated with short-TE PRESS and with the optimized long TE of {106 ms, 16 ms}, using phantom solutions of known metabolite concentrations. It was shown that concentrations estimated with LCModel can be inaccurate when combined with short-TE PRESS, where there is peak overlap, even when low (<20%) CRLBs are reported.
Collapse
Affiliation(s)
| | - Anthony G Tessier
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, AB, Canada
| | - Atiyah Yahya
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, AB, Canada
| |
Collapse
|
163
|
Sanaei Nezhad F, Anton A, Michou E, Jung J, Parkes LM, Williams SR. Quantification of GABA, glutamate and glutamine in a single measurement at 3 T using GABA-edited MEGA-PRESS. NMR IN BIOMEDICINE 2018; 31:e3847. [PMID: 29130590 PMCID: PMC5765428 DOI: 10.1002/nbm.3847] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/28/2017] [Accepted: 09/19/2017] [Indexed: 05/05/2023]
Abstract
γ-Aminobutyric acid (GABA) and glutamate (Glu), major neurotransmitters in the brain, are recycled through glutamine (Gln). All three metabolites can be measured by magnetic resonance spectroscopy in vivo, although GABA measurement at 3 T requires an extra editing acquisition, such as Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS). In a GABA-edited MEGA-PRESS spectrum, Glu and Gln co-edit with GABA, providing the possibility to measure all three in one acquisition. In this study, we investigated the reliability of the composite Glu + Gln (Glx) peak estimation and the possibility of Glu and Gln separation in GABA-edited MEGA-PRESS spectra. The data acquired in vivo were used to develop a quality assessment framework which identified MEGA-PRESS spectra in which Glu and Gln could be estimated reliably. Phantoms containing Glu, Gln, GABA and N-acetylaspartate (NAA) at different concentrations were scanned using GABA-edited MEGA-PRESS at 3 T. Fifty-six sets of spectra in five brain regions were acquired from 36 healthy volunteers. Based on the Glu/Gln ratio, data were classified as either within or outside the physiological range. A peak-by-peak quality assessment was performed on all data to investigate whether quality metrics can discriminate between these two classes of spectra. The quality metrics were as follows: the GABA signal-to-noise ratio, the NAA linewidth and the Glx Cramer-Rao lower bound (CRLB). The Glu and Gln concentrations were estimated with precision across all phantoms with a linear relationship between the measured and true concentrations: R1 = 0.95 for Glu and R1 = 0.91 for Gln. A quality assessment framework was set based on the criteria necessary for a good GABA-edited MEGA-PRESS spectrum. Simultaneous criteria of NAA linewidth <8 Hz and Glx CRLB <16% were defined as optimum features for reliable Glu and Gln quantification. Glu and Gln can be reliably quantified from GABA-edited MEGA-PRESS acquisitions. However, this reliability should be controlled using the quality assessment methods suggested in this work.
Collapse
Affiliation(s)
- Faezeh Sanaei Nezhad
- Centre for Imaging Science and Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
| | - Adriana Anton
- Division of Neuroscience and Experimental Psychology and Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
| | - Emilia Michou
- School of Medical SciencesUniversity of ManchesterManchesterUK
| | - JeYoung Jung
- Division of Neuroscience and Experimental Psychology and Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
| | - Laura M. Parkes
- Division of Neuroscience and Experimental Psychology and Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
| | - Stephen R. Williams
- Centre for Imaging Science and Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
164
|
Lim SI, Song KH, Yoo CH, Woo DC, Choe BY. High-fat diet-induced hyperglutamatergic activation of the hippocampus in mice: A proton magnetic resonance spectroscopy study at 9.4T. Neurochem Int 2017; 114:10-17. [PMID: 29274351 DOI: 10.1016/j.neuint.2017.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 12/28/2022]
Abstract
The aim of this study was to investigate the long-term neurochemical alterations in the hippocampus of mice fed a high-fat diet (HFD) while plasma leptin and corticosterone levels were monitored. Although metabolic disturbances induced by the excess intake of fat are assumed to cause depression, the relationship underlying dysfunctional adipose tissue, stress hormone release, and excitatory metabolism has not been fully understood yet. Four-week-old male C57BL/6 mice were separated into a HFD-fed group (n = 8) and low-fat diet-fed group (n = 8). Proton magnetic resonance spectroscopy was used to measure the long-term changes in neurochemicals in the hippocampus at 0, 5, and 10 weeks and blood samples were taken at the same time to assess plasma hormones levels. At the end of the experiment, magnetic resonance imaging was performed to quantify abdominal fat accumulation. At 10 weeks, corticosterone and leptin levels were significantly increased in the HFD group compared with the low-fat diet group. In addition, aspartate, glutamate, total choline, and N-acetylaspartic acid levels were significantly increased, but glutamine/glutamate ratios were substantially decreased at 10 weeks in the HFD group. These results were compatible with HFD-induced acute stress responses and changes in N-methyl-d-aspartate receptor-induced plasticity. These findings demonstrated that the long-term ingestion of a HFD induced hyperglutamatergic metabolism and altered glutamine-glutamate cycling. Therfore, it is suggested that hypothalamic-pituitary-adrenal dysfunction and hyperglutamatergic activation in the hippocampus resulting from the HFD.
Collapse
Affiliation(s)
- Song-I Lim
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Kyu-Ho Song
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Chi-Hyeon Yoo
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Dong-Cheol Woo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Bo-Young Choe
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
165
|
Liu XL, Li L, Li JN, Rong JH, Liu B, Hu ZX. Reliability of Glutamate Quantification in Human Nucleus Accumbens Using Proton Magnetic Resonance Spectroscopy at a 70-cm Wide-Bore Clinical 3T MRI System. Front Neurosci 2017; 11:686. [PMID: 29259538 PMCID: PMC5723319 DOI: 10.3389/fnins.2017.00686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/22/2017] [Indexed: 12/29/2022] Open
Abstract
The human nucleus accumbens is a challenging region to study using proton magnetic resonance spectroscopy (1H-MRS) on a 70-cm wide-bore clinical 3T MRI system. The aim of this study was to investigate the reliability for quantitative measurement of glutamate concentration in the nucleus accumbens using a 70-cm wide-bore clinical 3T MRI. 1H-MRS of the nucleus accumbens was acquired using the Point-Resolved Spectroscopic Sequence (PRESS) with echo time of 40 ms from 10 healthy volunteers (5 female; age range: 18–30 years) on two separate visits (a baseline, and 1-month time point). The Java-based Magnetic Resonance User Interface (jMRUI) software package was used to quantitatively measure the absolute metabolite concentrations. The test-retest reliability and reproducibility were assessed using intraclass correlations coefficients (ICC), and coefficients of variation (CV). Glutamate concentrations were similar across visits (P = 0.832). Reproducibility measures for all metabolites were good with CV ranging from 7.8 to 14.0%. The ICC values of all metabolites for the intra-class measures were excellent (ICC > 0.8), except that the reliability for Glx (glutamate + glutamine) was good (ICC = 0.768). Pearson correlations for all metabolites were all highly significant (r = 0.636–0.788, P < 0.05). In conclusion, the short-echo-time PRESS can reliably obtain high quality glutamate spectrum from a ~3.4 cm3 voxel of the nucleus accumbens using a 70-cm wide-bore clinical 3T MRI.
