151
|
Green synthesis of adsorbent nanoflowers for efficient removal of toxins. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
152
|
Intermesoli T, Weber A, Leoncin M, Frison L, Skert C, Bassan R. Lymphoblastic Lymphoma: a Concise Review. Curr Oncol Rep 2022; 24:1-12. [DOI: 10.1007/s11912-021-01168-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2021] [Indexed: 12/19/2022]
|
153
|
Lv X, Li JX, Wang JY, Tian XG, Feng L, Sun CP, Ning J, Wang C, Zhao WY, Li YC, Ma XC. Regioselective hydroxylation of carbendazim by mammalian cytochrome P450: A combined experimental and computational study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118523. [PMID: 34793912 DOI: 10.1016/j.envpol.2021.118523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Carbendazim (CBZ), a broad-spectrum pesticide frequently detected in fruits and vegetables, could trigger potential toxic risks to mammals. To facilitate the assessment of health risks, this study aimed to characterize the cytochrome P450 (CYPs)-mediated metabolism profiles of CBZ by a combined experimental and computational study. Our results demonstrated that CYPs-mediated region-selective hydroxylation was a major metabolism pathway for CBZ in liver microsomes from various species including rat, mouse, minipig, dog, rabbit, guinea pig, monkey, cow and human, and the metabolite was biosynthesized and well-characterized as 6-OH-CBZ. CYP1A displayed a predominant role in the region-selective hydroxylation of CBZ that could attenuate its toxicity through converting it into a less toxic metabolite. Meanwhile, five other common pesticides including chlorpyrifos-methyl, prochloraz, chlorfenapyr, chlorpyrifos, and chlorothalonil could significantly inhibit the region-selective hydroxylation of CBZ, and consequently remarkably increased CBZ exposure in vivo. Furthermore, computational study clarified the important contribution of the key amino acid residues Ser122, and Asp313 in CYP1A1, as well as Asp320 in CYP1A2 to the hydroxylation of CBZ through hydrogen bonds. These results would provide some useful information for the metabolic profiles of CBZ by mammalian CYPs, and shed new insights into CYP1A-mediated metabolic detoxification of CBZ and its health risk assessment.
Collapse
Affiliation(s)
- Xia Lv
- Institute of Precision Medicine and Transformation, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China; College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Jing-Xin Li
- Institute of Precision Medicine and Transformation, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China; College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Jia-Yue Wang
- Institute of Precision Medicine and Transformation, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Xiang-Ge Tian
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Lei Feng
- Institute of Precision Medicine and Transformation, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Cheng-Peng Sun
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Jing Ning
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Chao Wang
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Wen-Yu Zhao
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Ya-Chen Li
- College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Xiao-Chi Ma
- Institute of Precision Medicine and Transformation, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China; College of Integrative Medicine, School of Public Health, College of Pharmacy, Dalian Medical University, Dalian, 116000, Liaoning, China.
| |
Collapse
|
154
|
Yin XF, Wang QY, Ren FZ, Pang GF, Zhang XX, Li YX. Efficiency and mechanism of C 18-functionalized magnetic nanoparticles for extracting weakly polar pesticides from human serum determined by UHPLC-QTOF-MS and molecular dynamics simulations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118489. [PMID: 34780754 DOI: 10.1016/j.envpol.2021.118489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Detecting pesticide residues in human serum is a challenging process due to trace-level chronic exposure. Several methods using magnetic adsorbents have been developed for analyzing pesticide residue levels in human serum, but it is still difficult to achieve lower quantitative levels, and the adsorption mechanism for extracting pesticides is unclear. Herein, we propose a feasibility concept of using C18-functionalized magnetic nanoparticles for the adsorption of target pesticides, focusing on the extensively used weakly polar pesticides based on molecular dynamics (MD) simulations. To support this, the facilitated target nanoparticles of Fe3O4@SiO2-C18 were synthesized at a size of 12-13 nm with a magnetic saturation of 40 emu/g. After optimizing and establishing the extraction conditions (1.8 mL C18 modifier, 10 mg sorbents, 3 min adsorption time, 1000 μL ACN for desorption eluent at pH 3.8 and 5 min desorption time), which exhibited recovery = 72.3%-118.3% with RSDs = 0.03-6.57, linearity at 0.01-10 ng/mL with R2 = 0.9561-0.9993, and LODs = 0.01-0.30 ng/mL for the 11 weakly polar pesticides in human serum. Furthermore, the mechanism by which the C18 group selectively extracts weakly polar pesticides was confirmed by binding van der Waals and electrostatic interactions under stable and strong binding energy. The extraction process of efficient adsorption and desorption with C18 functional magnetite nanoparticles suggests a simple method for detecting weakly polar pesticides. The concept may lead to a general approach to analyzing multiple pesticide residues in human serum at trace levels.
Collapse
Affiliation(s)
- Xue-Feng Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qing-Yu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiao-Xu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yi-Xuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
155
|
Pellicer-Castell E, Belenguer-Sapiña C, Amorós P, El Haskouri J, Herrero-Martínez JM, Mauri-Aucejo AR. Mesoporous silica sorbent with gold nanoparticles for solid-phase extraction of organochlorine pesticides in water samples. J Chromatogr A 2022; 1662:462729. [PMID: 34998472 DOI: 10.1016/j.chroma.2021.462729] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
In this work, a novel sorbent, based on UVM-7 mesoporous silica doped with Au, has been proposed for organochlorine pesticides extraction. Cartridges containing this material have been applied to the preconcentration of 20 pesticides from water samples, through a solid-phase extraction (SPE) protocol, with their later determination by gas chromatography with an electron capture detector. First, UVM-7 materials were properly characterized by X-ray diffraction, N2 adsorption-desorption, electron microscopy techniques, and UV-Vis spectroscopy, thus confirming their structure and Au incorporation. After optimization of main extraction parameters, recoveries in the range of 80-110% were obtained for most of the analytes, with enrichment factors comprised between 275 and 430. The obtained sensitivity was comparable with other reported methods, with limits of quantification in the range of 0.3-20 ng L-1, thus allowing the determination of these compounds according to European legislation. The developed method has been successfully applied to the analysis of real spiked samples in comparison with a reference method, thus being this sorbent an alternative for organochlorine pesticide enrichment, through a simple, reusable, cheap, and environmentally friendly SPE procedure.
Collapse
Affiliation(s)
- Enric Pellicer-Castell
- Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, Dr Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Carolina Belenguer-Sapiña
- Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, Dr Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Pedro Amorós
- Institute of Material Science (ICMUV), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Jamal El Haskouri
- Institute of Material Science (ICMUV), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - José Manuel Herrero-Martínez
- Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, Dr Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Adela R Mauri-Aucejo
- Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, Dr Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
156
|
Chauhan A, Dhenadhayalan N, Yeh JC, Lin KC. Photocatalytic degradation-based efficient elimination of pesticides using ruthenium/gold metal nanoparticle-anchored zirconium dioxide. NEW J CHEM 2022. [DOI: 10.1039/d2nj03361e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ruthenium and gold metal nanoparticles-incorporated zirconium dioxide (ZrO2@Ru and ZrO2@Au) nanostructures were developed as promising photocatalysts for wastewater remediation.
Collapse
Affiliation(s)
- Anuj Chauhan
- Department of Chemistry, National Taiwan University, Taipei-10617, Taiwan
| | | | - Jen-Chen Yeh
- Department of Chemistry, National Taiwan University, Taipei-10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei-10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei-10617, Taiwan
| |
Collapse
|
157
|
He X, Tu Y, Song Y, Yang G, You M. The relationship between pesticide exposure during critical neurodevelopment and autism spectrum disorder: A narrative review. ENVIRONMENTAL RESEARCH 2022; 203:111902. [PMID: 34416252 DOI: 10.1016/j.envres.2021.111902] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Agricultural pesticides have been one of the most extensively used compounds throughout the world. The main sources of contamination for humans are dietary intake and occupational exposure. The impairments caused by agricultural pesticide exposure have been a significant global public health problem. Recent studies have shown that low-level agricultural pesticide exposure during the critical period of neurodevelopment (pregnancy and lactation) is closely related to autism spectrum disorder (ASD). Inhibition of acetylcholinesterase, gut microbiota, neural dendrite morphology, synaptic function, and glial cells are targets for the effects of pesticides during nervous system development. In the present review, we summarize the associations between several highly used and frequently studied pesticides (e.g., glyphosate, chlorpyrifos, pyrethroids, and avermectins) and ASD. We also discusse future epidemiological and toxicological research directions on the relationship between pesticides and ASD.
Collapse
Affiliation(s)
- Xiu He
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Ying Tu
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Yawen Song
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Guanghong Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, PR China.
| | - Mingdan You
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China.
| |
Collapse
|
158
|
Reshi MS, Mustafa RA, Javaid D, Haque S. Pesticide Toxicity Associated with Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:59-69. [PMID: 36472816 DOI: 10.1007/978-3-031-12966-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pesticides have benefited mankind in many ways like agriculture, industrial and health sectors. On the other hand, conversely their deleterious effects in both, humans and animals are also alarming. Pesticides including organophosphates, organochlorines, carbamates, pyrethrins and pyrethroids are found sufficiently in the environment resulting in everyday human exposure. This is of a huge concern because most of the pesticides are known to target all the physiological functions of both humans and animals. Indeed, reproduction, being one of the most important physiological processes, that is affected by the daily exposure to pesticides and leading to infertility issues. The present study summarizes the exposure of men and women to certain pesticides resulting in different infertility concerns like sperm abnormalities, decreased fertility, abnormal sperm count and motility, testicular atrophy, ovarian dysfunction, spontaneous abortions, disruption of hypothalamic-pituitary-gonadal axis, etc. So, this article will be helpful in perceiving the mechanism of reproductive toxicity of different pesticides and their management before any alarm of danger.
