151
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
152
|
Gu J, Zhang J, Liu Q, Xu S. Neurological risks of COVID-19 in women: the complex immunology underpinning sex differences. Front Immunol 2023; 14:1281310. [PMID: 38035090 PMCID: PMC10685449 DOI: 10.3389/fimmu.2023.1281310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
The COVID-19 pandemic has uncovered many mysteries about SARS-CoV-2, including its potential to trigger abnormal autoimmune responses. Emerging evidence suggests women may face higher risks from COVID-induced autoimmunity manifesting as persistent neurological symptoms. Elucidating the mechanisms underlying this female susceptibility is now imperative. We synthesize key insights from existing studies on how COVID-19 infection can lead to immune tolerance loss, enabling autoreactive antibodies and lymphocyte production. These antibodies and lymphocytes infiltrate the central nervous system. Female sex hormones like estrogen and X-chromosome mediated effects likely contribute to dysregulated humoral immunity and cytokine profiles among women, increasing their predisposition. COVID-19 may also disrupt the delicate immunological balance of the female microbiome. These perturbations precipitate damage to neural damage through mechanisms like demyelination, neuroinflammation, and neurodegeneration - consistent with the observed neurological sequelae in women. An intentional focus on elucidating sex differences in COVID-19 pathogenesis is now needed to inform prognosis assessments and tailored interventions for female patients. From clinical monitoring to evaluating emerging immunomodulatory therapies, a nuanced women-centered approach considering the hormonal status and immunobiology will be vital to ensure equitable outcomes. Overall, deeper insights into the apparent female specificity of COVID-induced autoimmunity will accelerate the development of solutions mitigating associated neurological harm.
Collapse
Affiliation(s)
- Jienan Gu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qianhui Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shijie Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
153
|
Li N, Zhang R, Tang M, Zhao M, Jiang X, Cai X, Ye N, Su K, Peng J, Zhang X, Wu W, Ye H. Recent Progress and Prospects of Small Molecules for NLRP3 Inflammasome Inhibition. J Med Chem 2023; 66:14447-14473. [PMID: 37879043 DOI: 10.1021/acs.jmedchem.3c01370] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
NLRP3 inflammasome is a multiprotein complex involved in host immune response─which exerts various biological effects by mediating the maturation and secretion of IL-1β and IL-18─and pyroptosis. However, its aberrant activation could cause amplification of inflammatory effects, thereby triggering a range of ailments, including Alzheimer's disease, Parkinson's disease, rheumatoid arthritis, gout, type 2 diabetes mellitus, and cancer. For the past few years, as an attractive anti-inflammatory target, NLRP3-targeting small-molecule inhibitors have been widely reported by both the academic and the industrial communities. In order to deeply understand the advancement of NLRP3 inflammasome inhibitors, we provide comprehensive insights and commentary on drugs currently under clinical investigation, as well as other NLRP3 inflammasome inhibitors from a chemical structure point of view, with an aim to provide new insights for the further development of clinical drugs for NLRP3 inflammasome-mediated diseases.
Collapse
Affiliation(s)
- Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neng Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
154
|
Sortino M, Petrigna L, Trovato B, Amato A, Castorina A, D’Agata V, Maugeri G, Musumeci G. An Overview of Physical Exercise Program Protocols and Effects on the Physical Function in Multiple Sclerosis: An Umbrella Review. J Funct Morphol Kinesiol 2023; 8:154. [PMID: 37987490 PMCID: PMC10660496 DOI: 10.3390/jfmk8040154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
Multiple sclerosis is a disease that concerns a growing number of people, especially females. There are different interventions proposed for this population, and physical activity is one of them. A proper and well-structured physical activity program can be a cheap, feasible, and practical instrument to help this population improve their quality of life. Consequently, the present study aimed to analyze, through an umbrella review, published articles to evaluate the protocols and the effect of intervention on different types of multiple sclerosis and eventually to propose a standardized intervention for this population. Systematic reviews and meta-analyses of randomized controlled trials on multiple sclerosis and physical activity effects were searched for on the electronic databases PubMed, Web of Science, and Scopus up to 22 December 2022. The quality of the studies included was determined and the results were narratively analyzed. The included studies present heterogeneity in the population, in the study design and protocols, and in the outcomes evaluated. Most of the studies detected positive outcomes on the physical function of people with multiple sclerosis. This study highlights the necessity of future studies on a population with similar characteristics, adopting similar protocols to evaluate their feasibility and validity to make physical intervention prescribed as a medicine.
Collapse
Affiliation(s)
- Martina Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (M.S.); (L.P.); (B.T.); (A.A.); (V.D.); (G.M.)
| | - Luca Petrigna
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (M.S.); (L.P.); (B.T.); (A.A.); (V.D.); (G.M.)
| | - Bruno Trovato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (M.S.); (L.P.); (B.T.); (A.A.); (V.D.); (G.M.)
| | - Alessandra Amato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (M.S.); (L.P.); (B.T.); (A.A.); (V.D.); (G.M.)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (M.S.); (L.P.); (B.T.); (A.A.); (V.D.); (G.M.)
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (M.S.); (L.P.); (B.T.); (A.A.); (V.D.); (G.M.)
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (M.S.); (L.P.); (B.T.); (A.A.); (V.D.); (G.M.)
| |
Collapse
|
155
|
Silvin A, Qian J, Ginhoux F. Brain macrophage development, diversity and dysregulation in health and disease. Cell Mol Immunol 2023; 20:1277-1289. [PMID: 37365324 PMCID: PMC10616292 DOI: 10.1038/s41423-023-01053-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Brain macrophages include microglia in the parenchyma, border-associated macrophages in the meningeal-choroid plexus-perivascular space, and monocyte-derived macrophages that infiltrate the brain under various disease conditions. The vast heterogeneity of these cells has been elucidated over the last decade using revolutionary multiomics technologies. As such, we can now start to define these various macrophage populations according to their ontogeny and their diverse functional programs during brain development, homeostasis and disease pathogenesis. In this review, we first outline the critical roles played by brain macrophages during development and healthy aging. We then discuss how brain macrophages might undergo reprogramming and contribute to neurodegenerative disorders, autoimmune diseases, and glioma. Finally, we speculate about the most recent and ongoing discoveries that are prompting translational attempts to leverage brain macrophages as prognostic markers or therapeutic targets for diseases that affect the brain.
Collapse
Affiliation(s)
- Aymeric Silvin
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, 94800, France
| | - Jiawen Qian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Florent Ginhoux
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, 94800, France.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, 138648, Republic of Singapore.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, 169856, Singapore.
| |
Collapse
|
156
|
Wang YK, Zhao YP, Ye MZ, Wang L, Lan TS, Wang Y, Qi ZQ. Chimeric CNS-targeting-peptide engineered exosomes for experimental autoimmune encephalomyelitis therapy. Int Immunopharmacol 2023; 124:110835. [PMID: 37717320 DOI: 10.1016/j.intimp.2023.110835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) that causes demyelination, neuronal damage and white matter loss, but there is still no known cure. Exosomes are 30-200 nm-sized double-layered membrane vesicles that can easily cross the blood-brain barrier (BBB). Exosomes from umbilical cord mesenchymal stem cells(UMSCs) have been found to treat experimental autoimmune encephalomyelitis (EAE) through the action of anti-inflammatory and immunomodulatory, but its clinical translation has been hampered by their inefficacious accumulation in CNS. Therefore, we developed a TAxI-exos, also known as a TAxI-peptide-chimeric UMSC-exos, for CNS-specific accumulation and curative effect in EAE. We used the EAE model in vivo as well as active T cell and BV-2 cell models in vitro to explore the efficacy and mechanisms. Exosomes from UMSCs with TAxI or DiR labels were given to EAE mice in one dosage (150 g) prior to the peak at day 15. The mice were sacrificed on day 30 so that spinal cords, spleens, and blood could be taken for analysis of demyelination, inflammation, microglia, T-cell subset proportions, and inflammatory cytokine expression. In vitro, PBMCs and splenocytes isolated from healthy C57BL/6 mice were activated and incubated with 0.15 mg/mL of UMSC-exos or TAxI-exos for immune mechanism investigations. Activated BV-2 cells were used to investigate the targeting and controlling polarization ability and mechanism of UMSC-exos and TAxI-exos. As expected, TAxI-exos exhibited significantly greater therapeutic action in EAE mice than UMSC-exos due to their improved targeting-ability. The medication reduced T-cell subset proportions and inflammation, reduced active-microglia proportions and promoted M1 to M2 microglial cell polarization through TNF pathway, upregulated IL-4, IL-10, TGF-β, and IDO-1 expression, and downregulated IL-2, IL-6, IL-17A, IFN-γ, and TNF-α. The CNS-targeting properties of TAxI-exos and their capacity to inhibit degenerative processes in EAE mice have considerable potential therapeutic value for MS and other CNS illnesses.