Collapse
Affiliation(s)
- Xi-Long Liu
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Long Li
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Jian-Neng Li
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Jia-Hui Rong
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Bo Liu
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Ze-Xuan Hu
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
166
|
Hippocampal metabolism and prefrontal brain structure: A combined 1H-MR spectroscopy, neuropsychological, and voxel-based morphometry (VBM) study. Brain Res 2017; 1677:14-19. [DOI: 10.1016/j.brainres.2017.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/09/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023]
|
167
|
Voets NL, Hodgetts CJ, Sen A, Adcock JE, Emir U. Hippocampal MRS and subfield volumetry at 7T detects dysfunction not specific to seizure focus. Sci Rep 2017; 7:16138. [PMID: 29170537 PMCID: PMC5700920 DOI: 10.1038/s41598-017-16046-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/03/2017] [Indexed: 01/06/2023] Open
Abstract
Ultra high-field 7T MRI offers sensitivity to localize hippocampal pathology in temporal lobe epilepsy (TLE), but has rarely been evaluated in patients with normal-appearing clinical MRI. We applied multimodal 7T MRI to assess if focal subfield atrophy and deviations in brain metabolites characterize epileptic hippocampi. Twelve pre-surgical TLE patients (7 MRI-negative) and age-matched healthy volunteers were scanned at 7T. Hippocampal subfields were manually segmented from 600μm isotropic resolution susceptibility-weighted images. Hippocampal metabolite spectra were acquired to determine absolute concentrations of glutamate, glutamine, myo-inositol, NAA, creatine and choline. We performed case-controls analyses, using permutation testing, to identify abnormalities in hippocampal imaging measures in individual patients, for evaluation against clinical evidence of seizure lateralisation and neuropsychological memory test scores. Volume analyses identified hippocampal subfield atrophy in 9/12 patients (75%), commonly affecting CA3. 7/8 patients had altered metabolite concentrations, most showing reduced glutamine levels (62.5%). However, neither volume nor metabolite deviations consistently lateralized the epileptogenic hippocampus. Rather, lower subiculum volumes and glutamine concentrations correlated with impaired verbal memory performance. Hippocampal subfield and metabolic abnormalities detected at 7T appear to reflect pathophysiological processes beyond epileptogenesis. Despite limited diagnostic contributions, these markers show promise to help elucidate mnemonic processing in TLE.
Collapse
Affiliation(s)
- Natalie L Voets
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK. .,Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Carl J Hodgetts
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Jane E Adcock
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Uzay Emir
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
168
|
Schulte MHJ, Kaag AM, Wiers RW, Schmaal L, van den Brink W, Reneman L, Homberg JR, van Wingen GA, Goudriaan AE. Prefrontal Glx and GABA concentrations and impulsivity in cigarette smokers and smoking polysubstance users. Drug Alcohol Depend 2017; 179:117-123. [PMID: 28763779 DOI: 10.1016/j.drugalcdep.2017.06.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022]
Abstract
Glutamate and GABA play an important role in substance dependence. However, it remains unclear whether this holds true for different substance use disorders and how this is related to risk-related traits such as impulsivity. We, therefore, compared Glx (as a proxy measure for glutamate) and GABA concentrations in the dorsal anterior cingulate cortex (dACC) of 48 male cigarette smokers, 61 male smoking polysubstance users, and 90 male healthy controls, and investigated the relationship with self-reported impulsivity and substance use. Glx and GABA concentrations were measured using proton Magnetic Resonance Spectroscopy. Impulsivity, smoking, alcohol and cocaine use severity and cannabis use were measured using self-report instruments. Results indicate a trend towards group differences in Glx. Post-hoc analyses showed a difference between smokers and healthy controls (p=0.04) and a trend towards higher concentrations in smoking polysubstance users and healthy controls (p=0.09), but no differences between smokers and smoking polysubstance users. dACC GABA concentrations were not significantly different between groups. Smoking polysubstance users were more impulsive than smokers, and both groups were more impulsive than controls. No significant associations were observed between dACC neurotransmitter concentrations and impulsivity and level and severity of smoking, alcohol or cocaine use or the presence of cannabis use. The results indicate that differences in dACC Glx are unrelated to type and level of substance use. No final conclusion can be drawn on the lack of GABA differences due to assessment difficulties. The relationship between dACC neurotransmitter concentrations and cognitive impairments other than self-reported impulsivity should be further investigated.
Collapse
Affiliation(s)
- Mieke H J Schulte
- Addiction, Development, and Psychopathology (ADAPT) lab, Department of Psychology, University of Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands.