Collapse
Affiliation(s)
- Mohd Salim Reshi
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Rashaid Ali Mustafa
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Darakhshan Javaid
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
159
|
Carvalho AO, Alonzo HGA. As mulheres lavradoras e os agrotóxicos no cotidiano da agricultura familiar. SAÚDE EM DEBATE 2022. [DOI: 10.1590/0103-11042022e206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO Considerando a invisibilidade do trabalho feminino no cenário da agricultura familiar, este trabalho teve como objetivo descrever e analisar a relação da mulher com os agrotóxicos no processo de trabalho. Esta pesquisa qualitativa foi realizada com agricultoras familiares de São Miguel Arcanjo (SP), e tem como material de análise o conteúdo das entrevistas com as 14 agricultoras, segundo adaptação dos conceitos de Bardin. Os conteúdos das falas das entrevistadas foram organizados e delineados em duas categorias analisadas no corpo deste trabalho. Foi possível inferir que a mulher desempenha atributos historicamente designados à figura masculina, como as práticas do capinar, da colheita e da manipulação de agrotóxico, embora desprovida do direito a acesso à informação e orientação necessário para o desempenho do seu labor com segurança. A prática do agronegócio adentra as propriedades familiares, pautada na produção dependente de agrotóxicos, e é relatada por elas de maneira não naturalizada, quando identificam os agrotóxicos como venenos. Por fim, potencializar as competências identificadas nessas mulheres, sobretudo o poder de resiliência, preservando suas competências e identidades perante tantos fatores estressores vivenciados no contexto da margem feminilizada da agricultura, pode contribuir para o fim da miséria econômica, intelectual e sanitária das mulheres lavradoras.
Collapse
|
160
|
Anisman H, Kusnecov AW. Microbiota and health. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
161
|
Pignati WA, Soares MR, Corrêa MLM, Leão LHDC. O caráter pandêmico dos desastres socioambientais e sanitários do agronegócio. SAÚDE EM DEBATE 2022. [DOI: 10.1590/0103-11042022e231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO O processo de produção do agronegócio químico-dependente é um dos maiores geradores de riscos, desastres socioambientais e sanitários de caráter pandêmico. Ele atua na determinação social da saúde-doença-danos ambientais, levando a situações críticas, riscos e vulnerabilidades, exploração humana, intoxicações agudas e crônicas e degradações ecológicas como efeitos de suas formas danosas de estabelecer inter-relações entre produção-ambiente-sociedade. O setor tem contribuído diretamente para a crise ecológica e sanitária globalizada ao dar origem a sindemias, insegurança alimentar, contaminação das águas, alimentos além de produzir doenças infecciosas novas e/ou reemergentes. Neste ensaio crítico, com base nos estudos do Núcleo de Estudos Ambientais e Saúde do Trabalhador da Universidade Federal de Mato Grosso, demonstram-se diferentes elementos ameaçadores, destrutivos, degradantes e violadores do direito à saúde dos trabalhadores e ambiental nos principais elos da cadeia produtiva do agronegócio. Em seguida, utilizando também análises de documentos públicos, normativas do Estado e dados de sistemas de vigilância em saúde, evidenciam-se os processos de contaminação de alimentos e água decorrentes dos agrotóxicos, bem como apresenta-se uma crítica às tendências políticas que giram em torno do agronegócio. Por fim, destaca-se a necessidade premente de uma transição agroecológica enquanto resposta às doenças e às sindemias do agronegócio.
Collapse
|
162
|
Pignati WA, Soares MR, Lara SSD, Lima FANDSE, Fava NR, Barbosa JR, Corrêa MLM. Exposição aos agrotóxicos, condições de saúde autorreferidas e Vigilância Popular em Saúde de municípios mato-grossenses. SAÚDE EM DEBATE 2022. [DOI: 10.1590/0103-11042022e203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO O estudo analisou o perfil sociodemográfico e condições de saúde da população residente em municípios mato-grossenses entre 2016 e 2017. Trata-se de estudo qualiquantitativo de base populacional, autorreferido. Entrevistaram-se moradores adultos, com base em questionário com 172 questões, referentes às informações familiares e individuais. Aplicaram-se 1.379 questionários válidos, totalizando 4.778 indivíduos. A maioria referiu morar em áreas urbanas em distâncias inferiores a 1 km das áreas de lavoura (98%), baixa escolaridade (43%), renda menor que 3 salários mínimos (68%) e utilizar agrotóxicos de uso doméstico (71,8%). As morbidades mais citadas foram: problemas respiratórios, intoxicações agudas, transtornos psicológicos, doenças renais e cânceres. Identificou-se a subnotificação de intoxicações por agrotóxicos de 1 para 20 casos em Campos de Júlio; 1 para 77 casos em Campo Novo do Parecis e 100% de subnotificação em Sapezal. Encontraram-se associações entre as variáveis sociodemográficas e de exposição aos agrotóxicos e as morbidades referidas, considerando o p-valor=0,05 e nível de significância de 95%. O uso crescente de agrotóxicos associado a cenários políticos e econômicos favoráveis ao agronegócio demonstraram a importância da Vigilância Popular em Saúde, pois ela é uma estratégia do Sistema Único de Saúde que permite evidenciar os impactos negativos causados na saúde humana e ambiental.
Collapse
|
163
|
Lima FANDSE, Corrêa MLM, Gugelmin SA. Territórios indígenas e determinação socioambiental da saúde: discutindo exposições por agrotóxicos. SAÚDE EM DEBATE 2022. [DOI: 10.1590/0103-11042022e202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO As etapas que envolvem a cadeia produtiva de commodities agrícolas produzem possibilidades diferenciadas de vulnerabilidade nas populações, afetando a situação de saúde dos povos indígenas. O uso de agrotóxicos é uma atividade intrínseca aos monocultivos. A exposição a essas substâncias gera desfechos negativos agudos e crônicos na saúde humana e contaminação no ambiente. De modo a contribuir com o debate no campo da Saúde Coletiva, o texto direciona as discussões ao estado de Mato Grosso, onde estão vários povos indígenas, enfrentando a produção de commodities e desfechos em saúde relacionados com os agrotóxicos. Para isso, recorremos à determinação socioambiental do processo saúde-doença, organizando uma matriz de indicadores que enfatizam as escolhas e as omissões do Estado nas questões ambientais, incorporando historicidade nos processos de adoecimento. Os impactos da cadeia de commodities agrícolas e as exposições por agrotóxicos em territórios indígenas são um problema intersetorial que se vincula a violação de direitos humanos, direito à terra, à saúde e à segurança alimentar e nutricional. As respostas devem ser consideradas em uma perspectiva articulada entre os setores econômico, político, ambiental e da saúde, com participação e decisão da população indígena nas etapas dos processos.
Collapse
|
164
|
Chang Q, Ge L, Li J, Qiu G, Wu F, Zhang H, Xu F, Zhu R, Qi P, Bai R, Ren F. Automated QuEChERS for the determination of 482 pesticide residues in Radix codonopsis by GC-Q-TOF/MS and LC-Q-TOF/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5660-5669. [PMID: 34788351 DOI: 10.1039/d1ay01616d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A rapid procedure for the determination of 482 pesticide residues in Chinese Materia Medica by GC-Q-TOF/MS and LC-Q-TOF/MS (379 pesticides for LC, 327 pesticides for GC, and 226 pesticides for both) was developed. Radix codonopsis was chosen as the matrix for verification, and a comparative study on the QuEChERS sample preparation was carried out, between a fully automated workstation and manual operation, in terms of limits of quantitation, recovery rate and RSD at 3 spiked levels of 10 μg kg-1, 20 μg kg-1 and 100 μg kg-1. In the linear range of each pesticide in a concentration range of 5-100 μg L-1, the linear correlation coefficients R2 of 85% of the pesticides for GC and 88% for LC were equal to or greater than 0.990. Taking recovery 70-120% and RSD ≤ 20% as the satisfactory standard, the automated workstation performed better at 10 μg kg-1 and 20 μg kg-1 than manual operation, and the numbers of satisfactory pesticides of GC & LC were 401 and 418 for the automated approach, and 378 and 400 for manual, while the two approaches were almost even at 100 μg kg-1, 421 vs. 424. Besides, the automated workstation presented lower RSD (more pesticides ≤10%) and better recovery quality (more pesticides within 90-110%). Following the method verification, 50 Radix codonopsis samples purchased from local markets were prepared with the automated workstation and analyzed by GC and LC-Q-TOF/MS. 18 pesticides were detected in 38 samples, one of which was a highly toxic pesticide. The automated QuEChERS workstation can handle 40 samples in one cycle within 6 hours, and realize whole-process automation covering from samples after "weighing" to "injection into vials". The batch-to-batch, day-to-day, and lab-to-lab consistency and 24 × 7 workability of the automated solution have demonstrated a promising and ideal replacement for manual operation in sample preparation.
Collapse
Affiliation(s)
- Qiaoying Chang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Lijuan Ge
- Beijing Uni-Star Inspection Technology Co. Ltd, Beijing 100176, China.
| | - Jian Li
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation, Lanzhou Institute for Food and Drug Control, Gansu, 730050, China
| | - Guoyu Qiu
- Gansu Pharmaceutical Group Science and Technology Research Institute Co. Ltd, Gansu, 730030, China
| | - Fuxiang Wu
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation, Lanzhou Institute for Food and Drug Control, Gansu, 730050, China
| | - Hongyan Zhang
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation, Lanzhou Institute for Food and Drug Control, Gansu, 730050, China
| | - Fenghua Xu
- Beijing Uni-Star Inspection Technology Co. Ltd, Beijing 100176, China.
| | - Renyuan Zhu
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation, Lanzhou Institute for Food and Drug Control, Gansu, 730050, China
| | - Pengfei Qi
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation, Lanzhou Institute for Food and Drug Control, Gansu, 730050, China
| | - Ruobin Bai
- Beijing Uni-Star Inspection Technology Co. Ltd, Beijing 100176, China.
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
165
|
Xu S, Yang X, Qian Y, Luo Q, Song Y, Xiao Q. Analysis of serum levels of organochlorine pesticides and related factors in Parkinson's disease. Neurotoxicology 2021; 88:216-223. [PMID: 34864106 DOI: 10.1016/j.neuro.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/31/2021] [Accepted: 12/01/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND There is evidence that environmental factors contribute to the onset and progression of Parkinson's disease (PD). Pesticides are a class of environmental toxins that are linked to increased risk of developing PD. However, few studies have investigated the association between specific pesticides and PD, especially in China, which was one of the first countries to adopt the use of pesticides. METHODS In this study, serum levels of 19 pesticides were measured in 90 patients with PD and 90 healthy spouse controls. We also analyzed the interaction between specific pesticides and PD. In addition, the association between pesticides and clinical features of PD was also investigated. Finally, we investigated the underlying mechanism of the association between pesticides and PD. RESULTS Serum levels of organochlorine pesticides, which included α-hexachlorocyclohexane (HCH), β-HCH, γ-HCH, δ-HCH, propanil, heptachlor, dieldrin, hexachlorobenzene, p,p'-dichlorodiphenyltrichloroethane and o,p'-dichloro-diphenyl-trichloroethane were higher in PD patients than controls. Moreover, α-HCH and propanil levels were associated with PD. Serum levels of dieldrin were associated with Hamilton Depression Scale and Montreal Cognitive Assessment scores in PD patients. In SH-SY5Y cells, α-HCH and propanil increased level of reactive oxygen species and decreased mitochondrial membrane potential. Furthermore, propanil, but not α-HCH, induced the aggregation of α-synuclein. CONCLUSIONS This study revealed that elevated serum levels of α-HCH and propanil were associated with PD. Serum levels of dieldrin were associated with depression and cognitive function in PD patients. Moreover, propanil, but not α-HCH, induced the aggregation of α-synuclein. Further research is needed to fully elucidate the effects of pesticides on PD.