Collapse
Affiliation(s)
- Ying-Kai Wang
- School of Medicine, Guangxi University, Nanning, Guangxi, China.
| | - Yun-Peng Zhao
- Department of Histology and Embryology, Naval Medical University, Shanghai, China; Shanghai Key Lab of Cell Engineering, China.
| | - Ming-Zhu Ye
- Department of Obstetrics and Gynecology, Zhong Shan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Ling Wang
- Shanghai Key Lab of Cell Engineering, China; Translational Medicine Research Center, Naval Medical University, Shanghai, China.
| | - Tian-Shu Lan
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China.
| | - Yue Wang
- Department of Histology and Embryology, Naval Medical University, Shanghai, China; Shanghai Key Lab of Cell Engineering, China; Translational Medicine Research Center, Naval Medical University, Shanghai, China.
| | - Zhong-Quan Qi
- School of Medicine, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
157
|
Kim E, Fortoul MC, Weimer D, Meggyesy M, Demory Beckler M. Co-occurrence of glioma and multiple sclerosis: Prevailing theories and emerging therapies. Mult Scler Relat Disord 2023; 79:105027. [PMID: 37801959 DOI: 10.1016/j.msard.2023.105027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/01/2023] [Accepted: 09/23/2023] [Indexed: 10/08/2023]
Abstract
Though the concurrence of primary brain tumors and multiple sclerosis (MS) is exceedingly rare, instances have been noted in the literature as early as 1949. Given these observations, researchers have proposed various ideas as to how these malignancies may be linked to MS. Due to insufficient data, none have gained traction or been widely accepted amongst neurologists or neuro-oncologists. What is abundantly clear, however, is the mounting uncertainty faced by clinicians when caring for these individuals. Concerns persist about the potential for disease modifying therapies (DMTs) to initiate or promote tumor growth and progression, and to date, there are no approved treatments capable of mitigating both MS disease activity and tumor growth, let alone established guidelines that clinicians may refer to. Collectively, these gaps in the literature impose limitations to optimizing the care and management of this population. As such, our hope is to stimulate further discussion of this topic and prompt future investigations to explore novel treatment options and advance our understanding of these concurrent disease processes. To this end, the chief objective of this article is to evaluate proposed ideas of how the diseases may be linked, outline emerging therapies for both MS and brain tumors, and describe evidence-based approaches to diagnosing and treating this patient population.
Collapse
Affiliation(s)
- Enoch Kim
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States
| | - Marla C Fortoul
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States
| | - Derek Weimer
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States
| | - Michael Meggyesy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michelle Demory Beckler
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States.
| |
Collapse
|
158
|
Dong M, Wang B, Wei J, de O Fonseca AH, Perry CJ, Frey A, Ouerghi F, Foxman EF, Ishizuka JJ, Dhodapkar RM, van Dijk D. Causal identification of single-cell experimental perturbation effects with CINEMA-OT. Nat Methods 2023; 20:1769-1779. [PMID: 37919419 PMCID: PMC10630139 DOI: 10.1038/s41592-023-02040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 09/08/2023] [Indexed: 11/04/2023]
Abstract
Recent advancements in single-cell technologies allow characterization of experimental perturbations at single-cell resolution. While methods have been developed to analyze such experiments, the application of a strict causal framework has not yet been explored for the inference of treatment effects at the single-cell level. Here we present a causal-inference-based approach to single-cell perturbation analysis, termed CINEMA-OT (causal independent effect module attribution + optimal transport). CINEMA-OT separates confounding sources of variation from perturbation effects to obtain an optimal transport matching that reflects counterfactual cell pairs. These cell pairs represent causal perturbation responses permitting a number of novel analyses, such as individual treatment-effect analysis, response clustering, attribution analysis, and synergy analysis. We benchmark CINEMA-OT on an array of treatment-effect estimation tasks for several simulated and real datasets and show that it outperforms other single-cell perturbation analysis methods. Finally, we perform CINEMA-OT analysis of two newly generated datasets: (1) rhinovirus and cigarette-smoke-exposed airway organoids, and (2) combinatorial cytokine stimulation of immune cells. In these experiments, CINEMA-OT reveals potential mechanisms by which cigarette-smoke exposure dulls the airway antiviral response, as well as the logic that governs chemokine secretion and peripheral immune cell recruitment.
Collapse
Affiliation(s)
- Mingze Dong
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Bao Wang
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jessica Wei
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Internal Medicine (Oncology), Yale School of Medicine, New Haven, CT, USA
| | | | - Curtis J Perry
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Internal Medicine (Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Alexander Frey
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Internal Medicine (Oncology), Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Feriel Ouerghi
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Internal Medicine (Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Ellen F Foxman
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| | - Jeffrey J Ishizuka
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Department of Internal Medicine (Oncology), Yale School of Medicine, New Haven, CT, USA.
| | - Rahul M Dhodapkar
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - David van Dijk
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.
- Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT, USA.
- Department of Computer Science, Yale University, New Haven, CT, USA.
| |
Collapse
|
159
|
Ottersbach J, Wetter TC, König N, Fierlbeck A, Weissert R, Popp RF. Prospective analyses of alertness, sleep, and fitness to drive one year after de novo multiple sclerosis diagnosis. Mult Scler Relat Disord 2023; 79:104930. [PMID: 37634469 DOI: 10.1016/j.msard.2023.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND The prevalence and functional burden of the chronic demyelinating disease multiple sclerosis (MS) are well documented; however, little is known about the initial clinical course of alertness, sleep, cognitive, and psychological symptoms. OBJECTIVES This exploratory, prospective, longitudinal study multidimensionally investigated the development and progression of alertness, sleep, fitness to drive, and psychological symptoms in the first year after de novo MS diagnosis. METHODS Twenty-five people with MS (pwMS) were assessed cognitively, psychologically, and using polysomnography soon after diagnosis and one year later, with outcomes compared to matched healthy controls. RESULTS In the early stage of the disease, psychological symptoms of pwMS were comparable with those of controls, and patient conditions did not deteriorate within the first disease year. A small percentage of pwMS experienced increased levels of anxiety and depression after diagnosis. Alertness, sustained attention, and fitness to drive were comparable between both groups, and fatigue levels remained low over the course of the year. CONCLUSIONS This study highlights patient experiences within the initial clinical course of MS in a small group of patients. Further research is needed to understand the progression of symptoms and impairments in MS over a longer period and in different stages of the disease.
Collapse
Affiliation(s)
- Julia Ottersbach
- Department of Psychiatry and Psychotherapy, Center of Sleep Medicine, Medbo, University of Regensburg, Universitätsstraße 84, Regensburg D-93053, Germany; Department of Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Thomas C Wetter
- Department of Psychiatry and Psychotherapy, Center of Sleep Medicine, Medbo, University of Regensburg, Universitätsstraße 84, Regensburg D-93053, Germany
| | - Nicole König
- Department of Neurology, University of Regensburg Hospital, Regensburg, Germany
| | - Anna Fierlbeck
- Department of Psychiatry and Psychotherapy, Center of Sleep Medicine, Medbo, University of Regensburg, Universitätsstraße 84, Regensburg D-93053, Germany
| | - Robert Weissert
- Department of Neurology, University of Regensburg Hospital, Regensburg, Germany
| | - Roland Fj Popp
- Department of Psychiatry and Psychotherapy, Center of Sleep Medicine, Medbo, University of Regensburg, Universitätsstraße 84, Regensburg D-93053, Germany.
| |
Collapse
|
160
|
Cheng T, Mao X, Hao L. Multiple sclerosis is associated with adverse outcomes following hip and knee arthroplasty: A systematic review and meta-analysis of observational studies. Mult Scler Relat Disord 2023; 79:104956. [PMID: 37660457 DOI: 10.1016/j.msard.2023.104956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/05/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND The association of multiple sclerosis (MS) with joint diseases has been established. However, the impact of MS on postoperative outcomes following total joint arthroplasty (TJA) remains controversial. Therefore, a systematic review of the literature is warranted to ascertain the relationship between MS and adverse outcomes post-TJA. METHODS A systematic literature search of PubMed, Embase, Scopus, and the Cochrane Library from inception to 1 March 2023 was conducted to identify observational studies comparing post-TJA outcomes in MS and non-MS patients. Two investigators independently screened titles, abstracts, and full-text articles for eligibility. A random-effects model was used to calculate odds ratios (OR), mean differences (MD), and corresponding 95% confidence intervals (CI). RESULTS Seven retrospective cohort studies published between 2018 and 2022 met the inclusion criteria. Patients with MS had a higher risk of medical, surgical, and overall complications than patients without MS. Similarly, the MS group was more likely to experience an extended hospital stay, non-home discharge, and revision surgery compared to the control group. Joint infection and implant instability were also more common in patients with MS. CONCLUSION Although TJA may benefit MS patients, current evidence suggests that their postoperative outcomes may be inferior to those of non-MS patients. Thus, orthopaedic surgeons should inform MS patients of potential risks and perform preoperative optimization individually when considering elective arthroplasty.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai 200233, The People's Republic of China.