| | - Anne Marije Kaag
- Addiction, Development, and Psychopathology (ADAPT) lab, Department of Psychology, University of Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Reinout W Wiers
- Addiction, Development, and Psychopathology (ADAPT) lab, Department of Psychology, University of Amsterdam, The Netherlands
| | - Lianne Schmaal
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Wim van den Brink
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Academic Medical Center, University of Amsterdam, The Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Judith R Homberg
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, The Netherlands
| | - Guido A van Wingen
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands; Spinoza center for Neuroimaging, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna E Goudriaan
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands; Arkin Mental Health, Amsterdam, The Netherlands
| |
Collapse
|
169
|
Zhu S, Lin X, Ran P, Mo F, Xia Q, Fu Y. A glassy carbon electrode modified with C-dots and silver nanoparticles for enzymatic electrochemiluminescent detection of glutamate enantiomers. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2515-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
170
|
Liang S, Huang J, Liu W, Jin H, Li L, Zhang X, Nie B, Lin R, Tao J, Zhao S, Shan B, Chen L. Magnetic resonance spectroscopy analysis of neurochemical changes in the atrophic hippocampus of APP/PS1 transgenic mice. Behav Brain Res 2017; 335:26-31. [DOI: 10.1016/j.bbr.2017.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 07/26/2017] [Accepted: 08/05/2017] [Indexed: 02/09/2023]
|
171
|
Iqbal Z, Verma G, Kumar A, Thomas MA. Covariance J-resolved spectroscopy: Theory and application in vivo. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3732. [PMID: 28481039 PMCID: PMC5548697 DOI: 10.1002/nbm.3732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/10/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Magnetic resonance spectroscopy (MRS) is a powerful tool capable of investigating the metabolic status of several tissues in vivo. In particular, single-voxel-based 1 H spectroscopy provides invaluable biochemical information from a volume of interest (VOI) and has therefore been used in a variety of studies. Unfortunately, typical one-dimensional MRS data suffer from severe signal overlap and thus important metabolites are difficult to distinguish. One method that is used to disentangle overlapping resonances is the two-dimensional J-resolved spectroscopy (JPRESS) experiment. Due to the long acquisition duration of the JPRESS experiment, a limited number of points are acquired in the indirect dimension, leading to poor spectral resolution along this dimension. Poor spectral resolution is problematic because proper peak assignment may be hindered, which is why the zero-filling method is often used to improve resolution as a post-processing step. However, zero-filling leads to spectral artifacts, which may affect visualization and quantitation of spectra. A novel method utilizing a covariance transformation, called covariance J-resolved spectroscopy (CovJ), was developed in order to improve spectral resolution along the indirect dimension (F1 ). Comparison of simulated data demonstrates that peak structures remain qualitatively similar between JPRESS and the novel method along the diagonal region (F1 = 0 Hz), whereas differences arise in the cross-peak (F1 ≠0 Hz) regions. In addition, quantitative results of in vivo JPRESS data acquired on a 3T scanner show significant correlations (r2 >0.86, p<0.001) when comparing the metabolite concentrations between the two methods. Finally, a quantitation algorithm, 'COVariance Spectral Evaluation of 1 H Acquisitions using Representative prior knowledge' (Cov-SEHAR), was developed in order to quantify γ-aminobutyric acid and glutamate from the CovJ spectra. These preliminary findings indicate that the CovJ method may be used to improve spectral resolution without hindering metabolite quantitation for J-resolved spectra.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Department of Radiological Sciences, University of California Los Angeles
| | - Gaurav Verma
- Department of Radiological Sciences, University of California Los Angeles
| | - Anand Kumar
- Department of Psychiatry, University of California Los Angeles
| | - M. Albert Thomas
- Department of Radiological Sciences, University of California Los Angeles
| |
Collapse
|
172
|
Liu XL, Li L, Li JN, Tang JH, Rong JH, Liu B, Hu ZX. Quantifying absolute glutamate concentrations in nucleus accumbens of prescription opioid addicts by using 1H MRS. Brain Behav 2017; 7:e00769. [PMID: 28828225 PMCID: PMC5561325 DOI: 10.1002/brb3.769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The diagnosis of psychoactive substance use disorders has been based primarily on descriptive, symptomatic checklist criteria. In opioid addiction, there are no objective biological indicators specific enough to guide diagnosis, monitor disease status, and evaluate efficacy of therapeutic interventions. Proton magnetic resonance spectroscopy (1H MRS) of the brain has potential to identify and quantify biomarkers for the diagnosis of opioid dependence. The purpose of this study was to detect the absolute glutamate concentration in the nucleus accumbens (NAc) of patients with prescription opioid dependence using 1H MRS, and to analyze its clinical associations. METHODS Twenty patients with clinically diagnosed definitive prescription opioid dependent (mean age = 26.5 ± 4.3 years) and 20 matched healthy controls (mean age = 26.1 ± 3.8 years) participated in this study. Patients were evaluated with the Barratt Impulsiveness Scale (BIS-11), the Self-Rating Anxiety Scale (SAS), and the opiate Addiction Severity Inventory (ASI). We used point-resolved spectroscopy to quantify the absolute concentrations of metabolites (glutamate, choline, N-acetylaspartate, glutamine, creatine) within the NAc. The difference between metabolite levels of groups and Pearson's correlation between glutamate levels and psychometric scores in patients were analyzed statistically. RESULTS Glutamate concentrations in the NAc were significantly higher in prescription opiate addicts than in controls (t = 3.84, p = .001). None of the other metabolites differed significantly between the two groups (all ps > .05). The glutamate concentrations correlated positively with BIS-11 scores in prescription opiate addicts (r = .671, p = .001), but not with SAS score and ASI index. CONCLUSIONS Glutamate levels in the NAc measured quantitatively with in vivo 1H MRS could be used as a biomarker to evaluate disease condition in opioid-dependent patients.
Collapse
Affiliation(s)
- Xi-Long Liu
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Long Li
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Jian-Neng Li
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Ji-Hua Tang
- Department of Psychology and Addiction Medicine Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Jia-Hui Rong
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Bo Liu
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Ze-Xuan Hu
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| |
Collapse
|
173
|
Bartnik-Olson BL, Ding D, Howe J, Shah A, Losey T. Glutamate metabolism in temporal lobe epilepsy as revealed by dynamic proton MRS following the infusion of [U 13-C] glucose. Epilepsy Res 2017; 136:46-53. [PMID: 28763722 DOI: 10.1016/j.eplepsyres.2017.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 12/27/2022]
Abstract
Focal metabolic dysfunction commonly observed in temporal lobe epilepsy (TLE), and is associated with the development of medical intractability and neurocognitive deficits. It has not been established if this dysfunction is due to cell loss or biochemical dysfunction in metabolic pathways. To explore this question, dynamic 1H MRS following an infusion of [U13- C] glucose was performed to measure glutamate (Glu) metabolism. Subjects (n=6) showed reduced Glu levels (p<0.01) in the ipsilateral mesial temporal lobe (MTL) compared with controls (n=4). However, the rate of 13C incorporation into Glu did not differ between those with epilepsy and controls (p=0.77). This suggests that reduced Glu concentrations in the region of the seizure focus are not due to disruptions in metabolic pathways, but may instead be due to neuronal loss or simplification.
Collapse
Affiliation(s)
| | - Daniel Ding
- School of Medicine, Loma Linda University, Loma Linda CA, United States
| | - John Howe
- School of Medicine, Loma Linda University, Loma Linda CA, United States
| | - Amul Shah
- School of Medicine, Loma Linda University, Loma Linda CA, United States
| | - Travis Losey
- Department of Neurology, Loma Linda University, Loma Linda CA, United States.
