151
|
Krohne G, Benavente R, Scheer U, Dabauvalle MC. The nuclear lamina in Heidelberg and Würzburg: a personal view. Eur J Cell Biol 2005; 84:163-79. [PMID: 15819398 DOI: 10.1016/j.ejcb.2004.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Georg Krohne
- Division of Electron Microscopy, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | |
Collapse
|
152
|
Alberio R, Johnson AD, Stick R, Campbell KHS. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm. Exp Cell Res 2005; 307:131-41. [PMID: 15922733 DOI: 10.1016/j.yexcr.2005.02.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 02/17/2005] [Accepted: 02/19/2005] [Indexed: 11/29/2022]
Abstract
The mechanisms governing nuclear reprogramming have not been fully elucidated yet; however, recent studies show a universally conserved ability of both oocyte and egg components to reprogram gene expression in somatic cells. The activation of genes associated with pluripotency by oocyte/egg components may require the remodeling of nuclear structures, such that they can acquire the features of early embryos and pluripotent cells. Here, we report on the remodeling of the nuclear lamina of mammalian cells by Xenopus oocyte and egg extracts. Lamin A/C is removed from somatic cells incubated in oocyte and egg extracts in an active process that requires permeable nuclear pores. Removal of lamin A/C is specific, since B-type lamins are not changed, and it is not dependent on the incorporation Xenopus egg specific lamin III. Moreover, transcriptional activity is differentially regulated in somatic cells incubated in the extracts. Pol I and II transcriptions are maintained in cells in oocyte extracts; however, both activities are abolished in egg extracts. Our study shows that components of oocyte and egg extracts can modify the nuclear lamina of somatic cells and that this nuclear remodeling induces a structural change in the nucleus which may have implications for transcriptional activity. These experiments suggest that modifications in the nuclear lamina structure by the removal of somatic proteins and the incorporation of oocyte/egg components may contribute to the reprogramming of somatic cell nuclei and may define a characteristic configuration of pluripotent cells.
Collapse
Affiliation(s)
- Ramiro Alberio
- Animal Development and Biotechnology Group, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, LE12 5RD, UK
| | | | | | | |
Collapse
|
153
|
Mounkes LC, Kozlov SV, Rottman JN, Stewart CL. Expression of an LMNA-N195K variant of A-type lamins results in cardiac conduction defects and death in mice. Hum Mol Genet 2005; 14:2167-80. [PMID: 15972724 DOI: 10.1093/hmg/ddi221] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nuclear lamina is an approximately 10 nm thick proteinaceous layer underlying the inner nuclear membrane. The A-type lamins, nuclear intermediate filament proteins encoded by the LMNA gene, are basic components of the nuclear lamina. Mutations in LMNA are associated with the laminopathies, congenital diseases affecting tissue regeneration and homeostasis. One of these laminopathies associated with missense mutations in LMNA is dilated cardiomyopathy with conduction system disease (DCM-CD1). To understand how the laminopathies arise from different mutations in a single gene, we derived a mouse line by homologous recombination expressing the Lmna-N195K variant of the A-type lamins with an asparagine-to-lysine substitution at amino acid 195, which causes DCM in humans. This mouse line shows characteristics consistent with DCM-CD1. Continuous electrocardiographic monitoring of cardiac activity demonstrated that LmnaN195K/N195K mice die at an early age due to arrhythmia. By immunofluorescence and western analysis, the transcription factor Hf1b/Sp4 and the gap junction proteins connexin 40 and connexin 43 were misexpressed and/or mislocalized in LmnaN195K/N195K hearts. Desmin staining revealed a loss of organization at sarcomeres and intercalated disks. Mutations within the LMNA gene may therefore cause cardiomyopathy by disrupting the internal organization of the cardiomyocyte and/or altering the expression of transcription factors essential to normal cardiac development, aging or function.
Collapse
Affiliation(s)
- Leslie C Mounkes
- National Cancer Institute, Cancer and Developmental Biology Laboratory, Frederick, PO Box B, Building 539, Room 121A, MD 21702, USA
| | | | | | | |
Collapse
|
154
|
Worman HJ, Courvalin JC. Nuclear envelope, nuclear lamina, and inherited disease. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:231-79. [PMID: 16164970 DOI: 10.1016/s0074-7696(05)46006-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear envelope is composed of the nuclear membranes, nuclear lamina, and nuclear pore complexes. In recent years, mutations in nuclear-envelope proteins have been shown to cause a surprisingly wide array of inherited diseases. While the mutant proteins are generally expressed in most or all differentiated somatic cells, many mutations cause fairly tissue-specific disorders. Perhaps the most dramatic case is that of mutations in A-type lamins, intermediate filament proteins associated with the inner nuclear membrane. Different mutations in the same lamin proteins have been shown to cause striated muscle diseases, partial lipodystrophy syndromes, a peripheral neuropathy, and disorders with features of severe premature aging. In this review, we summarize fundamental aspects of nuclear envelope structure and function, the inherited diseases caused by mutations in lamins and other nuclear envelope proteins, and possible pathogenic mechanisms.
Collapse
Affiliation(s)
- Howard J Worman
- Department of Medicine and Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
155
|
Ralle T, Grund C, Franke WW, Stick R. Intranuclear membrane structure formations by CaaX-containing nuclear proteins. J Cell Sci 2004; 117:6095-104. [PMID: 15546917 DOI: 10.1242/jcs.01528] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The nuclear lamina is a protein meshwork lining the nucleoplasmic face of the nuclear envelope. Association of lamins with the inner nuclear membrane is mediated by specific modifications in the CaaX motif at their C-termini. B-type lamins are permanently isoprenylated whereas lamin A loses its modification by a lamin A-specific processing step after incorporation into the lamina. Lamins are differentially expressed during development and tissue differentiation. Here we show that an increased synthesis of lamins B1 and B2 in amphibian oocytes induces the formation of intranuclear membrane structures that form extensive arrays of stacked cisternae. These 'lamin membrane arrays' are attached to the inner nuclear membrane but are not continuous with it. Induction of this membrane proliferation depends on CaaX-specific posttranslational modification. Moreover, in transfected HeLa cells, chimeric GFP containing a nuclear localization signal and a C-terminal CaaX motif of N-Ras induces intranuclear membrane stacks that resemble those induced by lamins and ER-like cisternae that are induced in the cytoplasm upon increased synthesis of integral ER membrane proteins. Implications for the synthesis of CaaX-containing proteins are discussed and the difference from intranuclear fibrous lamina annulate lamellae formations is emphasized.
Collapse
Affiliation(s)
- Thorsten Ralle
- Department of Cell Biology, University of Bremen, PO Box 33 04 40, 28334 Bremen, Germany
| | | | | | | |
Collapse
|
156
|
Vergnes L, Péterfy M, Bergo MO, Young SG, Reue K. Lamin B1 is required for mouse development and nuclear integrity. Proc Natl Acad Sci U S A 2004; 101:10428-33. [PMID: 15232008 PMCID: PMC478588 DOI: 10.1073/pnas.0401424101] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Indexed: 12/14/2022] Open
Abstract
Lamins are key structural components of the nuclear lamina, an intermediate filament meshwork that lies beneath the inner nuclear membrane. Lamins play a role in nuclear architecture, DNA replication, and gene expression. Mutations affecting A-type lamins have been associated with a variety of human diseases, including muscular dystrophy, cardiomyopathy, lipodystrophy, and progeria, but mutations in B-type lamins have never been identified in humans or in experimental animals. To investigate the in vivo function of lamin B1, the major B-type lamin, we generated mice with an insertional mutation in Lmnb1. The mutation resulted in the synthesis of a mutant lamin B1 protein lacking several key functional domains, including a portion of the rod domain, the nuclear localization signal, and the CAAX motif (the carboxyl-terminal signal for farnesylation). Homozygous Lmnb1 mutant mice survived embryonic development but died at birth with defects in lung and bone. Fibroblasts from mutant embryos grew under standard cell-culture conditions but displayed grossly misshapen nuclei, impaired differentiation, increased polyploidy, and premature senescence. Thus, the lamin B1 mutant mice provide evidence for a broad and nonredundant function of lamin B1 in mammalian development. These mutant mice and cell lines derived from them will be useful models for studying the role of the nuclear lamina in various cellular processes.
