151
|
Prasathkumar M, Sadhasivam S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing-Know-how. Int J Biol Macromol 2021; 186:656-685. [PMID: 34271047 DOI: 10.1016/j.ijbiomac.2021.07.067] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Biomaterials are being extensively used in regenerative medicine including tissue engineering applications, as these enhance tissue development, repair, and help in the process of angiogenesis. Wound healing is a crucial biological process of regeneration of ruptured tissue after getting injury to the skin and other soft tissue in humans and animals. Besides, the accumulation of microbial biofilms around the wound surface can increase the risk and physically obstruct the wound healing activity, and may even lead to amputation. Hence, in both acute and chronic wounds, prominent biomaterials are required for wound healing along with antimicrobial agents. This review comprehensively addresses the antimicrobial and wound healing effects of chitosan, chitin, cellulose acetate, hyaluronic acid, pullulan, bacterial cellulose, fibrin, alginate, etc. based wound dressing biomaterials fabricated with natural resources such as honey, plant bioactive compounds, and marine-based polymers. Due to their excellent biocompatibility and biodegradability, bioactive compounds derived from honey, plants, and marine resources are commonly used in biomedical and tissue engineering applications. Different types of polymer-based biomaterials including hydrogel, film, scaffold, nanofiber, and sponge dressings fabricated with bioactive agents including honey, curcumin, tannin, quercetin, andrographolide, gelatin, carrageenan, etc., can exhibit significant wound healing process in, diabetic wounds, diabetic ulcers, and burns, and help in cartilage repair along with good biocompatibility and antimicrobial effects. Among the reviewed biomaterials, carbohydrate polymers such as chitosan-based biomaterials are prominent and widely used for wound healing applications followed by hyaluronic acid and alginate-based biomaterials loaded with honey, plant, and marine compounds. This review first provides an overview of the vast natural resources used to formulate different biomaterials for the treatment of antimicrobial, acute, and chronic wound healing processes.
Collapse
Affiliation(s)
- Murugan Prasathkumar
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Subramaniam Sadhasivam
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India; Department of Extension and Career Guidance, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
152
|
Shao J, Cui Y, Liang Y, Liu H, Ma B, Ge S. Unilateral Silver-Loaded Silk Fibroin Difunctional Membranes as Antibacterial Wound Dressings. ACS OMEGA 2021; 6:17555-17565. [PMID: 34278141 PMCID: PMC8280680 DOI: 10.1021/acsomega.1c02035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Silk fibroin (SF) has been widely used as wound dressings due to its good biocompatibility. To enhance the antibacterial properties of the dressings, silver (Ag) is often added. However, an overdose of Ag may cause cytotoxicity and inhibit wound healing. Therefore, this study aimed to develop a two-layered membrane to reduce cytotoxicity while maintaining the antibacterial properties of Ag through a simplified layer-by-layer technique. The membranes comprised an Ag-rich SF layer (Ag-SF) and a pure SF layer. The unilateral Ag-loaded membranes showed efficient antibacterial properties at doses above 0.06 mg/mL Ag, and the antibacterial properties were comparable on both sides. In contrast, the SF sides of the membranes showed lower cytotoxicity than the Ag-SF sides of the membranes. Further studies on the thickness ratio of Ag-SF/SF layers revealed that Ag0.12-SF/SF membranes with a ratio of 1:3 had high cytocompatibility on the SF sides while holding a strong antibacterial property. Besides, the SF sides of the Ag0.12-SF/SF1:3 membranes promoted the expression levels of collagen I and transforming growth factor-β mRNA in human foreskin fibroblasts. The SF sides of the Ag0.12-SF/SF1:3 membranes significantly promoted the healing of infected wounds in vivo. Therefore, unilateral loading with the simplified layer-by-layer preparation technique provided an effective method to balance the cytotoxicity and the antibacterial property of Ag-loaded materials and thus form a broader therapeutic window for Ag applications. The unilateral Ag-loaded silk fibroin difunctional membranes have the potential to be further preclinically explored as wound dressings.
Collapse
Affiliation(s)
- Jinlong Shao
- Department
of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory
of Oral Tissue Regeneration & Shandong Engineering Laboratory
for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Yating Cui
- Department
of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory
of Oral Tissue Regeneration & Shandong Engineering Laboratory
for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Ye Liang
- Department
of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory
of Oral Tissue Regeneration & Shandong Engineering Laboratory
for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Hong Liu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan, Shandong 250100, China
| | - Baojin Ma
- Department
of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory
of Oral Tissue Regeneration & Shandong Engineering Laboratory
for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Shaohua Ge
- Department
of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory
of Oral Tissue Regeneration & Shandong Engineering Laboratory
for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| |
Collapse
|
153
|
Mao Z, Bi X, Ye F, Du P, Shu X, Sun L, Guan J, Li X, Wu S. The relationship between crosslinking structure and silk fibroin scaffold performance for soft tissue engineering. Int J Biol Macromol 2021; 182:1268-1277. [PMID: 33984385 DOI: 10.1016/j.ijbiomac.2021.05.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 01/07/2023]
Abstract
Biologically active scaffolds with tunable mechano- and bio-performance remain desirable for soft tissue engineering. Previously, highly elastic and robust silk fibroin (SF) scaffolds were prepared via cryogelation. In order to get more insight into the role of ethylene glycol diglycidyl ether (EGDE) on the structure and properties of SF scaffolds, we investigated the fate of SF scaffolds with different usages of the crosslinking agent in vitro and in vivo. Although SF scaffolds with varied EGDE contents showed similar micro-morphology, increasing EGDE from 1 mmol/g to 5 mmol/g resulted in firstly increased and later decreased content of β-sheet conformation, and linearly increased tensile modulus and decreased elasticity. The dual-crosslinked SF scaffolds with EGDE up to 5 mmol/g did not show in vitro cytotoxicity for NIH3T3 fibroblasts. In vivo subcutaneous implantation of SF scaffolds with <3 mmol/g EGDE displayed excellent degradation behavior and tissue ingrowth after 28 days of implantation. However, with ≥3 mmol/g EGDE, SF scaffolds exhibited obvious post-implantation foreign body reactions, probably associated with slow degradation due to excess chemical crosslinks and less mechanical compatibility. These results suggest that an appropriate dosage of crosslinking agent was critical to achieve balanced mechanical properties, degradability in vivo and immuno-properties of the SF scaffold platform for soft tissue engineering.