| |
Collapse
|
174
|
Longitudinal increases of brain metabolite levels in 5-10 year old children. PLoS One 2017; 12:e0180973. [PMID: 28700727 PMCID: PMC5507439 DOI: 10.1371/journal.pone.0180973] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/24/2017] [Indexed: 11/29/2022] Open
Abstract
Longitudinal magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) studies reveal significant changes in brain structure and structural networks that occur together with cognitive and behavioral maturation in childhood. However, the underlying cellular changes accompanying brain maturation are less understood. Examining regional age-related changes in metabolite levels provides insight into the physiology of neurodevelopment. Magnetic resonance spectroscopy (MRS) measures localize brain metabolism. The majority of neuroimaging studies of healthy development are from the developed world. In a longitudinal MRS study of 64 South African children aged 5 to 10 years old (29 female; 29 HIV exposed, uninfected), we examined the age-related trajectories of creatine (Cr+PCr), N-acetyl-aspartate (NAA), the combined NAA+N-acetyl-aspartyl-glutamate (NAAG), choline (GPC+PCh), glutamate (Glu) and the combined Glu+glutamine (Glu+Gln) in voxels within gray and white matter, as well as subcortically in the basal ganglia (BG). In frontal gray matter, we found age-related increases in Cr+PCr, NAA, NAA+NAAG and Glu+Gln levels pointing to synaptic activity likely related to learning. In the BG we observed increased levels of Glu, Glu+Gln and NAA+NAAG with age that point to subcortical synaptic reorganization. In white matter, we found increased levels of Cr+PCr, NAA, NAA+NAAG, Glu and Glu+Gln with age, implicating these metabolites in ongoing myelination. We observed no sex-age or HIV exposure-age interactions, indicating that physiological changes are independent of sex during this time period. The metabolite trajectories presented, therefore, provide a critical benchmark of normal cellular growth for a low socioeconomic pediatric population in the developing world against which pathology and abnormal development may be compared.
Collapse
|
175
|
Gambarota G. Optimization of metabolite detection by quantum mechanics simulations in magnetic resonance spectroscopy. Anal Biochem 2017; 529:65-78. [DOI: 10.1016/j.ab.2016.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/31/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|
176
|
Gu M, Hurd R, Noeske R, Baltusis L, Hancock R, Sacchet MD, Gotlib IH, Chin FT, Spielman DM. GABA editing with macromolecule suppression using an improved MEGA-SPECIAL sequence. Magn Reson Med 2017; 79:41-47. [PMID: 28370458 DOI: 10.1002/mrm.26691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 02/15/2017] [Accepted: 03/05/2017] [Indexed: 01/08/2023]
Abstract
PURPOSE The most common γ-aminobutyric-acid (GABA) editing approach, MEGA-PRESS, uses J-editing to measure GABA distinct from larger overlapping metabolites, but suffers contamination from coedited macromolecules (MMs) comprising 40 to 60% of the observed signal. MEGA-SPECIAL is an alternative method with better MM suppression, but is not widely used primarily because of its relatively poor spatial localization. Our goal was to develop an improved MM-suppressed GABA editing sequence at 3 Tesla. METHODS We modified a single-voxel MEGA-SPECIAL sequence with an oscillating readout gradient for improved spatial localization, and used very selective 30-ms editing pulses for improved suppression of coedited MMs. RESULTS Simulation and in vivo experiments confirmed excellent MM suppression, insensitive to the range of B0 frequency drifts typically encountered in vivo. Both intersubject and intrasubject studies showed that MMs, when suppressed by the improved MEGA-SPECIAL method, contributed approximately 40% to the corresponding MEGA-PRESS measurements. From the intersubject study, the coefficient of variation for GABA+/Cre (MEGA-PRESS) was 11.2% versus 7% for GABA/Cre (improved MEGA-SPECIAL), demonstrating significantly reduced variance (P = 0.005), likely coming from coedited MMs. CONCLUSIONS This improved MEGA-SPECIAL sequence provides unbiased GABA measurements with reduced variance as compared with conventional MEGA-PRESS. This approach is also relatively insensitive to the range of B0 drifts typically observed in in vivo human studies. Magn Reson Med 79:41-47, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Meng Gu
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Ralph Hurd
- GE Healthcare, Menlo Park, California, USA
| | | | - Laima Baltusis
- Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, California, USA
| | - Roeland Hancock
- Department of Psychiatry, University of California, San Francisco, California, USA
| | - Matthew D Sacchet
- Neurosciences Program and Psychology, Stanford University, Stanford, California, USA
| | - Ian H Gotlib
- Neurosciences Program and Psychology, Stanford University, Stanford, California, USA
| | - Frederick T Chin
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Daniel M Spielman
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
177
|
3T hippocampal glutamate-glutamine complex reflects verbal memory decline in aging. Neurobiol Aging 2017; 54:103-111. [PMID: 28363111 DOI: 10.1016/j.neurobiolaging.2017.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/05/2016] [Accepted: 01/06/2017] [Indexed: 12/19/2022]
Abstract
The hippocampus is a critical site for alterations that are responsible for age-related changes in memory. Here, we present a relatively novel approach of examining the relationship between memory performance and glutamate-glutamine levels using short echo time magnetic resonance spectroscopy. Specifically, we investigated the relationship between Glx (a composite of glutamate and glutamine) levels in the hippocampus, performance on a word-recall task, and resting-state functional connectivity. While there was no overall difference in Glx intensity between young and aging adults, we identified a positive correlation between delayed word-list recall and Glx, bilaterally in older adults, but not in young adults. Collapsed across age, we also discovered a negative relationship between Glx intensity and resting-state functional connectivity between the anterior hippocampus and regions in the subcallosal gyrus. These findings demonstrate the possible utility of Glx in identifying age-related changes in the brain and behavior and provide encouragement that magnetic resonance spectroscopy can be useful in predicting age-related decline before any physical abnormalities are present.
Collapse
|
178
|
Comparing GABA-dependent physiological measures of inhibition with proton magnetic resonance spectroscopy measurement of GABA using ultra-high-field MRI. Neuroimage 2017; 152:360-370. [PMID: 28284797 PMCID: PMC5440178 DOI: 10.1016/j.neuroimage.2017.03.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 12/16/2022] Open
Abstract
Imbalances in glutamatergic (excitatory) and GABA (inhibitory) signalling within key brain networks are thought to underlie many brain and mental health disorders, and for this reason there is considerable interest in investigating how individual variability in localised concentrations of these molecules relate to brain disorders. Magnetic resonance spectroscopy (MRS) provides a reliable means of measuring, in vivo, concentrations of neurometabolites such as GABA, glutamate and glutamine that can be correlated with brain function and dysfunction. However, an issue of much debate is whether the GABA observed and measured using MRS represents the entire pool of GABA available for measurement (i.e., metabolic, intracellular, and extracellular) or is instead limited to only some portion of it. GABA function can also be investigated indirectly in humans through the use of non-invasive transcranial magnetic stimulation (TMS) techniques that can be used to measure cortical excitability and GABA-mediated physiological inhibition. To investigate this issue further we collected in a single session both types of measurement, i.e., TMS measures of cortical excitability and physiological inhibition and ultra-high-field (7 T) MRS measures of GABA, glutamate and glutamine, from the left sensorimotor cortex of the same group of right-handed individuals. We found that TMS and MRS measures were largely uncorrelated with one another, save for the plateau of the TMS IO curve that was negatively correlated with MRS-Glutamate (Glu) and intra-cortical facilitation (10ms ISI) that was positively associated with MRS-Glutamate concentration. These findings are consistent with the view that the GABA concentrations measured using the MRS largely represent pools of GABA that are linked to tonic rather than phasic inhibition and thus contribute to the inhibitory tone of a brain area rather than GABAergic synaptic transmission.