Collapse
Affiliation(s)
- Shaoqing Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yiwei Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Qian Luo
- Core Facility of School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yanyan Song
- Department of Biostatistics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
166
|
Pesticides and Male Fertility: A Dangerous Crosstalk. Metabolites 2021; 11:metabo11120799. [PMID: 34940557 PMCID: PMC8707831 DOI: 10.3390/metabo11120799] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022] Open
Abstract
In recent decades, an increasing incidence of male infertility has been reported. Interestingly, and considering that pesticides have been used for a long time, the high incidence of this pathological state is concomitant with the increasing use of these chemicals, suggesting they are contributors for the development of human infertility. Data from literature highlight the ability of certain pesticides and/or their metabolites to persist in the environment for long periods of time, as well as to bioaccumulate in the food chain, thus contributing for their chronic exposure. Furthermore, pesticides can act as endocrine disrupting chemicals (EDCs), interfering with the normal function of natural hormones (which are responsible for the regulation of the reproductive system), or even as obesogens, promoting obesity and associated comorbidities, like infertility. Several in vitro and in vivo studies have focused on the effects and possible mechanisms of action of these pesticides on the male reproductive system that cause sundry negative effects, even though through diverse mechanisms, but all may lead to infertility. In this review, we present an up-to-date overview and discussion of the effects, and the metabolic and molecular features of pesticides on somatic cells and germinal tissues that affect germ cell differentiation.
Collapse
|
167
|
Parkinson's disease in a worker exposed to insecticides at a greenhouse. Ann Occup Environ Med 2021; 33:e6. [PMID: 34754467 PMCID: PMC7952772 DOI: 10.35371/aoem.2021.33.e6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background Parkinson's disease (PD) is a rare, neurodegenerative disease with various occupational and environmental risk factors. Exposure to specific pesticides contributes significantly to the incidence of PD. However, it is difficult to measure the level of pesticide exposure in workers. This study presents the first case recognized the work-relatedness between PD and pesticide exposure. Case presentation A 68-year-old male was diagnosed with PD after working with pesticides at a tomato greenhouse for 12 years and 5 months. From the results of a field study, it was reasonable to assume that the patient had been exposed to a significant level of various insecticides. In the present report, we described the first accepted case of work-relatedness between PD and exposure to pesticides. The evaluation was conducted using the following steps: we ruled out other possible risk factors including additional occupational history and personal risk factors, we assessed the work environment, surveyed possible exposures, found proper epidemiological evidence, and calculated the probability of causation. The work-relatedness was determined through the review of epidemiological evidence and estimation of exposure situation and level, and biological plausibility. We also decided work-relatedness based on the exposure of PD related pesticides with identified biologically plausible and the presumption that the exposure level would be high due to the working process. Conclusions In this case, the field study and epidemiological results supported the work-relatedness of PD and exposure to pesticides. Moreover, the results of previous studies have confirmed a causal relationship between exposure to pesticides and PD.
Collapse
|
168
|
Environmental Substances Associated with Alzheimer's Disease-A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211839. [PMID: 34831595 PMCID: PMC8622417 DOI: 10.3390/ijerph182211839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/23/2022]
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, prevalent in approximately 50–70% of the dementia cases. AD affects memory, and it is a progressive disease interfering with cognitive abilities, behaviour and functioning of the person affected. In 2015, there were 47 million people affected by dementia worldwide, and the figure was estimated to increase to 75 million in 2030 and to 132 million by 2050. In the framework of European Human Biomonitoring Initiative (HBM4EU), 18 substances or substance groups were prioritized for investigation. For each of the priority substances, a scoping document was prepared. Based on these scoping documents and complementary review of the recent literature, a scoping review of HBM4EU-priority substances which might be associated with AD was conducted. A possible association between risk of AD and pesticides was detected. For mercury (Hg), association is possible but inconsistent. Regarding cadmium (Cd) and arsenic (As), the results are inconsistent but inclined towards possible associations between the substances and the risk of disease. The evidence regarding lead (Pb) was weaker than for the other substances; however, possible associations exist. Although there is evidence of adverse neurological effects of environmental substances, more research is needed. Environmental chemical exposure and the related hazards are essential concerns for public health, and they could be preventable.
Collapse
|
169
|
Li F, Ye Z, Huang Z, Chen X, Sun W, Gao W, Zhang S, Cao F, Wang J, Hu Z, Zhang Y. New α-pyrone derivatives with herbicidal activity from the endophytic fungus Alternaria brassicicola. Bioorg Chem 2021; 117:105452. [PMID: 34742026 DOI: 10.1016/j.bioorg.2021.105452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023]
Abstract
Three pairs of undescribed enantiomeric α-pyrone derivatives (1a/1b-3a/3b) and six undescribed congeners (4-9), were obtained from the fungus Alternaria brassicicola that was isolated from the fresh leaves of Siegesbeckia pubescens Makino (Compositae). The structures of these new compounds were characterized by extensive NMR spectroscopic and HRESIMS data, and their absolute configurations were further elucidated by a modified Mosher's method, chemical conversion, single-crystal X-ray diffraction analysis, and ECD calculations. This is the first report of three pairs of enantiomeric α-pyrone derivatives from the fungus A. brassicicola, and these enantiomers were successfully acquired from scalemic mixtures via chiral HPLC. Compounds 1a/1b-3a/3b and 4-9 were evaluated for the herbicidal activity against Echinochloa crusgalli, Setaria viridis, Portulaca oleracea, and Taraxacum mongolicum. At a concentration of 100 μg/mL, compounds 1a and 1b could significantly inhibit the germination of monocotyledon weed seeds (E. crusgalli and S. viridis) with inhibitory ratios ranging from 68.6 ± 6.4% to 84.2 ± 5.1%, which was equivalent to that of the positive control (glyphosate). The potential structure-herbicidal activity relationship of these compounds was also discussed. To a certain extent, the results of this study will attract great interest for the potential practical application of promising fungal metabolites, α-pyrone derivatives, as ecofriendly herbicides.
Collapse
Affiliation(s)
- Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zi Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhangyan Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xia Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Weixi Gao
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fei Cao
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
170
|
Heal RD, Hasan NA, Haque MM. Increasing disease burden and use of drugs and chemicals in Bangladesh shrimp aquaculture: A potential menace to human health. MARINE POLLUTION BULLETIN 2021; 172:112796. [PMID: 34385024 DOI: 10.1016/j.marpolbul.2021.112796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Using structured surveys in 2008 and 2016, change in disease burden and use of chemical treatments in Bangladesh shrimp farm management was examined. Overall, disease burden had increased in all farms and was more polarized, with a fewer number of individual infectious diseases responsible for most disease in ponds. Farmers also reported physical deformities, nutritional deficiencies, and unknown diseases further indicating poor health of their stock. To combat the threat, more chemical treatments were used (5.2 treatments per farm in 2008 versus 28.8 in 2016), resulting in an average increase of 424% in the number of active substances entering shrimp ponds. Although there was a modest reduction in the use of antimicrobials, shrimp was being exposed to a wider range of chemicals during rearing. The subsequent concern for the environment, animal and human health demands further research to identify potential risks from residues of chemical products.
Collapse
Affiliation(s)
- Richard D Heal
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, UK
| | - Neaz A Hasan
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh.
| | - Mohammad Mahfujul Haque
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh; Centre for Sustainable Aquaculture Futures, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
171
|
Kapeleka JA, Sauli E, Ndakidemi PA. Pesticide exposure and genotoxic effects as measured by DNA damage and human monitoring biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:805-822. [PMID: 31736325 DOI: 10.1080/09603123.2019.1690132] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Occupational pesticides exposure rises health concern due to genotoxicity and accumulation of pesticides in human biological matrices. Continuous and sublethal exposure to pesticides had been associated with oxidative stress, mutagenic and cell death. Exposure to pesticides exhibits increased level of DNA damage even if no detectable amounts of pesticides are seen in biological matrices by binding specific areas in the DNA. This interferes normal body systems and mutation in gene encoding specific activities which may lead to a wide range of cancer. Presence of pesticides compounds in human biological matrices had been evident from various studies. However, detection methods are complex and inconsistent, making it difficult to compare and generalize findings. This article provides insight into genotoxic effects, presence of pesticides and their metabolites in human biological matrices and the resultant health effects as measured by DNA damage, acetylcholinesterase (AChE) activity inhibition and other biomarkers of pesticides exposure.
Collapse
Affiliation(s)
- Jones A Kapeleka
- The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
- Tropical Pesticides Research Institute (TPRI)
| | - Elingarami Sauli
- The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Patrick A Ndakidemi
- The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
172
|
Wang J, Teng X, Wang Y, Si S, Ju J, Pan W, Wang J, Sun X, Wang W. Carbon dots based fluorescence methods for the detections of pesticides and veterinary drugs: Response mechanism, selectivity improvement and application. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
173
|
Kittel-Schneider S, Arteaga-Henriquez G, Vasquez AA, Asherson P, Banaschewski T, Brikell I, Buitelaar J, Cormand B, Faraone SV, Freitag CM, Ginsberg Y, Haavik J, Hartman CA, Kuntsi J, Larsson H, Matura S, McNeill RV, Ramos-Quiroga JA, Ribases M, Romanos M, Vainieri I, Franke B, Reif A. Non-mental diseases associated with ADHD across the lifespan: Fidgety Philipp and Pippi Longstocking at risk of multimorbidity? Neurosci Biobehav Rev 2021; 132:1157-1180. [PMID: 34757108 DOI: 10.1016/j.neubiorev.2021.10.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022]
Abstract
Several non-mental diseases seem to be associated with an increased risk of ADHD and ADHD seems to be associated with increased risk for non-mental diseases. The underlying trajectories leading to such brain-body co-occurrences are often unclear - are there direct causal relationships from one disorder to the other, or does the sharing of genetic and/or environmental risk factors lead to their occurring together more frequently or both? Our goal with this narrative review was to provide a conceptual synthesis of the associations between ADHD and non-mental disease across the lifespan. We discuss potential shared pathologic mechanisms, genetic background and treatments in co-occurring diseases. For those co-occurrences for which published studies with sufficient sample sizes exist, meta-analyses have been published by others and we discuss those in detail. We conclude that non-mental diseases are common in ADHD and vice versa and add to the disease burden of the patient across the lifespan. Insufficient attention to such co-occurring conditions may result in missed diagnoses and suboptimal treatment in the affected individuals.