| | - Xin Mao
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai 200233, The People's Republic of China
| | - Liang Hao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang 330006, The People's Republic of China.
| |
Collapse
|
161
|
Ozkan T, Yasa ME, Unluer NO, Korkmaz B, Uysal I, Vural G. Investigation of parameters related to lower extremity muscle strength and proprioception in Patients with Multiple Sclerosis: a cross-sectional study. Mult Scler Relat Disord 2023; 79:105042. [PMID: 37839364 DOI: 10.1016/j.msard.2023.105042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Patients with Multiple Sclerosis (PwMS) may experience a decline in balance, gait, and mobility as well as an increase in fear of falling (FoF) and fatigue due to weaker muscles and proprioceptive loss in their lower limbs. The study aimed to compare lower extremity muscle strength and proprioception, balance, functional mobility, gait, FoF, and fatigue between PwMS and healthy controls and to investigate the relationship between lower extremity muscle strength and proprioception and balance, functional mobility, gait, FoF, and fatigue in PwMS. METHODS The study was completed with 35 PwMS and 35 healthy controls with matching age and gender. The 5 Repetition Sit-to Stand Test (5-STS-test), knee and ankle reposition tests (using a digital inclinometer), the Berg Balance Scale (BBS), the Timed Up and Go (TUG) test, the Dynamic Gait Index (DGI), the Falls Efficacy-International (FES-I), and the Fatigue Severity Scale (FSS) were used for evaluations. RESULTS The 5-STS test, knee and ankle reposition tests, TUG, FES-I, and FSS Test scores were higher and BBS and DGI scores were lower in PwMS compared to healthy controls (p < 0.05). BBS, DGI, TUG, FES-I, and FSS were associated with 5-STS test and knee and ankle reposition tests except for some nondominant reposition tests in PwMS (r between 0.342 and -0.714; p < 0.05 for all). CONCLUSION Lower extremity muscle strength and proprioception were associated with balance, functional mobility, gait, FoF, and fatigue in PwMS. These results suggested that detailed assessment of neuromuscular parameters in lower extremity function is important in determining the appropriate rehabilitation programs.
Collapse
Affiliation(s)
- Taskin Ozkan
- Vocational School of Health Services, Therapy and Rehabilitation, Giresun University, Giresun 28200, Turkey.
| | - Mustafa Ertugrul Yasa
- Gulhane Faculty of Physiotherapy and Rehabilitation, Health Sciences University, Ankara, Turkey
| | - Nezehat Ozgul Unluer
- Gulhane Faculty of Physiotherapy and Rehabilitation, Health Sciences University, Ankara, Turkey
| | - Buse Korkmaz
- Gulhane Faculty of Physiotherapy and Rehabilitation, Health Sciences University, Ankara, Turkey
| | - Ismail Uysal
- Fethiye Vocational School of Health Services, Department of Health Care Services, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Gonul Vural
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Neurology Department, Ankara, Turkey
| |
Collapse
|
162
|
Gassama S, Garmendia A, Lejeune FX, Boudot de la Motte M, Louapre C, Papeix C, Maillart E, Roux T. A short washout period from fingolimod to anti-CD20 therapy is safe and decreases the risk of reactivation. Rev Neurol (Paris) 2023; 179:1035-1038. [PMID: 37633735 DOI: 10.1016/j.neurol.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 08/28/2023]
Abstract
The frequency of switches between Disease Modifying Therapies (DMTs) in Multiple Sclerosis (MS) has increased considerably over previous years. Between fingolimod and anti-CD20 therapies, a 1-month washout period is usually recommended. However, disease reactivations are frequent after fingolimod (Fg) cessation. Using a retrospective observational monocentric exposed/non-exposed cohort study, we investigated the efficacy and the safety of a shorter washout period (WP) between Fg and anti-CD20. We compared two groups: 25 patients with a short WP (<21 days) and 20 patients with a longer WP (>21 days). We observed no reactivation during WP in patients with a short WP against a relapse in 55% of patients in the longer group. Moreover, clinical and biological safety was excellent. Based on these findings, we recommend a shorter WP between fingolimod and anti-CD20 therapies in MS.
Collapse
Affiliation(s)
- S Gassama
- Department of Neurology, centre de ressources et de compétences SEP - Paris, Pitié-Salpêtrière University Hospital, AP-HP, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - A Garmendia
- Department of Neurology, centre de ressources et de compétences SEP - Paris, Pitié-Salpêtrière University Hospital, AP-HP, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - F X Lejeune
- Paris-Brain Institute (ICM), Paris Brain Institute's Data and Analysis Core, Pitié-Salpêtrière Hospital, Sorbonne université, Inserm U1127, CNRS UMR 7225, Paris, France
| | - M Boudot de la Motte
- Department of Neurology, Fondation Adolphe-de-Rothschild Hospital, Paris, France
| | - C Louapre
- Department of Neurology, centre de ressources et de compétences SEP - Paris, Pitié-Salpêtrière University Hospital, AP-HP, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - C Papeix
- Department of Neurology, centre de ressources et de compétences SEP - Paris, Pitié-Salpêtrière University Hospital, AP-HP, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - E Maillart
- Department of Neurology, centre de ressources et de compétences SEP - Paris, Pitié-Salpêtrière University Hospital, AP-HP, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - T Roux
- Department of Neurology, centre de ressources et de compétences SEP - Paris, Pitié-Salpêtrière University Hospital, AP-HP, 47, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
163
|
Chen X, Wang Y, Ji J, Li C, Zhuang W, Luo J, Shi Y, Lin Q, Wu J, Li A, Wang J, Meng Y, Zhang S, Lang X, Liu X, Sun B, Li H, Liu Y. Electroacupuncture at ST36 acupoint regulates stem cells during experimental autoimmune encephalomyelitis. Int Immunopharmacol 2023; 124:110856. [PMID: 37647680 DOI: 10.1016/j.intimp.2023.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Electroacupuncture (EA) is given to assist in the treatment of MS, which is an effective therapeutic method. However, the therapy mechanism of EA related to stem cells in the treatment of MS is not yet known. In this study, we used a classic animal model of multiple sclerosis: experimental autoimmune encephalomyelitis (EAE) to evaluate the therapeutic effect of EA at Zusanli (ST36) acupoint in EAE and shed light on its potential roles in the effects of stem cells in vivo. METHODS The EAE animal models were established. From the first day after immunization, EAE model mice received EA at ST36 acupoint, named the EA group. The weight and clinical score of the three groups were recorded for 28 days. The demyelination, inflammatory cell infiltration, and markers of neural stem cells (NSCs), hematopoietic stem cells (HSCs), and mesenchymal stem cells (MSCs) were compared. RESULTS We showed that EAE mice treated with EA at ST36 acupoint, were suppressed in demyelination and inflammatory cell infiltration, and thus decreased clinical score and weight loss and mitigated the development of EAE when compared with the EAE group. Moreover, our data revealed that the proportions of NSCs, HSCs, and MSCs increased in the EA group compared with the EAE group. CONCLUSIONS Our study suggested that EA at ST36 acupoint was an effective nonpharmacological therapeutic protocol that not only reduced the CNS demyelination and inflammatory cell infiltration in EAE disease but also increased the proportions of various stem cells. Further study is necessary to better understand how EA at the ST36 acupoint affects EAE.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Yanping Wang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Jiayu Ji
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Changyu Li
- Department of Neurosurgery, Hainan Cancer Hospital, Haikou, China
| | - Wei Zhuang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Jingyu Luo
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Yu Shi
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Qian Lin
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Junfeng Wu
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Anqi Li
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Jing Wang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Yanting Meng
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Xiujuan Lang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Xijun Liu
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Bo Sun
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Harbin, China
| | - Yumei Liu
- Department of Neurobiology, Harbin Medical University, Harbin, China.