Collapse
|
179
|
Van Horn JD, Bhattrai A, Irimia A. Multimodal Imaging of Neurometabolic Pathology due to Traumatic Brain Injury. Trends Neurosci 2016; 40:39-59. [PMID: 27939821 DOI: 10.1016/j.tins.2016.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 12/28/2022]
Abstract
The impact of traumatic brain injury (TBI) involves a combination of complex biochemical processes beginning with the initial insult and lasting for days, months and even years post-trauma. These changes range from neuronal integrity losses to neurotransmitter imbalance and metabolite dysregulation, leading to the release of pro- or anti-apoptotic factors which mediate cell survival or death. Such dynamic processes affecting the brain's neurochemistry can be monitored using a variety of neuroimaging techniques, whose combined use can be particularly useful for understanding patient-specific clinical trajectories. Here, we describe how TBI changes the metabolism of essential neurochemical compounds, summarize how neuroimaging approaches facilitate the study of such alterations, and highlight promising ways in which neuroimaging can be used to investigate post-TBI changes in neurometabolism.
Collapse
Affiliation(s)
- John Darrell Van Horn
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, USA.
| | - Avnish Bhattrai
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, USA
| | - Andrei Irimia
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
180
|
Yang H, Leaver AM, Siddarth P, Paholpak P, Ercoli L, St Cyr NM, Eyre HA, Narr KL, Khalsa DS, Lavretsky H. Neurochemical and Neuroanatomical Plasticity Following Memory Training and Yoga Interventions in Older Adults with Mild Cognitive Impairment. Front Aging Neurosci 2016; 8:277. [PMID: 27917121 PMCID: PMC5116460 DOI: 10.3389/fnagi.2016.00277] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/04/2016] [Indexed: 11/23/2022] Open
Abstract
Behavioral interventions are becoming increasingly popular approaches to ameliorate age-related cognitive decline, but their underlying neurobiological mechanisms and clinical efficiency have not been fully elucidated. The present study explored brain plasticity associated with two behavioral interventions, memory enhancement training (MET) and a mind-body practice (yogic meditation), in healthy seniors with mild cognitive impairment (MCI) using structural magnetic resonance imaging (s-MRI) and proton magnetic resonance spectroscopy (1H-MRS). Senior participants (age ≥55 years) with MCI were randomized to the MET or yogic meditation interventions. For both interventions, participants completed either MET training or Kundalini Yoga (KY) for 60-min sessions over 12 weeks, with 12-min daily homework assignments. Gray matter volume and metabolite concentrations in the dorsal anterior cingulate cortex (dACC) and bilateral hippocampus were measured by structural MRI and 1H-MRS at baseline and after 12 weeks of training. Metabolites measured included glutamate-glutamine (Glx), choline-containing compounds (Cho, including glycerophosphocholine and phosphocholine), gamma-aminobutyric acid (GABA), and N-acetyl aspartate and N-acetylaspartyl-glutamate (NAA-NAAG). In total, 11 participants completed MET and 14 completed yogic meditation for this study. Structural MRI analysis showed an interaction between time and group in dACC, indicating a trend towards increased gray matter volume after the MET intervention. 1H-MRS analysis showed an interaction between time and group in choline-containing compounds in bilateral hippocampus, induced by significant decreases after the MET intervention. Though preliminary, our results suggest that memory training induces structural and neurochemical plasticity in seniors with MCI. Further research is needed to determine whether mind-body interventions like yoga yield similar neuroplastic changes.
Collapse
Affiliation(s)
- Hongyu Yang
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA) Los Angeles, CA, USA
| | - Amber M Leaver
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles (UCLA) Los Angeles, CA, USA
| | - Prabha Siddarth
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA) Los Angeles, CA, USA
| | - Pattharee Paholpak
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA)Los Angeles, CA, USA; Department of Psychiatry, Faculty of Medicine, Khon Kaen UniversityKhon Kaen, Thailand
| | - Linda Ercoli
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA) Los Angeles, CA, USA
| | - Natalie M St Cyr
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA) Los Angeles, CA, USA
| | - Harris A Eyre
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA)Los Angeles, CA, USA; Discipline of Psychiatry, University of AdelaideAdelaide, SA, Australia; IMPACT SRC, School of Medicine, Deakin UniversityGeelong, VIC, Australia; Department of Psychiatry, University of MelbourneMelbourne, VIC, Australia
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles (UCLA) Los Angeles, CA, USA
| | - Dharma S Khalsa
- Alzheimer's Research and Prevention Foundation Tucson, AZ, USA
| | - Helen Lavretsky
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA) Los Angeles, CA, USA
| |
Collapse
|
181
|
Mazuel L, Schulte RF, Cladière A, Spéziale C, Lagrée M, Leremboure M, Jean B, Durif F, Chassain C. Intracerebral synthesis of glutamine from hyperpolarized glutamate. Magn Reson Med 2016; 78:1296-1305. [PMID: 27851869 DOI: 10.1002/mrm.26522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/16/2016] [Accepted: 09/30/2016] [Indexed: 12/24/2022]
Abstract
PURPOSE Changes in glutamate (Glu) levels occur in a number of neurodegenerative diseases. We proposed the use of 13 C spectroscopy and the highly amplified signal generated by hyperpolarization to achieve spatial and temporal resolutions adequate for in vivo studies of Glu metabolism in the healthy rat brain. Thus, we investigated uptake of hyperpolarized [1-13C ]Glu after a temporary blood-brain barrier (BBB) disruption protocol and its conversion to glutamine (Gln) in the brain. METHODS [1-13 C]Glu was hyperpolarized using the dynamic nuclear polarization process. A temporary BBB disruption using mannitol allowed hyperpolarized [1-13 C]Glu to reach the brain. Then, hyperpolarized [1-13 C]Glu brain metabolism was observed in vivo by MR spectroscopy experiments at 3T. Products synthesized from [1-13 C]Glu were assigned via liquid chromatography-mass spectrometry. RESULTS Hyperpolarized [1-13 C]Glu reached 20% ± 2.3% polarization after 90 min. After validation of the BBB disruption protocol, hyperpolarized [1-13 C]Glu (175.4 ppm) was detected inside the rat brain, and the formation of [1-13 C]Gln at 174.9 ppm was also observed. CONCLUSION The Gln synthesis from hyperpolarized [1-13 C]Glu can be monitored in vivo in the healthy rat brain after opening the BBB. Magn Reson Med 78:1296-1305, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Leslie Mazuel
- Auvergne University, UFR Medicine, EA7280, Clermont-Ferrand, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Victor Segalen University, CNRS, Bordeaux, France
| | | | | | | | - Marie Lagrée
- Plateforme d'Exploration du Métabolisme, Institut de Chimie de Clermont-Ferrand, Aubière, France
| | - Martin Leremboure
- Mass Spectrometry Department, Institut de Chimie de Clermont-Ferrand, Aubière, France
| | - Betty Jean
- CHU Gabriel Montpied, MRI Department, Clermont-Ferrand, France
| | - Franck Durif
- Auvergne University, UFR Medicine, EA7280, Clermont-Ferrand, France.,CHU Gabriel Montpied, Neurology Department, Clermont-Ferrand, France
| | - Carine Chassain
- CHU Gabriel Montpied, MRI Department, Clermont-Ferrand, France
| |
Collapse
|
182
|