Collapse
Affiliation(s)
- Laurent Vergnes
- Veterans Affairs Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|
157
|
Abstract
The discoveries of at least eight human diseases arising from mutations in LMNA, which encodes the nuclear A-type lamins, have revealed the nuclear envelope as an organelle associated with a variety of fundamental cellular processes. The most recently discovered diseases associated with LMNA mutations are the premature aging disorders Hutchinson-Gilford progeria syndrome (HGPS) and atypical Werner's syndrome. The phenotypes of both HGPS patients and a mouse model of progeria suggest diverse compromised tissue functions leading to defects reminiscent of aging. Aspects of the diseases associated with disrupted nuclear envelope/lamin functions may be explained by decreased cellular proliferation, loss of tissue repair capability and a decline in the ability to maintain a differentiated state.
Collapse
Affiliation(s)
- Leslie C Mounkes
- Cancer and Developmental Biology Laboratory, National Cancer Institute at Frederick, National Institutes of Health, PO Box B, Frederick, Maryland 21702, USA
| | | |
Collapse
|
158
|
Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A. The nuclear lamina and its functions in the nucleus. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:1-62. [PMID: 12921235 DOI: 10.1016/s0074-7696(03)01001-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear lamina is a structure near the inner nuclear membrane and the peripheral chromatin. It is composed of lamins, which are also present in the nuclear interior, and lamin-associated proteins. The increasing number of proteins that interact with lamins and the compound interactions between these proteins and chromatin-associated proteins make the nuclear lamina a highly complex but also a very exciting structure. The nuclear lamina is an essential component of metazoan cells. It is involved in most nuclear activities including DNA replication, RNA transcription, nuclear and chromatin organization, cell cycle regulation, cell development and differentiation, nuclear migration, and apoptosis. Specific mutations in nuclear lamina genes cause a wide range of heritable human diseases. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison Gilford Progeria syndrome (HGS), Greenberg Skeletal Dysplasia, and Pelger-Huet anomaly (PHA). Genetic analyses in Caenorhabditis elegans, Drosophila, and mice show new insights into the functions of the nuclear lamina, and recent structural analyses have begun to unravel the molecular structure and assembly of lamins and their associated proteins.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Alsheimer M, Liebe B, Sewell L, Stewart CL, Scherthan H, Benavente R. Disruption of spermatogenesis in mice lacking A-type lamins. J Cell Sci 2004; 117:1173-8. [PMID: 14996939 DOI: 10.1242/jcs.00975] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear lamins are structural protein components of the nuclear envelope. Mutations in LMNA, the gene coding for A-type lamins, result in several human hereditary diseases, the laminopathies, which include Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy, familial partial lipodystrophy and Hutchinson-Gilford progeria. Similar to the human conditions, it has been shown that Lmna–/– mice develop severe dystrophies of muscle and fat tissues. Here we report that Lmna–/– mice display impaired spermatogenesis, with a significant accumulation of spermatocytes I during early prophase I stages, while pachytene spermatocytes are severely defective in synaptic pairing of the sex chromosomes in particular, leading to massive apoptosis during the pachytene stage of meiosis I. In contrast, oogenesis remains largely unaffected in Lmna–/– mice. These results reveal A-type lamins as important determinants of male fertility.
Collapse
Affiliation(s)
- Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
160
|
Mounkes L, Stewart CL. Structural organization and functions of the nucleus in development, aging, and disease. Curr Top Dev Biol 2004; 61:191-228. [PMID: 15350402 DOI: 10.1016/s0070-2153(04)61008-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Leslie Mounkes
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | | |
Collapse
|
161
|
Abstract
Most inherited diseases are associated with mutations in a specific gene. Sometimes, mutations in two or more different genes result in diseases with a similar phenotype. Rarely do different mutations in the same gene result in a multitude of seemingly different and unrelated diseases. In the past three years, different mutations in LMNA, the gene encoding the A-type lamins, have been shown to be associated with at least six different diseases. These diseases and at least two others caused by mutations in other proteins associated with the nuclear lamina are collectively called the laminopathies. How different tissue-specific diseases arise from unique mutations in the LMNA gene, encoding almost ubiquitously expressed nuclear proteins, are providing tantalizing insights into the structural organization of the nucleus, its relation to nuclear function in different tissues and the involvement of the nuclear envelope in the development of disease.
Collapse
Affiliation(s)
- Leslie Mounkes
- Cancer and Developmental Biology Laboratory, National Cancer Institute at Frederick, PO Box B, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
162
|
Bechert K, Lagos-Quintana M, Harborth J, Weber K, Osborn M. Effects of expressing lamin A mutant protein causing Emery-Dreifuss muscular dystrophy and familial partial lipodystrophy in HeLa cells. Exp Cell Res 2003; 286:75-86. [PMID: 12729796 DOI: 10.1016/s0014-4827(03)00104-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Patients with the autosomal dominant form of Emery-Dreifuss muscular dystrophy (EDMD) or familial partial lipodystrophy (FPLD) have specific mutations in the lamin A gene. Three such point mutations, G465D (FPLD), R482L, (FPLD), or R527P (EDMD), were introduced by site-specific mutagenesis in the C-terminal tail domain of a FLAG-tagged full-length lamin A construct. HeLa cells were transfected with mutant and wild-type constructs. Lamin A accumulated in nuclear aggregates and the number of cells with aggregates increased with time after transfection. At 72 h post transfection 60-80% of cells transfected with the mutant lamin A constructs had aggregates, while only 35% of the cells transfected with wild-type lamin A revealed aggregates. Mutant transfected cells expressed 10-24x, and wild-type transfected cells 20x, the normal levels of lamin A. Lamins C, B1 and B2, Nup153, LAP2, and emerin were recruited into aggregates, resulting in a decrease of these proteins at the nuclear rim. Aggregates were also characterized by electron microscopy and found to be preferentially associated with the inner nuclear membrane. Aggregates from mutant constructs were larger than those formed by the wild-type constructs, both in immunofluorescence and electron microscopy. The combined results suggest that aggregate formation is in part due to overexpression, but that there are also mutant-specific effects.
Collapse
Affiliation(s)
- Kim Bechert
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
163
|
Abstract
Several neuromuscular diseases are caused by mutations in emerin and A-type lamins, proteins of the nuclear envelope. Emery-Dreifuss muscular dystrophy is caused by mutations in emerin (X-linked) or A-type lamins (autosomal dominant). Mutations in A-type lamins also cause limb-girdle muscular dystrophy type 1B, dilated cardiomyopathy with conduction defect, and Charcot-Marie-Tooth disorder type 2B1. They also cause partial lipodystrophy syndromes. The functions of emerin and A-type lamins and the mechanisms of how mutations in these proteins cause tissue-specific diseases are not well understood. The mutated proteins may cause structural damage to cells but may also affect processes such as gene regulation. This review gives an overview of this topic and describes recent advances in identification of disease-causing mutations, studies of cells and tissues from subjects with these diseases, and animal and cell culture models.