Collapse
Affiliation(s)
- Sarah Kittel-Schneider
- Center of Mental Health, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany.
| | - Gara Arteaga-Henriquez
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain
| | - Alejandro Arias Vasquez
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Phil Asherson
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Isabell Brikell
- National Centre for Register-based Research, Department of Economics and Business Economics Aarhus BSS, Aarhus University, Fuglesangs Allé 26, DK-8210 Aarhus V, Aarhus, Denmark; iPSYCH - The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen and Aarhus, Denmark; Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Box 281, 171 77, Stockholm, Sweden
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Deutschordenstraße 50, D-60528 Frankfurt am Main, Germany
| | - Ylva Ginsberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Norra Stationsgatan 69, SE-113 64 Stockholm, Sweden
| | - Jan Haavik
- Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Postboks 1400, 5021 Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Catharina A Hartman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Jonna Kuntsi
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Box 281, 171 77, Stockholm, Sweden; Örebro University, School of Medical Sciences, Campus USÖ, S-701 82 Örebro, Sweden
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany
| | - Rhiannon V McNeill
- Center of Mental Health, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany
| | - J Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Ribases
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain
| | - Marcel Romanos
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital of Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany
| | - Isabella Vainieri
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany
| |
Collapse
|
174
|
Liang YJ, Long DX, Xu MY, Wang HP, Sun YJ, Wu YJ. Body fluids from the rat exposed to chlorpyrifos induce cytotoxicity against the corresponding tissue-derived cells in vitro. BMC Pharmacol Toxicol 2021; 22:60. [PMID: 34670615 PMCID: PMC8527830 DOI: 10.1186/s40360-021-00531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aims to establish an in vitro monitoring approach to evaluate the pesticide exposures. We studied the in vitro cytotoxicity of three different body fluids of rats to the respective corresponding tissue-derived cells. METHODS Wistar rats were orally administrated daily with three different doses of chlorpyrifos (1.30, 3.26, and 8.15 mg/kg body weight/day, which is equal to the doses of 1/125, 1/50, and 1/20 LD50, respectively) for consecutive 90 days. Blood samples as well as 24-hour urine and fecal samples were collected and processed. Then, urine, serum, and feces samples were used to treat the correspondent cell lines, i.e., T24 bladder cancer cells, Jurkat lymphocytes, and HT-29 colon cancer cells respectively, which derived from the correspondent tissues that could interact with the respective corresponding body fluids in organism. Cell viability was determined by using MTT or trypan blue staining. RESULTS The results showed that urine, serum, and feces extract of the rats exposed to chlorpyrifos displayed concentration- and time-dependent cytotoxicity to the cell lines. Furthermore, we found that the cytotoxicity of body fluids from the exposed animals was mainly due to the presence of 3, 4, 5-trichloropyrindinol, the major toxic metabolite of chlorpyrifos. CONCLUSIONS These findings indicated that urine, serum, and feces extraction, especially urine, combining with the corresponding tissue-derived cell lines as the in vitro cell models could be used to evaluate the animal exposure to pesticides even at the low dose with no apparent toxicological signs in the animals. Thus, this in vitro approach could be served as complementary methodology to the existing toolbox of biological monitoring of long-term and low-dose exposure to environmental pesticide residues in practice.
Collapse
Affiliation(s)
- Yu-Jie Liang
- Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, 102206, Beijing, PR China
- Laboratory of Molecular Toxicology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Ding-Xin Long
- Laboratory of Molecular Toxicology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, PR China
- School of Public Health, University of South China, 421001, Hengyang, P. R. China
| | - Ming-Yuan Xu
- Laboratory of Molecular Toxicology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Hui-Ping Wang
- Laboratory of Molecular Toxicology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Ying-Jian Sun
- Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, 102206, Beijing, PR China.
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, PR China.
| |
Collapse
|
175
|
Whose Jurisdiction Is Home Contamination? Para-Occupational 'Take-Home' Herbicide Residue Exposure Risks among Forestry Workers' Families in South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910341. [PMID: 34639641 PMCID: PMC8507814 DOI: 10.3390/ijerph181910341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Para-occupational “take-home” exposure risks among forestry workers and their families in low-and middle-income countries (LMICs) have not been well characterized. This is a concern because research shows an association between chronic low-dose herbicide exposure and adverse health effects. This study explored take-home herbicide residue exposure risks among forestry workers in the Western Cape, South Africa, through the community-based participatory research approach of photovoice. A key finding of the study was the absence of provisions related to take-home exposure in the national legislation and workplace policies, which largely contributed to poor adherence to risk reduction practices at worksites, in addition to workers transporting residues to their homes. This study demonstrated evidence of the key omissions regarding take-home exposure at the policy level (e.g., recommendations for employers to reduce take-home risks among employees, and training of workers and their families on take-home exposure) and take-home herbicide residue exposure among worker’s families, including children.
Collapse
|
176
|
Maia ML, Delerue-Matos C, Calhau C, Domingues VF. Validation and Evaluation of Selected Organic Pollutants in Shrimp and Seawater Samples from the NW Portuguese Coast. Molecules 2021; 26:molecules26195774. [PMID: 34641318 PMCID: PMC8510022 DOI: 10.3390/molecules26195774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
The development of coastal regions has contributed to the intensification of environmental contamination, which can accumulate in aquatic biota, such as shrimps. These crustaceans, besides being delicious and being a good source of nutrients, can also accumulate environmental pollutants. Amongst others, these include organochlorine pesticides (OCPs), organophosphorus pesticides (OPPs), brominated flame retardants (BFRs), polychlorinated biphenyls (PCBs) and synthetic musks (SMs). These pollutants, classified as endocrine disruptors, are related to adverse effects in humans and since one of the major routes of exposition is ingestion, this is a cause for concern regarding their presence in food. The aim of the present study was to quantify the presence of environmental pollutants in shrimp samples and in the water from their habitat along the northwest Portuguese coast. In seawater samples, only two OCPs (lindane and DDD) and one BFR (BTBPE) were detected, and in shrimp samples, one OCP (DDD) and three SMs (HHCB, AHTN and ketone) were found. Bioaccumulation and the risk assessment of dietary exposure of SMs in shrimp samples were investigated. It was observed that all shrimp samples analyzed significantly presented bioaccumulation of the three SMs found. Concentrations of SMs detected in shrimp samples do not present a health risk for the adult Portuguese population.
Collapse
Affiliation(s)
- Maria Luz Maia
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Politécnico do Porto, 4249-015 Porto, Portugal; (M.L.M.); (C.D.-M.)
- Center for Research in Health Technologies and Information Systems, 4200-450 Porto, Portugal;
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Politécnico do Porto, 4249-015 Porto, Portugal; (M.L.M.); (C.D.-M.)
| | - Conceição Calhau
- Center for Research in Health Technologies and Information Systems, 4200-450 Porto, Portugal;
- Nutrição e Metabolismo, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Valentina Fernandes Domingues
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Politécnico do Porto, 4249-015 Porto, Portugal; (M.L.M.); (C.D.-M.)
- Correspondence: ; Tel.: +351-22-834-0500
| |
Collapse
|
177
|
Dahiri B, Martín-Reina J, Carbonero-Aguilar P, Aguilera-Velázquez JR, Bautista J, Moreno I. Impact of Pesticide Exposure among Rural and Urban Female Population. An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9907. [PMID: 34574830 PMCID: PMC8471259 DOI: 10.3390/ijerph18189907] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/27/2022]
Abstract
Pesticides are substances that have become widely used in agriculture and the human exposure to these substances may cause adverse health outcomes. Non-occupational exposure to them can come from many sources, such as food or water. For occupational exposure, many studies have been conducted in men, as they have been mostly in charge of work related to these substances. Nonetheless, the information available concerning the exposure in women is very scarce. In addition, an important differentiation between rural and urban areas has been established, rural areas being known as the most exposed ones due to plantation fields. However, the application of higher concentrations of herbicides in small urban areas is taking a lot of importance currently as well. Regardless of gender, the conditions of exposure, and the environment, the exposure to these pesticides can have different effects on health from early life stages, resulting in different outcomes ranging from neurodevelopmental effects in newborns to different types of cancers. In this review, we discussed the toxicity of the most commonly used pesticides and the main impact on the health of the general population, focusing mainly on the effect in women from both rural and urban areas, and the different stages of development, from pregnancy or lactation to the outcomes of these exposures for their children.
Collapse
Affiliation(s)
- Bouchra Dahiri
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (B.D.); (J.M.-R.); (I.M.)
| | - José Martín-Reina
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (B.D.); (J.M.-R.); (I.M.)
| | - Pilar Carbonero-Aguilar
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (B.D.); (J.M.-R.); (I.M.)
| | - José Raúl Aguilera-Velázquez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (J.R.A.-V.); (J.B.)
| | - Juan Bautista
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (J.R.A.-V.); (J.B.)
| | - Isabel Moreno
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (B.D.); (J.M.-R.); (I.M.)
| |
Collapse
|
178
|
Jackson S, Badu-Tawiah AK. Enhanced thread spray mass spectrometry: a general method for direct pesticide analysis in various complex matrices. Analyst 2021; 146:5592-5600. [PMID: 34369487 DOI: 10.1039/d1an00651g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Determination of pesticide residues in a wide variety of matrices is an ongoing challenge due to low concentration and substantial amounts of interfering endogenous compounds that can be coextracted with the analytes. Herein, we describe the use of cellulose thread both as a suitable sampling medium for various matrices and as a direct analysis platform through an improved thread spray mass spectrometry (MS) approach. Enhanced extraction and the subsequent generation of tiny nanodroplets, after the application of DC potential to the wet thread, enabled ultra-sensitive detection of pesticides without prior sample treatment. This methodology was applied to quantify glyphosate and its metabolite, aminomethylphosphonic acid, in surface water at 12.2 μg mL-1 limit of detection (LOD) via standard addition calibration. The method was also used for an internal standard calibration for the analysis of atrazine, which resulted in a LOD of 0.74 ng mL-1. The enhanced thread spray MS platform also proved effective when applied for direct analysis of diphenylamine and thiabendazole, which enabled the evaluation of post-harvest pesticide treatment of fruits (surface and interior) without complete destruction of the fruits.
