151
|
Pluta R, Januszewski S, Czuczwar SJ. Neuroinflammation in Post-Ischemic Neurodegeneration of the Brain: Friend, Foe, or Both? Int J Mol Sci 2021; 22:4405. [PMID: 33922467 PMCID: PMC8122836 DOI: 10.3390/ijms22094405] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
One of the leading causes of neurological mortality, disability, and dementia worldwide is cerebral ischemia. Among the many pathological phenomena, the immune system plays an important role in the development of post-ischemic degeneration of the brain, leading to the development of neuroinflammatory changes in the brain. After cerebral ischemia, the developing neuroinflammation causes additional damage to the brain cells, but on the other hand it also plays a beneficial role in repair activities. Inflammatory mediators are sources of signals that stimulate cells in the brain and promote penetration, e.g., T lymphocytes, monocytes, platelets, macrophages, leukocytes, and neutrophils from systemic circulation to the brain ischemic area, and this phenomenon contributes to further irreversible ischemic brain damage. In this review, we focus on the issues related to the neuroinflammation that occurs in the brain tissue after ischemia, with particular emphasis on ischemic stroke and its potential treatment strategies.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, PL 02-106 Warsaw, Poland;
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, PL 02-106 Warsaw, Poland;
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, PL 20-090 Lublin, Poland;
| |
Collapse
|
152
|
Zivkovic S, Ayazi M, Hammel G, Ren Y. For Better or for Worse: A Look Into Neutrophils in Traumatic Spinal Cord Injury. Front Cell Neurosci 2021; 15:648076. [PMID: 33967695 PMCID: PMC8100532 DOI: 10.3389/fncel.2021.648076] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are short-lived cells of the innate immune system and the first line of defense at the site of an infection and tissue injury. Pattern recognition receptors on neutrophils recognize pathogen-associated molecular patterns or danger-associated molecular patterns, which recruit them to the destined site. Neutrophils are professional phagocytes with efficient granular constituents that aid in the neutralization of pathogens. In addition to phagocytosis and degranulation, neutrophils are proficient in creating neutrophil extracellular traps (NETs) that immobilize pathogens to prevent their spread. Because of the cytotoxicity of the associated granular proteins within NETs, the microbes can be directly killed once immobilized by the NETs. The role of neutrophils in infection is well studied; however, there is less emphasis placed on the role of neutrophils in tissue injury, such as traumatic spinal cord injury. Upon the initial mechanical injury, the innate immune system is activated in response to the molecules produced by the resident cells of the injured spinal cord initiating the inflammatory cascade. This review provides an overview of the essential role of neutrophils and explores the contribution of neutrophils to the pathologic changes in the injured spinal cord.
Collapse
Affiliation(s)
- Sandra Zivkovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Maryam Ayazi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Grace Hammel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
153
|
Neutrophil Extracellular Traps may be a Potential Target for Treating Early Brain Injury in Subarachnoid Hemorrhage. Transl Stroke Res 2021; 13:112-131. [PMID: 33852132 DOI: 10.1007/s12975-021-00909-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is closely associated with poor prognosis in patients with subarachnoid hemorrhage (SAH). The purpose of this study was to investigate the role of neutrophil extracellular traps (NETs), which are important regulators of sterile inflammation, in SAH. In this study, markers of NET formation, quantified by the level of citrullinated histone H3 (CitH3), were significantly increased after SAH and correlated with SAH severity. CitH3 peaked at 12 h in peripheral blood and at 24 h in the brain. Administration of the peptidyl arginine deiminase 4 (PAD4) selective antagonist GSK484 substantially attenuated SAH-induced brain edema and neuronal injury. Moreover, the benefit of NET inhibition was also confirmed by DNAse I treatment and neutrophil depletion. Mechanistically, NETs markedly exacerbated microglial inflammation in vitro. NET formation aggravated neuroinflammation by promoting microglial activation and increased the levels of TNF-α, IL-1β, and IL-6, while inhibiting NETs demonstrated anti-inflammatory effects by decreasing the levels of these proinflammatory factors. Moreover, neurogenic pulmonary edema (NPE), a severe nonneurological complication after SAH, is associated with a high level of NET formation. However, GSK484 effectively inhibited the formation of NETs in the lungs of NPE mice, thereby preventing the diffusion of neutrophilic infiltration and attenuating the swelling of the alveolar interstitium. In conclusion, NETs promoted neuroinflammation after SAH, while pharmacological inhibition of PAD4-NETs could reduce the inflammatory damage caused by SAH. These results supported the idea that NETs might be potential therapeutic targets for SAH.
Collapse
|
154
|
Abstract
PURPOSE OF REVIEW Rapidly emerging evidence implicates an important role of gut-brain-bone marrow (BM) axis involving gut microbiota (GM), gut epithelial wall permeability, increased production of pro-inflammatory BM cells and neuroinflammation in hypertension (HTN). However, the precise sequence of events involving these organs remains to be established. Furthermore, whether an impaired gut-brain-BM axis is a cause or consequence of HTN is actively under investigation. This will be extremely important for translation of this fundamental knowledge to novel, innovative approaches for the control and management of HTN. Therefore, our objectives are to summarize the latest hypothesis, provide evidence for and against the impaired gut, BM and brain interactions in HTN and discuss perspectives and future directions. RECENT FINDINGS Hypertensive stimuli activate autonomic neural pathways resulting in increased sympathetic and decreased parasympathetic cardiovascular modulation. This directly affects the functions of cardiovascular-relevant organs to increase blood pressure. Increases in sympathetic drive to the gut and BM also trigger sequences of signaling events that ultimately contribute to altered GM, increased gut permeability, enhanced gut- and brain-targeted pro-inflammatory cells from the BM in perpetuation and establishment of HTN. SUMMARY In this review, we present the mechanisms involving the brain, gut, and BM, whose dysfunctional interactions may be critical in persistent neuroinflammation and key in the development and establishment of HTN.
Collapse
Affiliation(s)
- Jing Li
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | |
Collapse
|
155
|
Krishnan S, O’Boyle C, Smith CJ, Hulme S, Allan SM, Grainger JR, Lawrence CB. A hyperacute immune map of ischaemic stroke patients reveals alterations to circulating innate and adaptive cells. Clin Exp Immunol 2021; 203:458-471. [PMID: 33205448 PMCID: PMC7874838 DOI: 10.1111/cei.13551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Systemic immune changes following ischaemic stroke are associated with increased susceptibility to infection and poor patient outcome due to their role in exacerbating the ischaemic injury and long-term disability. Alterations to the abundance or function of almost all components of the immune system post-stroke have been identified, including lymphocytes, monocytes and granulocytes. However, subsequent infections have often confounded the identification of stroke-specific effects. Global understanding of very early changes to systemic immunity is critical to identify immune targets to improve clinical outcome. To this end, we performed a small, prospective, observational study in stroke patients with immunophenotyping at a hyperacute time point (< 3 h) to explore early changes to circulating immune cells. We report, for the first time, decreased frequencies of type 1 conventional dendritic cells (cDC1), haematopoietic stem and progenitor cells (HSPCs), unswitched memory B cells and terminally differentiated effector memory T cells re-expressing CD45RA (TEMRA). We also observed concomitant alterations to human leucocyte antigen D-related (HLA-DR), CD64 and CD14 expression in distinct myeloid subsets and a rapid activation of CD4+ T cells based on CD69 expression. The CD69+ CD4+ T cell phenotype inversely correlated with stroke severity and was associated with naive and central memory T (TCM) cells. Our findings highlight early changes in both the innate and adaptive immune compartments for further investigation as they could have implications the development of post-stroke infection and poorer patient outcomes.
Collapse
Affiliation(s)
- S. Krishnan
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Infection, Immunity and Respiratory MedicineSchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. O’Boyle
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. J. Smith
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Cardiovascular SciencesUniversity of ManchesterManchester Academic Health Science CentreSalford Royal NHS Foundation TrustSalfordUK
- Manchester Centre for Clinical NeurosciencesSalford Royal NHS Foundation TrustSalfordUK
| | - S. Hulme
- Division of Cardiovascular SciencesUniversity of ManchesterManchester Academic Health Science CentreSalford Royal NHS Foundation TrustSalfordUK
- Manchester Centre for Clinical NeurosciencesSalford Royal NHS Foundation TrustSalfordUK
| | - S. M. Allan
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - J. R. Grainger
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Infection, Immunity and Respiratory MedicineSchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. B. Lawrence
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
156
|
Denorme F, Martinod K, Vandenbulcke A, Denis CV, Lenting PJ, Deckmyn H, Vanhoorelbeke K, Meyer SFD. The von Willebrand Factor A1 domain mediates thromboinflammation, aggravating ischemic stroke outcome in mice. Haematologica 2021; 106:819-828. [PMID: 32107335 PMCID: PMC7927893 DOI: 10.3324/haematol.2019.241042] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/25/2020] [Indexed: 01/30/2023] Open
Abstract
von Willebrand factor (VWF) plays an important role in ischemic stroke. However, the exact mechanism by which VWF mediates progression of ischemic stroke brain damage is not completely understood. Using flow cytometric analysis of single cell suspensions prepared from brain tissue and immunohistochemistry, we investigated the potential inflammatory mechanisms by which VWF contributes to ischemic stroke brain damage in a mouse model of cerebral ischemia/reperfusion injury. Twenty-four hours after stroke, flow cytometric analysis of brain tissue revealed that overall white blood cell recruitment in the ipsilesional brain hemisphere of VWF KO mice was 2 times lower than WT mice. More detailed analysis showed a specific reduction of proinflammatory monocytes, neutrophils and T-cells in the ischemic brain of VWF KO mice compared to WT mice. Interestingly, histological analysis revealed a substantial number of neutrophils and T-cells still within the microcirculation of the stroke brain, potentially contributing to the no-reflow phenomenon. Specific therapeutic targeting of the VWF A1 domain in WT mice resulted in reduced immune cell numbers in the affected brain and protected mice from ischemic stroke brain damage. More specifically, recruitment of proinflammatory monocytes was reduced two-fold, neutrophil recruitment was reduced five-fold and T-cell recruitment was reduced two-fold in mice treated with a VWF A1-targeting nanobody compared to mice receiving a control nanobody. In conclusion, our data identify a potential role for VWF in the recruitment of proinflammatory monocytes, neutrophils and T-cells to the ischemic brain via a mechanism that is mediated by its A1 domain.