Collapse
Affiliation(s)
- Cecilia Ostlund
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, Tenth Floor, New York, New York 10032, USA
| | | |
Collapse
|
164
|
Harborth J, Elbashir SM, Vandenburgh K, Manninga H, Scaringe SA, Weber K, Tuschl T. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2003; 13:83-105. [PMID: 12804036 DOI: 10.1089/108729003321629638] [Citation(s) in RCA: 351] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Small interfering RNAs (siRNAs) induce sequence-specific gene silencing in mammalian cells and guide mRNA degradation in the process of RNA interference (RNAi). By targeting endogenous lamin A/C mRNA in human HeLa or mouse SW3T3 cells, we investigated the positional variation of siRNA-mediated gene silencing. We find cell-type-dependent global effects and cell-type-independent positional effects. HeLa cells were about 2-fold more responsive to siRNAs than SW3T3 cells but displayed a very similar pattern of positional variation of lamin A/C silencing. In HeLa cells, 26 of 44 tested standard 21-nucleotide (nt) siRNA duplexes reduced the protein expression by at least 90%, and only 2 duplexes reduced the lamin A/C proteins to <50%. Fluorescent chromophores did not perturb gene silencing when conjugated to the 5'-end or 3'-end of the sense siRNA strand and the 5'-end of the antisense siRNA strand, but conjugation to the 3'-end of the antisense siRNA abolished gene silencing. RNase-protecting phosphorothioate and 2'-fluoropyrimidine RNA backbone modifications of siRNAs did not significantly affect silencing efficiency, although cytotoxic effects were observed when every second phosphate of an siRNA duplex was replaced by phosphorothioate. Synthetic RNA hairpin loops were subsequently evaluated for lamin A/C silencing as a function of stem length and loop composition. As long as the 5'-end of the guide strand coincided with the 5'-end of the hairpin RNA, 19-29 base pair (bp) hairpins effectively silenced lamin A/C, but when the hairpin started with the 5'-end of the sense strand, only 21-29 bp hairpins were highly active.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Western
- Cell Line, Tumor
- Cell Survival
- Gene Silencing
- HeLa Cells
- Humans
- Lamin Type A/chemistry
- Mice
- Microscopy, Fluorescence
- Models, Chemical
- Molecular Sequence Data
- Oligonucleotides, Antisense/chemistry
- Open Reading Frames
- Protein Isoforms
- Pyrimidines/chemistry
- RNA/chemistry
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Swiss 3T3 Cells
- Thionucleotides/chemistry
- Transfection
Collapse
Affiliation(s)
- Jens Harborth
- Department of Biochemistry and Cell Biology, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
165
|
Taimen P, Kallajoki M. NuMA and nuclear lamins behave differently in Fas-mediated apoptosis. J Cell Sci 2003; 116:571-83. [PMID: 12508117 DOI: 10.1242/jcs.00227] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NuMA is a nuclear matrix protein that has an essential function in the organization of the mitotic spindle. Here we have studied the fate of NuMA in Fas-treated apoptotic Jurkat T and HeLa cells. We show that in both cell lines NuMA is an early target protein for caspases and that NuMA is cleaved coincidently with poly(ADP-ribose) polymerase-1 (PARP-1) and nuclear lamin B. NuMA is cleaved differently in Jurkat T and HeLa cells, suggesting that different sets of caspases are activated in these cell lines. The normal diffuse intranuclear distribution of NuMA changed during apoptosis: first NuMA condensed, then concentrated in the center of the nucleus and finally encircled the nuclear fragments within the apoptotic bodies. NuMA seems to be preferentially cleaved by caspase-3 in vivo since it was not cleaved in staurosporine-treated caspase-3-null MCF-7 breast cancer cells. The cleavage of NuMA, lamin B and PARP-1 was inhibited in the presence of three different caspase inhibitors: z-DEVD-FMK, z-VEID-FMK and z-IETD-FMK. Furthermore, in the presence of caspase inhibitors approximately 5-10% of the cells showed atypical apoptotic morphology. These cells had convoluted nuclei, altered chromatin structure and additionally, they were negative for NuMA and lamins. Since caspase-8, -3 and -7 were not activated and PARP was not cleaved in these cells as judged by western blotting and immunofluorescence studies, it is likely that this is an atypical form of programmed cell death owing to a proteinase(s) independent of caspases. These results characterize the role of NuMA in programmed cell death and suggest that cleavage of NuMA plays a role in apoptotic nuclear breakdown.
Collapse
Affiliation(s)
- Pekka Taimen
- Department of Pathology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| | | |
Collapse
|
166
|
Abstract
Intermediate filament (IF) proteins are the building blocks of cytoskeletal filaments, the main function of which is to maintain cell shape and integrity. The lamins are thought to be the evolutionary progenitors of IF proteins and they have profound influences on both nuclear structure and function. These influences require the lamins to have dynamic properties and dual identities--as building blocks and transcriptional regulators. Which one of these identities underlies a myriad of genetic diseases is a topic of intense debate.
Collapse
Affiliation(s)
- Christopher J Hutchison
- Department of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
167
|
Abstract
A group of human diseases, known as 'laminopathies', are associated with defects in proteins of the nuclear envelope. Most laminopathy mutations have been mapped to the A-type lamin gene, which is expressed in most adult cell types. So, why should different mutations in a near-ubiquitously expressed gene be associated with various discrete tissue-restricted diseases? Attempts to resolve this paradox are uncovering new molecular interactions #151; both inside the nucleus and at its periphery -- which indicate that the nuclear envelope has functions that go beyond mere housekeeping.
Collapse
Affiliation(s)
- Brian Burke
- Department of Anatomy and Cell Biology, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32610-0235, USA.
| | | |
Collapse
|
168
|
Affiliation(s)
- Brian Burke
- Department of Anatomy and Cell Biology, The University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
169
|
Kondo Y, Kondoh J, Hayashi D, Ban T, Takagi M, Kamei Y, Tsuji L, Kim J, Yoneda Y. Molecular cloning of one isotype of human lamina-associated polypeptide 1s and a topological analysis using its deletion mutants. Biochem Biophys Res Commun 2002; 294:770-8. [PMID: 12061773 DOI: 10.1016/s0006-291x(02)00563-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
LAP1s (lamina-associated polypeptide 1s) are type 2 integral membrane proteins with a single membrane-spanning region of the inner nuclear membrane. We report here on the cloning of the full-length cDNA of human LAP1B (huLAP1B) that encodes 584 amino acids. The sequence homology between the predicted rat LAP1B and huLAP1B was found to be 73.6%. A topological analysis was carried out by transiently expressing N-terminal GFP fused deletion mutants of huLAP1B in cells. The transmembrane (TM) domain (aa 346-368) is required for the localization of the nuclear and endoplasmic reticulum membrane and that the TM domain and the C-terminal half of the nucleoplasmic domain (aa 190-331) are sufficient for the proper localization of LAP1B. In contrast, the well-conserved lumenal domain of the nuclear membrane is not required for its topological function. Biochemical analysis showed that huLAP1B is retained within the nucleus via interactions of the nucleoplasmic portion with nuclear components.
Collapse
Affiliation(s)
- Yukihiro Kondo
- Depertment of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Hofemeister H, Kuhn C, Franke WW, Weber K, Stick R. Conservation of the gene structure and membrane-targeting signals of germ cell-specific lamin LIII in amphibians and fish. Eur J Cell Biol 2002; 81:51-60. [PMID: 11893082 DOI: 10.1078/0171-9335-00229] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Targeting of nuclear lamins to the inner nuclear membrane requires CaaX motif-dependent posttranslational isoprenylation and carboxyl methylation. We previously have shown that two variants of lamin LIII (i.e., LIII and LIIIb) in amphibian oocytes are generated by alternative splicing and differ greatly in their membrane association. An extra cysteine residue (as a potential palmitoylation site) and a basic cluster in conjunction with the CaaX motif function as secondary targeting signals responsible for stable membrane association of lamin LIIIb. cDNA sequencing and genomic analysis of the zebrafish Danio rerio lamin LIII uncovers a remarkable conservation of the genomic organization and of the two secondary membrane-targeting signals in amphibians and fish. The expression pattern of lamin LIII genes is also conserved between amphibians and fish. Danio lamin LIII is expressed in diplotene oocytes. It is absent from male germ cells but is expressed in Sertoli cells of the testis. In addition, we provide sequence information of the entire coding sequence of zebrafish lamin A, which allows comparison of all major lamins from representatives of the four classes of vertebrates.