| |
Collapse
|
164
|
Tortosa-Carreres J, Quiroga-Varela A, Castillo-Villalba J, Piqueras-Rodríguez M, Ramió-Torrenta L, Cubas-Núñez L, Gasqué-Rubio R, Quintanilla-Bordas C, Huertas-Pons JM, Miguela A, Casanova B, Laiz-Marro B, Pérez-Miralles FC. Improving the efficiency of free kappa light chains as diagnostic biomarker of Multiple Sclerosis by using a novel algorithm. Mult Scler Relat Disord 2023; 79:104997. [PMID: 37714099 DOI: 10.1016/j.msard.2023.104997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Intrathecal immunoglobulin synthesis (ITS) plays a crucial role in the diagnosis of multiple sclerosis (MS). Traditionally, the gold standard method for detecting ITS has been through the analysis of oligoclonal bands (OCB). However, the paradigm has shifted with the introduction of the free kappa light chains (FKLC) method. In fact, a recent consensus recommends evaluating FKLC index (FKLCi) as the primary approach and reserving oligoclonal bands with borderline results. The objective of our study is to investigate the diagnostic efficiency of combining FKLC with other methods to predict ITS while minimizing the reliance on OCB. METHODS A total of 192 patients were included in the study, consisting of 145 individuals diagnosed with multiple sclerosis (pwMS) and 46 with other neurological diseases (controls). Among the MS cases, 100 patients were assigned to the Training Cohort (TC), while an external Validation Cohort (VC) comprised of 45 MS patients was established. Diagnostic efficiency was assessed for FKLCi, OCB, Link index, and the Reiber formula for IgG and FKLC. Optimal cutoff values for Link index and FKLCi were also determined. The last procedure was developed for diverse algorithms using the parameters mentioned above, which included the optimal cutoffs previously obtained. The calculations were conducted independently for both the TC and the VC, as well as for a composite cohort formed by combining data from all patients (OC) RESULTS: One algorithm, named KRO, was developed based on the determination of FKLCi and Reiber Formula as the primary diagnostic parameters. For cases where the FKLCi result was mildly increased, OCB was utilized as a supplementary test. The KRO algorithm demonstrated superior diagnostic accuracy in the OC (89%), resulting in a reduction of OCB consumption by 91%. DISCUSSION The KRO algorithm demonstrated superior sensitivity and accuracy although lower specificity and NPV compared to the use of FKLCi and OCB alone. The present research aligns with the new consensus recommendations regarding the diagnostic approach. Our findings indicate that employing a combined marker approach via KRO could prove to be a proficient screening tool for multiple sclerosis. This approach also holds the potential to address inherent limitations associated with each individual marker. However, to further validate and solidify the efficacy of our algorithm, additional studies involving larger cohorts are warranted.
Collapse
Affiliation(s)
- Jordi Tortosa-Carreres
- Laboratory Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain; Medicine Department, University of Valencia, Valencia 46010, Spain.
| | - Anna Quiroga-Varela
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jessica Castillo-Villalba
- Grupo de investigación en Neuroinmunología, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, España; Medicine Department, University of Valencia, Valencia 46010, Spain
| | - Mónica Piqueras-Rodríguez
- Laboratory Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain; Medicine Department, University of Valencia, Valencia 46010, Spain
| | - Lluís Ramió-Torrenta
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona, Spain; Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Medical Sciences Department, University of Girona, Girona, Spain
| | - Laura Cubas-Núñez
- Grupo de investigación en Neuroinmunología, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, España
| | - Raquel Gasqué-Rubio
- Grupo de investigación en Neuroinmunología, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, España; Medicine Department, University of Valencia, Valencia 46010, Spain
| | - Carlos Quintanilla-Bordas
- Neurology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain; Grupo de investigación en Neuroinmunología, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, España
| | - Joana María Huertas-Pons
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Albert Miguela
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Bonaventura Casanova
- Neurology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain; Grupo de investigación en Neuroinmunología, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, España
| | - Begoña Laiz-Marro
- Laboratory Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain
| | - Francisco Carlos Pérez-Miralles
- Neurology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain; Grupo de investigación en Neuroinmunología, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, España
| |
Collapse
|
165
|
Bahrami F, Pour FJ, Hassanpour M, Saki M, Ebrahimzadeh F, Jafaripour L. The effect of saffron and corrective exercises on depression and quality of life in women with multiple sclerosis: A randomized controlled clinical trial. Mult Scler Relat Disord 2023; 79:105038. [PMID: 37801956 DOI: 10.1016/j.msard.2023.105038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/08/2023]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system which causes various complications such as reduced ability to do daily activities, depression and early death of patients. The present study aimed to compare the effect of saffron and corrective exercises on depression and quality of life in women with MS. This randomized controlled clinical trial was conducted on 80 MS women for 12 weeks. Participants were selected through convenience sampling and allocated into four study groups (three intervention groups and one control group) using the stratified block randomization. The Expanded Disability Status Scale, Beck Depression Inventory and The Multiple Sclerosis Impact Scale were used to collect data at the start of the study and also at the end of the sixth and the twelfth weeks. At the end of the twelfth week, the depression mean scores in all experimental groups (saffron group, corrective exercises group, corrective exercises + saffron group) were significantly different compared to the control group (P < 0.05), and this difference in corrective exercises + saffron group was more than the others. Also, at the end of the twelfth week, the mean scores of the quality of life (both physical and mental dimensions) in all experimental groups were significantly different from the control group (P < 0.05). The saffron group in physical dimension and the corrective exercises + saffron group in psychological dimension showed a significant difference with other groups. Although each of the corrective exercises program and saffron consumption alone were effective in reducing depression and enhancing the quality of life in MS patients, the consequences will be more beneficial in case these two interventions are used together. Therefore, it is necessary to encourage MS patients to consume saffron supplement along with doing physical activities in caring and rehabilitation programs.
Collapse
Affiliation(s)
- Farid Bahrami
- PhD in Sports Physiology, Lorestan University, Khorramabad, Iran
| | | | | | - Mandana Saki
- PhD in Nursing, Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Iran; Social Determinants of Health Research Center, School of Nursing and Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Farzad Ebrahimzadeh
- PhD in Biostatistics, Nutritional Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Leila Jafaripour
- Department of Anatomy, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
166
|
Asghari KM, Dolatkhah N, Ayromlou H, Mirnasiri F, Dadfar T, Hashemian M. The effect of probiotic supplementation on the clinical and para-clinical findings of multiple sclerosis: a randomized clinical trial. Sci Rep 2023; 13:18577. [PMID: 37903945 PMCID: PMC10616192 DOI: 10.1038/s41598-023-46047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic demyelination disease of the central nervous system (CNS). The gut-brain axis involves communication between the nervous, endocrine, and immune systems. Probiotics can positively impact immune and inflammatory responses by regulating gut microbiota. A total of 40 MS patients (average age of 34.38 ± 6.65) were examined to determine the effect of the Saccharomyces boulardii supplement for four months compared to a placebo. The results showed that the Saccharomyces boulardii significantly decreased the inflammatory marker high-sensitivity C-reactive protein (hs-CRP) compared to the placebo (P < 0.001). The serum antioxidant capacity (TAC) also increased significantly in the probiotic group compared to the placebo (p = 0.004). Both the probiotic and placebo groups showed a reduction in the oxidative stress indicator malondialdehyde (MDA), but there was no significant difference between the two groups. Pain intensity (measured by Visual Analogue Scale) and fatigue severity (measured by Fatigue Severity Scale) significantly decreased in the probiotic group compared to the placebo (p = 0.004 and p = 0.01, respectively). The probiotic group experienced significant improvement in some quality of life scales (measured by 36-Item Short Form Survey) and somatic and social dysfunction subscale of General Health Questionnaire scores compared to the placebo group (p = 0.01). The study suggests that the Saccharomyces boulardii probiotic supplement may benefit inflammatory markers, oxidative stress indicators, pain, fatigue, and quality of life in MS patients.
Collapse
Affiliation(s)
- Kimia Motlagh Asghari
- Physical Medicine and Rehabilitation Research Center, Emam Reza Hospital, Tabriz University of Medical Sciences, Golgasht, Azadi Ave., Tabriz, Iran
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Emam Reza Hospital, Tabriz University of Medical Sciences, Golgasht, Azadi Ave., Tabriz, Iran.
| | - Hormoz Ayromlou
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Mirnasiri
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Dadfar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hashemian
- Department of Biology, School of Arts and Sciences, Utica University, Utica, USA
| |
Collapse
|
167
|
Abbasi H, Shakouri F, Mosaddeghi-Heris R, Gholipour-Khalili E, Jahanshahlou F, Sanaie S, Naseri A, Talebi M. Mediterranean-like diets in multiple sclerosis: A systematic review. Rev Neurol (Paris) 2023:S0035-3787(23)01079-2. [PMID: 39492055 DOI: 10.1016/j.neurol.2023.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND Mediterranean-like diet is an anti-inflammatory diet with high-fiber consumption and lower intake of saturated fatty acids which is proposed to have beneficial effects in patients with multiple sclerosis (MS). This investigation aims to explore the impacts of this style of diet on people living with MS, based on clinical evidence. METHODS This study was conducted following the 2020 version of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Both interventional and observational clinical studies which evaluated the effects of Mediterranean-like diets on MS patients were considered for inclusion. Review articles, letters, commentaries, case reports, non-English papers, and conference abstracts were excluded. PubMed, Web of Science, Scopus, and EMBASE databases were searched until March 23rd, 2023, and risk of bias in randomized-controlled trials (RCTs) was evaluated based on the second version of the Cochrane RoB assessment tool (RoB.2). In addition, for the observational studies, Joanna Briggs Institute (JBI)'s critical appraisal tools were utilized. RESULTS Of 161 records that were screened in the title/abstract stage, 13 reports of 11 studies were included in the systematic review. Three RCTs (including one pilot RCT), and eight observational studies reported the effects of Mediterranean-like diets on people living with MS. The sample sizes in clinical trials varied between 36 and 147 and for observational studies between 30 and 563 patients. Evidence suggested positive effects of a Mediterranean-like diet on inflammatory status and MS-related symptoms such as fatigue, quality of life, attack rate, and cognitive dysfunction. DISCUSSION This systematic review pointed out possible beneficial effects of Mediterranean-like diets for MS patients. The limited number of well-designed RCTs was the main limitation of this study; therefore, large-scale multiple-center interventional studies are suggested. Variety in the assessed outcomes, study designs, and groups of the studies prevented meta-analysis which was the other limitation of this study.