Collapse
Affiliation(s)
- Frederik Denorme
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Kimberly Martinod
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Aline Vandenbulcke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Cécile V. Denis
- Institut National de la Sante et de la Recherche Medicale, UMR_S 1176, Univ. Paris-Sud, Universite Paris-Saclay, Le Kremlin-Bicetre, France
| | - Peter J. Lenting
- Institut National de la Sante et de la Recherche Medicale, UMR_S 1176, Univ. Paris-Sud, Universite Paris-Saclay, Le Kremlin-Bicetre, France
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Simon F. De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
157
|
Platelet endothelial cell adhesion molecule-1 is a gatekeeper of neutrophil transendothelial migration in ischemic stroke. Brain Behav Immun 2021; 93:277-287. [PMID: 33388423 DOI: 10.1016/j.bbi.2020.12.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/24/2020] [Accepted: 12/22/2020] [Indexed: 11/21/2022] Open
Abstract
RATIONALE Adhesion molecules are key elements in stroke-induced brain injury by regulating the migration of effector immune cells from the circulation to the lesion site. Platelet endothelial cell adhesion molecule-1 (PECAM-1) is an adhesion molecule highly expressed on endothelial cells and leukocytes, which controls the final steps of trans-endothelial migration. A functional role for PECAM-1 in post-ischemic brain injury has not yet been demonstrated. OBJECTIVE Using genetic Pecam-1 depletion and PECAM-1 blockade using a neutralizing anti-PECAM-1 antibody, we evaluated the role of PECAM-1 mediated trans-endothelial immune cell migration for ischemic injury, delayed brain atrophy, and brain immune cell infiltrates. Trans-endothelial immune cell migration was furthermore evaluated in cultured human cerebral microvascular endothelial cells. METHODS AND RESULTS Transient middle cerebral artery occlusion (tMCAO) was induced in 10-12-week-old male Pecam-1-/- and Pecam-1+/+ wildtype mice. PECAM-1 levels increased in the ischemic brain tissue due to the infiltration of PECAM-1+ leukocytes. Using magnetic resonance imaging, we observed smaller infarct volume, less edema formation, and less brain atrophy in Pecam-1-/- compared with Pecam-1+/+ wildtype mice. The transmigration of leukocytes, specifical neutrophils, was selectively reduced by Pecam-1-/-, as shown by immune fluorescence and flow cytometry in vivo and transmigration assays in vitro. Importantly, inhibition with an anti-PECAM-1 antibody in wildtype mice decreased neutrophil brain influx and infarct. CONCLUSION PECAM-1 controls the trans-endothelial migration of neutrophils in a mouse model of ischemic stroke. Antibody blockade of PECAM-1 after stroke onset ameliorates stroke severity in mice, making PECAM-1 an interesting target to dampen post-stroke neuroinflammation, reduce ischemic brain injury, and enhance post-ischemic brain remodeling.
Collapse
|
158
|
Pramitasuri TI, Laksmidewi AAAP, Putra IBK, Dalimartha FA. Neutrophil Extracellular Traps in Coronavirus Disease-19-Associated Ischemic Stroke: A Novel Avenue in Neuroscience. Exp Neurobiol 2021; 30:1-12. [PMID: 33632982 PMCID: PMC7926042 DOI: 10.5607/en20048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/26/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is one of the catastrophic neurological events that are being increasingly recognized among Coronavirus Disease (COVID)-19 patients. The recent studies have revealed about a possible connection among COVID-19, ischemic stroke, and excessive Neutrophil Extracellular Traps (NETs) formation. This paper establishes an overview of coronaviruses and NETs, NETs in pathogenesis of COVID-19 induced-ischemic stroke, and future directions using related recent literatures. NETs are normally functioned for a defense against pathogens, but in immoderate amount, they can trigger series of destructive events. Vasculopathy and neuroinflammation are the pathological mechanisms of NETs suggested to link COVID-19 and ischemic stroke. Based on newly discovered possible mechanisms, the potential clinical implications that could be applied consists of inhibition of NET formation, disrupting cholesterol synthesis, and interfering inflammatory pathway. A considerable number of scientific works are needed in order to complete the current understanding of the emerging relationship among COVID-19, NETs, and ischemic stroke. Although the exact mechanism is still unknown, these novel findings are a worthwhile contribution in defining future studies, suitable future frameworks, and therapeutic strategies.
Collapse
Affiliation(s)
| | - Anak Agung Ayu Putri Laksmidewi
- Department of Neurology, Faculty of Medicine Udayana University-Sanglah Academic General Hospital, Denpasar 80232, Indonesia
| | - Ida Bagus Kusuma Putra
- Department of Neurology, Faculty of Medicine Udayana University-Sanglah Academic General Hospital, Denpasar 80232, Indonesia
| | | |
Collapse
|
159
|
Cellular Mechanisms Participating in Brain Repair of Adult Zebrafish and Mammals after Injury. Cells 2021; 10:cells10020391. [PMID: 33672842 PMCID: PMC7917790 DOI: 10.3390/cells10020391] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Adult neurogenesis is an evolutionary conserved process occurring in all vertebrates. However, striking differences are observed between the taxa, considering the number of neurogenic niches, the neural stem cell (NSC) identity, and brain plasticity under constitutive and injury-induced conditions. Zebrafish has become a popular model for the investigation of the molecular and cellular mechanisms involved in adult neurogenesis. Compared to mammals, the adult zebrafish displays a high number of neurogenic niches distributed throughout the brain. Furthermore, it exhibits a strong regenerative capacity without scar formation or any obvious disabilities. In this review, we will first discuss the similarities and differences regarding (i) the distribution of neurogenic niches in the brain of adult zebrafish and mammals (mainly mouse) and (ii) the nature of the neural stem cells within the main telencephalic niches. In the second part, we will describe the cascade of cellular events occurring after telencephalic injury in zebrafish and mouse. Our study clearly shows that most early events happening right after the brain injury are shared between zebrafish and mouse including cell death, microglia, and oligodendrocyte recruitment, as well as injury-induced neurogenesis. In mammals, one of the consequences following an injury is the formation of a glial scar that is persistent. This is not the case in zebrafish, which may be one of the main reasons that zebrafish display a higher regenerative capacity.
Collapse
|
160
|
Sui J, Lu R, Halkidis K, Kocher NK, Cao W, Marques MB, Zheng XL. Plasma levels of S100A8/A9, histone/DNA complexes, and cell-free DNA predict adverse outcomes of immune thrombotic thrombocytopenic purpura. J Thromb Haemost 2021; 19:370-379. [PMID: 33188723 PMCID: PMC8058879 DOI: 10.1111/jth.15176] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immune thrombotic thrombocytopenic purpura (iTTP) is a life-threatening blood disorder, primarily resulting from autoantibodies against ADAMTS13. Infection or inflammation often precedes acute iTTP. However, the association of inflammation and inflammatory mediators with disease severity and outcome of acute iTTP is not fully assessed. OBJECTIVES Here, we determined plasma levels of S100A8/A9, histone/DNA complexes, citrullinated histone H3 (CitH3), and cell-free DNA (cfDNA) in a cohort of 108 acute episodes from 94 unique iTTP patients and healthy controls, and assessed the association of each of these biomarkers with the disease severity and mortality. RESULTS All acute iTTP patients had significantly increased plasma levels of S100A8/A9 (median 84.8, interquartile range [IQR] 31.2-157.4 µg/mL), histone/DNA complexes (median 55.7, IQR 35.8-130.8 U/mL), CitH3 (median 3.8, IQR 2.2-6.4 ng/mL), and cfDNA (median 937.7, IQR 781.3-1420.0 ng/mL) on the admission blood samples when compared with healthy controls. An increased plasma level of S100A8/A9, histone/DNA complex and cfDNA was associated with organ damage, coagulopathy, and mortality in iTTP. After being adjusted for age and history of hypertension, Cox proportional hazard regression analysis demonstrated that a hazard ratio (95% confidence interval) for an elevated plasma level of S100A8/A9, histone/DNA complexes, and cfDNA was 11.5 (1.4-90.9) (P = .021), 10.3 (2.7-38.5) (P = .001), and 12.8 (3.9-42.0) (P = .014), respectively. CONCLUSION These results indicate that inflammation or plasma inflammatory mediators such as S100A8/A9 or NETosis markers such as histone/DNA complexes and cfDNA may play a role in pathogenesis of iTTP, which may help stratify patients with a high risk of death during acute iTTP episodes.
Collapse
Affiliation(s)
- Jingrui Sui
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ruinan Lu
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Konstantine Halkidis
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Hematology and Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nicole K. Kocher
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wenjing Cao
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Marisa B. Marques
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - X. Long Zheng
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
161
|
Erdener ŞE, Tang J, Kılıç K, Postnov D, Giblin JT, Kura S, Chen ICA, Vayisoğlu T, Sakadžić S, Schaffer CB, Boas DA. Dynamic capillary stalls in reperfused ischemic penumbra contribute to injury: A hyperacute role for neutrophils in persistent traffic jams. J Cereb Blood Flow Metab 2021; 41:236-252. [PMID: 32237951 PMCID: PMC8370003 DOI: 10.1177/0271678x20914179] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ever since the introduction of thrombolysis and the subsequent expansion of endovascular treatments for acute ischemic stroke, it remains to be identified why the actual outcomes are less favorable despite recanalization. Here, by high spatio-temporal resolution imaging of capillary circulation in mice, we introduce the pathological phenomenon of dynamic flow stalls in cerebral capillaries, occurring persistently in salvageable penumbra after reperfusion. These stalls, which are different from permanent cellular plugs of no-reflow, were temporarily and repetitively occurring in the capillary network, impairing the overall circulation like small focal traffic jams. In vivo microscopy in the ischemic penumbra revealed leukocytes traveling slowly through capillary lumen or getting stuck, while red blood cell flow was being disturbed in the neighboring segments under reperfused conditions. Stall dynamics could be modulated, by injection of an anti-Ly6G antibody specifically targeting neutrophils. Decreased number and duration of stalls were associated with improvement in penumbral blood flow within 2-24 h after reperfusion along with increased capillary oxygenation, decreased cellular damage and improved functional outcome. Thereby, dynamic microcirculatory stall phenomenon can be a contributing factor to ongoing penumbral injury and is a potential hyperacute mechanism adding on previous observations of detrimental effects of activated neutrophils in ischemic stroke.