Zunhammer M, Schweizer LM, Witte V, Harris RE, Bingel U, Schmidt-Wilcke T. Combined glutamate and glutamine levels in pain-processing brain regions are associated with individual pain sensitivity. Pain 2016; 157:2248-2256. [PMID: 27649042 DOI: 10.1097/j.pain.0000000000000634] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The relationship between glutamate and γ-aminobutyric acid (GABA) levels in the living human brain and pain sensitivity is unknown. Combined glutamine/glutamate (Glx), as well as GABA levels can be measured in vivo with single-voxel proton magnetic resonance spectroscopy. In this cross-sectional study, we aimed at determining whether Glx and/or GABA levels in pain-related brain regions are associated with individual differences in pain sensitivity. Experimental heat, cold, and mechanical pain thresholds were obtained from 39 healthy, drug-free individuals (25 men) according to the quantitative sensory testing protocol and summarized into 1 composite measure of pain sensitivity. The Glx levels were measured using point-resolved spectroscopy at 3 T, within a network of pain-associated brain regions comprising the insula, the anterior cingulate cortex, the mid-cingulate cortex, the dorsolateral prefrontal cortex, and the thalamus. GABA levels were measured using GABA-edited spectroscopy (Mescher-Garwood point-resolved spectroscopy) within the insula, the anterior cingulate cortex, and the mid-cingulate cortex. Glx and/or GABA levels correlated positively across all brain regions. Gender, weekly alcohol consumption, and depressive symptoms were significantly associated with Glx and/or GABA levels. A linear regression analysis including all these factors indicated that Glx levels pooled across pain-related brain regions were positively associated with pain sensitivity, whereas no appreciable relationship with GABA was found. In sum, we show that the levels of the excitatory neurotransmitter glutamate and its precursor glutamine across pain-related brain regions are positively correlated with individual pain sensitivity. Future studies will have to determine whether our findings also apply to clinical populations.
Collapse
Affiliation(s)
| | - Lauren M Schweizer
- Abteilung für Neurologie, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bochum, Germany
| | - Vanessa Witte
- Abteilung für Neurologie, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bochum, Germany
| | - Richard E Harris
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Ulrike Bingel
- Klinik für Neurologie, Universitätsklinikum Essen, Essen, Germany
| | - Tobias Schmidt-Wilcke
- Abteilung für Neurologie, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bochum, Germany
| |
Collapse
|
183
|
Goryawala MZ, Sheriff S, Maudsley AA. Regional distributions of brain glutamate and glutamine in normal subjects. NMR IN BIOMEDICINE 2016; 29:1108-16. [PMID: 27351339 PMCID: PMC4962701 DOI: 10.1002/nbm.3575] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 05/06/2023]
Abstract
Glutamate (Glu) and glutamine (Gln) play an important role in neuronal regulation and are of value as MRS-observable diagnostic biomarkers. In this study the relative concentrations of these metabolites have been measured in multiple regions in the normal brain using a short-TE whole-brain MRSI measurement at 3 T combined with a modified data analysis approach that used spatial averaging to obtain high-SNR spectra from atlas-registered anatomic regions or interest. By spectral fitting of high-SNR spectra this approach yielded reliable measurements across a wide volume of the brain. Spectral averaging also demonstrated increased SNR and improved fitting accuracy for the sum of Glu and Gln (Glx) compared with individual voxel fitting. Results in 26 healthy controls showed relatively constant Glu/Cr and Gln/Cr throughout the cerebrum, although with increased values in the anterior cingulum and paracentral lobule, and increased Gln/Cr in the superior motor area. The deep gray-matter regions of thalamus, putamen, and pallidum show lower Glu/Cr compared with cortical white-matter regions. Lobar measurements demonstrated reduced Glu/Cr and Gln/Cr in the cerebellum as compared with the cerebrum, where white-matter regions show significantly lower Glu/Cr and Gln/Cr as compared with gray-matter regions across multiple brain lobes. Regression analysis showed no significant effect of gender on Glu/Cr or Gln/Cr measurement; however, Glx/Cr ratio was found to be significantly negatively correlated with age in some lobar brain regions. In summary, this methodology provides the spectral quality necessary for reliable separation of Glu and Gln at 3 T from a single MRSI acquisition enabling generation of regional distributions of metabolites over a large volume of the brain, including cortical regions. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
|
184
|
Weltin A, Kieninger J, Urban GA. Microfabricated, amperometric, enzyme-based biosensors for in vivo applications. Anal Bioanal Chem 2016; 408:4503-21. [PMID: 26935934 PMCID: PMC4909808 DOI: 10.1007/s00216-016-9420-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/08/2016] [Accepted: 02/12/2016] [Indexed: 01/19/2023]
Abstract
Miniaturized electrochemical in vivo biosensors allow the measurement of fast extracellular dynamics of neurotransmitter and energy metabolism directly in the tissue. Enzyme-based amperometric biosensing is characterized by high specificity and precision as well as high spatial and temporal resolution. Aside from glucose monitoring, many systems have been introduced mainly for application in the central nervous system in animal models. We compare the microsensor principle with other methods applied in biomedical research to show advantages and drawbacks. Electrochemical sensor systems are easily miniaturized and fabricated by microtechnology processes. We review different microfabrication approaches for in vivo sensor platforms, ranging from simple modified wires and fibres to fully microfabricated systems on silicon, ceramic or polymer substrates. The various immobilization methods for the enzyme such as chemical cross-linking and entrapment in polymer membranes are discussed. The resulting sensor performance is compared in detail. We also examine different concepts to reject interfering substances by additional membranes, aspects of instrumentation and biocompatibility. Practical considerations are elaborated, and conclusions for future developments are presented. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Andreas Weltin
- Laboratory for Sensors, Department of Microsystems Engineering – IMTEK, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Jochen Kieninger
- Laboratory for Sensors, Department of Microsystems Engineering – IMTEK, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Gerald A. Urban
- Laboratory for Sensors, Department of Microsystems Engineering – IMTEK, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
185
|
Brandt AS, Unschuld PG, Pradhan S, Lim IAL, Churchill G, Harris AD, Hua J, Barker PB, Ross CA, van Zijl PCM, Edden RAE, Margolis RL. Age-related changes in anterior cingulate cortex glutamate in schizophrenia: A (1)H MRS Study at 7 Tesla. Schizophr Res 2016; 172:101-5. [PMID: 26925800 PMCID: PMC4821673 DOI: 10.1016/j.schres.2016.02.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 12/27/2022]
Abstract
The extent of age-related changes in glutamate and other neurometabolites in the anterior cingulate cortex (ACC) in individuals with schizophrenia remain unclear. Magnetic resonance spectroscopy (MRS) at 7 T, which yields precise measurements of various metabolites and can distinguish glutamate from glutamine, was used to determine levels of ACC glutamate and other metabolites in 24 individuals with schizophrenia and 24 matched controls. Multiple regression analysis revealed that ACC glutamate decreased with age in patients but not controls. No changes were detected in levels of glutamine, N-acetylaspartate, N-acetylaspartylglutamic acid, myo-inositol, GABA, glutathione, total creatine, and total choline. These results suggest that age may be an important modifier of ACC glutamate in schizophrenia.