Collapse
Affiliation(s)
- Sierra Jackson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
179
|
Hoang TT, Qi C, Paul KC, Lee M, White JD, Richards M, Auerbach SS, Long S, Shrestha S, Wang T, Beane Freeman LE, Hofmann JN, Parks C, Xu CJ, Ritz B, Koppelman GH, London SJ. Epigenome-Wide DNA Methylation and Pesticide Use in the Agricultural Lung Health Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97008. [PMID: 34516295 PMCID: PMC8437246 DOI: 10.1289/ehp8928] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Pesticide exposure is associated with many long-term health outcomes; the potential underlying mechanisms are not well established for most associations. Epigenetic modifications, such as DNA methylation, may contribute. Individual pesticides may be associated with specific DNA methylation patterns but no epigenome-wide association study (EWAS) has evaluated methylation in relation to individual pesticides. OBJECTIVES We conducted an EWAS of DNA methylation in relation to several pesticide active ingredients. METHODS The Agricultural Lung Health Study is a case-control study of asthma, nested within the Agricultural Health Study. We analyzed blood DNA methylation measured using Illumina's EPIC array in 1,170 male farmers of European ancestry. For pesticides still on the market at blood collection (2009-2013), we evaluated nine active ingredients for which at least 30 participants reported past and current (within the last 12 months) use, as well as seven banned organochlorines with at least 30 participants reporting past use. We used robust linear regression to compare methylation at individual C-phosphate-G sites (CpGs) among users of a specific pesticide to never users. RESULTS Using family-wise error rate (p<9×10-8) or false-discovery rate (FDR<0.05), we identified 162 differentially methylated CpGs across 8 of 9 currently marketed active ingredients (acetochlor, atrazine, dicamba, glyphosate, malathion, metolachlor, mesotrione, and picloram) and one banned organochlorine (heptachlor). Differentially methylated CpGs were unique to each active ingredient, and a dose-response relationship with lifetime days of use was observed for most. Significant CpGs were enriched for transcription motifs and 28% of CpGs were associated with whole blood cis-gene expression, supporting functional effects of findings. We corroborated a previously reported association between dichlorodiphenyltrichloroethane (banned in the United States in 1972) and epigenetic age acceleration. DISCUSSION We identified differential methylation for several active ingredients in male farmers of European ancestry. These may serve as biomarkers of chronic exposure and could inform mechanisms of long-term health outcomes from pesticide exposure. https://doi.org/10.1289/EHP8928.
Collapse
Affiliation(s)
- Thanh T. Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children’s Hospital, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kimberly C. Paul
- Department of Epidemiology, University of California, Los Angeles Fielding School of Public Health, Los Angeles, California, USA
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Julie D. White
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Scott S. Auerbach
- Biomolecular Screening Branch, National Toxicology Program, NIEHS, NIH, DHHS, Morrisville, North Carolina, USA
| | | | - Srishti Shrestha
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Laura E. Beane Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Jonathan N. Hofmann
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Christine Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Cheng-Jian Xu
- Research Group of Bioinformatics and Computational Genomics, CiiM, Centre for individualized infection medicine, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Beate Ritz
- Department of Epidemiology, University of California, Los Angeles Fielding School of Public Health, Los Angeles, California, USA
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children’s Hospital, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
180
|
Varga TG, de Toledo Simões JG, Siena A, Henrique E, da Silva RCB, Dos Santos Bioni V, Ramos AC, Rosenstock TR. Haloperidol rescues the schizophrenia-like phenotype in adulthood after rotenone administration in neonatal rats. Psychopharmacology (Berl) 2021; 238:2569-2585. [PMID: 34089344 DOI: 10.1007/s00213-021-05880-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Neuropsychiatric disorders are multifactorial disturbances that encompass several hypotheses, including changes in neurodevelopment. It is known that brain development disturbances during early life can predict psychosis in adulthood. As we have previously demonstrated, rotenone, a mitochondrial complex I inhibitor, could induce psychiatric-like behavior in 60-day-old rats after intraperitoneal injections from the 5th to the 11th postnatal day. Because mitochondrial deregulation is related to psychiatric disorders and the establishment of animal models is a high-value preclinical tool, we investigated the responsiveness of the rotenone (Rot)-treated newborn rats to pharmacological agents used in clinical practice, haloperidol (Hal), and methylphenidate (MPD). Taken together, our data show that Rot-treated animals exhibit hyperlocomotion, decreased social interaction, and diminished contextual fear conditioning response at P60, consistent with positive, negative, and cognitive deficits of schizophrenia (SZ), respectively, that were reverted by Hal, but not MPD. Rot-treated rodents also display a prodromal-related phenotype at P35. Overall, our results seem to present a new SZ animal model as a consequence of mitochondrial inhibition during a critical neurodevelopmental period. Therefore, our study is crucial not only to elucidate the relevance of mitochondrial function in the etiology of SZ but also to fulfill the need for new and trustworthy experimentation models and, likewise, provide possibilities to new therapeutic avenues for this burdensome disorder.
Collapse
Affiliation(s)
- Thiago Garcia Varga
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | - Amanda Siena
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil
| | - Elisandra Henrique
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | | | - Aline Camargo Ramos
- Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Tatiana Rosado Rosenstock
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil. .,Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
181
|
Singh AP, Balayan S, Gupta S, Jain U, Sarin R, Chauhan N. Detection of pesticide residues utilizing enzyme-electrode interface via nano-patterning of TiO2 nanoparticles and molybdenum disulfide (MoS2) nanosheets. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
182
|
Tadevosyan NS, Kirakosyan GV, Muradyan SA, Poghosyan SB, Khachatryan BG. Relationship between Respiratory Morbidity and Environmental Exposure to Organochlorine Pesticides in Armenia. J Health Pollut 2021; 11:210904. [PMID: 34434596 PMCID: PMC8383794 DOI: 10.5696/2156-9614-11.31.210904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/07/2021] [Indexed: 04/14/2023]
Abstract
BACKGROUND Many studies have investigated the effects of organochlorine pesticides (OCPs) on adverse health outcomes. However, studies addressing the link between respiratory health and OCPs are limited. Organochlorine pesticides are stable compounds and belong to the class of endocrine disrupting chemicals that represent a threat to global health. OBJECTIVES The aim of the present study was to examine the association between respiratory morbidity and environmental exposure to OCPs in selected regions in Armenia. METHODS The study was carried out in Lori and Gegharkunik provinces/marzes. The prevalence rate (per 100 000 population) and the average chronological indicators (ACh) for all respiratory diseases and asthma were calculated. Concentrations of OCPs (γ-hexachlorocyclohexane (γ-HCH), dichloro-diphenyl-trichloroethane [DDT], dichlorodiphenyldichloroethylene (DDE) and dichloro-diphenyl-dichloroethane (DDD)) were determined in soil and plant product samples and the average annual total concentration (AATC) of OCPs (γ-HCH + 4,4'-DDT + 4,4'-DDE+4,4'-DDD) was calculated. RESULTS The ACI for all respiratory diseases showed a growth tendency in areas of Gegharkunik province ranging from 14.2 to 20.9% and an increase in asthma ranging from 9.4% to 174.6%. The highest levels of AATC of OCPs were found in soil sampled in Gegharkunik province: 9.48 ± 1.11 μg/kg and 8.10 ± 1.05 μg/kg and these levels differed significantly from those in Lori (p=0.01-0.0007). The AATC of OCPs in plant products from Gegharkunik was also statistically higher: 1.83±0.13 μg/kg, in comparison with that of Lori province 1.31±0.09 μg/kg (p = 0.001 - 0.0000). CONCLUSIONS The results indicate that the increased tendency of respiratory diseases and asthma could be related to OCP residues found in soil and plant products in Gegharkunik province. However, the role of OCPs should not be ignored. Further research is needed to study OCP contamination dynamics and clarify the role of OCPs in respiratory morbidity. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
| | | | - Susanna A. Muradyan
- Mkhitar Heratsi Yerevan State Medical University, Yerevan, Republic of Armenia
| | | | | |
Collapse
|
183
|
Thamrin Azis, Maulidiyah M, Muzakkar MZ, Ratna R, Aziza SW, Bijang CM, Agus Salim LO, Prabowo OA, Wibowo D, Nurdin M. Examination of Carbon Paste Electrode/TiO2 Nanocomposite as Electrochemical Sensor for Detecting Profenofos Pesticide. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2021. [DOI: 10.3103/s1068375521030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
184
|
Li J, Chen S, Huang J, Chen H, Chen Z, Wen Y. New Target in an Old Enemy: Herbicide ( R)-Dichlorprop Induces Ferroptosis-like Death in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7554-7564. [PMID: 34196530 DOI: 10.1021/acs.jafc.1c02102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Iron is an essential microelement in plants that is involved in several growth processes. The use of herbicides may cause the abnormal aggregation of iron in leaves, but the regulatory mechanisms underlying this phenomenon remain unclear. Here, we show that chiral herbicide (R)-dichlorprop ((R)-DCPP) triggers ferroptosis-like death in Arabidopsis thaliana. (R)-DCPP led to reactive oxygen species (ROS) accumulation and iron aggregation, and these processes were iron dependent. Under (R)-DCPP treatment, ROS, lipid hydrogen peroxides, and malondialdehyde were significantly accumulated. In addition, (R)-DCPP induced the depletion of glutathione, ascorbic acid, and glutathione peroxidase as well as the accumulation of toxic lipid peroxides. Thus, oxidation imbalance led to cell death, and this mode of action could be inhibited by the ferroptosis inhibitor ferrostatin-1 or ciclopirox olamine. NADPH oxidases were found to be involved in herbicide-induced ROS accumulation, and lipoxygenase and NADPH cytochrome P450 oxidase were shown to positively regulate (R)-DCPP-induced lipid peroxidation. Overall, these results indicate that the iron- and ROS-dependent signaling cascades were involved in the (R)-DCPP-induced phytotoxicity pathway, which disrupted the structure of plant cell membranes and triggered ferroptosis. Generally, this study provides new insight into the mechanisms of pesticide phytotoxicity and suggests new therapeutic directions to protect nontarget plants.