Collapse
Affiliation(s)
- Zhinan Mao
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Xuewei Bi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beijing 100083, China
| | - Fan Ye
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Puyu Du
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Xiong Shu
- Beijing Research Institute of Traumatology & Orthopaedics, Beijing 100035, China
| | - Lei Sun
- Beijing Research Institute of Traumatology & Orthopaedics, Beijing 100035, China
| | - Juan Guan
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beijing 100083, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beijing 100083, China
| | - Sujun Wu
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
154
|
Li F, Bian C, Li D, Shi Q. Spider Silks: An Overview of Their Component Proteins for Hydrophobicity and Biomedical Applications. Protein Pept Lett 2021; 28:255-269. [PMID: 32895035 DOI: 10.2174/0929866527666200907104401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Spider silks have received extensive attention from scientists and industries around the world because of their remarkable mechanical properties, which include high tensile strength and extensibility. It is a leading-edge biomaterial resource, with a wide range of potential applications. Spider silks are composed of silk proteins, which are usually very large molecules, yet many silk proteins still remain largely underexplored. While there are numerous reviews on spider silks from diverse perspectives, here we provide a most up-to-date overview of the spider silk component protein family in terms of its molecular structure, evolution, hydrophobicity, and biomedical applications. Given the confusion regarding spidroin naming, we emphasize the need for coherent and consistent nomenclature for spidroins and provide recommendations for pre-existing spidroin names that are inconsistent with nomenclature. We then review recent advances in the components, identification, and structures of spidroin genes. We next discuss the hydrophobicity of spidroins, with particular attention on the unique aquatic spider silks. Aquatic spider silks are less known but may inspire innovation in biomaterials. Furthermore, we provide new insights into antimicrobial peptides from spider silk glands. Finally, we present possibilities for future uses of spider silks.
Collapse
Affiliation(s)
- Fan Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Chao Bian
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
155
|
In Vitro Interaction of Doxorubicin-Loaded Silk Sericin Nanocarriers with MCF-7 Breast Cancer Cells Leads to DNA Damage. Polymers (Basel) 2021; 13:polym13132047. [PMID: 34206674 PMCID: PMC8271558 DOI: 10.3390/polym13132047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022] Open
Abstract
In this paper, Bombyx mori silk sericin nanocarriers with a very low size range were obtained by nanoprecipitation. Sericin nanoparticles were loaded with doxorubicin, and they were considered a promising tool for breast cancer therapy. The chemistry, structure, morphology, and size distribution of nanocarriers were investigated by Fourier transformed infrared spectroscopy (FTIR–ATR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and dynamic light scattering (DLS). Morphological investigation and DLS showed the formation of sericin nanoparticles in the 25–40 nm range. FTIR chemical characterization showed specific interactions of protein–doxorubicin–enzymes with a high influence on the drug delivery process and release behavior. The biological investigation via breast cancer cell line revealed a high activity of nanocarriers in cancer cells by inducing significant DNA damage.
Collapse
|
156
|
Aslam A, Bahadar A, Liaquat R, Saleem M, Waqas A, Zwawi M. Algae as an attractive source for cosmetics to counter environmental stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144905. [PMID: 33770892 DOI: 10.1016/j.scitotenv.2020.144905] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/27/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
In recent times, a considerable amount of evidence has come to light regarding the effect that air pollution has on skin conditions. The human skin is the chief protection we have against environmental harm, whether biological, chemical, or physical. The stress from these environmental factors, along with internal influences, can be a cause of skin aging and enlarged pores, thinner skin, skin laxity, wrinkles, fine lines, dryness, and a more fragile dermal layer. This knowledge has led to greater demand for skin cosmetics and a requirement for natural raw ingredients with a high degree of safety and efficiency in combating skin complications. Recent developments in green technology have made the employment of naturally occurring bioactive compounds more popular, and novel extraction methods have ensured that the use of these compounds has greater compatibility with sustainable development principles. Thus, there is a demand for investigations into efficient non-harmful naturally occurring raw ingredients; compounds derived from algae could be beneficial in this area. Algae, both macroalgae and microalgae, consists of waterborne photosynthetic organisms that are potentially valuable as they have a range of bioactive compounds in their composition. Several beneficial metabolites can be obtained from algae, such as antioxidants, carotenoids, mycosporine-like amino acids (MAA), pigments, polysaccharides, and scytonemin. Various algae strains are now widely employed in skincare products for various purposes, such as a moisturizer, anti-wrinkle agent, texture-enhancing agents, or sunscreen. This research considers the environmental stresses on human skin and how they may be mitigated using cosmetics created using algae; special attention will be paid to external factors, both generally and specifically (amongst them light exposure and pollutants).