Collapse
Affiliation(s)
- Allison S Brandt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul G Unschuld
- Laboratory for Aging Neuroscience and Neuroimaging, Division of Psychiatry Research and Psychogeriatric Medicine, University of Zürich, Zurich, Switzerland
| | - Subechhya Pradhan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Issel Anne L Lim
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Gregory Churchill
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashley D Harris
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Jun Hua
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Christopher A Ross
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Russell L Margolis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
186
|
Iqbal Z, Wilson NE, Thomas MA. 3D spatially encoded and accelerated TE-averaged echo planar spectroscopic imaging in healthy human brain. NMR IN BIOMEDICINE 2016; 29:329-339. [PMID: 26748673 DOI: 10.1002/nbm.3469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
Several different pathologies, including many neurodegenerative disorders, affect the energy metabolism of the brain. Glutamate, a neurotransmitter in the brain, can be used as a biomarker to monitor these metabolic processes. One method that is capable of quantifying glutamate concentration reliably in several regions of the brain is TE-averaged (1) H spectroscopic imaging. However, this type of method requires the acquisition of multiple TE lines, resulting in long scan durations. The goal of this experiment was to use non-uniform sampling, compressed sensing reconstruction and an echo planar readout gradient to reduce the scan time by a factor of eight to acquire TE-averaged spectra in three spatial dimensions. Simulation of glutamate and glutamine showed that the 2.2-2.4 ppm spectral region contained 95% glutamate signal using the TE-averaged method. Peak integration of this spectral range and home-developed, prior-knowledge-based fitting were used for quantitation. Gray matter brain phantom measurements were acquired on a Siemens 3 T Trio scanner. Non-uniform sampling was applied retrospectively to these phantom measurements and quantitative results of glutamate with respect to creatine 3.0 (Glu/Cr) ratios showed a coefficient of variance of 16% for peak integration and 9% for peak fitting using eight-fold acceleration. In vivo scans of the human brain were acquired as well and five different brain regions were quantified using the prior-knowledge-based algorithm. Glu/Cr ratios from these regions agreed with previously reported results in the literature. The method described here, called accelerated TE-averaged echo planar spectroscopic imaging (TEA-EPSI), is a significant methodological advancement and may be a useful tool for categorizing glutamate changes in pathologies where affected brain regions are not known a priori. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Department of Radiological Sciences, University of California Los Angeles, USA
| | - Neil E Wilson
- Department of Radiological Sciences, University of California Los Angeles, USA
| | - M Albert Thomas
- Department of Radiological Sciences, University of California Los Angeles, USA
| |
Collapse
|
187
|
Lee JS, Xia D, Jerschow A, Regatte RR. In vitro study of endogenous CEST agents at 3 T and 7 T. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 11:4-14. [PMID: 26153196 DOI: 10.1002/cmmi.1652] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/18/2015] [Accepted: 05/20/2015] [Indexed: 12/16/2022]
Abstract
Chemical exchange saturation transfer (CEST) has been an intensive research area in MRI, providing contrast mechanisms for the amplified detection and monitoring of biomarkers and physiologically active molecules. In biological tissues and organs, many endogenous CEST agents coexist, and their CEST effects may overlap. The interpretation of such overlapped CEST effects can be addressed when the individual CEST effects originating from various metabolites are characterized. In this work, we present the in vitro measurements of the CEST effects from endogenous CEST agents that are commonly found in biological tissues and organs, at the external magnetic fields of 3 T and 7 T and under various pH conditions. Together with the proton NMR spectra measured at 11.7 T, these CEST effects have been evaluated in consideration of the chemical exchange rates, chemical shifts, and acidities of the labile protons. Amine protons of small metabolites might not be visible at 3 T, but some of them can be probed at 7 T, wherein their CEST effects may overlap with those from coexisting amide and hydroxyl protons.
Collapse
Affiliation(s)
- Jae-Seung Lee
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.,Department of Chemistry, New York University, New York, NY, USA
| | - Ding Xia
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Alexej Jerschow
- Department of Chemistry, New York University, New York, NY, USA
| | - Ravinder R Regatte
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
188
|
Eccentricity mapping of the human visual cortex to evaluate temporal dynamics of functional T1ρ mapping. J Cereb Blood Flow Metab 2015; 35:1213-9. [PMID: 25966957 PMCID: PMC4640285 DOI: 10.1038/jcbfm.2015.94] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/08/2022]
Abstract
Recent experiments suggest that T1 relaxation in the rotating frame (T(1ρ)) is sensitive to metabolism and can detect localized activity-dependent changes in the human visual cortex. Current functional magnetic resonance imaging (fMRI) methods have poor temporal resolution due to delays in the hemodynamic response resulting from neurovascular coupling. Because T(1ρ) is sensitive to factors that can be derived from tissue metabolism, such as pH and glucose concentration via proton exchange, we hypothesized that activity-evoked T(1ρ) changes in visual cortex may occur before the hemodynamic response measured by blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL) contrast. To test this hypothesis, functional imaging was performed using T(1ρ), BOLD, and ASL in human participants viewing an expanding ring stimulus. We calculated eccentricity phase maps across the occipital cortex for each functional signal and compared the temporal dynamics of T(1ρ) versus BOLD and ASL. The results suggest that T(1ρ) changes precede changes in the two blood flow-dependent measures. These observations indicate that T(1ρ) detects a signal distinct from traditional fMRI contrast methods. In addition, these findings support previous evidence that T(1ρ) is sensitive to factors other than blood flow, volume, or oxygenation. Furthermore, they suggest that tissue metabolism may be driving activity-evoked T(1ρ) changes.