Collapse
Affiliation(s)
- Şefik E Erdener
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA.,Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jianbo Tang
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA.,Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Kıvılcım Kılıç
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Dmitry Postnov
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA.,Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - John T Giblin
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sreekanth Kura
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - I-Chun A Chen
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Tuğberk Vayisoğlu
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sava Sakadžić
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chris B Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - David A Boas
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
162
|
Beuker C, Strecker JK, Rawal R, Schmidt-Pogoda A, Ruck T, Wiendl H, Klotz L, Schäbitz WR, Sommer CJ, Minnerup H, Meuth SG, Minnerup J. Immune Cell Infiltration into the Brain After Ischemic Stroke in Humans Compared to Mice and Rats: a Systematic Review and Meta-Analysis. Transl Stroke Res 2021; 12:976-990. [PMID: 33496918 PMCID: PMC8557159 DOI: 10.1007/s12975-021-00887-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
Although several studies have suggested that anti-inflammatory strategies reduce secondary infarct growth in animal stroke models, clinical studies have not yet demonstrated a clear benefit of immune modulation in patients. Potential reasons include systematic differences of post-ischemic neuroinflammation between humans and rodents. We here performed a systematic review and meta-analysis to summarize and compare the spatial and temporal distribution of immune cell infiltration in human and rodent stroke. Data on spatiotemporal distribution of immune cells (T cells, macrophages, and neutrophils) and infarct volume were extracted. Data from all rodent studies were pooled by means of a random-effect meta-analysis. Overall, 20 human and 188 rodent stroke studies were included in our analyses. In both patients and rodents, the infiltration of macrophages and neutrophils preceded the lymphocytic influx. Macrophages and neutrophils were the predominant immune cells within 72 h after infarction. Although highly heterogeneously across studies, the temporal profile of the poststroke immune response was comparable between patients and rodents. In rodent stroke, the extent of the immune cell infiltration depended on the duration and location of vessel occlusion and on the species. The density of infiltrating immune cells correlated with the infarct volume. In summary, we provide the first systematic analysis and comparison of human and rodent post-ischemic neuroinflammation. Our data suggest that the inflammatory response in rodent stroke models is comparable to that in patients with stroke. However, the overall heterogeneity of the post-ischemic immune response might contribute to the translational failure in stroke research.
Collapse
Affiliation(s)
- Carolin Beuker
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Jan-Kolja Strecker
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Rajesh Rawal
- Institute of Epidemiology and Social Medicine, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Antje Schmidt-Pogoda
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | | | - Clemens J Sommer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Heike Minnerup
- Institute of Epidemiology and Social Medicine, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Jens Minnerup
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany.
| |
Collapse
|
163
|
Hermann DM, Gunzer M. Modulating Microglial Cells for Promoting Brain Recovery and Repair. Front Cell Neurosci 2021; 14:627987. [PMID: 33505251 PMCID: PMC7829249 DOI: 10.3389/fncel.2020.627987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/07/2020] [Indexed: 11/22/2022] Open
Abstract
Representing the brain’s innate immune cells that interact vividly with blood-derived immune cells and brain parenchymal cells, microglia set the stage for successful brain remodeling and repair in the aftermath of brain damage. With the development of pharmacological colony-stimulating factor-1 receptor inhibitors, which allow inhibiting or depleting microglial cells, and of transgenic mice, allowing the inducible depletion of microglial cells, experimental tools have become available for studying roles of microglia in neurodegenerative and neurorestorative processes. These models open fundamental insights into roles of microglia in controlling synaptic plasticity in the healthy and the injured brain. Acting as a switch from injury to repair, microglial cells might open opportunities for promoting neurological recovery in human patients upon brain injury.
Collapse
Affiliation(s)
- Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| |
Collapse
|
164
|
Shi K, Zou M, Jia DM, Shi S, Yang X, Liu Q, Dong JF, Sheth KN, Wang X, Shi FD. tPA Mobilizes Immune Cells That Exacerbate Hemorrhagic Transformation in Stroke. Circ Res 2021; 128:62-75. [PMID: 33070717 DOI: 10.1161/circresaha.120.317596] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE Hemorrhagic complications represent a major limitation of intravenous thrombolysis using tPA (tissue-type plasminogen activator) in patients with ischemic stroke. The expression of tPA receptors on immune cells raises the question of what effects tPA exerts on these cells and whether these effects contribute to thrombolysis-related hemorrhagic transformation. OBJECTIVE We aim to determine the impact of tPA on immune cells and investigate the association between observed immune alteration with hemorrhagic transformation in ischemic stroke patients and in a rat model of embolic stroke. METHODS AND RESULTS Paired blood samples were collected before and 1 hour after tPA infusion from 71 patients with ischemic stroke. Control blood samples were collected from 27 ischemic stroke patients without tPA treatment. A rat embolic middle cerebral artery occlusion model was adopted to investigate the underlying mechanisms of hemorrhagic transformation. We report that tPA induces a swift surge of circulating neutrophils and T cells with profoundly altered molecular features in ischemic stroke patients and a rat model of focal embolic stroke. tPA exacerbates endothelial injury, increases adhesion and migration of neutrophils and T cells, which are associated with brain hemorrhage in rats subjected to embolic stroke. Genetic ablation of annexin A2 in neutrophils and T cells diminishes the effect of tPA on these cells. Decoupling the interaction between mobilized neutrophils/T cells and the neurovascular unit, achieved via a S1PR (sphingosine-1-phosphate receptor) 1 modulator RP101075 and a CCL2 (C-C motif chemokine ligand 2) synthesis inhibitor bindarit, which block lymphocyte egress and myeloid cell recruitment, respectively, attenuates hemorrhagic transformation and improves neurological function after tPA thrombolysis. CONCLUSIONS Our findings suggest that immune invasion of the neurovascular unit represents a previously unrecognized mechanism underlying tPA-mediated brain hemorrhage, which can be overcome by precise immune modulation during thrombolytic therapy.
Collapse
Affiliation(s)
- Kaibin Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China (K.S., M.Z., D.-M.J., X.Y., Q.L., F.-D.S.)
- China National Clinical Research Center for Neurological Diseases, Jing-Jin Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, China (K.S., F.-D.S.)
| | - Ming Zou
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China (K.S., M.Z., D.-M.J., X.Y., Q.L., F.-D.S.)
| | - Dong-Mei Jia
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China (K.S., M.Z., D.-M.J., X.Y., Q.L., F.-D.S.)
| | - Samuel Shi
- Neuroscience Graduate Program, Arizona State University, Tempe (S.S.)
| | - Xiaoxia Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China (K.S., M.Z., D.-M.J., X.Y., Q.L., F.-D.S.)
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China (K.S., M.Z., D.-M.J., X.Y., Q.L., F.-D.S.)
| | - Jing-Fei Dong
- Division of Hematology, Department of Medicine, BloodWorks Northwest Research Institute, School of Medicine, University of Washington, Seattle (J.-f.D.)
| | - Kevin N Sheth
- Department of Neurology, Yale University School of Medicine, New Haven, CT (K.N.S.)
| | - Xiaoying Wang
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA (X.W.)
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China (K.S., M.Z., D.-M.J., X.Y., Q.L., F.-D.S.)
- China National Clinical Research Center for Neurological Diseases, Jing-Jin Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, China (K.S., F.-D.S.)
| |
Collapse
|
165
|
Ramaglia V, Florescu A, Zuo M, Sheikh-Mohamed S, Gommerman JL. Stromal Cell–Mediated Coordination of Immune Cell Recruitment, Retention, and Function in Brain-Adjacent Regions. THE JOURNAL OF IMMUNOLOGY 2021; 206:282-291. [DOI: 10.4049/jimmunol.2000833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
|
166
|
Candelario-Jalil E, Paul S. Impact of aging and comorbidities on ischemic stroke outcomes in preclinical animal models: A translational perspective. Exp Neurol 2021; 335:113494. [PMID: 33035516 PMCID: PMC7874968 DOI: 10.1016/j.expneurol.2020.113494] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a highly complex and devastating neurological disease. The sudden loss of blood flow to a brain region due to an ischemic insult leads to severe damage to that area resulting in the formation of an infarcted tissue, also known as the ischemic core. This is surrounded by the peri-infarct region or penumbra that denotes the functionally impaired but potentially salvageable tissue. Thus, the penumbral tissue is the main target for the development of neuroprotective strategies to minimize the extent of ischemic brain damage by timely therapeutic intervention. Given the limitations of reperfusion therapies with recombinant tissue plasminogen activator or mechanical thrombectomy, there is high enthusiasm to combine reperfusion therapy with neuroprotective strategies to further reduce the progression of ischemic brain injury. Till date, a large number of candidate neuroprotective drugs have been identified as potential therapies based on highly promising results from studies in rodent ischemic stroke models. However, none of these interventions have shown therapeutic benefits in stroke patients in clinical trials. In this review article, we discussed the urgent need to utilize preclinical models of ischemic stroke that more accurately mimic the clinical conditions in stroke patients by incorporating aged animals and animal stroke models with comorbidities. We also outlined the recent findings that highlight the significant differences in stroke outcome between young and aged animals, and how major comorbid conditions such as hypertension, diabetes, obesity and hyperlipidemia dramatically increase the vulnerability of the brain to ischemic damage that eventually results in worse functional outcomes. It is evident from these earlier studies that including animal models of aging and comorbidities during the early stages of drug development could facilitate the identification of neuroprotective strategies with high likelihood of success in stroke clinical trials.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
167
|
Abstract
Neutrophils produce neutrophil extracellular traps (NETs) by expelling their extracellular chromatin embedded with citrullinated histone H3, myeloperoxidase, and other intracellular molecules. Since their discovery in 2004, numerous articles have demonstrated the mechanism of NET formation and their function in innate immunity and inflammation. NET components often play an antimicrobial role, but excessive NETs are deleterious and can cause inflammation and tissue damage. This review highlights recent advancements in the identification of novel pathways and mechanisms of NET formation. We also focus on the specific damaging impact of NETs in individual organs. We then discuss the progress and limitations of various NET detection assays. Collectively, these vital aspects of NETs significantly improve our understanding of the pathobiology of NETs and future diagnostics and therapeutic tools for examining and modulating NETs in inflammatory diseases.
Collapse
Affiliation(s)
- Chuyi Tan
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Departments of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
168
|
Zhang SR, Phan TG, Sobey CG. Targeting the Immune System for Ischemic Stroke. Trends Pharmacol Sci 2020; 42:96-105. [PMID: 33341247 DOI: 10.1016/j.tips.2020.11.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Stroke is responsible for almost 6 million deaths and more than 10% of all mortalities each year, and two-thirds of stroke survivors remain disabled. With treatments for ischemic stroke still limited to clot lysis and/or mechanical removal, new therapeutic targets are desperately needed. In this review, we provide an overview of the complex mechanisms of innate and adaptive immune cell-mediated inflammatory injury, that exacerbates infarct development for several days after stroke. We also highlight the features of poststroke systemic immunodepression that commonly leads to infections and some mortalities, and argue that safe and effective therapies will need to balance pro- and anti-inflammatory mechanisms in a time-sensitive manner, to maximize the likelihood of an improved long-term outcome.