Collapse
Affiliation(s)
- H Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - F Shakouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - R Mosaddeghi-Heris
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - F Jahanshahlou
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - S Sanaie
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - A Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - M Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
168
|
Rooddehghan Z, Nezhad MM, Zakerimoghadam M, Karimi R. Effect of patient-centered and family-centered self-care education program on the quality of life of patients with multiple sclerosis: a quasi-experimental study. BMC Nurs 2023; 22:391. [PMID: 37853357 PMCID: PMC10583461 DOI: 10.1186/s12912-023-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Performing self-care behaviors education improves the quality of life of MS patients and reduces their fatigue. This study was conducted with the aim of comparing the effect of patient-centered and family-centered self-care training programs on the quality of life and fatigue of patients with multiple sclerosis. METHODS This is a quasi-experimental study that was conducted on the MS patients referred to the Iranian MS Association. Sampling was done by convenience method from November 2017 to September 2018. To create a random sequence in the three groups, blocks of nine were used. The control group received no intervention but the intervention groups 1 and 2 received the desired training in the form of workshop with the difference that in the intervention group 2, the patient participated in the training sessions along with one of his/her family members. The phone call follow-up was continued for 8 weeks after the last session. The questionnaire of quality of life in patients with MS (MSQOL-54), fatigue scale (FIS) and demographic information form were used for data collection. The collected data was analyzed by SPSS-16 statistical software, using descriptive (Mean and Standard deviation) and statistical statistics (paired t-test, Analysis of variance and Bonferroni). RESULT A statistically significant difference in the mean scores of quality of life(53/16 ± 15/19 vs 56/03 ± 14/40 vs 52/48 ± 21/20)(P < 0.001) and fatigue(50/08 ± 3/28 vs 46/54 ± 28/69 vs 56/11 ± 27/93) (P < 0.001) was observed between both patient-centered and family-centered groups and the control group. CONCLUSIONS Considering the importance and role of the family and nurses in the care and education of patients with multiple sclerosis, it is possible to improve the quality of life and reduce their fatigue by providing self-care training packages to patients and their families.
Collapse
Affiliation(s)
- Zahra Rooddehghan
- School of Nursing and Midwifery, Tehran University of Medical Sciences, Nosrat St. Tohid Sq, Tehran, 141973317, Iran.
| | - Mozhgan Moghaddasi Nezhad
- School of Nursing and Midwifery, Tehran University of Medical Sciences, Nosrat St. Tohid Sq, Tehran, 141973317, Iran
| | - Masoumeh Zakerimoghadam
- School of Nursing and Midwifery, Tehran University of Medical Sciences, Nosrat St. Tohid Sq, Tehran, 141973317, Iran
| | - Raoofeh Karimi
- School of Nursing and Midwifery, Tehran University of Medical Sciences, Nosrat St. Tohid Sq, Tehran, 141973317, Iran
| |
Collapse
|
169
|
Lechner-Scott J, Maltby V, Giovannoni G, Hawkes C, Levy M, Yeh A. Are we there yet? The holy grail: A biomarker for Multiple Sclerosis. Mult Scler Relat Disord 2023; 78:104998. [PMID: 37738709 DOI: 10.1016/j.msard.2023.104998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Affiliation(s)
- Jeannette Lechner-Scott
- John Hunter Hsopital, Hunter New England Local Health District, Newcastle, Australia; Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia.
| | - Vicki Maltby
- John Hunter Hsopital, Hunter New England Local Health District, Newcastle, Australia; Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Gavin Giovannoni
- Department of Neurology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Chris Hawkes
- Department of Neuroimmunology, Queen Mary University of London, United Kingdom
| | - Michael Levy
- Department of Neuroimmunology, Massachusetts General Hospital, Havard Medical School, Boston, USA
| | - Ann Yeh
- Department of Paediatrics (Neurology), The Hospital for SickKids, University of Toronto in Ontario, Canada
| |
Collapse
|
170
|
Kramer J, Linker R, Paling D, Czaplinski A, Hoffmann O, Yong VW, Barker N, Ross AP, Lucassen E, Gufran M, Hu X. Tolerability of subcutaneous ofatumumab with long-term exposure in relapsing multiple sclerosis. Mult Scler J Exp Transl Clin 2023; 9:20552173231203816. [PMID: 37829441 PMCID: PMC10566276 DOI: 10.1177/20552173231203816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
Background Ofatumumab is approved for treating relapsing multiple sclerosis (RMS). Examining tolerability will enable understanding of its risk-benefit profile. Objective Report the tolerability profile of ofatumumab in RMS during treatment of up to 4 years and the effect of pre-medication. Methods Cumulative data from the overall safety population included patients taking continuous ofatumumab or being newly switched from teriflunomide. Injection-related reactions (IRRs) by incidence and severity, and post-marketing surveillance data, with an exposure of 18,530 patient-years, were analyzed. Results Systemic IRRs affected 24.7% of patients (487/1969) in the overall safety population; most (99.2% [483/487]) were mild (333/487) to moderate (150/487) in Common Terminology Criteria for Adverse Events severity; most systemic IRRs occurred after first injection. Local-site IRRs affected 11.8% (233/1969) and most (99.6% [232/233]) were mild/moderate. Incidence and severity of systemic and localized IRRs were similar between continuous and newly switched patients across repeated injections. Systemic IRR incidence and severity were not substantially affected by steroidal or non-steroidal pre-medication. Post-marketing surveillance identified no new tolerability issues. Conclusion Ofatumumab is well tolerated, displays a consistent safety profile during continuous use or after switching from teriflunomide and does not require pre-medication. This enables home management of RMS with a high-efficacy treatment.
Collapse
Affiliation(s)
| | - Ralf Linker
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Regensburg, Regensburg, Germany
| | - David Paling
- Academic Department of Neuroscience, Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK
| | | | - Olaf Hoffmann
- Klinik für Neurologie, Alexianer St. Josefs–Krankenhaus Potsdam, Potsdam, Germany
- NeuroCure, Charite-Universitätsmedizin Berlin, Berlin, Germany
- Medizinische Hochschule Brandenburg Theodor Fontane, Neuruppin, Germany
| | - V Wee Yong
- Clinical Neurosciences and Oncology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Noreen Barker
- The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Amy Perrin Ross
- Neuroscience Program, Loyola University Medical Center, Maywood, IL, USA
| | | | | | - Xixi Hu
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|
171
|
Wang J, Zhu F, Huang W, Yang C, Chen Z, Lei Y, Wang Y, Meng Y, Liu Y, Liu X, Sun B, Li H. Acupuncture at ST36 ameliorates experimental autoimmune encephalomyelitis via affecting the function of B cells. Int Immunopharmacol 2023; 123:110748. [PMID: 37531831 DOI: 10.1016/j.intimp.2023.110748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/15/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Acupuncture at ST36 can alleviate a variety of autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), while the specific mechanism for the treatment of EAE is not clear. In this study, we found that acupuncture at ST36 can significantly increase the excitability of splenic sympathetic nerve, and promote the differentiation of peripheral B and CD4+T cells in the anti-inflammatory direction. After blocking the splenic sympathetic nerve with 6-OHDA, this anti-inflammatory effect of acupuncture is partially reversed. In addition, the results of western blot and qPCR showed that acupuncture at ST36 simultaneously activated the β2-AR-cAMP signaling pathway in the splenic B and CD4+T cells, and this activation was more significant in B cells. In vitro, when CD4+T cells were cultured alone, norepinephrine (NE) had no significant effect on their differentiation. While in the presence of B cells, NE significantly promotes the anti-inflammatory differentiation of B and CD4+T cells. Therefore, the above results reveal that acupuncture can relieve EAE by stimulating the sympathetic nerves of spleen, mainly through acting on B cells to mediate anti-inflammatory effects, and indirectly affecting the function of CD4+T cells.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Fangyi Zhu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Wei Huang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Changxin Yang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Zhengyi Chen
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yanting Lei
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yanping Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yanting Meng
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yumei Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Xijun Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Bo Sun
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Hulun Li
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China.