Collapse
|
189
|
Orije J, Kara F, Guglielmetti C, Praet J, Van der Linden A, Ponsaerts P, Verhoye M. Longitudinal monitoring of metabolic alterations in cuprizone mouse model of multiple sclerosis using 1H-magnetic resonance spectroscopy. Neuroimage 2015; 114:128-35. [DOI: 10.1016/j.neuroimage.2015.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 11/15/2022] Open
|
190
|
Inoue K, Miyazaki Y, Unno K, Min JZ, Todoroki K, Toyo'oka T. Stable isotope dilution HILIC-MS/MS method for accurate quantification of glutamic acid, glutamine, pyroglutamic acid, GABA and theanine in mouse brain tissues. Biomed Chromatogr 2015; 30:55-61. [DOI: 10.1002/bmc.3502] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/16/2015] [Accepted: 04/28/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Koichi Inoue
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences; Ritsumeikan University; 1-1-1 Nojihigashi Kusatsu Shiga 525-8577 Japan
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences; University of Shizuoka; 52-1 Yada Suruga-ku Shizuoka 422-8526 Japan
| | - Yasuto Miyazaki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences; University of Shizuoka; 52-1 Yada Suruga-ku Shizuoka 422-8526 Japan
| | - Keiko Unno
- Department of Neurophysiology, School of Pharmaceutical Sciences; University of Shizuoka; 52-1 Yada Shizuoka 422-8526 Japan
| | - Jun Zhe Min
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences; University of Shizuoka; 52-1 Yada Suruga-ku Shizuoka 422-8526 Japan
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences; University of Shizuoka; 52-1 Yada Suruga-ku Shizuoka 422-8526 Japan
| | - Toshimasa Toyo'oka
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences; University of Shizuoka; 52-1 Yada Suruga-ku Shizuoka 422-8526 Japan
| |
Collapse
|
191
|
Wijtenburg SA, Yang S, Fischer BA, Rowland LM. In vivo assessment of neurotransmitters and modulators with magnetic resonance spectroscopy: application to schizophrenia. Neurosci Biobehav Rev 2015; 51:276-95. [PMID: 25614132 PMCID: PMC4427237 DOI: 10.1016/j.neubiorev.2015.01.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/02/2015] [Accepted: 01/08/2015] [Indexed: 12/28/2022]
Abstract
In vivo measurement of neurotransmitters and modulators is now feasible with advanced proton magnetic resonance spectroscopy ((1)H MRS) techniques. This review provides a basic tutorial of MRS, describes the methods available to measure brain glutamate, glutamine, γ-aminobutyric acid, glutathione, N-acetylaspartylglutamate, glycine, and serine at magnetic field strengths of 3T or higher, and summarizes the neurochemical findings in schizophrenia. Overall, (1)H MRS holds great promise for producing biomarkers that can serve as treatment targets, prediction of disease onset, or illness exacerbation in schizophrenia and other brain diseases.
Collapse
Affiliation(s)
- S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA.
| | - Shaolin Yang
- Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Street, Suite 512, Chicago, IL 60612, USA; Department of Radiology, University of Illinois at Chicago, 1601 W. Taylor Street, Suite 512, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 1601 W. Taylor Street, Suite 512, Chicago, IL 60612, USA
| | - Bernard A Fischer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA; Veterans Affairs Capital Network (VISN 5) Mental Illness Research, Education, and Clinical Center (MIRECC), Department of Veterans Affairs, 10 N. Greene Street, Baltimore, MD 21201, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; Department of Psychology, University of Maryland, Baltimore County, Baltimore, MD 21228, USA
| |
Collapse
|
192
|
Terhune DB, Murray E, Near J, Stagg CJ, Cowey A, Cohen Kadosh R. Phosphene Perception Relates to Visual Cortex Glutamate Levels and Covaries with Atypical Visuospatial Awareness. Cereb Cortex 2015; 25:4341-50. [PMID: 25725043 PMCID: PMC4816785 DOI: 10.1093/cercor/bhv015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phosphenes are illusory visual percepts produced by the application of transcranial magnetic stimulation to occipital cortex. Phosphene thresholds, the minimum stimulation intensity required to reliably produce phosphenes, are widely used as an index of cortical excitability. However, the neural basis of phosphene thresholds and their relationship to individual differences in visual cognition are poorly understood. Here, we investigated the neurochemical basis of phosphene perception by measuring basal GABA and glutamate levels in primary visual cortex using magnetic resonance spectroscopy. We further examined whether phosphene thresholds would relate to the visuospatial phenomenology of grapheme-color synesthesia, a condition characterized by atypical binding and involuntary color photisms. Phosphene thresholds negatively correlated with glutamate concentrations in visual cortex, with lower thresholds associated with elevated glutamate. This relationship was robust, present in both controls and synesthetes, and exhibited neurochemical, topographic, and threshold specificity. Projector synesthetes, who experience color photisms as spatially colocalized with inducing graphemes, displayed lower phosphene thresholds than associator synesthetes, who experience photisms as internal images, with both exhibiting lower thresholds than controls. These results suggest that phosphene perception is driven by interindividual variation in glutamatergic activity in primary visual cortex and relates to cortical processes underlying individual differences in visuospatial awareness.
Collapse
Affiliation(s)
- Devin B Terhune
- Department of Experimental Psychology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Elizabeth Murray
- Department of Experimental Psychology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jamie Near
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Canada
| | - Charlotte J Stagg
- Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alan Cowey
- Department of Experimental Psychology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
193
|
Abstract
Schizophrenia is a complex mental health disorder with positive, negative and cognitive symptom domains. Approximately one third of patients are resistant to currently available medication. New therapeutic targets and a better understanding of the basic biological processes that drive pathogenesis are needed in order to develop therapies that will improve quality of life for these patients. Several drugs that act on neurotransmitter systems in the brain have been suggested to model aspects of schizophrenia in animals and in man. In this paper, we selectively review findings from dopaminergic, glutamatergic, serotonergic, cannabinoid, GABA, cholinergic and kappa opioid pharmacological drug models to evaluate their similarity to schizophrenia. Understanding the interactions between these different neurotransmitter systems and their relationship with symptoms will be an important step towards building a coherent hypothesis for the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Hannah Steeds
- Imperial College London, Division of Brain Sciences, Du Cane Road, London W12 0NN, UK
| | | | - James M Stone
- King's College London, Institute of Psychiatry Psychology and Neuroscience, De Crespigny Park, London SE5 8AF, UK, Imperial College London, Division of Brain Sciences, Du Cane Road, London W12 0NN, UK
| |
Collapse
|