Collapse
Affiliation(s)
- Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyu Chen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinye Huang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Chen
- College of Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zunwei Chen
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
185
|
The Honey Bee: An Active Biosampler of Environmental Pollution and a Possible Warning Biomarker for Human Health. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146481] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Member states of the European Union are required to ensure the initiation of monitoring programs to verify honey bee exposure to pesticides, where and as appropriate. Based on 620 samples of dead honey bees—42 of pollen, 183 of honey and 32 of vegetables—we highlighted the presence, as analyzed by liquid and gas chromatography coupled with tandem mass spectrometric detection, of many active substances, mainly tau-fluvalinate, piperonyl butoxide, chlorpyrifos and chlorpyrifos-methyl, permethrin and imidacloprid. Among the active substances found in analyzed matrices linked to honey bee killing incidents, 38 belong to hazard classes I and II, as methiocarb, methomyl, chlorpyrifos, cypermethrin and permethrin, thus representing a potential risk for human health. We have shown that, at different times between 2015 and 2020, during implementation of the Italian national guidelines for managing reports of bee colony mortality or depopulation associated with pesticide use, pesticide pollution events occurred that could raise concern for human health. Competent authorities could, as part of a One Health approach, exploit the information provided by existing reporting programs on honey bees and their products, in view of the close correlation to human health, animal health and ecosystem health.
Collapse
|
186
|
Yao Q, Li J, Yan SA, Huang M, Lin Q. Occurrence of pesticides in white tea and a corresponding risk exposure assessment for the different residents in Fujian, China. J Food Sci 2021; 86:3743-3754. [PMID: 34250597 DOI: 10.1111/1750-3841.15826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
White tea has been of increasing public interest worldwide owing to its health benefits. Based on 2 years of surveillance, the long-term and cumulative chronic exposure risks of pesticide residues through white tea drinking were assessed for different subpopulations in Fujian, China. Twenty-five different pesticides were found, and 74.8% of samples contained at least one pesticide residue. The most frequently detected pesticide was bifenthrin with detection rates of 61.6%. Risk assessment was performed using both the deterministic approach and semiprobabilistic model under the best-case and the worst-case scenarios. The results demonstrated that the dietary risks were extremely low for six different subpopulations in which the risks for adults over the age of 41 were relatively higher. The risk ranking scheme indicated that isocarbophos and triazophos were considered to be of medium risk. The different use suggestions for the 25 positive pesticides are proposed to further minimize the exposure risk to consumer health. PRACTICAL APPLICATION: Tea is the second most popular nonalcoholic beverage throughout the world. Pesticides are used to improve the yield of tea. Pesticide residues in tea could be one of the exposure pathways for consumers. Monitoring residual levels and assessing the health risk assessment in tea are thus in an urge.
Collapse
Affiliation(s)
- Qinghua Yao
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jie Li
- Technical Centre of Rongcheng Customs District, Fuzhou, China
| | - Sun-An Yan
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Minmin Huang
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qiu Lin
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
187
|
Milesi MM, Lorenz V, Durando M, Rossetti MF, Varayoud J. Glyphosate Herbicide: Reproductive Outcomes and Multigenerational Effects. Front Endocrinol (Lausanne) 2021; 12:672532. [PMID: 34305812 PMCID: PMC8293380 DOI: 10.3389/fendo.2021.672532] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Glyphosate base herbicides (GBHs) are the most widely applied pesticides in the world and are mainly used in association with GBH-tolerant crop varieties. Indiscriminate and negligent use of GBHs has promoted the emergence of glyphosate resistant weeds, and consequently the rise in the use of these herbicides. Glyphosate, the active ingredient of all GBHs, is combined with other chemicals known as co-formulants that enhance the herbicide action. Nowadays, the safety of glyphosate and its formulations remain to be a controversial issue, as evidence is not conclusive whether the adverse effects are caused by GBH or glyphosate, and little is known about the contribution of co-formulants to the toxicity of herbicides. Currently, alarmingly increased levels of glyphosate have been detected in different environmental matrixes and in foodstuff, becoming an issue of social concern. Some in vitro and in vivo studies have shown that glyphosate and its formulations exhibit estrogen-like properties, and growing evidence has indicated they may disrupt normal endocrine function, with adverse consequences for reproductive health. Moreover, multigenerational effects have been reported and epigenetic mechanisms have been proved to be involved in the alterations induced by the herbicide. In this review, we provide an overview of: i) the routes and levels of human exposure to GBHs, ii) the potential estrogenic effects of glyphosate and GBHs in cell culture and animal models, iii) their long-term effects on female fertility and mechanisms of action, and iv) the consequences on health of successive generations.
Collapse
Affiliation(s)
- María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - María Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| |
Collapse
|
188
|
Pinos H, Carrillo B, Merchán A, Biosca-Brull J, Pérez-Fernández C, Colomina MT, Sánchez-Santed F, Martín-Sánchez F, Collado P, Arias JL, Conejo NM. Relationship between Prenatal or Postnatal Exposure to Pesticides and Obesity: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137170. [PMID: 34281107 PMCID: PMC8295932 DOI: 10.3390/ijerph18137170] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
In recent years, the worldwide prevalence of overweight and obesity among adults and children has dramatically increased. The conventional model regarding the onset of obesity is based on an imbalance between energy intake and expenditure. However, other possible environmental factors involved, such as the exposure to chemicals like pesticides, cannot be discarded. These compounds could act as endocrine-disrupting chemicals (EDC) that may interfere with hormone activity related to several mechanisms involved in body weight control. The main objective of this study was to systematically review the data provided in the scientific literature for a possible association between prenatal and postnatal exposure to pesticides and obesity in offspring. A total of 25 human and 9 animal studies were analyzed. The prenatal, perinatal, and postnatal exposure to organophosphate, organochlorine, pyrethroid, neonicotinoid, and carbamate, as well as a combined pesticide exposure was reviewed. This systematic review reveals that the effects of pesticide exposure on body weight are mostly inconclusive, finding conflicting results in both humans and experimental animals. The outcomes reviewed are dependent on many factors, including dosage and route of administration, species, sex, and treatment duration. More research is needed to effectively evaluate the impact of the combined effects of different pesticides on human health.
Collapse
Affiliation(s)
- Helena Pinos
- Department of Psychobiology, Faculty of Psychology, National Distance Education University (UNED), 28040 Madrid, Spain; (B.C.); (P.C.)
- Joint Research Institute-UNED-Instituto de Salud Carlos III (IMIENS), 28029 Madrid, Spain;
- Correspondence: (H.P.); (N.M.C.)
| | - Beatriz Carrillo
- Department of Psychobiology, Faculty of Psychology, National Distance Education University (UNED), 28040 Madrid, Spain; (B.C.); (P.C.)
- Joint Research Institute-UNED-Instituto de Salud Carlos III (IMIENS), 28029 Madrid, Spain;
| | - Ana Merchán
- Department of Psychology and Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain; (A.M.); (C.P.-F.); (F.S.-S.)
| | - Judit Biosca-Brull
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-B.); (M.T.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Cristian Pérez-Fernández
- Department of Psychology and Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain; (A.M.); (C.P.-F.); (F.S.-S.)
| | - María Teresa Colomina
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-B.); (M.T.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain; (A.M.); (C.P.-F.); (F.S.-S.)
| | - Fernando Martín-Sánchez
- Joint Research Institute-UNED-Instituto de Salud Carlos III (IMIENS), 28029 Madrid, Spain;
- National School of Public Health, Institute of Health Carlos III, University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), 28029 Madrid, Spain
| | - Paloma Collado
- Department of Psychobiology, Faculty of Psychology, National Distance Education University (UNED), 28040 Madrid, Spain; (B.C.); (P.C.)
- Joint Research Institute-UNED-Instituto de Salud Carlos III (IMIENS), 28029 Madrid, Spain;
| | - Jorge L. Arias
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, 33003 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Nélida M. Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, 33003 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
- Correspondence: (H.P.); (N.M.C.)
| |
Collapse
|
189
|
Zhu Z, Wang Y, Tang S, Tan H, Liu C, Cheng L. Maternal exposure to pesticides during pregnancy and risk for attention-deficit/hyperactivity disorder in offspring: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26430. [PMID: 34190165 PMCID: PMC8257888 DOI: 10.1097/md.0000000000026430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is the most common psychiatric disorder in childhood. Studies explored the association of maternal exposure to pesticides during pregnancy with a risk of offspring developing ADHD, but have reported inconclusive results. Here, we will perform a systematic review and meta-analysis of observational studies to assess a possible association between them. METHODS This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols. PubMed, Embase, Web of Science, the Cochrane Library, and the PsycINFO will be searched from inception to May 2021. Observational studies investigating the association of maternal exposure to pesticides during pregnancy with a risk of offspring developing ADHD will be considered. The Newcastle-Ottawa Scales or the scale of the Agency for Healthcare Research and Quality will be used to assess the methodological quality of the included studies according to their study design. A fixed or random-effect model will be used to synthesize data depend on the heterogeneity test. STATA version 12.0 will be used to conduct the meta-analysis. RESULTS This study will provide a high-quality evaluation of association between maternal exposure to pesticides during pregnancy and risk for ADHD in offspring. CONCLUSION This study will present evidence on whether maternal exposure to pesticides during pregnancy is a risk factor for ADHD in offspring.
Collapse
Affiliation(s)
| | | | | | | | | | - Liwei Cheng
- Office of Academic Research, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang District, Wuhan, PR China
| |
Collapse
|
190
|
Bošković N, Bílková Z, Šudoma M, Bielská L, Škulcová L, Ribitsch D, Soja G, Hofman J. Conazole fungicides epoxiconazole and tebuconazole in biochar amended soils: Degradation and bioaccumulation in earthworms. CHEMOSPHERE 2021; 274:129700. [PMID: 33545596 DOI: 10.1016/j.chemosphere.2021.129700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Biochar usage in agriculture becomes increasingly important for the improvement of soil properties. However, from the perspective of pesticides, biochar can influence exposure to pesticides of both target and non-target organisms and also pesticides' fate in soil. Our study investigated degradation and bioaccumulation (in the Eisenia andrei earthworm) of two conazole fungicides, epoxiconazole and tebuconazole, added to high- and low-sorbing soils (by means of fungicides' sorption measured beforehand) amended with low-, moderate- and high-sorbing biochars at 0.2% and 2% doses. We aimed to investigate the effects of contrasting soil and biochar properties, different doses of biochar in soil-biochar mixtures, and different compounds on the degradation and bioaccumulation. We also wanted to explore if the beforehand determined sorption of fungicides on individual soils and biochars is manifested somehow in their degradation and/or bioaccumulation in soil-biochar mixtures. The biochars' presence in the soils promoted the degradation of fungicides with a clear effect of dose and soil, but less clear effect of biochar or compound. The bioaccumulation factors were higher in low-sorbing soil variants and also decreased with increasing biochar dose. For low-sorbing soil variants, the bioaccumulation was also influenced by the type of biochar corresponding to its sorbing potential and the possible effect on the bioavailability of the fungicides. Our results show that mixing of biochars with soils changes the fate and bioaccumulation of the conazole fungicides. However, the sorption results from original materials are not straightforwardly manifested in the more complex soil-biota system.