Collapse
|
171
|
Vigouroux C, Auclair M, Dubosclard E, Pouchelet M, Capeau J, Courvalin JC, Buendia B. Nuclear envelope disorganization in fibroblasts from lipodystrophic patients with heterozygous R482Q/W mutations in the lamin A/C gene. J Cell Sci 2001; 114:4459-68. [PMID: 11792811 DOI: 10.1242/jcs.114.24.4459] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dunnigan-type familial partial lipodystrophy (FPLD), characterized by an abnormal body fat redistribution with insulin resistance, is caused by missense heterozygous mutations in A-type lamins (lamins A and C). A- and B-type lamins are ubiquitous intermediate filament proteins that polymerize at the inner face of the nuclear envelope. We have analyzed primary cultures of skin fibroblasts from three patients harboring R482Q or R482W mutations. These cells were euploid and able to cycle and divide. A subpopulation of these cells had abnormal blebbing nuclei with A-type lamins forming a peripheral meshwork, which was frequently disorganized. Inner nuclear membrane protein emerin, an A-type lamin-binding protein, strictly colocalized with this abnormal meshwork. Cells from lipodystrophic patients often had other nuclear envelope defects, mainly consisting of nuclear envelope herniations that were deficient in B-type lamins, nuclear pore complexes, lamina-associated protein 2 beta, and chromatin. The mechanical properties of nuclear envelopes were altered, as judged from the extensive deformations observed in nuclei from heat-shocked cells, and from the low stringency of extraction of their components. These structural nuclear alterations were caused by the lamins A/C mutations, as the same changes were introduced in human control fibroblasts by ectopic expression of R482W mutated lamin A.
Collapse
Affiliation(s)
- C Vigouroux
- INSERM U. 402, Faculté de Médecine Saint-Antoine, 75012 Paris, France
| | | | | | | | | | | | | |
Collapse
|
172
|
Raharjo WH, Enarson P, Sullivan T, Stewart CL, Burke B. Nuclear envelope defects associated withLMNAmutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. J Cell Sci 2001; 114:4447-57. [PMID: 11792810 DOI: 10.1242/jcs.114.24.4447] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear lamin A and C alleles that are linked to three distinct human diseases have been expressed both in HeLa cells and in fibroblasts derived from Lmna null mice. Point mutations that cause dilated cardiomyopathy (L85R and N195K) and autosomal dominant Emery-Dreifuss muscular dystrophy (L530P) modify the assembly properties of lamins A and C and cause partial mislocalization of emerin, an inner nuclear membrane protein, in HeLa cells. At the same time, these mutant lamins interfere with the targeting and assembly of endogenous lamins and in this way may cause significant changes in the molecular organization of the nuclear periphery. By contrast, lamin A and C molecules harboring a point mutation (R482W), which gives rise to a dominant form of familial partial lipodystrophy, behave in a manner that is indistinguishable from wild-type lamins A and C, at least with respect to targeting and assembly within the nuclear lamina. Taken together, these results suggest that nuclear structural defects could contribute to the etiology of both dilated cardiomyopathy and autosomal dominant Emery-Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- W H Raharjo
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
173
|
Abstract
Considerable interest has been focused on the nuclear envelope in recent years following the realization that several human diseases are linked to defects in genes encoding nuclear envelope specific proteins, most notably A-type lamins and emerin. These disorders, described as laminopathies or nuclear envelopathies, include both X-linked and autosomal dominant forms of Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy with conduction system defects, limb girdle muscular dystrophy 1B with atrioventricular conduction disturbances, and Dunnigan-type familial partial lipodystrophy. Certain of these diseases are associated with nuclear structural abnormalities that can be seen in a variety of cells and tissues. These observations clearly demonstrate that A-type lamins in particular play a central role, not only in the maintenance of nuclear envelope integrity but also in the large-scale organization of nuclear architecture. What is not obvious, however, is why defects in nuclear envelope proteins that are found in most adult cell types should give rise to pathologies associated predominantly with skeletal and cardiac muscle and adipocytes. The recognition of these various disorders now raises the novel possibility that the nuclear envelope may have functions that go beyond housekeeping and which impact upon cell-type specific nuclear processes.
Collapse
Affiliation(s)
- B Burke
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T21 4 N1, Canada.
| | | | | |
Collapse
|
174
|
Salina D, Bodoor K, Enarson P, Raharjo WH, Burke B. Nuclear envelope dynamics. Biochem Cell Biol 2001. [DOI: 10.1139/o01-130] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nuclear envelope (NE) provides a semi permeable barrier between the nucleus and cytoplasm and plays a central role in the regulation of macromolecular trafficking between these two compartments. In addition to this transport function, the NE is a key determinant of interphase nuclear architecture. Defects in NE proteins such as A-type lamins and the inner nuclear membrane protein, emerin, result in several human diseases that include cardiac and skeletal myopathies as well as lipodystrophy. Certain disease-linked A-type lamin defects cause profound changes in nuclear organization such as loss of peripheral heterochromatin and redistribution of other nuclear envelope components. While clearly essential in maintenance of nuclear integrity, the NE is a highly dynamic organelle. In interphase it is constantly remodeled to accommodate nuclear growth. During mitosis it must be completely dispersed so that the condensed chromosomes may gain access to the mitotic spindle. Upon completion of mitosis, dispersed NE components are reutilized in the assembly of nuclei within each daughter cell. These complex NE rearrangements are under precise temporal and spatial control and involve interactions with microtubules, chromatin, and a variety of cell-cycle regulatory molecules.Key words: nuclear envelope, lamin, nuclear pore complex, nuclear membranes, mitosis.
Collapse
|
175
|
Affiliation(s)
- B Burke
- Department of Cell Biology and Anatomy, The University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| |
Collapse
|
176
|
Yamaguchi A, Yamashita M, Yoshikuni M, Nagahama Y. Identification and molecular cloning of germinal vesicle lamin B3 in goldfish (Carassius auratus) oocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:932-9. [PMID: 11179959 DOI: 10.1046/j.1432-1327.2001.01952.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A bulk isolation method was developed to collect a large number of germinal vesicles (GV) from postvitellogenic oocytes of goldfish (Carassius auratus). Using this method, we obtained GV lamina which are resistant to high salt and nonionic detergent. 2D PAGE revealed that the goldfish GV lamina contained several spots with similar molecular masses (67 kDa) and slightly different neutral isoelectrofocusing values (pI 5.8-6.2). After trypsin digestion and extraction of a major spot (pI 6.1), the peptide was subjected to RP-HPLC and sequenced. A homology search identified this spot as a nuclear lamin. A cDNA encoding goldfish GV lamin was isolated by RT-PCR using degenerate primers designed from the GV lamin tryptic peptide sequence. The goldfish GV lamin cDNA encodes a predicted molecular mass of 67 455 Da with a pI of 5.84. Phylogenetic analysis indicates that the amino-acid sequence is most similar to Xenopus oocyte-specific GV lamin B3, but differs from somatic lamins (A, B1 or B2). In contrast to somatic lamins, neither goldfish nor Xenopus GV lamin contain conserved phosphorylation sites for nuclear transport, except the nuclear localization sequence. Therefore, we conclude that the goldfish oocyte GV is mainly comprised of GV-type lamin (the homolog of Xenopus lamin B3).