Collapse
Affiliation(s)
- Shenpeng R Zhang
- Department of Physiology, Anatomy, and Microbiology, and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Thanh G Phan
- Clinical Trials, Imaging, and Informatics (CTI) Division, Stroke and Ageing Research (STARC), Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy, and Microbiology, and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
169
|
Xu X, Yuan L, Wang W, Xu J, Yang Q, Zhu Y, Xu Y, Yang K, Ge L, Huang X, Zhou Z. Systemic Inflammatory Response Syndrome and Outcomes in Ischemic Patients Treated with Endovascular Treatment. Clin Interv Aging 2020; 15:2331-2340. [PMID: 33324045 PMCID: PMC7733387 DOI: 10.2147/cia.s281865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/20/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose Knowledge regarding the systemic inflammatory response syndrome (SIRS) associated with emergent large vessel occlusion (ELVO) is still insufficient. We aimed to investigate the occurrence rate, predictors, and clinical outcomes of SIRS in patients with ELVO after endovascular treatment (EVT). Patients and Methods We retrospectively collected EVT data of patients with ELVO from July 2015 to August 2019 in our center. SIRS in the absence of infection was recorded in detail. A favorable outcome was defined as obtaining a 90-day modified Rankin Scale (mRS) score ≤2. Results Among the 256 patients who received EVT, 91 (35.5%) developed SIRS. The patients who developed SIRS had a reduced favorable outcome (OR 4.112 [95% CI 1.705 to 9.920]; p=0.002) and higher mortality (OR 25.336 [95% CI 8.578 to 74.835]; p<0.001) at 90 days. A greater SIRS burden was positively correlated with the NIHSS scores at discharge and mRS scores at 90 days (r=0.265, p=0.011; r=0.245, p=0.019). The development of SIRS was associated with neutrophilic leukocytosis, hyperglycemia, higher NIHSS scores at admission, and worse collateral circulation. Conclusion The patients with SIRS had higher odds of poor functional outcomes and higher mortality at 90 days in the EVT-treatment setting. The severity of the inflammatory response was positively correlated with the clinical outcomes of the patients. Clinically, SIRS was associated with neutrophilic leukocytosis, hyperglycemia, baseline stroke severity, and worse collateral circulation.
Collapse
Affiliation(s)
- Xiangjun Xu
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Lili Yuan
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Wenbing Wang
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Junfeng Xu
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Qian Yang
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Yujuan Zhu
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Youqing Xu
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Ke Yang
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Liang Ge
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Xianjun Huang
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Zhiming Zhou
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| |
Collapse
|
170
|
Ma G, Pan Z, Kong L, Du G. Neuroinflammation in hemorrhagic transformation after tissue plasminogen activator thrombolysis: Potential mechanisms, targets, therapeutic drugs and biomarkers. Int Immunopharmacol 2020; 90:107216. [PMID: 33296780 DOI: 10.1016/j.intimp.2020.107216] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
Hemorrhagic transformation (HT) is a common and serious complication following ischemic stroke, especially after tissue plasminogen activator (t-PA) thrombolysis, which is associated with increased mortality and disability. Due to the unknown mechanisms and targets of HT, there are no effective therapeutic drugs to decrease the incidence of HT. In recent years, many studies have found that neuroinflammation is closely related to the occurrence and development of HT after t-PA thrombolysis, including glial cell activation in the brain, peripheral inflammatory cell infiltration and the release of inflammatory factors, involving inflammation-related targets such as NF-κB, MAPK, HMGB1, TLR4 and NLRP3. Some drugs with anti-inflammatory activity have been shown to protect the BBB and reduce the risk of HT in preclinical experiments and clinical trials, including minocycline, fingolimod, tacrolimus, statins and some natural products. In addition, the changes in MMP-9, VAP-1, NLR, sICAM-1 and other inflammatory factors are closely related to the occurrence of HT, which may be potential biomarkers for the diagnosis and prognosis of HT. In this review, we summarize the potential inflammation-related mechanisms, targets, therapeutic drugs, and biomarkers associated with HT after t-PA thrombolysis and discuss the relationship between neuroinflammation and HT, which provides a reference for research on the mechanisms, prevention and treatment drugs, diagnosis and prognosis of HT.
Collapse
Affiliation(s)
- Guodong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zirong Pan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
171
|
Tao T, Liu M, Chen M, Luo Y, Wang C, Xu T, Jiang Y, Guo Y, Zhang JH. Natural medicine in neuroprotection for ischemic stroke: Challenges and prospective. Pharmacol Ther 2020; 216:107695. [DOI: 10.1016/j.pharmthera.2020.107695] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
|
172
|
Shao A, Lin D, Wang L, Tu S, Lenahan C, Zhang J. Oxidative Stress at the Crossroads of Aging, Stroke and Depression. Aging Dis 2020; 11:1537-1566. [PMID: 33269106 PMCID: PMC7673857 DOI: 10.14336/ad.2020.0225] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
Epidemiologic studies have shown that in the aging society, a person dies from stroke every 3 minutes and 42 seconds, and vast numbers of people experience depression around the globe. The high prevalence and disability rates of stroke and depression introduce enormous challenges to public health. Accumulating evidence reveals that stroke is tightly associated with depression, and both diseases are linked to oxidative stress (OS). This review summarizes the mechanisms of OS and OS-mediated pathological processes, such as inflammation, apoptosis, and the microbial-gut-brain axis in stroke and depression. Pathological changes can lead to neuronal cell death, neurological deficits, and brain injury through DNA damage and the oxidation of lipids and proteins, which exacerbate the development of these two disorders. Additionally, aging accelerates the progression of stroke and depression by overactive OS and reduced antioxidant defenses. This review also discusses the efficacy and safety of several antioxidants and antidepressants in stroke and depression. Herein, we propose a crosstalk between OS, aging, stroke, and depression, and provide potential therapeutic strategies for the treatment of stroke and depression.
Collapse
Affiliation(s)
- Anwen Shao
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Danfeng Lin
- 2Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Lingling Wang
- 2Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Sheng Tu
- 3State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Cameron Lenahan
- 4Burrell College of Osteopathic Medicine, Las Cruces, USA.,5Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jianmin Zhang
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.,6Brain Research Institute, Zhejiang University, Zhejiang, China.,7Collaborative Innovation Center for Brain Science, Zhejiang University, Zhejiang, China
| |
Collapse
|
173
|
Huang Y, Chen S, Luo Y, Han Z. Crosstalk between Inflammation and the BBB in Stroke. Curr Neuropharmacol 2020; 18:1227-1236. [PMID: 32562523 PMCID: PMC7770647 DOI: 10.2174/1570159x18666200620230321] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/23/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
The blood-brain barrier (BBB), which is located at the interface between the central nervous system (CNS) and the circulatory system, is instrumental in establishing and maintaining the microenvironmental homeostasis of the CNS. BBB disruption following stroke promotes inflammation by enabling leukocytes, T cells and other immune cells to migrate via both the paracellular and transcellular routes across the BBB and to infiltrate the CNS parenchyma. Leukocytes promote the removal of necrotic tissues and neuronal recovery, but they also aggravate BBB injury and exacerbate stroke outcomes, especially after late reperfusion. Moreover, the swelling of astrocyte endfeet is thought to contribute to the ‘no-reflow’ phenomenon observed after cerebral ischemia, that is, blood flow cannot return to capillaries after recanalization of large blood vessels. Pericyte recruitment and subsequent coverage of endothelial cells (ECs) alleviate BBB disruption, which causes the transmigration of inflammatory cells across the BBB to be a dynamic process. Furthermore, interneurons and perivascular microglia also make contacts with ECs, astrocytes and pericytes to establish the neurovascular unit. BBB-derived factors after cerebral ischemia triggered microglial activation. During the later stage of injury, microglia remain associated with brain ECs and contribute to repair mechanisms, including postinjury angiogenesis, by acquiring a protective phenotype, which possibly occurs through the release of microglia-derived soluble factors. Taken together, we reviewed dynamic and bidirectional crosstalk between inflammation and the BBB during stroke and revealed targeted interventions based on the crosstalk between inflammation and the BBB, which will provide novel insights for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Yuyou Huang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical
University, Beijing, China
| | - Shengpan Chen
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical
University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical
University, Beijing, China,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical
University, Beijing, China,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
174
|
Neuroprotective epi-drugs quench the inflammatory response and microglial/macrophage activation in a mouse model of permanent brain ischemia. J Neuroinflammation 2020; 17:361. [PMID: 33246465 PMCID: PMC7694916 DOI: 10.1186/s12974-020-02028-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Activation of NF-kappaB RelA deacetylated at the lysine residues, except the lysine 310, drives pro-apoptotic transcription in noxious brain ischemia. We showed that the sinergistic combination of the histone deacetilase inhibitor MS-275 with the sirtuin 1 activator resveratrol, at very low doses, restores normal RelA acetylation and elicit neuroprotection in mice subjected to transient middle cerebral artery occlusion (tMCAO) and primary cortical neurons exposed to oxygen-glucose-deprivation (OGD). The present study aims at corroborating the neuroprotective potential of the epigenetic treatment in a model of permanent brain ischemia and investigate its effect on post-ischemic inflammation and microglia activation. METHODS Male mice subjected to permanent occlusion of the distal MCAO (pMCAO) were treated with vehicle or MS-275 (20 μg/kg) and resveratrol (680 μg/kg) i.p. immediately after the ischemia. Microglia-containing mixed glial cultures were prepared from the brain of 1-3-day-old mice. Primary cortical neurons were prepared from 15-day-old embryonic mice. RESULTS MS-275 and resveratrol in combination, but not individually, reduced infarct volume and neurological deficits evaluated 48 h after the pMCAO. At 24 h, the treatment inhibited the RelA binding to Nos2 promoter, reduced the elevated expression of Nos2, Il6, Il1b, Mrc1 and Ym1 and the leukocytes infiltration in the ischemic area. The effect was nonpermanent. The treatment did not limit the sustained leukocyte infiltration or Nos2 and Il1b transcription observed at 7 days. Though, it induced alternative activation markers of microglia/macrophages, Arg1, Ym1 and Fcgr2b that could be added to Mrc1, Tgfb1 and Trem2 spontaneously increased at 7 days after ischemia. At 24 hours the drug treatment quenched the microglia/macrophages activation in the ischemic cortical sections, as shown by the recovered ramified morphology and lowered iNOS or CD68 immunoreactivity in Iba1-positive cells. Both microglia and astrocytes in mixed glial cultures, but not pure astrocytes, displayed signs of activation and iNOS-immunoreactivity when treated with a conditioned medium (NCM) from OGD-exposed cortical neurons. The epigenetic drugs limited the OGD-NCM-mediated activation. CONCLUSIONS Our findings indicate that single treatment with MS-275 and resveratrol can reduce stroke-mediated brain injury and inflammation observed 2 days after the pMCAO and put the rational to test repeated administration of the drugs. The anti-inflammatory property of MS-275 and resveratrol combination can be ascribed to both primary direct inhibition of microglia/macrophage activation and secondary glial/macrophages inhibition mediated by neuroprotection.