Collapse
Affiliation(s)
- Ayesha Aslam
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ali Bahadar
- Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia.
| | - Rabia Liaquat
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Muhammad Saleem
- Department of Industrial Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Adeel Waqas
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Mohammed Zwawi
- Department of Mechanical Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| |
Collapse
|
157
|
Wu Q, He C, Wang X, Zhang S, Zhang L, Xie R, Li Y, Wang X, Han Z, Zheng Z, Li G. Sustainable Antibacterial Surgical Suture Using a Facile Scalable Silk-Fibroin-Based Berberine Loading System. ACS Biomater Sci Eng 2021; 7:2845-2857. [PMID: 34043327 DOI: 10.1021/acsbiomaterials.1c00481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Medical sutures with sustainable antibacterial properties can effectively inhibit pathogens, thus avoiding the occurrence of surgical site infection and reducing the recurrence of patients resulting in postoperative death. This paper describes a facile scalable antibacterial surgical suture with sustainable antibacterial function and fair mechanical and biocompatible properties using a simple, efficient, and eco-friendly method. Silk filaments were braided into a core-shell structure using a braiding machine, and then silk fibroin (SF) films loaded with different percentages of berberine (BB) were coated onto the surface of the suture. The drug-loaded sutures performed a slow drug-release profile of more than 7 days. Retention of the knot-pull tensile strength of all groups was above 87% during in vitro degradation within 42 days. The sutures had no toxicity to the cells' in vitro cytotoxicity. The results of the in vivo biocompatibility test showed mild inflammation and clear signs of supporting angiogenesis in the implantation site of the rats. This work provides a new route for achieving a BB-loaded and high-performance antibacterial suture, which is of great potential in applications for surgical operations.
Collapse
Affiliation(s)
- Qinting Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Chaoheng He
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xuchen Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Shujun Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Li Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Ruijuan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yi Li
- The School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhifen Han
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
158
|
Kwon G, Heo B, Kwon MJ, Kim I, Chu J, Kim BY, Kim BK, Park SS. Effect of Silk Fibroin Biomaterial Coating on Cell Viability and Intestinal Adhesion of Probiotic Bacteria. J Microbiol Biotechnol 2021; 31:592-600. [PMID: 33820891 PMCID: PMC9705937 DOI: 10.4014/jmb.2103.03031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Probiotics can be processed into a powder, tablet, or capsule form for easy intake. They are exposed to frequent stresses not only during complex processing steps, but also in the human body after intake. For this reason, various coating agents that promote probiotic bacterial stability in the intestinal environment have been developed. Silk fibroin (SF) is a material used in a variety of fields from drug delivery systems to enzyme immobilization and has potential as a coating agent for probiotics. In this study, we investigated this potential by coating probiotic strains with 0.1% or 1% water-soluble calcium (WSC), 1% SF, and 10% trehalose. Under simulated gastrointestinal conditions, cell viability, cell surface hydrophobicity, and cell adhesion to intestinal epithelial cells were then measured. The survival ratio after freeze-drying was highest upon addition of 0.1% WSC. The probiotic bacteria coated with SF showed improved survival by more than 10.0% under simulated gastric conditions and 4.8% under simulated intestinal conditions. Moreover, the cell adhesion to intestinal epithelial cells was elevated by 1.0-36.0%. Our results indicate that SF has positive effects on enhancing the survival and adhesion capacity of bacterial strains under environmental stresses, thus demonstrating its potential as a suitable coating agent to stabilize probiotics throughout processing, packaging, storage and consumption.
Collapse
Affiliation(s)
- Gicheol Kwon
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Bohye Heo
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute, Ansan 15604, Republic of Korea
| | - Mi Jin Kwon
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Insu Kim
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Jaeryang Chu
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute, Ansan 15604, Republic of Korea
| | - Byung-Yong Kim
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Byoung-Kook Kim
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute, Ansan 15604, Republic of Korea
| | - Sung Sun Park
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea,Corresponding author Phone: +82-2-6292-9101 Fax: +82-2-6292-9266 E-mail:
| |
Collapse
|
159
|
Yao Y, Guo Y, Li X, Yu J, Ding B. Asymmetric Wettable, Waterproof, and Breathable Nanofibrous Membranes for Wound Dressings. ACS APPLIED BIO MATERIALS 2021; 4:3287-3293. [PMID: 35014415 DOI: 10.1021/acsabm.0c01624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the progression in wound treatment, the development of wound dressings with considerable skin regeneration capability and improved patient comfort still faces huge challenges. In this study, a type of asymmetric wettable gradient nanofibrous membrane, which is composed of a hydrophobic polyvinyl butyral (PVB)-polydimethylsiloxane (PDMS) upper layer, a PVB-PDMS/gelatin middle layer, and a hydrophilic gelatin lower layer, has been fabricated. The PVB-PDMS upper layer gave dramatically elevated water contact angles from 71.27° to 125.45° as compared with the gelatin membrane, indicating an asymmetric wettability. The composite membrane exhibited outstanding waterproof capability with a hydrostatic pressure of 58.21 kPa, excellent breathability with a water vapor transmission rate of 8.80 kg m-2 d-1, improved stretchability and tear resistance, and dramatic improvement in mesenchymal stem cell recruitment with the immobilization of stromal-cell-derived factor-1α for accelerating skin regeneration. The development of asymmetric wettable nanofibrous membranes offers insight into wound-dressing design.