Collapse
Affiliation(s)
- A Yamaguchi
- Laboratory of Reproductive Biology, Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | | |
Collapse
|
177
|
Venables RS, McLean S, Luny D, Moteleb E, Morley S, Quinlan RA, Lane EB, Hutchison CJ. Expression of individual lamins in basal cell carcinomas of the skin. Br J Cancer 2001; 84:512-9. [PMID: 11207047 PMCID: PMC2363768 DOI: 10.1054/bjoc.2000.1632] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2000] [Revised: 11/09/2000] [Accepted: 11/14/2000] [Indexed: 11/18/2022] Open
Abstract
In this study we used a unique collection of type specific anti-lamin antibodies to study lamin expression patterns in normal human skin and in skin derived from patients with basal cell carcinomas (BCCs). Lamin expression in serial sections from frozen tissue samples was investigated by single and double indirect immunofluorescence. In normal skin, lamin A was expressed in dermal fibroblasts and in suprabasal epithelial cells but was absent from all basal epithelial cells. Lamin C was expressed in dermal fibroblasts, suprabasal epithelial cells and a majority of basal epithelial cells. However, lamin C was not expressed in quiescent basal epithelial cells. Lamin B1 was expressed in all epithelial cells but was not expressed in dermal fibroblasts. Finally, lamin B2 was expressed in all epithelial cells but was not expressed in dermal fibroblasts. Finally, lamin B2 was expressed in all cell types in normal skin. Lamin expression was also investigated in a collection of 16 BCCs taken from a variety of body sites. Based upon patterns of lamin expression the BCCs were classified into four groups: A-negative (10/16 tumours), C-negative (5/16 tumours), A/C-negative (1/16 tumours) and A/B2-negative (1/16 tumours). Lamin expression was also compared to cell proliferation index by staining serial sections with the proliferation marker Ki67. 9/10 of the lamin A negative tumours were highly proliferative, whereas 4/5 of the lamin C negative tumours were slow growing. Thus as a general rule absence of lamin A was correlated with rapid growth within the tumour, while absence of lamin C was correlated with slow growth within the tumour. Our data supports the hypothesis that lamin A has a negative influence on cell proliferation and its down regulation may be a requisite of tumour progression.
Collapse
Affiliation(s)
- R S Venables
- Department of Biological Sciences, University of Dundee, UK
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Moir RD, Yoon M, Khuon S, Goldman RD. Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J Cell Biol 2000; 151:1155-68. [PMID: 11121432 PMCID: PMC2190592 DOI: 10.1083/jcb.151.6.1155] [Citation(s) in RCA: 301] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/1999] [Accepted: 10/06/2000] [Indexed: 01/31/2023] Open
Abstract
At the end of mitosis, the nuclear lamins assemble to form the nuclear lamina during nuclear envelope formation in daughter cells. We have fused A- and B-type nuclear lamins to the green fluorescent protein to study this process in living cells. The results reveal that the A- and B-type lamins exhibit different pathways of assembly. In the early stages of mitosis, both lamins are distributed throughout the cytoplasm in a diffusible (nonpolymerized) state, as demonstrated by fluorescence recovery after photobleaching (FRAP). During the anaphase-telophase transition, lamin B1 begins to become concentrated at the surface of the chromosomes. As the chromosomes reach the spindle poles, virtually all of the detectable lamin B1 has accumulated at their surfaces. Subsequently, this lamin rapidly encloses the entire perimeter of the region containing decondensing chromosomes in each daughter cell. By this time, lamin B1 has assembled into a relatively stable polymer, as indicated by FRAP analyses and insolubility in detergent/high ionic strength solutions. In contrast, the association of lamin A with the nucleus begins only after the major components of the nuclear envelope including pore complexes are assembled in daughter cells. Initially, lamin A is found in an unpolymerized state throughout the nucleoplasm of daughter cell nuclei in early G1 and only gradually becomes incorporated into the peripheral lamina during the first few hours of this stage of the cell cycle. In later stages of G1, FRAP analyses suggest that both green fluorescent protein lamins A and B1 form higher order polymers throughout interphase nuclei.
Collapse
Affiliation(s)
- Robert D. Moir
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Miri Yoon
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Satya Khuon
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| |
Collapse
|
179
|
Moir RD, Spann TP, Lopez-Soler RI, Yoon M, Goldman AE, Khuon S, Goldman RD. Review: the dynamics of the nuclear lamins during the cell cycle-- relationship between structure and function. J Struct Biol 2000; 129:324-34. [PMID: 10806083 DOI: 10.1006/jsbi.2000.4251] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The nuclear lamins are members of the intermediate filament (IF) family of proteins. The lamins have an essential role in maintaining nuclear integrity, as do the other IF family members in the cytoplasm. Also like cytoplasmic IFs, the organization of lamins is dynamic. The lamins are found not only at the nuclear periphery but also in the interior of the nucleus, as distinct nucleoplasmic foci and possibly as a network throughout the nucleus. Nuclear processes such as DNA replication may be organized around these structures. In this review, we discuss changes in the structure and organization of the nuclear lamins during the cell cycle and during cell differentiation. These changes are correlated with changes in nuclear structure and function. For example, the interactions of lamins with chromatin and nuclear envelope components occur very early during nuclear assembly following mitosis. During S-phase, the lamins colocalize with markers of DNA replication, and proper lamin organization must be maintained for replication to proceed. When cells differentiate, the expression pattern of lamin isotypes changes. In addition, changes in lamin organization and expression patterns accompany the nuclear alterations observed in transformed cells. These lamin structures may modulate nuclear function in each of these processes.
Collapse
Affiliation(s)
- R D Moir
- Department of Cell and Molecular Biology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, Illinois, 60611, USA
| | | | | | | | | | | | | |
Collapse
|
180
|
Okumura K, Nakamachi K, Hosoe Y, Nakajima N. Identification of a novel retinoic acid-responsive element within the lamin A/C promoter. Biochem Biophys Res Commun 2000; 269:197-202. [PMID: 10694499 DOI: 10.1006/bbrc.2000.2242] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A-type lamins are not present in either early embryos or the embryonal carcinoma (EC) cell line. P19 cells, which are EC cell line, are able to express A-type lamins upon retinoic acid (RA) treatment. Here we report that a novel RA-responsive element, termed lamin A/C-RA-responsive element (L-RARE), is located within the lamin A/C promoter. RA activated the luciferase activity of the reporter which had four tandem repeats of the wild-type L-RARE, while a loss of function mutant, which altered CACCCCC to CACtatC within L-RARE, did not respond. Four specific binding complexes of L-RARE, Complexes-A, -B, -C, and -D, were detected in protein extracts obtained from P19 cells treated with and without RA. Specific antibodies revealed that Sp1 and Sp3 were included in Complex-A and Complexes-B and -C, respectively. Thus, L-RARE was important in the RA-mediated activation of the lamin A/C promoter and was recognized by DNA binding proteins.
Collapse
Affiliation(s)
- K Okumura
- Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
| | | | | | | |
Collapse
|
181
|
Nakamachi K, Nakajima N. DNase I hypersensitive sites and transcriptional activation of the lamin A/C gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1416-22. [PMID: 10691979 DOI: 10.1046/j.1432-1327.2000.01135.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The lamin A/C gene encodes subtypes of nuclear lamins, which are involved in nuclear envelope formation, and was recently identified as the responsible gene for the autosomal dominant Emery-Dreifuss muscular dystrophy. Expression of the lamin A/C gene is developmentally regulated but little is known about the regulatory mechanism. Previous studies of lamin A/C expression suggested that the chromatin structure is important for the regulation of its expression. To elucidate the regulatory mechanism of the lamin A/C gene expression, we have analysed the functional region of the mouse lamin A/C promoter and the chromatin structure of the gene in terms of nucleosome structure and DNase I hypersensitivity. Our analyses revealed disruption of the nucleosome array at the promoter region and the presence of multiple DNase I hypersensitive sites (HSs) which were specifically associated with expression of the lamin A/C gene. Inclusion of a segment which contained the HSs in a lamin A/C promoter-luciferase reporter plasmid showed no effect on the transfected promoter activity in transient expression assays. On the other hand, substantial enhancement of the promoter activity was detected when the transfected DNA was stably integrated into the genome, suggesting the importance of the HSs in the regulation of lamin A/C expression.
Collapse
Affiliation(s)
- K Nakamachi
- Department of Molecular Biology, Biomolecular Engineering Research Institute, Osaka, Japan
| | | |
Collapse
|
182
|
Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 1999; 147:913-20. [PMID: 10579712 PMCID: PMC2169344 DOI: 10.1083/jcb.147.5.913] [Citation(s) in RCA: 948] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The nuclear lamina is a protein meshwork lining the nucleoplasmic face of the inner nuclear membrane and represents an important determinant of interphase nuclear architecture. Its major components are the A- and B-type lamins. Whereas B-type lamins are found in all mammalian cells, A-type lamin expression is developmentally regulated. In the mouse, A-type lamins do not appear until midway through embryonic development, suggesting that these proteins may be involved in the regulation of terminal differentiation. Here we show that mice lacking A-type lamins develop to term with no overt abnormalities. However, their postnatal growth is severely retarded and is characterized by the appearance of muscular dystrophy. This phenotype is associated with ultrastructural perturbations to the nuclear envelope. These include the mislocalization of emerin, an inner nuclear membrane protein, defects in which are implicated in Emery-Dreifuss muscular dystrophy (EDMD), one of the three major X-linked dystrophies. Mice lacking the A-type lamins exhibit tissue-specific alterations to their nuclear envelope integrity and emerin distribution. In skeletal and cardiac muscles, this is manifest as a dystrophic condition related to EDMD.