Collapse
|
175
|
Yao HW, Kuan CY. Early neutrophil infiltration is critical for inflammation-sensitized hypoxic-ischemic brain injury in newborns. J Cereb Blood Flow Metab 2020; 40:2188-2200. [PMID: 31842667 PMCID: PMC7585929 DOI: 10.1177/0271678x19891839] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/22/2019] [Accepted: 11/10/2019] [Indexed: 12/27/2022]
Abstract
Neutrophils are the most abundant leukocytes and usually the first immune cell-type recruited to a site of infection or tissue damage. In asphyxiated neonates, elevated peripheral neutrophil counts are associated with poorer neurological outcomes. Induced neutropenia provides brain protection in animal models of neonatal hypoxic-ischemic (HI) injury, but the anti-neutrophil serum used in past studies heavily cross-reacts with monocytes, thus complicating the interpretation of results. Here we examined neutrophil influx and extravasation, and used a specific anti-Ly6G antibody for induced neutropenia against lipopolysaccharide (LPS)-pretreated HI injury in murine neonates, a model for inflammation-sensitized hypoxic-ischemic encephalopathy (HIE). As early as 6 h after the LPS/HI insult, the mRNAs for neutrophil-recruiting and mitogenic chemokines ascended in the ipsilateral hemisphere, coinciding with immuno-detection of neutrophils. However, neutrophils mainly resided within blood vessels, exhibiting signs for neutrophil extracellular traps (NETs), before 48 h post-LPS/HI. Prophylactic anti-Ly6G treatment blocked the brain infiltration of neutrophils, but not monocytes or lymphocytes, and markedly decreased LPS/HI-induced pro-inflammatory cytokines, matrix metalloproteinase 9 (MMP-9), and brain tissue loss. In contrast, anti-Ly6G treatment at 4 h post-LPS/HI failed to prevent the influx of neutrophils and brain damage. Together, these results suggest important pathological functions for early-arriving neutrophils in inflammation-sensitized HIE.
Collapse
Affiliation(s)
- Hui-Wen Yao
- Department of Neuroscience and the Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Chia-Yi Kuan
- Department of Neuroscience and the Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
176
|
Świtońska M, Piekuś-Słomka N, Słomka A, Sokal P, Żekanowska E, Lattanzi S. Neutrophil-to-Lymphocyte Ratio and Symptomatic Hemorrhagic Transformation in Ischemic Stroke Patients Undergoing Revascularization. Brain Sci 2020; 10:brainsci10110771. [PMID: 33114150 PMCID: PMC7690817 DOI: 10.3390/brainsci10110771] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022] Open
Abstract
Objectives: Symptomatic hemorrhagic transformation (sHT) is a life-threatening complication of acute ischemic stroke (AIS). The early identification of the patients at increased risk of sHT can have clinically relevant implications. The aim of this study was to explore the validity and accuracy of the neutrophil-to-lymphocyte ratio (NLR) in predicting sHT in patients with AIS undergoing revascularization. Methods: Consecutive patients hospitalized for AIS who underwent intravenous thrombolysis, mechanical thrombectomy or both were identified. The NLR values were estimated at admission. The study endpoint was the occurrence of sHT within 24 h from stroke treatment. Results: Fifty-one patients with AIS were included, with a median age of 67 (interquartile range, 55–78) years. sHT occurred in 10 (19.6%) patients. Patients who developed sHT had higher NLR at admission. NLR was an independent predictor of sHT and showed good discriminatory power (area under the curve 0.81). In a multivariable analysis, NLR and systolic blood pressure were independently associated with sHT. Conclusions: NLR at admission can accurately predict sHT in patients with AIS undergoing revascularization.
Collapse
Affiliation(s)
- Milena Świtońska
- Department of Neurosurgery and Neurology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85-168 Bydgoszcz, Poland;
- Correspondence: ; Tel.: +48-52-365-5565
| | - Natalia Piekuś-Słomka
- Department of Inorganic and Analytical Chemistry, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85-089 Bydgoszcz, Poland;
| | - Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85-094 Bydgoszcz, Poland; (A.S.); (E.Ż.)
| | - Paweł Sokal
- Department of Neurosurgery and Neurology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85-168 Bydgoszcz, Poland;
| | - Ewa Żekanowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85-094 Bydgoszcz, Poland; (A.S.); (E.Ż.)
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60121 Ancona, Italy;
| |
Collapse
|
177
|
Park J, Chang JY, Kim JY, Lee JE. Monocyte Transmodulation: The Next Novel Therapeutic Approach in Overcoming Ischemic Stroke? Front Neurol 2020; 11:578003. [PMID: 33193029 PMCID: PMC7642685 DOI: 10.3389/fneur.2020.578003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The immune response following neuroinflammation is a vital element of ischemic stroke pathophysiology. After the onset of ischemic stroke, a specialized vasculature system that effectively protects central nervous system tissues from the invasion of blood cells and other macromolecules is broken down within minutes, thereby triggering the inflammation cascade, including the infiltration of peripheral blood leukocytes. In this series of processes, blood-derived monocytes have a significant effect on the outcome of ischemic stroke through neuroinflammatory responses. As neuroinflammation is a necessary and pivotal component of the reparative process after ischemic stroke, understanding the role of infiltrating monocytes in the modulation of inflammatory responses may offer a great opportunity to explore new therapies for ischemic stroke. In this review, we discuss and highlight the function and involvement of monocytes in the brain after ischemic injury, as well as their impact on tissue damage and repair.
Collapse
Affiliation(s)
- Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Young Chang
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
178
|
Kim SW, Davaanyam D, Seol SI, Lee HK, Lee H, Lee JK. Adenosine Triphosphate Accumulated Following Cerebral Ischemia Induces Neutrophil Extracellular Trap Formation. Int J Mol Sci 2020; 21:ijms21207668. [PMID: 33081303 PMCID: PMC7589755 DOI: 10.3390/ijms21207668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022] Open
Abstract
In ischemic stroke, neutrophils infiltrate damaged brain tissue immediately following the ischemic insult and aggravate inflammation via various mechanisms which include neutrophil extracellular traps (NETs) formation. In the present study, we showed that adenosine triphosphate (ATP), a DAMP molecule, accumulates in the brain and induces NETosis in brain parenchyma and in circulating neutrophils (PMNs) isolated from a murine model of stroke induced by middle cerebral artery occlusion (MCAO). Expression of peptidylarginine deiminase-4 (PAD4), which induces citrullination of histones H3 (CitH3) and initiates NETosis, was significantly enhanced in brain parenchyma and blood PMNs following MCAO. ATP or BzATP (a prototypic P2X7R agonist) significantly enhanced the inductions of PAD4 and CitH3 in a P2X7R-dependent manner and intracellular Ca2+ influx, PKCα activation, and NADPH oxidase-dependent reactive oxygen species (ROS) production play critical roles in this ATP-P2X7R-mediated NETosis. In our MCAO animal model, NETosis was markedly suppressed by treatment with apyrase, an enzyme hydrolyzing ATP, but enhanced by co-treatment of BzATP, confirming ATP-P2X7R-mediated NETosis. Since ATP not only induced NETosis but was also extruded after NETosis, our results indicate that ATP accumulated in the ischemic brain induces NETosis, mediating a cross-talk linking NETosis with neuronal damage that might aggravate inflammation and brain damage.
Collapse
Affiliation(s)
- Seung-Woo Kim
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Korea; (S.-W.K.); (D.D.); (S.-I.S.); (H.-K.L.); (H.L.)
- Medical Research Center, Inha University School of Medicine, Incheon 22212, Korea
- Department of Biomedical Sciences, Inha University School of Medicine, Incheon 22212, Korea
| | - Dashdulam Davaanyam
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Korea; (S.-W.K.); (D.D.); (S.-I.S.); (H.-K.L.); (H.L.)
- Medical Research Center, Inha University School of Medicine, Incheon 22212, Korea
| | - Song-I Seol
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Korea; (S.-W.K.); (D.D.); (S.-I.S.); (H.-K.L.); (H.L.)
- Medical Research Center, Inha University School of Medicine, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University School of Medicine, Incheon 22212, Korea
| | - Hye-Kyung Lee
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Korea; (S.-W.K.); (D.D.); (S.-I.S.); (H.-K.L.); (H.L.)
- Medical Research Center, Inha University School of Medicine, Incheon 22212, Korea
| | - Hahnbie Lee
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Korea; (S.-W.K.); (D.D.); (S.-I.S.); (H.-K.L.); (H.L.)
- Medical Research Center, Inha University School of Medicine, Incheon 22212, Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Korea; (S.-W.K.); (D.D.); (S.-I.S.); (H.-K.L.); (H.L.)
- Medical Research Center, Inha University School of Medicine, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University School of Medicine, Incheon 22212, Korea
- Correspondence: ; Tel.: +82-32-860-9893
| |
Collapse
|
179
|
Hagemann N, Mohamud Yusuf A, Martiny C, Zhang X, Kleinschnitz C, Gunzer M, Kolesnick R, Gulbins E, Hermann DM. Homozygous Smpd1 deficiency aggravates brain ischemia/ reperfusion injury by mechanisms involving polymorphonuclear neutrophils, whereas heterozygous Smpd1 deficiency protects against mild focal cerebral ischemia. Basic Res Cardiol 2020; 115:64. [PMID: 33057972 PMCID: PMC7560939 DOI: 10.1007/s00395-020-00823-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/15/2020] [Indexed: 12/29/2022]
Abstract
By cleaving sphingomyelin into ceramide, which is an essential component of plasma membrane microdomains, acid sphingomyelinase (Asm) pivotally controls cell signaling. To define how the activation of the Asm/ceramide pathway, which occurs within seconds to minutes upon stress stimuli, influences brain ischemia/reperfusion (I/R) injury, we exposed male and female wildtype mice carrying both alleles of Asm's gene sphingomyelinase phosphodiesterase-1 (Smpd1+/+), heterozygously Asm-deficient mice (Smpd1+/-) and homozygously Asm-deficient mice (Smpd1-/-) of different age (8, 12 or 16 weeks) to 30, 60 or 90 min intraluminal middle cerebral artery occlusion (MCAO). For studying the contribution of brain-invading polymorphonuclear neutrophils (PMN) to I/R injury, PMNs were depleted by delivery of a PMN-specific Ly6G antibody. In male and female mice exposed to 30 min, but not 60 or 90 min MCAO, homozygous Smpd1-/- consistently increased I/R injury, blood-brain barrier permeability and brain leukocyte and PMN infiltration, whereas heterozygous Smpd1+/- reduced I/R injury. Increased abundance of the intercellular leukocyte adhesion molecule ICAM-1 was noted on cerebral microvessels of Smpd1-/- mice. PMN depletion by anti-Ly6G delivery prevented the exacerbation of I/R injury in Smpd1-/- compared with wildtype mice and reduced brain leukocyte infiltrates. Our results show that Asm tempers leukocyte entry into the reperfused ischemic brain, thereby attenuating I/R injury.