Collapse
Affiliation(s)
- Yueming Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuxia Guo
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
160
|
Grabska-Zielińska S, Sionkowska A. How to Improve Physico-Chemical Properties of Silk Fibroin Materials for Biomedical Applications?-Blending and Cross-Linking of Silk Fibroin-A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1510. [PMID: 33808809 PMCID: PMC8003607 DOI: 10.3390/ma14061510] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
This review supplies a report on fresh advances in the field of silk fibroin (SF) biopolymer and its blends with biopolymers as new biomaterials. The review also includes a subsection about silk fibroin mixtures with synthetic polymers. Silk fibroin is commonly used to receive biomaterials. However, the materials based on pure polymer present low mechanical parameters, and high enzymatic degradation rate. These properties can be problematic for tissue engineering applications. An increased interest in two- and three-component mixtures and chemically cross-linked materials has been observed due to their improved physico-chemical properties. These materials can be attractive and desirable for both academic, and, industrial attention because they expose improvements in properties required in the biomedical field. The structure, forms, methods of preparation, and some physico-chemical properties of silk fibroin are discussed in this review. Detailed examples are also given from scientific reports and practical experiments. The most common biopolymers: collagen (Coll), chitosan (CTS), alginate (AL), and hyaluronic acid (HA) are discussed as components of silk fibroin-based mixtures. Examples of binary and ternary mixtures, composites with the addition of magnetic particles, hydroxyapatite or titanium dioxide are also included and given. Additionally, the advantages and disadvantages of chemical, physical, and enzymatic cross-linking were demonstrated.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Alina Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| |
Collapse
|
161
|
P25 Gene Knockout Contributes to Human Epidermal Growth Factor Production in Transgenic Silkworms. Int J Mol Sci 2021; 22:ijms22052709. [PMID: 33800168 PMCID: PMC7962452 DOI: 10.3390/ijms22052709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/21/2021] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
Transgenic silkworm expression systems have been applied for producing various recombinant proteins. Knocking out or downregulating an endogenous silk protein is considered a viable strategy for improving the ability of transgenic expression systems to produce exogenous proteins. Here, we report the expression of human epidermal growth factor (hEGF) in a P25 gene knockout silkworm. The hEGF gene regulated by the P25 gene promoter was integrated into a silkworm's genome. Five transgenic positive silkworm lineages were generated with different insertion sites on silkworm chromosomes and the ability to synthesize and secrete proteins into cocoons. Then, a cross-strategy was used to produce transgenic silkworms with a P25 gene knockout background. The results of the protein analysis showed that the loss of an endogenous P25 protein can increase the hEGF production to about 2.2-fold more than normal silkworms. Compared to those of transgenic silkworms with wild type (non-knockout) background, the morphology and secondary structure of cocoon silks were barely changed in transgenic silkworms with a P25 gene knockout background, indicating their similar physical properties of cocoon silks. In conclusion, P25 gene knockout silkworms may become an efficient bioreactor for the production of exogenous proteins and a promising tool for producing various protein-containing silk biomaterials.
Collapse
|
162
|
Wu M, Huang S, Ye X, Ruan J, Zhao S, Ye J, Zhong B. Human epidermal growth factor-functionalized cocoon silk with improved cell proliferation activity for the fabrication of wound dressings. J Biomater Appl 2021; 36:722-730. [PMID: 33663262 DOI: 10.1177/0885328221997981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human epidermal growth factor (hEGF) is a key factor involved in wound healing owing to its powerful ability to stimulate cell proliferation. In this study, we used piggyBac transposon technology to produce transgenic silkworms expressing the hEGF protein fused to truncated heavy chain (FibH-hEGF). The FibH-hEGF fusion protein was successfully expressed and secreted into silkworm cocoons. Compared to wild-type silk, the transgenic silkworm silk had the similar morphology about silks fiber surface and cocoon nets, while the secondary structure between the transgenic silk and wild-type silk was different. Most importantly, transgenic silkworm cocoon silk powder extract significantly increased human fibroblast FIB cell proliferation for a long duration with no apparent cytotoxicity. Our study provides a promising method for obtaining cost-effective and functional biomaterials for the fabrication of wound dressings.
Collapse
Affiliation(s)
- Meiyu Wu
- College of Animal Science, 12377Zhejiang University, Hangzhou, Zhejiang, China
| | - Shenyu Huang
- College of Animal Science, 12377Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaogang Ye
- College of Animal Science, 12377Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinghua Ruan
- College of Animal Science, 12377Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuo Zhao
- College of Animal Science, 12377Zhejiang University, Hangzhou, Zhejiang, China
| | - Juan Ye
- College of Animal Science, 12377Zhejiang University, Hangzhou, Zhejiang, China
| | - Boxiong Zhong
- College of Animal Science, 12377Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
163
|
Evaluation of Keratin/Bacterial Cellulose Based Scaffolds as Potential Burned Wound Dressing. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11051995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The study presents the preparation and characterization of new scaffolds based on bacterial cellulose and keratin hydrogel which were seeded with adipose stem cells. The bacterial cellulose was obtained by developing an Acetobacter xylinum culture and was visualized using SEM (scanning electron microscopy) and elementally determined through EDAX (dispersive X-ray analysis) tests. Keratin species (β–keratose and γ-keratose) was extracted by hydrolytic degradation from non-dyed human hair. SEM, EDAX and conductometric titration tests were performed for physical–chemical and morphological evaluation. Cytocompatibility tests performed in vitro confirmed the material non-toxic effect on cells. The scaffolds, with and without stem cells, were grafted on the burned wounds on the rabbit’s dorsal region and the grafts were monitored for 21 days after the application on the wounds. The clinical monitoring of the grafts and the histopathological examination demonstrated the regenerative potential of the bacterial cellulose–keratin scaffolds, under the test conditions.