| |
Collapse
|
172
|
Hauser SL, Kappos L, Bar-Or A, Wiendl H, Paling D, Williams M, Gold R, Chan A, Milo R, Das Gupta A, Karlsson G, Sullivan R, Graham G, Merschhemke M, Häring DA, Vermersch P. The Development of Ofatumumab, a Fully Human Anti-CD20 Monoclonal Antibody for Practical Use in Relapsing Multiple Sclerosis Treatment. Neurol Ther 2023; 12:1491-1515. [PMID: 37450172 PMCID: PMC10444716 DOI: 10.1007/s40120-023-00518-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
The importance of B cells in multiple sclerosis (MS) has been demonstrated through the advent of B-cell-depleting anti-CD20 antibody therapies. Ofatumumab is the first fully human anti-CD20 monoclonal antibody (mAb) developed and tested for subcutaneous (SC) self-administration at monthly doses of 20 mg, and has been approved in the US, UK, EU, and other regions and countries worldwide for the treatment of relapsing MS. The development goal of ofatumumab was to obtain a highly efficacious anti-CD20 therapy, with a safety and tolerability profile that allows for self-administration by MS patients at home and a positive benefit-risk balance for use in the broad relapsing MS population. This development goal was enabled by the unique binding site, higher affinity to B cells, and higher potency of ofatumumab compared to previous anti-CD20 mAbs; these properties of ofatumumab facilitate rapid B-cell depletion and maintenance with a low dose at a low injection volume (20 mg/0.4 ml). The high potency in turn enables the selective targeting of B cells that reside in the lymphatic system via subcutaneous (SC) administration. Through a comprehensive dose-finding program in two phase 2 studies (one intravenous and one SC) and model simulations, it was found that safety and tolerability can be further improved, and the risk of systemic injection-related reactions (IRRs) minimized, by avoiding doses ≥ 30 mg, and by reaching initial and rapid B-cell depletion via stepwise weekly administration of ofatumumab at Weeks 0, 1, and 2 (instead of a single high dose). Once near-complete B-cell depletion is reached, it can be maintained by monthly doses of 20 mg/0.4 ml. Indeed, in phase 3 trials (ASCLEPIOS I/II), rapid and sustained near-complete B-cell depletion (largely independent of body weight, race and other factors) was observed with this dosing regimen, which resulted in superior efficacy of ofatumumab versus teriflunomide on relapse rates, disability worsening, neuronal injury (serum neurofilament light chain), and imaging outcomes. Likely due to its fully human nature, ofatumumab has a low immunogenic risk profile-only 2 of 914 patients receiving ofatumumab in ASCLEPIOS I/II developed anti-drug antibodies-and this may also underlie the infrequent IRRs (20% with ofatumumab vs. 15% with the placebo injection in the teriflunomide arm) that were mostly (99.8%) mild to moderate in severity. The overall rates of infections and serious infections in patients treated with ofatumumab were similar to those in patients treated with teriflunomide (51.6% vs. 52.7% and 2.5% vs. 1.8%, respectively). The benefit-risk profile of ofatumumab was favorable compared to teriflunomide in the broad RMS population, and also in the predefined subgroups of both recently diagnosed and/or treatment-naïve patients, as well as previously disease-modifying therapy-treated patients. Interim data from the ongoing extension study (ALITHIOS) have shown that long-term treatment with ofatumumab up to 4 years is well-tolerated in RMS patients, with no new safety risks identified. In parallel to the phase 3 trials in which SC administration was carried out with a pre-filled syringe, an autoinjector pen for more convenient self-administration of the ofatumumab 20 mg dose was developed and is available for use in clinical practice.
Collapse
Affiliation(s)
- Stephen L Hauser
- UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) and MS Center, and Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - David Paling
- Sheffield Institute of Translational Neuroscience, Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK
| | - Mitzi Williams
- Joi Life Wellness Multiple Sclerosis Neurology Center, Atlanta, GA, USA
| | - Ralf Gold
- Department of Neurology, St Josef-Hospital/Ruhr-University Bochum, Bochum, Germany
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ron Milo
- Department of Neurology, Barzilai Medical Center, Ashkelon/Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | - Patrick Vermersch
- Univ. Lille, INSERM U1172 LilNCog, CHU Lille, FHU Precise, 59000, Lille, France
| |
Collapse
|
173
|
Mariottini A, Muraro PA, Saccardi R. Should autologous hematopoietic stem cell transplantation be offered as a first-line disease modifying therapy to patients with multiple sclerosis? Mult Scler Relat Disord 2023; 78:104932. [PMID: 37572554 DOI: 10.1016/j.msard.2023.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
In multiple sclerosis (MS), progression independent of new focal inflammation may commence shortly after disease onset, and it is increasingly revealed that the risk of disability accrual is reduced by early use of high-efficacy disease-modifying therapies (HE-DMTs). People with aggressive MS may therefore benefit from early treatment with autologous haematopoietic stem cell transplantation (AHSCT), a procedure inducing maximal immunosuppression followed by immune reconstitution, demonstrated to be superior to DMTs in one randomized clinical trial. However, in current practice prior failure to HE-DMTs is typically required to establish the indication for AHSCT. In the present article, the available evidence on the potential role of AHSCT as first-line treatment in aggressive MS and the rationale for its early use will be summarized. Proposed definitions of aggressive MS that could help identifying MS patients eligible for early treatment with AHSCT will also be discussed.
Collapse
Affiliation(s)
- Alice Mariottini
- Department of Brain Sciences, Imperial College London, London, United Kingdom; Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
| | - Paolo A Muraro
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy.
| |
Collapse
|
174
|
Gomez-Gaitan EA, Garcia-Ortega YE, Saldaña-Cruz AM, Contreras-Haro B, Gamez-Nava JI, Perez-Guerrero EE, Nava-Valdivia CA, Gallardo-Moya S, Martinez-Hernandez A, Gonzalez Lopez L, Rios-Gonzalez BE, Marquez-Pedroza J, Mendez-del Villar M, Esparza-Guerrero Y, Villagomez-Vega A, Macias Islas MA. Genetic Variant HLA-DRB1*0403 and Therapeutic Response to Disease-Modifying Therapies in Multiple Sclerosis: A Case-Control Study. Int J Mol Sci 2023; 24:14594. [PMID: 37834042 PMCID: PMC10572793 DOI: 10.3390/ijms241914594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic and demyelinating disease with an autoimmune origin, which leads to neurodegeneration and progressive disability. Approximately 30 to 50% of patients do not respond optimally to disease-modifying therapies (DMTs), and therapeutic response may be influenced by genetic factors such as genetic variants. Therefore, our study aimed to investigate the association of the HLA-DRB1*0403 genetic variant and therapeutic response to DMTs in MS. We included 105 patients with MS diagnosis. No evidence of disease activity based on the absence of clinical relapse, disability progression or radiological activity (NEDA-3) was used to classify the therapeutic response. Patients were classified as follows: (a) controls: patients who achieved NEDA-3; (b) cases: patients who did not achieve NEDA-3. DNA was extracted from peripheral blood leukocytes. HLA-DRB1*0403 genetic variant was analyzed by quantitative polymerase chain reaction (qPCR) using TaqMan probes. NEDA-3 was achieved in 86.7% of MS patients treated with DMTs. Genotype frequencies were GG 50.5%, GA 34.3%, and AA 15.2%. No differences were observed in the genetic variant AA between patients who achieved NEDA-3 versus patients who did not achieve NEDA-3 (48.7% vs. 43.1%, p = 0.6). We concluded that in Mexican patients with MS, HLA-DRB1*0403 was not associated with the therapeutic response to DMTs.
Collapse
Affiliation(s)
- Esteban Alejandro Gomez-Gaitan
- Pharmacology Doctoral Program, Physiology Department, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (E.A.G.-G.); (J.I.G.-N.); (S.G.-M.); (A.M.-H.); (L.G.L.); (Y.E.-G.)
| | - Yessica Eleanet Garcia-Ortega
- Neurology Department, Western National Medical Center, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico;
| | - Ana Miriam Saldaña-Cruz
- Institute of Experimental and Clinical Therapeutics, Physiology Department, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Betsabe Contreras-Haro
- Department of Biomedical Sciences, Tonala University Center, University of Guadalajara, Tonala 45425, Jalisco, Mexico; (B.C.-H.); (M.M.-d.V.); (A.V.-V.)
- Biomedical Research Unit 02, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico
| | - Jorge Ivan Gamez-Nava
- Pharmacology Doctoral Program, Physiology Department, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (E.A.G.-G.); (J.I.G.-N.); (S.G.-M.); (A.M.-H.); (L.G.L.); (Y.E.-G.)