Collapse
Affiliation(s)
- Nina Hagemann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Carlotta Martiny
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Xiaoni Zhang
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | | | - Erich Gulbins
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
180
|
Zhang Q, Liao Y, Liu Z, Dai Y, Li Y, Li Y, Tang Y. Interleukin-17 and ischaemic stroke. Immunology 2020; 162:179-193. [PMID: 32935861 DOI: 10.1111/imm.13265] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/22/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Interleukin-17 (IL-17) is a cytokine family that includes 6 members, IL-17A through IL-17F, most of them are reported to have pro-inflammatory role. Through binding to their receptors (IL-17Rs), IL-17 activates the intracellular signalling pathways to play an important role in autoimmune diseases, including rheumatoid arthritis (RA) and multiple sclerosis (MS). Ischaemic stroke is a complex pathophysiological process mainly caused by regional cerebral ischaemia. Inflammatory factors contribute to the physiological process of stroke that leads to poor prognosis. IL-17 plays a crucial role in promoting inflammatory response and inducing secondary injury in post-stroke. Though immune cells and inflammatory factors have been reported to be involved in the damage of stroke, the functions of IL-17 in this process need to be elucidated. This review focuses on the pathological modulation and the mechanism of IL-17 family in ischaemic stroke and seeking to provide new insights for future therapies.
Collapse
Affiliation(s)
- Qiaohui Zhang
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liao
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenquan Liu
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Dai
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Yunxin Li
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Li
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Yibo Tang
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
181
|
Maida CD, Norrito RL, Daidone M, Tuttolomondo A, Pinto A. Neuroinflammatory Mechanisms in Ischemic Stroke: Focus on Cardioembolic Stroke, Background, and Therapeutic Approaches. Int J Mol Sci 2020; 21:E6454. [PMID: 32899616 PMCID: PMC7555650 DOI: 10.3390/ijms21186454] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
One of the most important causes of neurological morbidity and mortality in the world is ischemic stroke. It can be a result of multiple events such as embolism with a cardiac origin, occlusion of small vessels in the brain, and atherosclerosis affecting the cerebral circulation. Increasing evidence shows the intricate function played by the immune system in the pathophysiological variations that take place after cerebral ischemic injury. Following the ischemic cerebral harm, we can observe consequent neuroinflammation that causes additional damage provoking the death of the cells; on the other hand, it also plays a beneficial role in stimulating remedial action. Immune mediators are the origin of signals with a proinflammatory position that can boost the cells in the brain and promote the penetration of numerous inflammatory cytotypes (various subtypes of T cells, monocytes/macrophages, neutrophils, and different inflammatory cells) within the area affected by ischemia; this process is responsible for further ischemic damage of the brain. This inflammatory process seems to involve both the cerebral tissue and the whole organism in cardioembolic stroke, the stroke subtype that is associated with more severe brain damage and a consequent worse outcome (more disability, higher mortality). In this review, the authors want to present an overview of the present learning of the mechanisms of inflammation that takes place in the cerebral tissue and the role of the immune system involved in ischemic stroke, focusing on cardioembolic stroke and its potential treatment strategies.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (R.L.N.); (M.D.); (A.T.); (A.P.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (R.L.N.); (M.D.); (A.T.); (A.P.)
| | - Mario Daidone
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (R.L.N.); (M.D.); (A.T.); (A.P.)
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (R.L.N.); (M.D.); (A.T.); (A.P.)
| | - Antonio Pinto
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (R.L.N.); (M.D.); (A.T.); (A.P.)
| |
Collapse
|
182
|
Cao X, Zhu Q, Xia X, Yao B, Liang S, Chen Z, Wu M. The correlation between novel peripheral blood cell ratios and 90-day mortality in patients with acute ischemic stroke. PLoS One 2020; 15:e0238312. [PMID: 32857820 PMCID: PMC7454963 DOI: 10.1371/journal.pone.0238312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We aimed to investigate the correlation between the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), platelet-to-neutrophil ratio (PNR), platelet-to-white blood cell ratio (PWR) and 90-day mortality in patients with acute ischemic stroke (AIS). METHODS We retrospectively included 633 patients with AIS from January 2017 to May 2018. The correlation between each indicator and the degree of neurologic deficit was assessed. Kaplan-Meier survival curves based on blood cell ratios were used to analyze the 90-day survival rate of patients with AIS. RESULTS A total of 663 patients with AIS were enrolled, of which 24 (3.6%) experienced recurrence and 13 (2.0%) died. NLR>3.23 (odds ratio; OR = 2.236; 95% confidence interval [CI], 1.472-3.397; P<0.001), PNR<31.14 (OR = 0.471; 95% CI, 0.297-0.749; P = 0.001), and PWR<20.62 (OR = 0.498; 95% CI, 0.309-0.800; P = 0.004) were associated with an unfavorable 90-day prognosis. NLR>3.23, PWR<20.62, and PNR<31.14 were associated with an increased risk of 90-day mortality. CONCLUSION PNR, PWR, and NLR were associated with the 90-day mortality of patients with AIS. Patients with high NLRs or low PWRs and PNRs may have a greater risk of mortality than other patients. These clinical indicators may help clinicians judge unfavorable prognosis early and implement the appropriate interventions.
Collapse
Affiliation(s)
- Xiaofeng Cao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qing Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xin Xia
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Beibei Yao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Seng Liang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Zhaoyao Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Minghua Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
183
|
Sarvari S, Moakedi F, Hone E, Simpkins JW, Ren X. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab Brain Dis 2020; 35:851-868. [PMID: 32297170 PMCID: PMC7988906 DOI: 10.1007/s11011-020-00573-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Stroke is the leading cause of disability among adults as well as the 2nd leading cause of death globally. Ischemic stroke accounts for about 85% of strokes, and currently, tissue plasminogen activator (tPA), whose therapeutic window is limited to up to 4.5 h for the appropriate population, is the only FDA approved drug in practice and medicine. After a stroke, a cascade of pathophysiological events results in the opening of the blood-brain barrier (BBB) through which further complications, disabilities, and mortality are likely to threaten the patient's health. Strikingly, tPA administration in eligible patients might cause hemorrhagic transformation and sustained damage to BBB integrity. One must, therefore, delineate upon stroke onset which cellular and molecular factors mediate BBB permeability as well as what key roles BBB rupture plays in the pathophysiology of stroke. In this review article, given our past findings of mechanisms underlying BBB opening in stroke animal models, we elucidate cellular, subcellular, and molecular factors involved in BBB permeability after ischemic stroke. The contribution of each factor to stroke severity and outcome is further discussed. Determinant factors in BBB permeability and stroke include mitochondria, miRNAs, matrix metalloproteinases (MMPs), immune cells, cytokines, chemokines, and adhesion proteins. Once these factors are interrogated and their roles in the pathophysiology of stroke are determined, novel targets for drug discovery and development can be uncovered in addition to novel therapeutic avenues for human stroke management.
Collapse
Affiliation(s)
- Sajad Sarvari
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Faezeh Moakedi
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Emily Hone
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - James W Simpkins
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Experimental Stroke Core Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA
| | - Xuefang Ren
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA.
- Experimental Stroke Core Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA.
| |
Collapse
|
184
|
Kömürcü HF, Gözke E, Doğan Ak P, Kalyoncu Aslan I, Salt I, Özgenç Bi¸er Çİ. Changes in neutrophil, lymphocyte, platelet ratios and their relationship with NIHSS after rtPA and/or thrombectomy in ischemic stroke. J Stroke Cerebrovasc Dis 2020; 29:105004. [DOI: 10.1016/j.jstrokecerebrovasdis.2020.105004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
|
185
|
Tang L, Wang Z, Mu Q, Yu Z, Jacobson O, Li L, Yang W, Huang C, Kang F, Fan W, Ma Y, Wang M, Zhou Z, Chen X. Targeting Neutrophils for Enhanced Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002739. [PMID: 32656801 DOI: 10.1002/adma.202002739] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/18/2020] [Indexed: 05/18/2023]
Abstract
Improving tumor accumulation and delivery efficiency is an important goal of nanomedicine. Neutrophils play a vital role in both chemically mediating inflammatory response through myeloperoxidase (MPO) and biologically promoting metastasis during inflammation triggered by the primary tumor or environmental stimuli. Herein, a novel theranostic nanomedicine that targets both the chemical and biological functions of neutrophils in tumor is designed, facilitating the enhanced retention and sustained release of drug cargos for improved cancer theranostics. 5-hydroxytryptamine (5-HT) is equipped onto nanoparticles (NPs) loaded with photosensitizers and Zileuton (a leukotriene inhibitor) to obtain MPO and neutrophil targeting NPs, denoted as HZ-5 NPs. The MPO targeting property of 5-HT modified NPs is confirmed by noninvasive positron emission tomography imaging studies. Furthermore, photodynamic therapy is used to initiate the inflammatory response which further mediated the accumulation and retention of neutrophil targeting NPs in a breast cancer model. This design renders a greatly improved theranostic nanomedicine for efficient tumor suppression, and more importantly, inhibition of neutrophil-mediated lung metastasis via the sustained release of Zileuton. This work presents a novel strategy of targeting neutrophils for improved tumor theranostics, which may open up new avenues in designing nanomedicine through exploiting the tumor microenvironment.
Collapse
Affiliation(s)
- Longguang Tang
- The People's Hospital of Gaozhou, Maoming, 525200, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qingchun Mu
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ling Li
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weijing Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chunming Huang
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Fei Kang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maosheng Wang
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
186
|
Circulating miRNA-3552 as a Potential Biomarker for Ischemic Stroke in Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4501393. [PMID: 32724801 PMCID: PMC7381948 DOI: 10.1155/2020/4501393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 01/26/2023]
Abstract
Objective With the growing incidence of ischemic stroke worldwide, there is an urgent need to identify blood biomarkers for ischemic stroke patients. Thus, our aim was to identify potential circulating microRNA (miRNA) as a potential biomarker and to explore its potential mechanism for ischemic stroke in rats. Methods The mRNA dataset GSE97537 and miRNA dataset GSE97532 were downloaded from the Gene Expression Omnibus (GEO) GSE97537 including 7 middle cerebral artery occlusion (MCAO) rat brain tissues and 5 sham-operated rat brain tissues GSE97532 including 6 MCAO rat blood samples and 3 sham-operated rat blood samples. Differentially expressed mRNAs and miRNAs with corrected p value ≤ 0.01 and fold change ≥2 or ≤0.05 were identified. To explore potential biological processes and pathways of differentially expressed mRNAs, functional enrichment analysis was performed. The target mRNAs of differentially expressed miRNAs were predicted using DNA Intelligent Analysis (DIANA)-microT tools. The target mRNAs and differentially expressed mRNAs were intersected. Results 1228 differentially expressed mRNAs in MCAO rat brain tissues were identified. Highly expressed mRNAs were mainly enriched in the inflammatory responses. Nine differentially expressed miRNAs were identified in MCAO rat blood samples. A total of 673 target mRNAs were predicted to significantly bind these differentially expressed miRNAs. Among them, 54 target mRNAs were differentially expressed in MCAO rat blood samples. Enrichment analysis results showed that these 54 target mRNAs were closely related to neurological diseases and immune responses. Among all miRNA-mRNA relationship, miR-3552-CASP3 interaction was identified, indicating that CASP3 might be mediated by miR-3552. Functional enrichment analysis revealed that CASP3 was involved in the apoptosis pathway, indicating that miR-3552 might participate in apoptosis by CASP3. Conclusion Our findings reveal that circulating miR-3552 shows promise as a potential biomarker for ischemic stroke in rats.