Collapse
Affiliation(s)
- Teresa Sullivan
- Advanced BioScience Laboratories–Basic Research Program, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, Maryland 21702
| | - Diana Escalante-Alcalde
- Advanced BioScience Laboratories–Basic Research Program, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, Maryland 21702
| | | | - Miriam Anver
- Science Applications International Corporation, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, Maryland 21702
| | - Narayan Bhat
- Science Applications International Corporation, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, Maryland 21702
| | - Kunio Nagashima
- Science Applications International Corporation, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, Maryland 21702
| | - Colin L. Stewart
- Advanced BioScience Laboratories–Basic Research Program, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, Maryland 21702
| | - Brian Burke
- Department of Cell Biology and Anatomy, University of Calgary, Faculty of Medicine, Calgary, Canada T2N 4N1
| |
Collapse
|
183
|
Abstract
Prelamin A is farnesylated and methylated on the cysteine residue of a carboxyl-terminal CaaX motif. In the nucleus, prelamin A is processed to lamin A by endoproteolytic removal of the final 18 amino acids, including the farnesylated cysteine residue. Using the yeast two-hybrid assay, we isolated a novel human protein, Narf, that binds the carboxyl-terminal tail of prelamin A. Narf has limited homology to iron-only bacterial hydrogenases and eukaryotic proteins of unknown function. Narf is encoded by a 2-kilobase mRNA expressed in all human cell lines and tissues examined. The protein is detected in the nuclear fraction of HeLa cell lysates on Western blots and can be extracted from nuclear envelopes with 0.5 M NaCl. When a FLAG epitope-tagged Narf is expressed in HeLa cells, it is exclusively nuclear and partially co-localizes with the nuclear lamina. The farnesylation status of prelamin A determines its ability to bind to Narf. Inhibition of farnesyltransferase and mutation or deletion of the CaaX motif from the prelamin A tail domain inhibits Narf binding in yeast two-hybrid and in vitro binding assays. The prenyl-dependent binding of Narf to prelamin A is an important first step in understanding the functional significance of the lamin A precursor.
Collapse
Affiliation(s)
- R M Barton
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
184
|
Pierce T, Worman HJ, Holy J. Neuronal differentiation of NT2/D1 teratocarcinoma cells is accompanied by a loss of lamin A/C expression and an increase in lamin B1 expression. Exp Neurol 1999; 157:241-50. [PMID: 10364436 DOI: 10.1006/exnr.1999.7060] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear lamins are prominent elements of the nuclear matrix and are expressed in cell type-specific and differentiation state-specific patterns. A few observations have indicated that nervous tissue may display unusual patterns of lamin expression, in that some neurons appear to lack A-type lamins, which are generally prominently expressed in terminally differentiated, postmitotic cells. To investigate lamin expression patterns during the differentiation of a teratocarcinoma cell line into neurons, NT2/D1 cells were induced to differentiate with retinoic acid treatment. Lamin expression and organization during differentiation in vitro were examined by quantitative immunofluorescence and immunoblotting methods. Undifferentiated NT2/D1 cells were all strongly labeled with an anti-lamin B1 antibody, but displayed marked variation in A/C lamin immunoreactivity. After differentiation, neuronal nuclear envelopes were significantly more strongly labeled by anti-lamin B1 antibody than those of undifferentiated cells, but completely lacked A/C lamin immunoreactivity. In contrast, nonneuronal cells displayed a slight reduction in B1 lamin immunoreactivity, along with a distinct increase in A/C lamin levels. The loss of lamin A/C expression in NT2/D1 neurons is contrary to the pattern normally observed in most somatic cell types during early development and indicates that the nuclear matrix of some neurons, along with certain neuroendocrine and hematopoietic cells, is uniquely specialized in this regard.
Collapse
Affiliation(s)
- T Pierce
- Department of Anatomy & Cell Biology, School of Medicine, Duluth, Minnesota, 55812-2487, USA
| | | | | |
Collapse
|
185
|
Gandley R, Anderson L, Silbergeld EK. Lead: male-mediated effects on reproduction and development in the rat. ENVIRONMENTAL RESEARCH 1999; 80:355-363. [PMID: 10330309 DOI: 10.1006/enrs.1998.3874] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The present study was designed to determine the effect of relatively low levels of lead acetate (25 and 250 ppm) exposure on fertility and offspring viability in male Sprague-Dawley rats. Protein synthesis in 2-cell embryos was monitored by [35S] methionine labeling and two-dimensional SDS gel electrophoresis. Fertility was reduced in males with blood lead levels in the range 27-60 microg/dL. Lead was found to affect initial genomic expression in embryos fathered by male rats with blood lead levels as low as 15-23 microg/dL. Dose-dependent increases were seen in an unidentified set of proteins with a relative molecular weight of approximately 70 kDa (Mr). These results indicate that male-mediated effects of lead may be observed in the 2-cell embryo. The alteration observed in embryonic gene expression with paternal lead exposure may be useful for studying the role of the paternal contribution to the activation of the embryonic genome and protein synthesis in the early embryo.
Collapse
Affiliation(s)
- R Gandley
- Program in Toxicology, University of Maryland, 660 West Redwood Street, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
186
|
Tiwari B, Muralikrishna B, Parnaik VK. Functional analysis of the 5' promoter region of the rat lamin A gene. DNA Cell Biol 1998; 17:957-65. [PMID: 9839805 DOI: 10.1089/dna.1998.17.957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The A-type lamins are constituents of the nuclear lamina in differentiated cells and have been proposed to play an important role in nuclear organization. In this study, we isolated and characterized a genomic clone containing the putative promoter region of the rat lamin A gene. Sequence analysis of about 2 kb of this region combined with primer extension data revealed the presence of a TATA box at -33, a GC box at -101, and AP1 motifs at -7, -424, and -1677. Deletion analysis of the promoter fragments in three mammalian cell lines indicated that a 221-bp segment of the proximal promoter containing the GC box and AP1 motif at -7 was sufficient to give high levels of luciferase activity in reporter gene assays. Mutations in these two motifs resulted in considerable loss of reporter gene activity. Analysis by electrophoretic mobility shift assays (EMSAs) has provided evidence for specific binding of the AP1 and Sp1 family of transcription factors to the promoter, a conclusion supported by DNase I footprinting data. This characterization of the 5' promoter region of the lamin A gene should afford a basis for the further clarification of the mechanism of regulation of this important gene during growth and development.
Collapse
Affiliation(s)
- B Tiwari
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
187
|
Nuclear matrix of the most primitive eukaryoteArchezoa. ACTA ACUST UNITED AC 1998; 41:479-87. [DOI: 10.1007/bf02882885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/1997] [Indexed: 10/22/2022]
|
188
|
Abstract
Nuclear lamins are intermediate filament-type proteins that are the major building blocks of the nuclear lamina, a fibrous proteinaceous meshwork underlying the inner nuclear membrane. Lamins can also be localized in the nuclear interior, in a diffuse or spotted pattern. Nuclei assembled in vitro in the absence of lamins are fragile, indicating that lamins mechanically stabilize the cell nucleus. Available evidence also indicates a role for lamins in DNA replication, chromatin organization, spatial arrangement of nuclear pore complexes, nuclear growth, and anchorage of nuclear envelope proteins. In this review we summarize the current state of knowledge on the structure, assembly, and possible functional roles of nuclear lamins, emphasizing the information concerning the ability of nuclear lamins to self-assemble into distinct oligomers and polymers.