Collapse
|
164
|
Das G, Shin HS, Campos EVR, Fraceto LF, Del Pilar Rodriguez-Torres M, Mariano KCF, de Araujo DR, Fernández-Luqueño F, Grillo R, Patra JK. Sericin based nanoformulations: a comprehensive review on molecular mechanisms of interaction with organisms to biological applications. J Nanobiotechnology 2021. [PMID: 33482828 DOI: 10.1186/s12951-021-00774-y.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The advances in products based on nanotechnology have directed extensive research on low-cost, biologically compatible, and easily degradable materials. MAIN BODY Sericin (SER) is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). SER is a biocompatible material with economic viability, which can be easily functionalized due to its potential crosslink reactions. Also, SER has inherent biological properties, which makes possible its use as a component of pharmaceutical formulations with several biomedical applications, such as anti-tumor, antimicrobials, antioxidants and as scaffolds for tissue repair as well as participating in molecular mechanisms attributed to the regulation of transcription factors, reduction of inflammatory signaling molecules, stimulation of apoptosis, migration, and proliferation of mesenchymal cells. CONCLUSION In this review, the recent innovations on SER-based nano-medicines (nanoparticles, micelles, films, hydrogels, and their hybrid systems) and their contributions for non-conventional therapies are discussed considering different molecular mechanisms for promoting their therapeutic applications.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Estefânia V Ramos Campos
- Human and Natural Sciences Center, Federal University of ABC. Av. Dos Estados, 5001. Bl. A, T3, Lab. 503-3. Bangú, Santo André, SP, Brazil
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Av. Três de março, 511, Alto da Boa Vista, Sorocaba, São Paulo, 18087-180, Brazil
| | - Maria Del Pilar Rodriguez-Torres
- Departamento de Ingenieria Molecular de Materiales, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blvd. Juriquilla 3001, 76230, Queretaro, Qro, Mexico
| | - Kelli Cristina Freitas Mariano
- Human and Natural Sciences Center, Federal University of ABC. Av. Dos Estados, 5001. Bl. A, T3, Lab. 503-3. Bangú, Santo André, SP, Brazil
| | - Daniele Ribeiro de Araujo
- Human and Natural Sciences Center, Federal University of ABC. Av. Dos Estados, 5001. Bl. A, T3, Lab. 503-3. Bangú, Santo André, SP, Brazil
| | - Fabián Fernández-Luqueño
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, 25900, Coahuila, C.P., Mexico
| | - Renato Grillo
- Department of Physics and Chemistry, São Paulo State University (UNESP), Avenida Brasil, 56, Centro, Ilha Solteira, SP, 15385-000, Brazil
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| |
Collapse
|
165
|
Das G, Shin HS, Campos EVR, Fraceto LF, Del Pilar Rodriguez-Torres M, Mariano KCF, de Araujo DR, Fernández-Luqueño F, Grillo R, Patra JK. Sericin based nanoformulations: a comprehensive review on molecular mechanisms of interaction with organisms to biological applications. J Nanobiotechnology 2021; 19:30. [PMID: 33482828 PMCID: PMC7821414 DOI: 10.1186/s12951-021-00774-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The advances in products based on nanotechnology have directed extensive research on low-cost, biologically compatible, and easily degradable materials. MAIN BODY Sericin (SER) is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). SER is a biocompatible material with economic viability, which can be easily functionalized due to its potential crosslink reactions. Also, SER has inherent biological properties, which makes possible its use as a component of pharmaceutical formulations with several biomedical applications, such as anti-tumor, antimicrobials, antioxidants and as scaffolds for tissue repair as well as participating in molecular mechanisms attributed to the regulation of transcription factors, reduction of inflammatory signaling molecules, stimulation of apoptosis, migration, and proliferation of mesenchymal cells. CONCLUSION In this review, the recent innovations on SER-based nano-medicines (nanoparticles, micelles, films, hydrogels, and their hybrid systems) and their contributions for non-conventional therapies are discussed considering different molecular mechanisms for promoting their therapeutic applications.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Estefânia V Ramos Campos
- Human and Natural Sciences Center, Federal University of ABC. Av. Dos Estados, 5001. Bl. A, T3, Lab. 503-3. Bangú, Santo André, SP, Brazil
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Av. Três de março, 511, Alto da Boa Vista, Sorocaba, São Paulo, 18087-180, Brazil
| | - Maria Del Pilar Rodriguez-Torres
- Departamento de Ingenieria Molecular de Materiales, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blvd. Juriquilla 3001, 76230, Queretaro, Qro, Mexico
| | - Kelli Cristina Freitas Mariano
- Human and Natural Sciences Center, Federal University of ABC. Av. Dos Estados, 5001. Bl. A, T3, Lab. 503-3. Bangú, Santo André, SP, Brazil
| | - Daniele Ribeiro de Araujo
- Human and Natural Sciences Center, Federal University of ABC. Av. Dos Estados, 5001. Bl. A, T3, Lab. 503-3. Bangú, Santo André, SP, Brazil
| | - Fabián Fernández-Luqueño
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, 25900, Coahuila, C.P., Mexico
| | - Renato Grillo
- Department of Physics and Chemistry, São Paulo State University (UNESP), Avenida Brasil, 56, Centro, Ilha Solteira, SP, 15385-000, Brazil
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| |
Collapse
|
166
|
Tariq M, Tahir HM, Butt SA, Ali S, Ahmad AB, Raza C, Summer M, Hassan A, Nadeem J. Silk derived formulations for accelerated wound healing in diabetic mice. PeerJ 2021; 9:e10232. [PMID: 33510964 PMCID: PMC7798629 DOI: 10.7717/peerj.10232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The present study aimed to prepare effective silk derived formulations in combination with plant extract (Aloe vera gel) to speed up the wound healing process in diabetic mice. METHODS Diabetes was induced in albino mice by using alloxan monohydrate. After successful induction of diabetes in mice, excision wounds were created via biopsy puncture (6 mm). Wound healing effect of silk sericin (5%) and silk fibroin (5%) individually and in combination with 5% Aloe vera gel was evaluated by determining the percent wound contraction, healing time and histological analysis. RESULTS The results indicated that the best biocompatible silk combination was of 5% silk fibroin and 5% Aloe vera gel in which wounds were healed in 13 days with wound contraction: 98.33 ± 0.80%. In contrast, the wound of the control group (polyfax) healed in 19 day shaving 98.5 ± 0.67% contraction. Histological analysis revealed that the wounds which were treated with silk formulations exhibited an increased growth of blood vessels, collagen fibers, and much reduced inflammation. CONCLUSION It can be concluded that a combination of Bombyx mori silk and Aloe vera gel is a natural biomaterial that can be utilized in wound dressings and to prepare more innovative silk based formulations for speedy recovery of chronic wounds.