Collapse
Affiliation(s)
- Nikola Bošković
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Zuzana Bílková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Marek Šudoma
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Lucie Bielská
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1/1665, 613 00, Czech Republic
| | - Lucia Škulcová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Doris Ribitsch
- Institute for Environmental Biotechnology, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Strasse 20, A-3430, Tulln, Austria
| | - Gerhard Soja
- AIT Austrian Institute of Technology GmbH, Environmental Resources & Technologies, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria; Institute of Chemical and Energy Engineering, University of Natural Resources and Life Sciences (BOKU), Muthgasse 107, 1190, Wien, Austria
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
| |
Collapse
|
191
|
|
192
|
Craven CB, Birjandi AP, Simons B, Jiang P, Li XF. Determination of eighty-two pesticides and application to screening pesticides in cannabis growing facilities. J Environ Sci (China) 2021; 104:11-16. [PMID: 33985714 DOI: 10.1016/j.jes.2020.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Determination of pesticides in cannabis facilities is increasingly important as medicinal and recreational uses of cannabis products expand rapidly. We report a method involving wipe sampling, liquid chromatography separation, and tandem mass spectrometry, which enables determination of 82 pesticides out of the 96 regulated by Health Canada. To demonstrate an application of the method, we sampled and measured pesticides in two cannabis growing facilities, representing a non-certified and a certified site. We detected 41 pesticides in surface wipe samples at the non-certified site and 6 at the certified site. This study provides the first evidence showing pesticide occurrence on common surfaces in cannabis growing facilities and points to a need for routine monitoring and strict control of pesticide use in cannabis facilities.
Collapse
Affiliation(s)
- Caley B Craven
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G3, AB, Canada; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2G3, AB, Canada
| | - Afsoon Pajand Birjandi
- Molecular Science Corp, 120 Adelaide Street West, Suite 2500, Toronto M5H 1T1, ON, Canada
| | - Brigette Simons
- Molecular Science Corp, 120 Adelaide Street West, Suite 2500, Toronto M5H 1T1, ON, Canada
| | - Ping Jiang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2G3, AB, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2G3, AB, Canada.
| |
Collapse
|
193
|
Enderle I, Costet N, Cognez N, Zaros C, Caudeville J, Garlantezec R, Chevrier C, Nougadere A, De Lauzon-Guillain B, Le Lous M, Beranger R. Prenatal exposure to pesticides and risk of preeclampsia among pregnant women: Results from the ELFE cohort. ENVIRONMENTAL RESEARCH 2021; 197:111048. [PMID: 33766571 DOI: 10.1016/j.envres.2021.111048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Preeclampsia is a pregnancy-specific syndrome caused by abnormal placentation. Although environmental chemicals, including some pesticides, are suspected of impairing placentation and promoting preeclampsia, its relationship with preeclampsia has been insufficiently explored. OBJECTIVES We aimed to investigate the relation between non-occupational exposure to pesticides during pregnancy and the risk of preeclampsia. METHODS The study cohort comprised 195 women with and 17,181 without preeclampsia from the ELFE birth cohort. We used toxicogenomic approaches to select 41 pesticides of interest for their possible influence on preeclampsia. We assessed household pesticide use (self-reported data), environmental exposure to agricultural pesticides (geographic information systems), and dietary exposure (food-frequency questionnaire with data from monitoring pesticide residues in food and water). Dietary exposures to pesticides were grouped into clusters of similar exposures to resolve collinearity issues. For each exposure source, pesticides were mutually adjusted, and odds ratios estimated with logistic regression models. RESULTS The quantity of prochloraz applied within a kilometer of the women's homes was higher in women with than without preeclampsia (fourth quartile vs. others; adjusted odds ratio [aOR] = 1.54; 95%CI: 1.02, 2.35), especially when preeclampsia was diagnosed before 34 weeks of gestation (aOR = 2.25; 95%CI: 1.01, 5.06). The reverse was observed with nearby cypermethrin application (aOR = 0.59, 95%CI: 0.36, 0.96). In sensitivity analyses, women with preeclampsia receiving antihypertensive treatment had a significantly higher probability of using herbicides at home during pregnancy than women without preeclampsia (aOR = 2.20; 95%CI: 1.23, 3.93). No statistically significant association was found between dietary exposure to pesticide residues and preeclampsia. DISCUSSION While the most of the associations examined remained statistically non-significant, our results suggest the possible influence on preeclampsia of residential exposures to prochloraz and some herbicides. These estimations are supported by toxicological and mechanistic data.
Collapse
Affiliation(s)
- Isabelle Enderle
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France; Department of Obstetrics and Gynecology and Reproductive Medicine, Anne de Bretagne University Hospital, Rennes, France.
| | - Nathalie Costet
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, F-35000, Rennes, France
| | - Noriane Cognez
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, F-35000, Rennes, France
| | - Cécile Zaros
- French Institute for Demographic Studies (Ined), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, F-75020, Paris, France
| | - Julien Caudeville
- INERIS (French National Institute for Industrial Environment and Risks), 60550, Verneuil-en-Halatte, France
| | - Ronan Garlantezec
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Cécile Chevrier
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, F-35000, Rennes, France
| | - Alexandre Nougadere
- ANSES, Risk Assessment Department, 14 Rue Pierre et Marie Curie, F-94701, Maisons-Alfort, France
| | | | - Maela Le Lous
- Department of Obstetrics and Gynecology and Reproductive Medicine, Anne de Bretagne University Hospital, Rennes, France
| | - Rémi Beranger
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France; Department of Obstetrics and Gynecology and Reproductive Medicine, Anne de Bretagne University Hospital, Rennes, France
| |
Collapse
|
194
|
Yang FW, Fang B, Pang GF, Zhang M, Ren FZ. Triazophos and its metabolite diethyl phosphate have different effects on endocrine hormones and gut health in rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:566-576. [PMID: 34038317 DOI: 10.1080/03601234.2021.1922042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organophosphorus pesticide (OP) residues present in food can be metabolized into diethylphosphate (DEP) in vivo. Epidemiological studies of OPs have usually focused on these metabolites, while animal studies mainly assessed the OPs. Here, we compared the health risks of a frequently detected OP, triazophos (TAP), and its major metabolite, DEP, in rats. Levels of serum lipids and, sex hormones were measured using immunoassay kits. Gut hormones and inflammatory cytokines were assessed using a multiplexing kit, and the gut microbiota was evaluated by 16S rRNA gene sequencing. After a 24-week exposure period, both TAP and DEP significantly decreased serum levels of triglycerides, cholesterol, low-density lipoprotein cholesterol, and IL-6 (p < 0.05). However, DEP exposure had a stronger effect on serum estradiol (p < 0.05) than TAP, whereas only TAP inhibited the secretion of gut hormones. Both TAP and DEP enriched the pathogenic genera Oscillibacter, Peptococcus and Paraprevotella in the gut, and TAP also enriched enteritis-related genera Roseburia and Oscillibacter, which may affect the secretion of gut hormones. These findings indicate that the use of dialkyl phosphates as markers of OPs to examine the correlations of OP exposure with diseases may only provide partial information, especially for diseases related to gut health and the endocrine system.
Collapse
Affiliation(s)
- Fang-Wei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ming Zhang
- School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing, China
| |
Collapse
|
195
|
Exposure to Organophosphate and Neonicotinoid Insecticides and Its Association with Steroid Hormones among Male Reproductive-Age Farmworkers in Northern Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115599. [PMID: 34073889 PMCID: PMC8197278 DOI: 10.3390/ijerph18115599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
Several studies indicated organophosphate (OP) and neonicotinoid (NEO) insecticides are endocrine disruptors; however, data are scarce. This cross-sectional study recruited 143 male farmworkers aged 18-40 years in Fang district, Chiang Mai province, northern Thailand. OP exposure was assessed by measuring urinary dialkylphosphate (DAPs) using a gas-chromatography flame photometric detector. Urinary NEOs, their metabolites (NEO/m) and serum steroid hormones were measured using liquid chromatography-tandem mass spectrometry. Characteristics of participants were determined by face-to-face interviews. DAPs and five NEO/m were detected in more than 60% of samples. The concentration of diethylphosphate was highest among DAP metabolites (geometric mean concentration (GM: 23.9 ng/mL) and the concentration of imidacloprid (IMI) was highest among NEO/m (GM: 17.4 ng/mL). Linear regression models showed that the IMI level was positively associated with testosterone, dehydrocorticosterone (DHC) and dehydroepiandrosterone (DHEA) levels. Imidacloprid-olefin and DHEA levels were positively associated. Thiamethoxam (THX) were inversely associated with DHC and deoxycorticosterone levels. Clothianidin (CLO), THX and N-desmethyl-acetamiprid levels were positively associated with the androstenedione level. CLO and THX levels were inversely associated with the cortisone level. In conclusion, the association between NEO insecticides exposure and adrenal androgens, glucocorticoids and mineralocorticoids, suggest potential steroidogenesis activities. Our findings warrant further investigation.
Collapse
|
196
|
Mit N, Cherednichenko O, Mussayeva A, Khamdiyeva O, Amirgalieva A, Begmanova M, Tolebaeva A, Koishekenova G, Zaypanova S, Pilyugina A, Amandykova M, Tlenshieva A, Nurzhanova A, Mamirova A, Bekmanov B, Djansugurova L. Ecological risk assessment and long-term environmental pollution caused by obsolete undisposed organochlorine pesticides. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:490-502. [PMID: 34019462 DOI: 10.1080/03601234.2021.1913931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Obsolete organochlorine pesticides (OSPs) are currently prohibited as persistent organic pollutants that contaminate the environment. If undisposed, they continue to pollute soil and water, to accumulate in the food chain and to harm plants, animals and the human body. The aim of the study was to assess water and soil pollution around the storehouses of undisposed, banned OSPs and their possible genotoxic effect. The storehouses in four villages near Almaty, Kazakhstan were investigated. Chemical analysis confirmed contamination of water and soil around storehouses with OSPs. The genotoxic effect of water and soil samples was evaluated using model objects: S.typhymurium, D.melanogaster, sheep lymphocytes cultures and human lymphocytes cultures. It was found that water and soil samples caused mutagenic effect in all model systems. They increased the frequency of revertants in Salmonella, the frequency of lethal mutations in Drosophila chromosomes, and the frequency of chromosome aberrations in cultures of human and sheep lymphocytes. Although a genotoxic effect was demonstrated for each of these models, various models showed different sensitivity to the effects of pesticides and they varied degree of response. The association between the total content of OCPs in soil and the level of mutations for different model systems was discovered.