Collapse
Affiliation(s)
- N Stuurman
- M. E. Müller-Institute for Microscopy at the Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | | | | |
Collapse
|
189
|
Collas P. Nuclear envelope disassembly in mitotic extract requires functional nuclear pores and a nuclear lamina. J Cell Sci 1998; 111 ( Pt 9):1293-303. [PMID: 9547309 DOI: 10.1242/jcs.111.9.1293] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using sea urchin embryonic and in-vitro-assembled nuclei incubated in sea urchin mitotic extract, I provide evidence for a requirement for functional nuclear pores and a nuclear lamina for nuclear envelope disassembly in vitro. In interphase gastrula nuclei, lamin B interacts with p56, an integral protein of inner nuclear membrane cross-reacting with antibodies to human lamin B receptor. Incubation of gastrula nuclei in mitotic cytosol containing an ATP-generating system rapidly induces hyperphosphorylation of p56 and lamin B. Subsequently, p56-lamin B interactions are weakened and the two proteins segregate into distinct nuclear envelope-derived vesicles upon disassembly of nuclear membranes and of the lamina. Nuclear disassembly is accompanied by chromatin condensation. Blocking nuclear pore function with wheat germ agglutinin or antibodies to nucleoporins prevents p56 and lamin B hyperphosphorylation, nuclear membrane breakdown and lamina solubilization. These events are not rescued by permeabilization of nuclear membranes to molecules of 150, 000 Mr with lysolecithin. In-vitro-assembled nuclei containing nuclear membranes with functional pores but no lamina do not disassemble in mitotic cytosol in spite of p56 hyperphosphorylation. Nuclear import of soluble lamin B and reformation of a lamina in interphase extract restores nuclear disassembly in mitotic cytosol. The data indicate a role for functional nuclear pores in nuclear disassembly in vitro. They show that p56 hyperphosphorylation is not sufficient for nuclear membrane disassembly in mitotic cytosol and argue that the nuclear lamina plays a critical role in nuclear disassembly at mitosis.
Collapse
Affiliation(s)
- P Collas
- Department of Biochemistry, Norwegian College of Veterinary Medicine, Oslo, Norway.
| |
Collapse
|
190
|
Foisy S, Joly EC, Bibor-Hardy V. Purification of intact nuclear lamina and identification of novel laminlike proteins in Raji, a cell line devoid of lamins A and C. Biochem Cell Biol 1997. [DOI: 10.1139/o97-093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Research on the structure of the nuclear lamina and the nuclear matrix of cells devoid of lamins A and C has been hampered by the fact that intact residual nuclear structures are difficult to isolate from such cells. In this paper, we show that some extraction parameters, such as buffer composition and the nature of the detergent used to remove nuclear membranes, are critical for achieving isolation of whole nuclear residual structures from the lymphoblastic cell line Raji, used as a model for cells without lamins A and C. Electron microscopic analysis shows that the nuclear lamina of Raji cells is formed by a network of intermediate-sized filaments interrupted with circular discontinuities. Both lamins B1 and B2, and lamin D/E, are present in this structure. In addition, a group of 45-kDa proteins or intermediate filament protein - reacting proteins (IFA-RPs), located uniquely in the lamina, were found to exhibit the same immunological and chemical characteristics as lamins. Although they behave like nuclear lamins, microsequencing analysis of the IFA-RPs has revealed no homology with known lamins. These IFA-RPs may contribute to the formation of the nuclear lamina filament network in the absence of lamins A and C. Key words: nuclear lamina, intermediate filaments, lamin.
Collapse
|
191
|
Lin F, Worman HJ. Expression of nuclear lamins in human tissues and cancer cell lines and transcription from the promoters of the lamin A/C and B1 genes. Exp Cell Res 1997; 236:378-84. [PMID: 9367621 DOI: 10.1006/excr.1997.3735] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have examined the expression of lamins A, B1, and C in human tissues and cancer cell lines and the function of the lamin A/C and B1 gene promoters in transfected cells. Northern analysis and immunoblotting demonstrated that lamin A/C mRNA and protein were not detectable in some human cell lines whereas lamin B1 was always present. Sequencing of approximately 2.6 kb of the lamin A/C and 1.6 kb of the lamin B1 genes 5' to the translation initiation sites showed that they did not contain typical TATA boxes near the transcription start sites. The lamin B1 and A/C proximal promoter regions were transcribed in transfected HeLa, Raji, and NT2/D1 cell lines even if the cells did not contain detectable endogenous lamin A/C mRNA or protein. These results show that, similar to most cytoplasmic intermediate filament genes, transcriptional regulatory elements in the promoters of the human nuclear lamin A/C and B1 genes do not control their cell type-specific expression in culture lines.
Collapse
Affiliation(s)
- F Lin
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
192
|
Affiliation(s)
- J Liu
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
193
|
Moens A, Fléchon B, Degrouard J, Vignon X, Ding J, Fléchon JE, Betteridge KJ, Renard JP. Ultrastructural and immunocytochemical analysis of diploid germ cells isolated from fetal rabbit gonads. ZYGOTE 1997; 5:47-60. [PMID: 9223245 DOI: 10.1017/s0967199400003555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Germ cells were isolated from rabbit fetal gonads between 18 and 22 days post coitum and examined morphologically, ultrastructurally and for immunocytochemical and cytochemical characteristics. Observations were compared with the information available from the corresponding cells of other mammalian species. The general morphology and ultrastructure of healthy isolated rabbit fetal germ cells were found to be very similar to those of the rabbit and mouse diploid germ cells in situ. Moreover, rabbit fetal germ cells shared common immunocytochemical characteristics with mouse undifferentiated embryonic stem cells or embryonic carcinoma cells, such as the presence of TEC-1 (SSEA-1) antigens, a peripheral network of F-actin, the absence of cytokeratins 8/18 and lamins A/C and an alkaline phosphatase activity. No difference between the sexes was observed. Morphological and physiological similarities with the migrating and cultured primordial germ cells of the mouse also suggest that diploid rabbit germ cells would be good candidates for deriving pluripotential embryonic germ cells (EG cells) if favourable culture conditions could be found. In conclusion, the rabbit may be a suitable model for investigations on EG cells in domestic mammals with delayed meiosis.
Collapse
Affiliation(s)
- A Moens
- Unité de Biologie du Développement, INRA, Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Greally JM, Guinness ME, McGrath J, Zemel S. Matrix-attachment regions in the mouse chromosome 7F imprinted domain. Mamm Genome 1997; 8:805-10. [PMID: 9337391 DOI: 10.1007/s003359900583] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have mapped the matrix-attachment regions (MARs) in 200 kilobases of the mouse Chromosome (Chr) 7F imprinted domain. MARs are genetic elements known to have effects in cis on methylation at nonimprinted loci. The imprinting of the Igf2 and Ins2 genes is dependent on the transcription of the downstream H19 gene. The transcription of H19 is dependent in turn on its methylation status. The cis-acting regulators of methylation at this site are not known. As MARs are potential regulators not only of methylation but also other elements of genomic imprinting, we mapped the MARs within the 200 kilobases around H19. This report describes the mapping of four MARs from this region.
Collapse
Affiliation(s)
- J M Greally
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
195
|
Hamid QA, Fatima S, Thanumalayan S, Parnaik VK. Activation of the lamin A gene during rat liver development. FEBS Lett 1996; 392:137-42. [PMID: 8772191 DOI: 10.1016/0014-5793(96)00802-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have studied the regulation of expression of the A-type lamins, which are constituents of the nuclear lamina. During rat liver development, high levels of lamin A and C mRNAs were observed in 15-day fetal liver but were barely detectable in the adult. The chromatin conformation of the lamin A gene was sensitive to DNase I in 15-day fetal liver but became mostly insensitive in the adult. Lamin A and C proteins could be detected in fetal liver and persisted in the adult. Our evidence suggests that the lamin A gene is actively transcribed early in liver differentiation and its activity declines considerably in adult liver.