Collapse
Affiliation(s)
- Muniba Tariq
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | | | - Samima Asad Butt
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Asma Bashir Ahmad
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Chand Raza
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Muhammad Summer
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Ali Hassan
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Junaid Nadeem
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
167
|
Tverdokhlebova TS, Antipina LS, Kudryavtseva VL, Stankevich KS, Kolesnik IM, Senokosova EA, Velikanova EA, Antonova LV, Vasilchenko DV, Dambaev GT, Plotnikov EV, Bouznik VM, Bolbasov EN. Composite Ferroelectric Membranes Based on Vinylidene Fluoride-Tetrafluoroethylene Copolymer and Polyvinylpyrrolidone for Wound Healing. MEMBRANES 2020; 11:21. [PMID: 33379409 PMCID: PMC7824021 DOI: 10.3390/membranes11010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/01/2023]
Abstract
Wound healing is a complex process and an ongoing challenge for modern medicine. Herein, we present the results of study of structure and properties of ferroelectric composite polymer membranes for wound healing. Membranes were fabricated by electrospinning from a solution of vinylidene fluoride/tetrafluoroethylene copolymer (VDF-TeFE) and polyvinylpyrrolidone (PVP) in dimethylformamide (DMF). The effects of the PVP content on the viscosity and conductivity of the spinning solution, DMF concentration, chemical composition, crystal structure, and conformation of VDF-TeFE macromolecules in the fabricated materials were studied. It was found that as PVP amount increased, the viscosity and conductivity of the spinning solutions decreased, resulting in thinner fibers. Using FTIR and XRD methods, it was shown that if the PVP content was lower than 50 wt %, the VDF-TeFE copolymer adopted a flat zigzag conformation (TTT conformation) and crystalline phases with ferroelectric properties were formed. Gas chromatography results indicated that an increase in the PVP concentration led to a higher residual amount of DMF in the material, causing cytotoxic effects on 3T3L1 fibroblasts. In vivo studies demonstrated that compared to classical gauze dressings impregnated with a solution of an antibacterial agent, ferroelectric composite membranes with 15 wt % PVP provided better conditions for the healing of purulent wounds.
Collapse
Affiliation(s)
- Tamara S. Tverdokhlebova
- Laboratory of Hybrid Plasma Systems, Tomsk Polytechnic University, Tomsk 634050, Russia; (T.S.T.); (V.L.K.); (K.S.S.); (I.M.K.); (E.V.P.)
| | - Ludmila S. Antipina
- Department of Hospital Surgery with the Course of Cardiovascular Surgery, Siberian State Medical University, Tomsk 634050, Russia; (L.S.A.); (D.V.V.); (G.T.D.)
| | - Valeriya L. Kudryavtseva
- Laboratory of Hybrid Plasma Systems, Tomsk Polytechnic University, Tomsk 634050, Russia; (T.S.T.); (V.L.K.); (K.S.S.); (I.M.K.); (E.V.P.)
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Ksenia S. Stankevich
- Laboratory of Hybrid Plasma Systems, Tomsk Polytechnic University, Tomsk 634050, Russia; (T.S.T.); (V.L.K.); (K.S.S.); (I.M.K.); (E.V.P.)
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Ilya M. Kolesnik
- Laboratory of Hybrid Plasma Systems, Tomsk Polytechnic University, Tomsk 634050, Russia; (T.S.T.); (V.L.K.); (K.S.S.); (I.M.K.); (E.V.P.)
| | - Evgenia A. Senokosova
- Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia; (E.A.S.); (E.A.V.); (L.V.A.)
| | - Elena A. Velikanova
- Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia; (E.A.S.); (E.A.V.); (L.V.A.)
| | - Larisa V. Antonova
- Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia; (E.A.S.); (E.A.V.); (L.V.A.)
| | - Dmitry V. Vasilchenko
- Department of Hospital Surgery with the Course of Cardiovascular Surgery, Siberian State Medical University, Tomsk 634050, Russia; (L.S.A.); (D.V.V.); (G.T.D.)
| | - Georgiy T. Dambaev
- Department of Hospital Surgery with the Course of Cardiovascular Surgery, Siberian State Medical University, Tomsk 634050, Russia; (L.S.A.); (D.V.V.); (G.T.D.)
| | - Evgenii V. Plotnikov
- Laboratory of Hybrid Plasma Systems, Tomsk Polytechnic University, Tomsk 634050, Russia; (T.S.T.); (V.L.K.); (K.S.S.); (I.M.K.); (E.V.P.)
| | - Vyacheslav M. Bouznik
- Arctic Climate Materials Division, All Russian Scientific Research Institute of Aviation Materials, Moscow 105005, Russia;
- Department of Inorganic Chemistry, Tomsk State University, Tomsk 634050, Russia
| | - Evgeny N. Bolbasov
- Laboratory of Hybrid Plasma Systems, Tomsk Polytechnic University, Tomsk 634050, Russia; (T.S.T.); (V.L.K.); (K.S.S.); (I.M.K.); (E.V.P.)
| |
Collapse
|
168
|
Matthew SAL, Totten JD, Phuagkhaopong S, Egan G, Witte K, Perrie Y, Seib FP. Silk Nanoparticle Manufacture in Semi-Batch Format. ACS Biomater Sci Eng 2020; 6:6748-6759. [PMID: 33320640 DOI: 10.1021/acsbiomaterials.0c01028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silk nanoparticles have demonstrated utility across a range of biomedical applications, especially as drug delivery vehicles. Their fabrication by bottom-up methods such as nanoprecipitation, rather than top-down manufacture, can improve critical nanoparticle quality attributes. Here, we establish a simple semi-batch method using drop-by-drop nanoprecipitation at the lab scale that reduces special-cause variation and improves mixing efficiency. The stirring rate was an important parameter affecting nanoparticle size and yield (400 < 200 < 0 rpm), while the initial dropping height (5.5 vs 7.5 cm) directly affected nanoparticle yield. Varying the nanoparticle standing time in the mother liquor between 0 and 24 h did not significantly affect nanoparticle physicochemical properties, indicating that steric and charge stabilizations result in high-energy barriers for nanoparticle growth. Manufacture across all tested formulations achieved nanoparticles between 104 and 134 nm in size with high β-sheet content, spherical morphology, and stability in aqueous media for over 1 month at 4 °C. This semi-automated drop-by-drop, semi-batch silk desolvation offers an accessible, higher-throughput platform for standardization of parameters that are difficult to control using manual methodologies.