Collapse
|
187
|
Kim SW, Lee JK. Role of HMGB1 in the Interplay between NETosis and Thrombosis in Ischemic Stroke: A Review. Cells 2020; 9:cells9081794. [PMID: 32731558 PMCID: PMC7464684 DOI: 10.3390/cells9081794] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps (NETs) comprise decondensed chromatin, histones and neutrophil granular proteins and are involved in the response to infectious as well as non-infectious diseases. The prothrombotic activity of NETs has been reported in various thrombus-related diseases; this activity can be attributed to the fact that the NETs serve as a scaffold for cells and numerous coagulation factors and stimulate fibrin deposition. A crosstalk between NETs and thrombosis has been indicated to play a role in numerous thrombosis-related conditions including stroke. In cerebral ischemia, neutrophils are the first group of cells to infiltrate the damaged brain tissue, where they produce NETs in the brain parenchyma and within blood vessels, thereby aggravating inflammation. Increasing evidences suggest the connection between NETosis and thrombosis as a possible cause of “tPA resistance”, a problem encountered during the treatment of stroke patients. Several damage-associated molecular pattern molecules have been proven to induce NETosis and thrombosis, with high mobility group box 1 (HMGB1) playing a critical role. This review discusses NETosis and thrombosis and their crosstalk in various thrombosis-related diseases, focusing on the role of HMGB1 as a mediator in stroke. We also addresses the function of peptidylarginine deiminase 4 with respect to the interplay with HMGB1 in NET-induced thrombosis.
Collapse
Affiliation(s)
- Seung-Woo Kim
- Department of Biomedical Sciences, Inha University School of Medicine, Inchon 22212, Korea;
- Medical Research Center, Inha University School of Medicine, Inchon 22212, Korea
| | - Ja-Kyeong Lee
- Medical Research Center, Inha University School of Medicine, Inchon 22212, Korea
- Department of Anatomy, Inha University School of Medicine, Inchon 22212, Korea
- Correspondence: ; Tel.: +82-32-860-9893; Fax: +82-32-884-2105
| |
Collapse
|
188
|
Sasaki R, Yamashita T, Tadokoro K, Matsumoto N, Nomura E, Omote Y, Takemoto M, Hishikawa N, Ohta Y, Abe K. Direct arterial damage and neurovascular unit disruption by mechanical thrombectomy in a rat stroke model. J Neurosci Res 2020; 98:2018-2026. [PMID: 32557772 DOI: 10.1002/jnr.24671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/11/2020] [Accepted: 05/19/2020] [Indexed: 11/10/2022]
Abstract
Mechanical thrombectomy (MT) is a standard treatment for acute ischemic stroke that could cause hemorrhagic complications. We aimed to evaluate the pathology of MT-induced arterial damage and neurovascular unit (NVU) disruption in relation to tissue-type plasminogen activator (tPA) injection for acute ischemic stroke. We induced transient middle cerebral artery occlusion in male SHR/Izm rats for 2 hr. This was followed by reperfusion with/without tPA (3 mg/kg) and "rough suture" insertion that mimicked MT once or thrice (MT1 or MT3). Compared with the control group, the tPA + MT3 group presented with an increase in the cerebral infarct and hemorrhage with severer IgG leakage. Moreover, structural damage reaching the tunica media was detected in the MT3 and tPA + MT3 groups. The tPA + MT3 group presented with increased matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) expression with some MMP9-positive cells expressing a neutrophil marker myeloperoxidase. Furthermore, basal lamina detachment from astrocyte foot processes was observed in the tPA + MT1 and tPA + MT3 groups. These findings suggest that MT causes direct arterial damage, as well as VEGF and MMP9 upregulation, which results in NVU disruption and hemorrhagic complications in acute ischemic stroke, especially when combined with tPA.
Collapse
Affiliation(s)
- Ryo Sasaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Namiko Matsumoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Emi Nomura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshio Omote
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
189
|
Redox signalling and regulation of the blood-brain barrier. Int J Biochem Cell Biol 2020; 125:105794. [PMID: 32562769 DOI: 10.1016/j.biocel.2020.105794] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
Neurological disorders are associated with increased oxidative stress. Reactive oxidants damage tissue and promote cell death, but it is apparent that oxidants can have more subtle effects on cell function through the modulation of redox-sensitive signalling pathways. Cells of the blood-brain barrier regulate the brain microenvironment but become dysfunctional during neurological disease. The blood-brain barrier is maintained by many cell types, and is modulated by redox-sensitive pathways, ranging from the cytoskeletal elements responsible for establishing a barrier, to growth factor and cytokine signalling pathways that influence neurovascular cells. During neurological disease, blood-brain barrier cells are exposed to exogenously generated oxidants from immune cells, as well as increasing endogenously oxidant production. These oxidants impair the function of the blood-brain barrier, leading to increased leakage and reduced blood flow. Reducing the impact of oxidants on the function of blood-brain barrier cells may provide new strategies for delaying the progression of neurological disease.
Collapse
|
190
|
Mastorakos P, McGavern D. The anatomy and immunology of vasculature in the central nervous system. Sci Immunol 2020; 4:4/37/eaav0492. [PMID: 31300479 DOI: 10.1126/sciimmunol.aav0492] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022]
Abstract
Barriers between circulation and the central nervous system (CNS) play a key role in the development and modulation of CNS immune responses. Structural variations in the vasculature traversing different anatomical regions within the CNS strongly influence where and how CNS immune responses first develop. Here, we provide an overview of cerebrovascular anatomy, focusing on the blood-CNS interface and how anatomical variations influence steady-state immunology in the compartment. We then discuss how CNS vasculature is affected by and influences the development of different pathophysiological states, such as CNS autoimmune disease, cerebrovascular injury, cerebral ischemia, and infection.
Collapse
Affiliation(s)
- Panagiotis Mastorakos
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dorian McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
191
|
Iadecola C, Buckwalter MS, Anrather J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J Clin Invest 2020; 130:2777-2788. [PMID: 32391806 PMCID: PMC7260029 DOI: 10.1172/jci135530] [Citation(s) in RCA: 372] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stroke is the second leading cause of death worldwide and a leading cause of disability. Most strokes are caused by occlusion of a major cerebral artery, and substantial advances have been made in elucidating how ischemia damages the brain. In particular, increasing evidence points to a double-edged role of the immune system in stroke pathophysiology. In the acute phase, innate immune cells invade brain and meninges and contribute to ischemic damage, but may also be protective. At the same time, danger signals released into the circulation by damaged brain cells lead to activation of systemic immunity, followed by profound immunodepression that promotes life-threatening infections. In the chronic phase, antigen presentation initiates an adaptive immune response targeted to the brain, which may underlie neuropsychiatric sequelae, a considerable cause of poststroke morbidity. Here, we briefly review these pathogenic processes and assess the potential therapeutic value of targeting immunity in human stroke.
Collapse
Affiliation(s)
- Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Marion S. Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, California, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
192
|
Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun 2020; 11:2488. [PMID: 32427863 PMCID: PMC7237502 DOI: 10.1038/s41467-020-16191-y] [Citation(s) in RCA: 260] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/20/2020] [Indexed: 01/13/2023] Open
Abstract
Neovascularization and vascular remodeling are functionally important for brain repair after stroke. We show that neutrophils accumulate in the peri-infarct cortex during all stages of ischemic stroke. Neutrophils producing intravascular and intraparenchymal neutrophil extracellular traps (NETs) peak at 3-5 days. Neutrophil depletion reduces blood-brain barrier (BBB) breakdown and enhances neovascularization at 14 days. Peptidylarginine deiminase 4 (PAD4), an enzyme essential for NET formation, is upregulated in peri-ischemic brains. Overexpression of PAD4 induces an increase in NET formation that is accompanied by reduced neovascularization and increased BBB damage. Disruption of NETs by DNase 1 and inhibition of NET formation by genetic ablation or pharmacologic inhibition of PAD increases neovascularization and vascular repair and improves functional recovery. Furthermore, PAD inhibition reduces stroke-induced STING-mediated production of IFN-β, and STING knockdown and IFN receptor-neutralizing antibody treatment reduces BBB breakdown and increases vascular plasticity. Collectively, our results indicate that NET release impairs vascular remodeling during stroke recovery.
Collapse
|
193
|
Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020; 158:104877. [PMID: 32407958 DOI: 10.1016/j.phrs.2020.104877] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress and neuroinflammation are critical pathological processes in cerebral ischemia-reperfusion injury, and their intimate interactions mediate neuronal damage, blood-brain barrier (BBB) damage and hemorrhagic transformation (HT) during ischemic stroke. We review current progress towards understanding the interactions of oxidative/nitrosative stress and inflammatory responses in ischemic brain injury. The interactions between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and innate immune receptors such as TLR2/4, NOD-like receptor, RAGE, and scavenger receptors are crucial pathological mechanisms that amplify brain damage during cerebral ischemic injury. Furthermore, we review the current progress of omics and systematic biology approaches for studying complex network regulations related to oxidative/nitrosative stress and inflammation in the pathology of ischemic stroke. Targeting oxidative/nitrosative stress and neuroinflammation could be a promising therapeutic strategy for ischemic stroke treatment. We then review recent advances in discovering compounds from medicinal herbs with the bioactivities of simultaneously regulating oxidative/nitrosative stress and pro-inflammatory molecules for minimizing ischemic brain injury. These compounds include sesamin, baicalin, salvianolic acid A, 6-paradol, silymarin, apocynin, 3H-1,2-Dithiole-3-thione, (-)-epicatechin, rutin, Dl-3-N-butylphthalide, and naringin. We finally summarize recent developments of the omics and systematic biology approaches for exploring the molecular mechanisms and active compounds of Traditional Chinese Medicine (TCM) formulae with the properties of antioxidant and anti-inflammation for neuroprotection. The comprehensive omics and systematic biology approaches provide powerful tools for exploring therapeutic principles of TCM formulae and developing precision medicine for stroke treatment.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Yacong He
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
194
|
A novel approach to treatment of thromboembolic stroke in mice: Redirecting neutrophils toward a peripherally implanted CXCL1-soaked sponge. Exp Neurol 2020; 330:113336. [PMID: 32360283 DOI: 10.1016/j.expneurol.2020.113336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/30/2020] [Accepted: 04/28/2020] [Indexed: 11/23/2022]
Abstract
Neutrophils are considered key participants in post-ischemic stroke inflammation. They are the first white blood cells to arrive in ischemic brain and their presence in the brain tissue positively correlates with post-ischemic injury severity. CXCL1 is a neutrophil attractant chemokine and the present study evaluates whether redirecting neutrophil migration using a peripherally implanted CXCL1-soaked sponge can reduce brain inflammation and improve outcomes in a novel mouse model of thromboembolic (TE) stroke. TE stroke was induced by injection of a platelet-rich microemboli suspension into the internal carotid artery of adult C57BL/6 male mice. The model induced neuroinflammation that was associated with increases in multiple brain and serum cytokines/chemokines at the mRNA and protein levels, including very marked increases in CXCL1. In other groups of animals, an absorbable sterile hemostatic sponge, previously immersed in either saline (0.9%NaCl) or CXCL1, was implanted into subcutaneous pockets formed in the inguinal region on the left and right side following stroke surgery. Mice implanted with the sponge soaked with CXCL1 had significantly reduced neuroinflammation and infarct size after TE stroke compared to mice implanted with the sponge soaked with 0.9%NaCl. There was also reduced mortality and improved neurological deficits in the TE stroke + CXCL1 sponge group compared to the TE stroke +0.9%NaCl sponge group. In conclusion: redirecting bloodstream leukocytes toward a peripherally-implanted neutrophil chemokine CXCL1-soaked sponge improves outcomes in a novel mouse model of thromboembolic stroke. The present findings suggest a novel therapeutic strategy for patients with acute stroke.