Collapse
Affiliation(s)
- Natalya Mit
- Institute of Genetics and Physiology, Department of molecular genetics, Almaty, Kazakhstan
| | - Oksana Cherednichenko
- Institute of Genetics and Physiology, Department of genetic monitoring, Almaty, Kazakhstan
| | - Aizhan Mussayeva
- Institute of Genetics and Physiology, Department of animal genetics and cytogenetics, Almaty, Kazakhstan
| | - Ozada Khamdiyeva
- Institute of Genetics and Physiology, Department of experimental mutagenesis, Almaty, Kazakhstan
| | - Almira Amirgalieva
- Institute of Genetics and Physiology, Department of molecular genetics, Almaty, Kazakhstan
| | - Mamura Begmanova
- Institute of Genetics and Physiology, Department of molecular genetics, Almaty, Kazakhstan
| | - Anar Tolebaeva
- Institute of Genetics and Physiology, Department of molecular genetics, Almaty, Kazakhstan
| | - Gulshat Koishekenova
- Institute of Genetics and Physiology, Department of experimental mutagenesis, Almaty, Kazakhstan
| | - Saule Zaypanova
- Institute of Genetics and Physiology, Department of experimental mutagenesis, Almaty, Kazakhstan
| | - Anastassiya Pilyugina
- Institute of Genetics and Physiology, Department of genetic monitoring, Almaty, Kazakhstan
| | - Makpal Amandykova
- Institute of Genetics and Physiology, Department of animal genetics and cytogenetics, Almaty, Kazakhstan
- Kazakh National University by al-Farabi, biological faculty, Almaty, Kazakhstan
| | - Arshyn Tlenshieva
- Institute of Genetics and Physiology, Department of animal genetics and cytogenetics, Almaty, Kazakhstan
| | - Asil Nurzhanova
- Institute of Plant Biology and Biotechnology, Department of plant physiology and biochemistry, Almaty, Kazakhstan
| | - Aigerim Mamirova
- Institute of Genetics and Physiology, Department of experimental mutagenesis, Almaty, Kazakhstan
- Kazakh National University by al-Farabi, biological faculty, Almaty, Kazakhstan
| | - Bakhytzhan Bekmanov
- Institute of Genetics and Physiology, Department of molecular genetics, Almaty, Kazakhstan
- Kazakh National University by al-Farabi, biological faculty, Almaty, Kazakhstan
| | - Leyla Djansugurova
- Institute of Genetics and Physiology, Department of molecular genetics, Almaty, Kazakhstan
| |
Collapse
|
197
|
Baudry J, Rebouillat P, Allès B, Cravedi JP, Touvier M, Hercberg S, Lairon D, Vidal R, Kesse-Guyot E. Estimated dietary exposure to pesticide residues based on organic and conventional data in omnivores, pesco-vegetarians, vegetarians and vegans. Food Chem Toxicol 2021; 153:112179. [PMID: 33845070 DOI: 10.1016/j.fct.2021.112179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 01/23/2023]
Abstract
PURPOSE To examine dietary exposure to 25 pesticide residues in several diet groups including omnivores, pesco-vegetarians, vegetarians and vegans while accounting for the farming system (organic or conventional) of plant-based foods consumed. METHODS Organic and conventional consumption data in combination with data on pesticide residues in plant-based foods were used to derive estimated dietary exposure to pesticide residues. Pesticide residue exposure was estimated based on observed data, and using two scenarios simulated for 100%-conventional and 100%-organic diets in 33,018 omnivores, 555 pesco-vegetarians, 501 vegetarians and 368 vegans from the NutriNet-Santé study. Pesticide residue exposure across groups was compared using Kruskal-Wallis tests. RESULTS Exposure levels varied across diet groups depending on the pesticide studied. The highest exposure was observed for imazalil in all groups. Vegetarians appeared to be less exposed to the studied pesticides overall. Compared to omnivores - apart from pesticides authorised in organic farming - vegetarians had lowest exposure. The 100%-conventional scenario led to a sharp increase in exposure to pesticide residues, except for pesticides allowed in organic farming and conversely for the 100%-organic scenario. CONCLUSIONS Despite their high plant-based product consumption, vegetarians were less exposed to synthetic pesticides than omnivores, due to their greater propensity to consume organic.
Collapse
Affiliation(s)
- Julia Baudry
- Sorbonne Paris North University, Inserm, Inrae, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Centre, University of Paris (CRESS), Bobigny, France.
| | - Pauline Rebouillat
- Sorbonne Paris North University, Inserm, Inrae, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Centre, University of Paris (CRESS), Bobigny, France
| | - Benjamin Allès
- Sorbonne Paris North University, Inserm, Inrae, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Centre, University of Paris (CRESS), Bobigny, France
| | - Jean-Pierre Cravedi
- Toxalim (Research Centre in Food Toxicology), Toulouse University, Inrae, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Mathilde Touvier
- Sorbonne Paris North University, Inserm, Inrae, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Centre, University of Paris (CRESS), Bobigny, France
| | - Serge Hercberg
- Sorbonne Paris North University, Inserm, Inrae, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Centre, University of Paris (CRESS), Bobigny, France; Public Health Department, Avicenne Hospital, AP-HP, 93017, Bobigny, France
| | - Denis Lairon
- Aix Marseille University, Inserm, Inrae, C2VN, Faculté de Médecine de la Timone, Marseille, France
| | - Rodolphe Vidal
- Institut de l'Agriculture et de l'Alimentation Biologiques (ITAB), 75595, Paris, France
| | - Emmanuelle Kesse-Guyot
- Sorbonne Paris North University, Inserm, Inrae, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Centre, University of Paris (CRESS), Bobigny, France
| |
Collapse
|
198
|
Valbuena D, Cely-Santos M, Obregón D. Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112141. [PMID: 33676136 DOI: 10.1016/j.jenvman.2021.112141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Pesticides are a major tool for the intensification of agriculture, and helped to increase food, feed and biofuel production. Yet, there are persistent concerns about the negative effects of pesticides in human health and the environment, particularly in low and middle income countries (LMICs). Given the lack of information on pesticide exposure and hazard, Colombia exemplifies the need to narrow the information gap on pesticide risk in LMICs. We assessed pesticide hazard in Colombia based on the official toxicity categorization, compared it to more integral international standards, and identified main actions to narrow this information gap. Results showed that Colombia has been a relevant regional actor in pesticide production and trade, reaching almost 75 million kilogrammes and liters sold in 2016. Based on acute toxicity for humans, a quarter of the amount of pesticides sales and imports, and a third of the exports in 2016 ranged from moderately to extremenly toxic. The top-selling agrochemicals in 2016 (glyphosate with 14% of the total sales, chlorpyrifos 7.5% and mancozeb 6.9%) are also commonly used in other countries, reflecting a homogenized global industry. Compared to integral international categorizations, we found that for that year 63% of the pesticides sold with slightly acute toxicity are actually considered highly hazardous pesticides (HHP) for humans or the environment, evidencing the need to use a more integral hazard categorization in the country. Narrowing the information gap in pesticide use and associated risks demands a transparent process of knowledge creation and sharing, including funtional information and monitoring systems. This should be part of an integral assessment and regulation that better defines HHP, their production and trade to reduce pesticide risk while informing a transition towards sustainable food systems.
Collapse
Affiliation(s)
- Diego Valbuena
- Land Use Planning Group, Wageningen University, the Netherlands.
| | - Marcela Cely-Santos
- Ciencias Sociales y Saberes de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Colombia
| | | |
Collapse
|
199
|
Wang L, Tang S, Wu S, Yao L, Su D, Wang Y. Maternal Exposure to Pesticides and Risk of Autism Spectrum Disorders in Offspring: A Meta-analysis. J Autism Dev Disord 2021; 52:1640-1651. [PMID: 33978908 DOI: 10.1007/s10803-021-05063-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2021] [Indexed: 12/16/2022]
Abstract
This meta-analysis was conducted to estimate the overall association between maternal exposure to pesticides and risk of ASD in offspring. PubMed, EMBASE, Web of Science, and the PsycINFO were searched until December 30, 2020 to include eligible studies. Eight studies with 50,426 participants, 5810 of whom had ASD, were involved in the study. Overall, the summary OR (95% confidence interval) of ASDs in offspring for maternal exposure to pesticide estimated by residential proximity measures and self-report was 1.88 (1.10-3.20). However, maternal exposure to pesticide measured by biomarkers was not associated with an increased risk of ASDs (pooled OR 1.13; 95% CI 0.83-1.54). Further well-designed studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Li Wang
- Mental Health Center, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Shiming Tang
- Mental Health Center, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Songjie Wu
- Healthcare-Associated Infection Management Office, Zhongnan Hospital of Wuhan University, Donghu Road 158#, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Lihua Yao
- Mental Health Center, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Dezhen Su
- Mental Health Center, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Ying Wang
- Mental Health Center, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuchang District, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
200
|
Poirier L, Jacquet P, Plener L, Masson P, Daudé D, Chabrière E. Organophosphorus poisoning in animals and enzymatic antidotes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25081-25106. [PMID: 29959732 DOI: 10.1007/s11356-018-2465-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Organophosphorus compounds (OPs) are neurotoxic molecules developed as pesticides and chemical warfare nerve agents (CWNAs). Most of them are covalent inhibitors of acetylcholinesterase (AChE), a key enzyme in nervous systems, and are therefore responsible for numerous poisonings around the world. Many animal models have been studied over the years in order to decipher the toxicity of OPs and to provide insights for therapeutic and decontamination purposes. Environmental impact on wild animal species has been analyzed to understand the consequences of OP uses in agriculture. In complement, various laboratory models, from invertebrates to aquatic organisms, rodents and primates, have been chosen to study chronic and acute toxicity as well as neurobehavioral impact, immune response, developmental disruption, and other pathological signs. Several decontamination approaches were developed to counteract the poisoning effects of OPs. Among these, enzyme-based strategies are particularly attractive as they allow efficient external decontamination without toxicity or environmental impact and may be of interest for treatment. Approaches using bioscavengers for prophylaxis, treatment, and external decontamination are emphasized and their potential is discussed in the light of toxicological observations from various animal models. The relevance of animal models, regarding their cholinergic system and the abundance of naturally protecting enzymes, is also discussed for better extrapolation of results to human.
Collapse
Affiliation(s)
- Laetitia Poirier
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, Marseille, France
| | - Pauline Jacquet
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Laure Plener
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia
| | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, Marseille, France.
| |
Collapse
|