Collapse
Affiliation(s)
- Saphia A L Matthew
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - John D Totten
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.,EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K
| | - Suttinee Phuagkhaopong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Gemma Egan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Kimia Witte
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.,EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K.,Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|
169
|
Ojah N, Borah R, Ahmed GA, Mandal M, Choudhury AJ. Surface modification of electrospun silk/AMOX/PVA nanofibers by dielectric barrier discharge plasma: physiochemical properties, drug delivery and in-vitro biocompatibility. Prog Biomater 2020; 9:219-237. [PMID: 33206319 PMCID: PMC7718379 DOI: 10.1007/s40204-020-00144-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
The naturally obtained protein Bombyxmori silk is a biocompatible polymer with excellent mechanical properties and have the potential in controlled drug delivery applications. In this work, we have demonstrated dielectric barrier discharge (DBD) oxygen (O2) plasma surface modified electrospun Bombyxmori silk/Amoxicillin hydrochloride trihydrate (AMOX)/polyvinyl alcohol (PVA) nanofibers for drug release applications with controlled plasma treatment duration (1-10 min). The findings indicate that plasma treated electrospun nanofibers for 1-3 min exhibited significant enhancement in tensile strength, Young's modulus, wettability and surface energy. The plasma treated electrospun nanofibers for 1-5 min showed remarkable increase in AMOX released rate, whereas the electrospun nanofibers treated with plasma irradiation beyond 5 min showed only marginal increase. Moreover, the plasma treated nanofibers also exhibited good antibacterial activity against both E. coli (gram negative) and S. aureus (gram positive) bacteria. The untreated and the plasma treated silk/AMOX/PVA electrospun nanofibers for 1-3 min showed enhanced viability of primary adipose derived mesenchymal stem cells (ADMSCs) growth on them and much less hemolysis activity (< 5%). The in vitro biocompatibility of various electrospun nanofibers were further corroborated by live/dead imaging and cytoskeletal architecture assessment demonstrating enhanced cell adhesion and spreading on the plasma treated nanofibers for 1-3 min. The findings of the present study suggest that the silk/AMOX/PVA electrospun nanofibers with plasma treatment (1-3 min) due to their enhanced drug release ability and biocompatibility can be used as potential wound dressing applications.
Collapse
Affiliation(s)
- Namita Ojah
- Laboratory for Plasma Processing of Materials, Department of Physics, Tezpur University, Tezpur, Assam, 784028, India
| | - Rajiv Borah
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
| | - Gazi Ameen Ahmed
- Laboratory for Plasma Processing of Materials, Department of Physics, Tezpur University, Tezpur, Assam, 784028, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Arup Jyoti Choudhury
- Laboratory for Plasma Processing of Materials, Department of Physics, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
170
|
Patil PP, Reagan MR, Bohara RA. Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. Int J Biol Macromol 2020; 164:4613-4627. [PMID: 32814099 PMCID: PMC7849047 DOI: 10.1016/j.ijbiomac.2020.08.041] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 01/12/2023]
Abstract
Silk fibroin (SF) is derived from Bombyx mori silkworm cocoons and has been used in textiles and as a suture material for decades. More recently, SF has been used for various new biomedical applications, including as a wound dressing, owing to its excellent biological and mechanical properties. Specifically, the mechanical stiffness, versatility, biocompatibility, biodegradability, water vapour permeability and slight bactericidal properties make SF an excellent candidate biomaterial for wound dressing applications. The effectiveness of SF as a wound dressing has been tested and well-documented in vitro as well as in-vivo, as described here. Dressings based on SF are currently used for treating a wide variety of chronic and acute (e.g. burn) wounds. SF and its derivatives prepared as biomaterials are available as sponges, hydrogels, nanofibrous matrices, scaffolds, micro/nanoparticles, and films. The present review discusses the potential role of SF in wound dressing and its modulation for wound dressing applications. The comparison of SF based dressings with other natural polymers understands the readers, the scope and limitation of the subject in-depth.
Collapse
Affiliation(s)
- Priyanka P Patil
- Sigma Institute of Science and Commerce, Bakrol, Vadodara, Gujarat 390019, India
| | | | - Raghvendra A Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland; Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur 416006, India.
| |
Collapse
|
171
|
Abstract
Sericin is a 10-to-400 kDa hydrophilic protein with high serine content and is a silk constituent together with fibroin. It is produced in the middle silk gland of the silkworm and encoded by four sericin genes. The molecular weight of sericin and its biological activity vary depending on the extraction method employed. Its chemical structure, in terms of random coil and β-sheet conformations, also differs with the extraction method, thereby extending its applications in various fields. Sericin, which was discarded in the textile industry in the past, is being applied and developed in the biomedical field, owing to its biological properties. In particular, many studies are underway in the field of tissue engineering, evaluating its applicability in burn dressing, drug delivery, bone regeneration, cartilage regeneration, and nerve regeneration.
Collapse
|
172
|
Dorazilová J, Muchová J, Šmerková K, Kočiová S, Diviš P, Kopel P, Veselý R, Pavliňáková V, Adam V, Vojtová L. Synergistic Effect of Chitosan and Selenium Nanoparticles on Biodegradation and Antibacterial Properties of Collagenous Scaffolds Designed for Infected Burn Wounds. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1971. [PMID: 33027935 PMCID: PMC7601368 DOI: 10.3390/nano10101971] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
A highly porous scaffold is a desirable outcome in the field of tissue engineering. The porous structure mediates water-retaining properties that ensure good nutrient transportation as well as creates a suitable environment for cells. In this study, porous antibacterial collagenous scaffolds containing chitosan and selenium nanoparticles (SeNPs) as antibacterial agents were studied. The addition of antibacterial agents increased the application potential of the material for infected and chronic wounds. The morphology, swelling, biodegradation, and antibacterial activity of collagen-based scaffolds were characterized systematically to investigate the overall impact of the antibacterial additives. The additives visibly influenced the morphology, water‑retaining properties as well as the stability of the materials in the presence of collagenase enzymes. Even at concentrations as low as 5 ppm of SeNPs, modified polymeric scaffolds showed considerable inhibition activity towards Gram-positive bacterial strains such as Staphylococcus aureus and methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis in a dose-dependent manner.