Collapse
|
195
|
Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat Rev Neurol 2020; 16:247-264. [PMID: 32322099 DOI: 10.1038/s41582-020-0350-6] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Despite many years of research, no biomarkers for stroke are available to use in clinical practice. Progress in high-throughput technologies has provided new opportunities to understand the pathophysiology of this complex disease, and these studies have generated large amounts of data and information at different molecular levels. The integration of these multi-omics data means that thousands of proteins (proteomics), genes (genomics), RNAs (transcriptomics) and metabolites (metabolomics) can be studied simultaneously, revealing interaction networks between the molecular levels. Integrated analysis of multi-omics data will provide useful insight into stroke pathogenesis, identification of therapeutic targets and biomarker discovery. In this Review, we detail current knowledge on the pathology of stroke and the current status of biomarker research in stroke. We summarize how proteomics, metabolomics, transcriptomics and genomics are all contributing to the identification of new candidate biomarkers that could be developed and used in clinical stroke management.
Collapse
|
196
|
Semerano A, Strambo D, Martino G, Comi G, Filippi M, Roveri L, Bacigaluppi M. Leukocyte Counts and Ratios Are Predictive of Stroke Outcome and Hemorrhagic Complications Independently of Infections. Front Neurol 2020; 11:201. [PMID: 32308640 PMCID: PMC7145963 DOI: 10.3389/fneur.2020.00201] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/06/2020] [Indexed: 01/14/2023] Open
Abstract
Background: Ischemic stroke patients show alterations in peripheral leukocyte counts that may result from the sterile inflammation response as well as the occurrence of early infections. We here aimed to determine whether alterations of circulating leukocytes in acute ischemic stroke are associated with long-term functional outcome and hemorrhagic complications, independently of the occurrence of infections. Methods: Blood laboratory values of patients with acute ischemic stroke, presenting within 4.5 h from symptom onset, were collected. Leukocyte subsets were analyzed in relation to 3-month functional outcome, mortality, and parenchymal hemorrhagic transformation (PH). A multivariable logistic regression analysis, considering the occurrence of early post-stroke infections, was performed for each outcome measure. Results: Five-hundred-ten patients were included in the study. Independently of infections, good functional outcome was associated with a lower neutrophil to lymphocyte ratio (NL-R, OR 0.906 [95% CI 0.822-0.998]), a higher lymphocyte count (OR 1.547 [95% CI 1.051-2.277]), a higher eosinophil count (OR 1.027 [95% CI 1.007-1.048]), and a higher eosinophil to leukocyte ratio (EoLeu-R, OR 1.240 [95% CI 1.071-1.436]) at admission. Death within 3 months was associated with higher NL-R (OR 1.103 [95% CI 1.032-1.179]) as well as with lower eosinophil counts (OR 0.909 [95% CI 0.827-0.999]). Patients developing parenchymal hemorrhagic transformation had higher neutrophil counts (OR 1.420 [95% CI 1.197-1.684]) as well as a higher NL-R (OR 1.192 [95% IC 1.088-1.305]). Conclusion: Leukocyte subtype profiles in the acute phase of ischemic stroke represent a predictor of outcome independently of infections. Stroke-evoked sterile inflammation is a pathophysiological relevant mechanism that deserves further investigation.
Collapse
Affiliation(s)
- Aurora Semerano
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Hospital, Milan, Italy.,Neurology Department, San Raffaele Hospital, Milan, Italy
| | - Davide Strambo
- Neurology Department, San Raffaele Hospital, Milan, Italy.,Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Hospital, Milan, Italy
| | - Giancarlo Comi
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Hospital, Milan, Italy.,Neurology Department, San Raffaele Hospital, Milan, Italy
| | | | - Luisa Roveri
- Neurology Department, San Raffaele Hospital, Milan, Italy
| | - Marco Bacigaluppi
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Hospital, Milan, Italy.,Neurology Department, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
197
|
Lu Y, Lu X, Zhang C, Marchand PJ, Lesage F. Longitudinal optical coherence tomography imaging of tissue repair and microvasculature regeneration and function after targeted cerebral ischemia. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-15. [PMID: 32285652 PMCID: PMC7152803 DOI: 10.1117/1.jbo.25.4.046002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Understanding how the brain recovers from cerebral tissue and vascular damage after an ischemic event can help develop new therapeutic strategies for the treatment of stroke. AIM We investigated cerebral tissue repair and microvasculature regeneration and function after a targeted ischemic stroke. APPROACH Following photothrombosis occlusion of microvasculature, chronic optical coherence tomography (OCT)-based angiography was used to track ischemic tissue repair and microvasculature regeneration at three different cortical depths and up to 28 days in awake animals. Capillary network orientation analysis was performed to study the structural pattern of newly formed microvasculature. Based on the time-resolved OCT-angiography, we also investigated capillary stalling, which is likely related to ischemic stroke-induced inflammation. RESULTS Deeper cerebral tissue was found to have a larger ischemic area than shallower regions at any time point during the course of poststroke recovery, which suggests that cerebral tissue located deep in the cortex is more vulnerable. Regenerated microvasculature had a highly organized pattern at all cortical depths with a higher degree of structural reorganization in deeper regions. Additionally, capillary stalling event analysis revealed that cerebral ischemia augmented stalling events considerably. CONCLUSION Longitudinal OCT angiography reveals that regenerated capillary network has a highly directional pattern and an increased density and incidence of capillary stalling event.
Collapse
Affiliation(s)
- Yuankang Lu
- Laboratoire d’Imagerie Optique et Moléculaire, École Polytechnique de Montréal, Montréal, Québec, Canada
| | - Xuecong Lu
- Laboratoire d’Imagerie Optique et Moléculaire, École Polytechnique de Montréal, Montréal, Québec, Canada
| | - Cong Zhang
- Laboratoire d’Imagerie Optique et Moléculaire, École Polytechnique de Montréal, Montréal, Québec, Canada
- Université de Montreal, Montréal, Québec, Canada
| | - Paul J. Marchand
- Laboratoire d’Imagerie Optique et Moléculaire, École Polytechnique de Montréal, Montréal, Québec, Canada
| | - Frédéric Lesage
- Laboratoire d’Imagerie Optique et Moléculaire, École Polytechnique de Montréal, Montréal, Québec, Canada
- Institut de Cardiologie de Montréal, Montréal, Québec, Canada
| |
Collapse
|
198
|
Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 108:377-396. [DOI: 10.1002/jlb.4mir0220-574rr] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México Mexico City Mexico
| |
Collapse
|
199
|
Marchetti L, Engelhardt B. Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. VASCULAR BIOLOGY 2020; 2:H1-H18. [PMID: 32923970 PMCID: PMC7439848 DOI: 10.1530/vb-19-0033] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
To maintain the homeostatic environment required for proper function of CNS neurons the endothelial cells of CNS microvessels tightly regulate the movement of ions and molecules between the blood and the CNS. The unique properties of these blood vascular endothelial cells are termed blood-brain barrier (BBB) and extend to regulating immune cell trafficking into the immune privileged CNS during health and disease. In general, extravasation of circulating immune cells is a multi-step process regulated by the sequential interaction of adhesion and signalling molecules between the endothelial cells and the immune cells. Accounting for the unique barrier properties of CNS microvessels, immune cell migration across the BBB is distinct and characterized by several adaptations. Here we describe the mechanisms that regulate immune cell trafficking across the BBB during immune surveillance and neuroinflammation, with a focus on the current state-of-the-art in vitro and in vivo imaging observations.
Collapse
Affiliation(s)
- Luca Marchetti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
200
|
Ying A, Cheng Y, Lin Y, Yu J, Wu X, Lin Y. Dynamic increase in neutrophil levels predicts parenchymal hemorrhage and function outcome of ischemic stroke with r-tPA thrombolysis. Neurol Sci 2020; 41:2215-2223. [PMID: 32180156 DOI: 10.1007/s10072-020-04324-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The higher level of neutrophil on admission has been reported to predict worse 3-month outcomes in ischemic stroke patients. Our study was to explore the dynamic changes of neutrophil and lymphocyte after r-tPA thrombolysis of ischemic stroke and the relationship with parenchymal hemorrhage (PH) and 3-month function outcome. METHODS A total of 208 acute ischemic stroke (AIS) patients with intravenous thrombolysis were included and then received 3-month follow-up in the present study. Blood samples for neutrophil and lymphocyte counts were obtained on admission, at 24 h and at 7 days after r-tPA infusion. The associations of increase in neutrophil, lymphocyte, and neutrophil to lymphocyte ratio (NLR) with PH or 3-month poor outcome were examined by logistic regression. RESULTS Increasing trends in the neutrophil and NLR were observed in AIS patients after r-tPA treatment. Increased level of neutrophil at 24 h after r-tPA infusion but not that on admission was associated with PH (OR = 2.86, P = 0.029) and 3-month poorer functional outcomes (OR = 2.67, P = 0.009). Moreover, patients were divided into four groups according to the percent change in neutrophil within 24 h following r-tPA treatment, and we found that there was a trend of incremental OR when compared higher increase group with lower ones. CONCLUSIONS Dynamic increase in neutrophil and NLR after stroke may predict PH and 3-month poor outcome in AIS patients receiving r-tPA treatment. Therefore, neutrophil and NLR may serve as activity markers for PH and 3-month poor prognosis in AIS patients with intravenous thrombolysis.
Collapse
Affiliation(s)
- AnNa Ying
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - YaNi Cheng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - YanYan Lin
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - JunRu Yu
- Department of Neurology, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - XiaoYun Wu
- Department of Rehabilitation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - YuanShao Lin
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|