- Institute of Experimental and Clinical Therapeutics, Physiology Department, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Emilio Edsaul Perez-Guerrero
- Institute of Biomedical Sciences, Department of Genetics and Molecular Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Cesar Arturo Nava-Valdivia
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Sergio Gallardo-Moya
- Pharmacology Doctoral Program, Physiology Department, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (E.A.G.-G.); (J.I.G.-N.); (S.G.-M.); (A.M.-H.); (L.G.L.); (Y.E.-G.)
| | - Alejandra Martinez-Hernandez
- Pharmacology Doctoral Program, Physiology Department, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (E.A.G.-G.); (J.I.G.-N.); (S.G.-M.); (A.M.-H.); (L.G.L.); (Y.E.-G.)
| | - Laura Gonzalez Lopez
- Pharmacology Doctoral Program, Physiology Department, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (E.A.G.-G.); (J.I.G.-N.); (S.G.-M.); (A.M.-H.); (L.G.L.); (Y.E.-G.)
- Institute of Experimental and Clinical Therapeutics, Physiology Department, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | | | - Jazmin Marquez-Pedroza
- Neurosciences Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico;
| | - Miriam Mendez-del Villar
- Department of Biomedical Sciences, Tonala University Center, University of Guadalajara, Tonala 45425, Jalisco, Mexico; (B.C.-H.); (M.M.-d.V.); (A.V.-V.)
| | - Yussef Esparza-Guerrero
- Pharmacology Doctoral Program, Physiology Department, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (E.A.G.-G.); (J.I.G.-N.); (S.G.-M.); (A.M.-H.); (L.G.L.); (Y.E.-G.)
| | - Alejandra Villagomez-Vega
- Department of Biomedical Sciences, Tonala University Center, University of Guadalajara, Tonala 45425, Jalisco, Mexico; (B.C.-H.); (M.M.-d.V.); (A.V.-V.)
| | - Miguel Angel Macias Islas
- Neurosciences Departament, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
175
|
Rinaldo N, Pasini A, Straudi S, Piva G, Crepaldi A, Baroni A, Caruso L, Manfredini F, Lamberti N. Effects of Exercise, Rehabilitation, and Nutritional Approaches on Body Composition and Bone Density in People with Multiple Sclerosis: A Systematic Review and Meta-Analysis. J Funct Morphol Kinesiol 2023; 8:132. [PMID: 37754965 PMCID: PMC10532597 DOI: 10.3390/jfmk8030132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
People with multiple sclerosis (pwMS) are affected by a wide range of disabilities, including a decrease in bone mineral density (BMD) and a worsening of body composition (BC), which negatively impact their quality of life quality. This study aims to analyze the effects of nonpharmacological interventions-in particular, physical activity, nutritional approaches, and rehabilitation-on BC and BMD in pwMS. This systematic review and meta-analysis was performed following the updated version of the PRISMA guidelines. In July 2022, five databases (MEDLINE, Embase, The Cochrane Library, Google Scholar, Web of Science) and gray literature were screened. Relevant articles published between 1 January 1990 and 1 September 2022 in any language were included. Outcomes of interest were anthropometric, BC measures, and BMD. The RoB 2.0 tool was used to assess the risk of bias. After duplicates elimination, 1120 records were screened, and 36 studies were included. A total of 25 articles were focused on physical activity and rehabilitation, 10 on nutrition, and 1 on multimodal intervention. One-third of the studies were judged to be at high risk of bias. The meta-analysis showed a high degree of heterogeneity due to the high variability in disease severity and intervention duration, intensity, frequency, and type. In general, no intervention showed consistent positive effects on BC. However, the most promising interventions seemed to be high-intensity training and ketogenic diets. Only a few studies considered BMD, and the results are inconsistent. Nevertheless, more studies are needed in order to confirm these results.
Collapse
Affiliation(s)
- Natascia Rinaldo
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (N.R.); (A.P.); (S.S.); (A.B.); (F.M.)
| | - Alba Pasini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (N.R.); (A.P.); (S.S.); (A.B.); (F.M.)
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (N.R.); (A.P.); (S.S.); (A.B.); (F.M.)
| | - Giovanni Piva
- Doctoral Program in Environmental Sustainability and Wellbeing, Department of Humanities, University of Ferrara, 44121 Ferrara, Italy;
| | - Anna Crepaldi
- Unit of Nephrology, University Hospital of Ferrara, 44124 Ferrara, Italy;
- Department of Nursing, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Andrea Baroni
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (N.R.); (A.P.); (S.S.); (A.B.); (F.M.)
| | - Lorenzo Caruso
- Department of Environment and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabio Manfredini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (N.R.); (A.P.); (S.S.); (A.B.); (F.M.)
| | - Nicola Lamberti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (N.R.); (A.P.); (S.S.); (A.B.); (F.M.)
| |
Collapse
|
176
|
Darwish SF, Elbadry AMM, Elbokhomy AS, Salama GA, Salama RM. The dual face of microglia (M1/M2) as a potential target in the protective effect of nutraceuticals against neurodegenerative diseases. FRONTIERS IN AGING 2023; 4:1231706. [PMID: 37744008 PMCID: PMC10513083 DOI: 10.3389/fragi.2023.1231706] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
The pathophysiology of different neurodegenerative illnesses is significantly influenced by the polarization regulation of microglia and macrophages. Traditional classifications of macrophage phenotypes include the pro-inflammatory M1 and the anti-inflammatory M2 phenotypes. Numerous studies demonstrated dynamic non-coding RNA modifications, which are catalyzed by microglia-induced neuroinflammation. Different nutraceuticals focus on the polarization of M1/M2 phenotypes of microglia and macrophages, offering a potent defense against neurodegeneration. Caeminaxin A, curcumin, aromatic-turmerone, myricetin, aurantiamide, 3,6'-disinapoylsucrose, and resveratrol reduced M1 microglial inflammatory markers while increased M2 indicators in Alzheimer's disease. Amyloid beta-induced microglial M1 activation was suppressed by andrographolide, sulforaphane, triptolide, xanthoceraside, piperlongumine, and novel plant extracts which also prevented microglia-mediated necroptosis and apoptosis. Asarone, galangin, baicalein, and a-mangostin reduced oxidative stress and pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha in M1-activated microglia in Parkinson's disease. Additionally, myrcene, icariin, and tenuigenin prevented the nod-like receptor family pyrin domain-containing 3 inflammasome and microglial neurotoxicity, while a-cyperone, citronellol, nobiletin, and taurine prevented NADPH oxidase 2 and nuclear factor kappa B activation. Furthermore, other nutraceuticals like plantamajoside, swertiamarin, urolithin A, kurarinone, Daphne genkwa flower, and Boswellia serrata extracts showed promising neuroprotection in treating Parkinson's disease. In Huntington's disease, elderberry, curcumin, iresine celosia, Schisandra chinensis, gintonin, and pomiferin showed promising results against microglial activation and improved patient symptoms. Meanwhile, linolenic acid, resveratrol, Huperzia serrata, icariin, and baicalein protected against activated macrophages and microglia in experimental autoimmune encephalomyelitis and multiple sclerosis. Additionally, emodin, esters of gallic and rosmarinic acids, Agathisflavone, and sinomenine offered promising multiple sclerosis treatments. This review highlights the therapeutic potential of using nutraceuticals to treat neurodegenerative diseases involving microglial-related pathways.
Collapse
Affiliation(s)
- Samar F. Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Abdullah M. M. Elbadry
- Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Egypt
| | | | - Ghidaa A. Salama
- Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
177
|
Xu W, Yan D, Ning Z. Associations between multiple sclerosis and in-hospital outcomes of patients with hemorrhagic stroke. J Stroke Cerebrovasc Dis 2023; 32:107281. [PMID: 37523878 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVE To determine the influence of multiple sclerosis (MS) on in-hospital outcomes of patients with hemorrhagic strokes using a large, nationally representative database. MATERIALS AND METHODS This population-based, retrospective study extracted data of adults with hemorrhagic stroke from the US Nationwide Inpatient Sample (NIS) database from 2016 to 2018. Patients with/without MS were then compared. Hemorrhagic stroke and MS were identified by the International Classification of Diseases, Tenth editions (ICD-10) codes. In-hospital outcomes (i.e., in-hospital mortality, discharge destination, length of stay [LOS], total hospital cost, and major complications) were compared between subjects with and without MS using logistic regression analysis. RESULTS Among 107,573 patients with hemorrhagic stroke, 0.3% (n=337) had MS. After 1:10 propensity-score (PS) matching, 3,707 patients remained in the analytic sample. Multivariable analysis revealed that patients with MS had significantly shorter LOS (adjusted β=-1.34 days; 95% CI: -2.41 to -0.26, p=0.015), and lower total hospital costs (adjusted β=-28.82; 95% CI: -43.57 to -14.06, p<0.001) than those without MS. No significant different risks of any major complications, in-hospital mortality, or transfer to nursing homes/long-term care facilities were observed. For major complications, patients with MS had a significantly lower risk of cerebral edema than those without MS (adjusted odds ratio [aOR] = 0.66, 95%CI: 0.51 to 0.86, p =0.002) CONCLUSIONS: In hospitalized patients with hemorrhagic stroke, those with MS have shorter LOS, lower costs, and a lower risk of cerebral edema compared to no MS. More relevant experiments and studies are needed to confirm results of this study.