Collapse
Affiliation(s)
- Jana Dorazilová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
| | - Johana Muchová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
| | - Kristýna Šmerková
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Silvia Kočiová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Pavel Diviš
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic;
| | - Pavel Kopel
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Radek Veselý
- Department of Traumatology at the Medical Faculty, Masaryk University and Trauma Hospital of Brno, Ponavka 6, 662 50 Brno, Czech Republic;
| | - Veronika Pavliňáková
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
| | - Vojtěch Adam
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Lucy Vojtová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
| |
Collapse
|
173
|
Yao Q, Lan QH, Jiang X, Du CC, Zhai YY, Shen X, Xu HL, Xiao J, Kou L, Zhao YZ. Bioinspired biliverdin/silk fibroin hydrogel for antiglioma photothermal therapy and wound healing. Theranostics 2020; 10:11719-11736. [PMID: 33052243 PMCID: PMC7545989 DOI: 10.7150/thno.47682] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Photothermal therapy employs the photoabsorbers to generate heat under the near-infrared (NIR) irradiation for thermal tumor ablation. However, NIR irradiation might damage the adjacent tissue due to the leakage of the photoabsorbers and the residual materials after treatment might hinder the local healing process. A bifunctional hydrogel that holds both photothermal property and potent pro-healing ability provides a viable option to resolve this issue. Methods: In this study, we developed a bioinspired green hydrogel (BVSF) with the integration of bioproduct biliverdin into natural derived silk fibroin matrix for antiglioma photothermal therapy and wound healing. Results: The BVSF hydrogel possessed excellent and controllable photothermal activity under NIR irradiation and resulted in effective tumor ablation both in vitro and in vivo. Additionally, the BVSF hydrogel exerted anti-inflammatory effects both in vitro and in vivo, and stimulated angiogenesis and wound healing in a full-thickness defect rat model. Conclusion: Overall, this proof-of-concept study was aimed to determine the feasibility and reliability of using an all-natural green formulation for photothermal therapy and post-treatment care.
Collapse
|
174
|
Fregnan F, Muratori L, Bassani GA, Crosio A, Biagiotti M, Vincoli V, Carta G, Pierimarchi P, Geuna S, Alessandrino A, Freddi G, Ronchi G. Preclinical Validation of SilkBridge TM for Peripheral Nerve Regeneration. Front Bioeng Biotechnol 2020; 8:835. [PMID: 32850714 PMCID: PMC7426473 DOI: 10.3389/fbioe.2020.00835] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Silk fibroin (Bombyx mori) was used to manufacture a nerve conduit (SilkBridgeTM) characterized by a novel 3D architecture. The wall of the conduit consists of two electrospun layers (inner and outer) and one textile layer (middle), perfectly integrated at the structural and functional level. The manufacturing technology conferred high compression strength on the device, thus meeting clinical requirements for physiological and pathological compressive stresses. As demonstrated in a previous work, the silk material has proven to be able to provide a valid substrate for cells to grow on, differentiate and start the fundamental cellular regenerative activities in vitro and, in vivo, at the short time point of 2 weeks, to allow the starting of regenerative processes in terms of good integration with the surrounding tissues and colonization of the wall layers and of the lumen with several cell types. In the present study, a 10 mm long gap in the median nerve was repaired with 12 mm SilkBridgeTM conduit and evaluated at middle (4 weeks) and at longer time points (12 and 24 weeks). The SilkBridgeTM conduit led to a very good functional and morphological recovery of the median nerve, similar to that observed with the reference autograft nerve reconstruction procedure. Taken together, all these results demonstrated that SilkBridgeTM has an optimized balance of biomechanical and biological properties, which allowed proceeding with a first-in-human clinical study aimed at evaluating safety and effectiveness of using the device for the reconstruction of digital nerve defects in humans.
Collapse
Affiliation(s)
- Federica Fregnan
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | | | - Alessandro Crosio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Department of Orthopaedics and Traumatology for Hand, ASST Gaetano Pini, Milan, Italy
| | | | | | - Giacomo Carta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | | | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | | | | | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
175
|
Pollini M, Paladini F. Bioinspired Materials for Wound Healing Application: The Potential of Silk Fibroin. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3361. [PMID: 32751205 PMCID: PMC7436046 DOI: 10.3390/ma13153361] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Nature is an incredible source of inspiration for scientific research due to the multiple examples of sophisticated structures and architectures which have evolved for billions of years in different environments. Numerous biomaterials have evolved toward high level functions and performances, which can be exploited for designing novel biomedical devices. Naturally derived biopolymers, in particular, offer a wide range of chances to design appropriate substrates for tissue regeneration and wound healing applications. Wound management still represents a challenging field which requires continuous efforts in scientific research for definition of novel approaches to facilitate and promote wound healing and tissue regeneration, particularly where the conventional therapies fail. Moreover, big concerns associated to the risk of wound infections and antibiotic resistance have stimulated the scientific research toward the definition of products with simultaneous regenerative and antimicrobial properties. Among the bioinspired materials for wound healing, this review focuses attention on a protein derived from the silkworm cocoon, namely silk fibroin, which is characterized by incredible biological features and wound healing capability. As demonstrated by the increasing number of publications, today fibroin has received great attention for providing valuable options for fabrication of biomedical devices and products for tissue engineering. In combination with antimicrobial agents, particularly with silver nanoparticles, fibroin also allows the development of products with improved wound healing and antibacterial properties. This review aims at providing the reader with a comprehensive analysis of the most recent findings on silk fibroin, presenting studies and results demonstrating its effective role in wound healing and its great potential for wound healing applications.
Collapse
Affiliation(s)
- Mauro Pollini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| | - Federica Paladini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| |
Collapse
|