Collapse
Affiliation(s)
- Q A Hamid
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | |
Collapse
|
196
|
Abstract
We have examined the composition and ultrastructure of the nuclear periphery during in vitro myogenesis of the rat myoblast cell line, L6E9. Immunofluorescence labelling and immunoblotting showed that lamins A/C and B were all present in undifferentiated cells, but that they increased significantly before extensive cell fusion had occurred, with lamins A/C increasing proportionately more. Electron microscopic observations were consistent with these results, showing an increase in the prominence of the lamina during differentiation. On the other hand, immunofluorescence labelling suggested that the P1 antigen began to disappear from the nuclear periphery as the cells were fusing, after the increase in lamin quantity, and was no longer detectable in multinucleated cells. Unexpectedly, however, P1 was readily detected in isolated nuclei, whether prepared from myoblast or differentiated cultures, as well as in both myoblast and myotube nuclear matrices. It appears probable, therefore, that the fading of P1 labelling is due to masking of the epitope by a soluble factor recruited to the nuclear periphery as cell differentiate. These data, together with evidence that the genome is substantially rearranged during L6E9 myogenesis [Chaly and Munro, 1996], suggest that L6E9 cells are a useful model system in which to study the interrelationship of nuclear envelope organization, chromatin spatial order, and nuclear function.
Collapse
Affiliation(s)
- N Chaly
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
197
|
Abstract
The facts that the nuclear matrix represents a structural framework of the cell nucleus and that nuclear events, such as DNA replication, transcription, and DNA repair, are associated with this skeletal structure suggest that its components are subject to cell cycle-regulatory mechanisms. Cell cycle regulation has been shown for nuclear lamina assembly and disassembly during mitosis and chromatin reorganization. Little attention has so far been paid to internal nuclear matrix proteins and matrix-associated proteins with respect to the cell cycle. This survey attempts to summarize available data and presents experimental evidence that important metabolic functions of the nucleus are regulated by the transient, cell cycle-dependent attachment of enzymes and regulatory proteins to the nuclear matrix. Results on thymidine kinase and RNA polymerase during the synchronous cell cycle of Physarum polycephalum demonstrate that reversible binding to the nuclear matrix represents an additional level of regulation for nuclear processes.
Collapse
Affiliation(s)
- P Loidl
- Department of Microbiology, University of Innsburck-Medical School, Austria
| | | |
Collapse
|
198
|
Moir RD, Spann TP, Goldman RD. The dynamic properties and possible functions of nuclear lamins. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162B:141-82. [PMID: 8557486 DOI: 10.1016/s0074-7696(08)62616-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The nuclear lamins are thought to form a thin fibrous layer called the nuclear lamina, underlying the inner nuclear envelope membrane. In this review, we summarize data on the dynamic properties of nuclear lamins during the cell cycle and during development. We discuss the implications of dynamics for lamin functions. The lamins may be involved in DNA replication, chromatin organization, differentiation, nuclear structural support, and nuclear envelope reassembly. Emphasis is placed on recent data that indicate that the lamina, contrary to previous views, is not a static structure. For example, the lamins form nucleoplasmic foci, distinct from the peripheral lamina, which vary in their patterns of distribution as well as their composition in a cell cycle-dependent manner. During the S phase, these foci colocalize with chromatin and sites of DNA replication. At other points during the cell cycle, they may represent sites of lamin post-translation processing that take place prior to incorporation into the lamina. Secondary modifications of the lamins such as isoprenylation and phosphorylation are involved in the regulation of the dynamic properties and the assembly of lamins. In addition, a number of lamin-associated proteins have been recently identified and these are described along with their potential functions.
Collapse
Affiliation(s)
- R D Moir
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
199
|
Paulin-Levasseur M, Blake DL, Julien M, Rouleau L. The MAN antigens are non-lamin constituents of the nuclear lamina in vertebrate cells. Chromosoma 1996; 104:367-79. [PMID: 8575249 DOI: 10.1007/bf00337226] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The characterization of the human antiserum designated MAN has led to the identification of a subset of non-lamin proteins that are exclusively located at the nuclear periphery in all vertebrate cell types examined, from human to fish. Immunoreactive protein species were shown to comprise three major polypeptides of Mr 78000, 58000 and 40000. These antigens co-partitioned with the nuclear lamina during in situ isolation of nuclear matrices from lamin A/C-positive and -negative mammalian cells. Using double immunofluorescence, the spatial relationship of MAN antigens to type-A and type-B lamins was further examined throughout the cell cycle of lamin A/C-positive mammalian cells. In interphase HeLa and 3T3 cells, MAN antigens colocalized with both types of lamins at the periphery of the nucleus, but were absent from intranuclear foci of lamin B. As HeLa cells proceeded into mitosis, MAN antigens were seen to segregate from lamins A/C and coredistribute with lamin B. Lamins A/C disassembled during late prophase/early prometaphase and reassociated with chromatin in telophase/cytokinesis. In contrast, MAN antigens and lamin B dispersed late during prometaphase and reassembled on chromosomes in anaphase. Altogether, our data suggest that MAN antigens may play key functions in the maintenance of the structural integrity of the nuclear compartment in vertebrate cells.
Collapse
Affiliation(s)
- M Paulin-Levasseur
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | | | | | | |
Collapse
|
200
|
Goldberg M, Jenkins H, Allen T, Whitfield WG, Hutchison CJ. Xenopus lamin B3 has a direct role in the assembly of a replication competent nucleus: evidence from cell-free egg extracts. J Cell Sci 1995; 108 ( Pt 11):3451-61. [PMID: 8586657 DOI: 10.1242/jcs.108.11.3451] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus egg extracts which assemble replication competent nuclei in vitro were depleted of lamin B3 using monoclonal antibody L6 5D5 linked to paramagnetic beads. After depletion, the extracts were still capable of assembling nuclei around demembranated sperm heads. Using field emission in lens scanning electron microscopy (FEISEM) we show that most nuclei assembled in lamin B3-depleted extracts have continuous nuclear envelopes and well formed nuclear pores. However, several consistent differences were observed. Most nuclei were small and only attained diameters which were half the size of controls. In a small number of nuclei, nuclear pore baskets, normally present on the inner aspect of the nuclear envelope, appeared on its outer surface. Finally, the assembly of nuclear pores was slower in lamin B3-depleted extracts, indicating a slower overall rate of nuclear envelope assembly. The results of FEISEM were confirmed using conventional TEM thin sections, where again the majority of nuclei assembled in lamin B3-depleted extracts had well formed double unit membranes containing a high density of nuclear pores. Since nuclear envelope assembly was mostly normal but slow in these nuclei, the lamin content of 'depleted' extracts was investigated. While lamin B3 was recovered efficiently from cytosolic and membrane fractions by our procedure, a second minor lamin isoform, which has characteristics similar to those of the somatic lamin B2, remained in the extract. Thus it is likely that this lamin is necessary for nuclear envelope assembly. However, while lamin B2 did not co-precipitate with lamin B3 during immunodepletion experiments, several protein species did specifically associate with lamin B3 on paramagnetic immunobeads. The major protein species associated with lamin B3 migrated with molecular masses of 102 kDa and 57 kDa, respectively, on one-dimensional polyacrylamide gels. On two-dimensional O'Farrell gels the mobility of the 102 kDa protein was identical to the mobility of a major nuclear matrix protein, indicating a specific association between lamin B3 and other nuclear matrix proteins. Nuclei assembled in lamin B3-depleted extracts did not assemble a lamina, judged by indirect immunofluorescence, and failed to initiate semi-conservative DNA replication. However, by reinoculating depleted extracts with purified lamin B3, nuclear lamina assembly and DNA replication could both be rescued. Thus it seems likely that the inability of lamin-depleted extracts to assemble a replication competent nucleus is a direct consequence of a failure to assemble a lamina.
Collapse
Affiliation(s)
- M Goldberg
- CRC Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital, Manchester, UK
| | | | | | | | | |
Collapse
|