Collapse
Affiliation(s)
- Weiguang Xu
- Department of Neurosurgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Dajun Yan
- Department of Neurosurgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Zeqian Ning
- Department of Neurosurgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| |
Collapse
|
178
|
Naji Y, Mahdaoui M, Klevor R, Kissani N. Artificial Intelligence and Multiple Sclerosis: Up-to-Date Review. Cureus 2023; 15:e45412. [PMID: 37854769 PMCID: PMC10581506 DOI: 10.7759/cureus.45412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 10/20/2023] Open
Abstract
Multiple sclerosis (MS) remains a challenging neurological disorder for the clinician in terms of diagnosis and management. The growing integration of AI-based algorithms in healthcare offers a golden opportunity for clinicians and patients with MS. AI models are based on statistical analyses of large quantities of data from patients including "demographics, genetics, clinical and radiological presentation." These approaches are promising in the quest for greater diagnostic accuracy, tailored management plans, and better prognostication of disease. The use of AI in multiple sclerosis represents a paradigm shift in disease management. With ongoing advancements in AI technologies and the increasing availability of large-scale datasets, the potential for further innovation is immense. As AI continues to evolve, its integration into clinical practice will play a vital role in improving diagnostics, optimizing treatment strategies, and enhancing patient outcomes for MS. This review is about conducting a literature review to identify relevant studies on AI applications in MS. Only peer-reviewed studies published in the last four years have been selected. Data related to AI techniques, advancements, and implications are extracted. Through data analysis, key themes and tendencies are identified. The review presents a cohesive synthesis of the current state of AI and MS, highlighting potential implications and new advancements.
Collapse
Affiliation(s)
- Yahya Naji
- Neurology Department, REGNE Research Laboratory, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, MAR
- Neurology Department, Agadir University Hospital, Agadir, MAR
| | - Mohamed Mahdaoui
- Neurology Department, University Hospital Mohammed VI, Marrakech, MAR
- Neuroscience Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, MAR
| | - Raymond Klevor
- Neurology Department, University Hospital Mohammed VI, Marrakech, MAR
- Neuroscience Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, MAR
| | - Najib Kissani
- Neurology Department, University Hospital Mohammed VI, Marrakech, MAR
- Neuroscience Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, MAR
| |
Collapse
|
179
|
Shahabifard H, Zarei M, Kookli K, Esmalian Afyouni N, Soltani N, Maghsoodi S, Adili A, Mahmoudi J, Shomali N, Sandoghchian Shotorbani S. An updated overview of the application of CAR-T cell therapy in neurological diseases. Biotechnol Prog 2023; 39:e3356. [PMID: 37198722 DOI: 10.1002/btpr.3356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
Genetically modified immune cells, especially CAR-T cells, have captured the attention of scientists over the past 10 years. In the fight against cancer, these cells have a special place. Treatment for hematological cancers, autoimmune disorders, and cancers must include CAR-T cell therapy. Determining the therapeutic targets, side effects, and use of CAR-T cells in neurological disorders, including cancer and neurodegenerative diseases, is the goal of this study. Due to advancements in genetic engineering, CAR-T cells have become crucial in treating some neurological disorders. CAR-T cells have demonstrated a positive role in treating neurological cancers like Glioblastoma and Neuroblastoma due to their ability to cross the blood-brain barrier and use diverse targets. However, CAR-T cell therapy for MS diseases is being researched and could be a potential treatment option. This study aimed to access the most recent studies and scientific articles in the field of CAR-T cells in neurological diseases and/or disorders.
Collapse
Affiliation(s)
- Hesam Shahabifard
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Zarei
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Nazgol Esmalian Afyouni
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Sairan Maghsoodi
- Department of Laboratory Sciences, Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences (MUK), Sanandaj, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
180
|
Etta I, Elballushi R, Kolesnyk V, Sia KP, Rehman S, Arif S, Moonnumackel SJ, Nair A. Comparison of Pharmacological Therapies in Relapse Rates in Patients With Relapsing-Remitting Multiple Sclerosis. Cureus 2023; 15:e45454. [PMID: 37859931 PMCID: PMC10583624 DOI: 10.7759/cureus.45454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune neurological disorder that significantly impacts the central nervous system (CNS), which includes the brain and spinal cord. Approximately 2.8 million individuals are believed to be living with MS worldwide. The management of MS has evolved considerably over the years, offering a multitude of guidelines, diverse treatment options, and different approaches to signs and symptoms. The present systematic literature review serves as a comprehensive analysis of the current therapeutic options for MS. It provides a thorough literature review of Food and Drug Administration (FDA)-approved drugs comparing their various clinical end points while concurrently assessing their risk-benefit ratio. It also provides an extensive review of current guidelines and offers an in-depth examination of the different approaches to MS. Through this multifaceted approach, this paper facilitates easy access to available treatment options and aims to aid healthcare providers in decision-making as well as providing a foundation for future research aimed at enhancing treatment options for MS.
Collapse
Affiliation(s)
- Indu Etta
- Department of Internal Medicine, Kakatiya Medical College, Warangal, IND
| | - Ruaa Elballushi
- School of Medicine, Royal College of Surgeons in Ireland - Medical University of Bahrain, Muharraq, BHR
| | | | - Kim P Sia
- School of Medicine, Emilio Aguinaldo College, Manila, PHL
| | - Sana Rehman
- College of Medicine, Fatima Memorial Hospital (FMH) College of Medicine and Dentistry, Lahore, PAK
| | - Sehrish Arif
- College of Medicine, Fatima Memorial Hospital (FMH) College of Medicine and Dentistry, Lahore, PAK
| | | | - Arun Nair
- Department of Pediatrics, Saint Peter's University Hospital, Somerset, USA
| |
Collapse
|
181
|
Hecker M, Fitzner B, Boxberger N, Putscher E, Engelmann R, Bergmann W, Müller M, Ludwig-Portugall I, Schwartz M, Meister S, Dudesek A, Winkelmann A, Koczan D, Zettl UK. Transcriptome alterations in peripheral blood B cells of patients with multiple sclerosis receiving immune reconstitution therapy. J Neuroinflammation 2023; 20:181. [PMID: 37533036 PMCID: PMC10394872 DOI: 10.1186/s12974-023-02859-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic, inflammatory and neurodegenerative disease that leads to irreversible damage to the brain and spinal cord. The goal of so-called "immune reconstitution therapies" (IRTs) is to achieve long-term disease remission by eliminating a pathogenic immune repertoire through intense short-term immune cell depletion. B cells are major targets for effective immunotherapy in MS. OBJECTIVES The aim of this study was to analyze the gene expression pattern of B cells before and during IRT (i.e., before B-cell depletion and after B-cell repopulation) to better understand the therapeutic effects and to identify biomarker candidates of the clinical response to therapy. METHODS B cells were obtained from blood samples of patients with relapsing-remitting MS (n = 50), patients with primary progressive MS (n = 13) as well as healthy controls (n = 28). The patients with relapsing MS received either monthly infusions of natalizumab (n = 29) or a pulsed IRT with alemtuzumab (n = 15) or cladribine (n = 6). B-cell subpopulation frequencies were determined by flow cytometry, and transcriptome profiling was performed using Clariom D arrays. Differentially expressed genes (DEGs) between the patient groups and controls were examined with regard to their functions and interactions. We also tested for differences in gene expression between patients with and without relapse following alemtuzumab administration. RESULTS Patients treated with alemtuzumab or cladribine showed on average a > 20% lower proportion of memory B cells as compared to before IRT. This was paralleled by profound transcriptome shifts, with > 6000 significant DEGs after adjustment for multiple comparisons. The top DEGs were found to regulate apoptosis, cell adhesion and RNA processing, and the most highly connected nodes in the network of encoded proteins were ESR2, PHB and RC3H1. Higher mRNA levels of BCL2, IL13RA1 and SLC38A11 were seen in patients with relapse despite IRT, though these differences did not pass the false discovery rate correction. CONCLUSIONS We show that B cells circulating in the blood of patients with MS undergoing IRT present a distinct gene expression signature, and we delineated the associated biological processes and gene interactions. Moreover, we identified genes whose expression may be an indicator of relapse risk, but further studies are needed to verify their potential value as biomarkers.
Collapse
Affiliation(s)
- Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany.
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Nina Boxberger
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Elena Putscher
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Robby Engelmann
- Clinic III (Hematology, Oncology and Palliative Medicine), Special Hematology Laboratory, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Wendy Bergmann
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | | | - Margit Schwartz
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Stefanie Meister
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Ales Dudesek
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Alexander Winkelmann
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Dirk Koczan
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| |
Collapse
|
182
|
Martinez-Paz C, García-Cabrera E, Vilches-Arenas Á. Effectiveness and Safety of Cannabinoids as an Add-On Therapy in the Treatment of Resistant Spasticity in Multiple Sclerosis: A Systematic Review. Cannabis Cannabinoid Res 2023; 8:580-588. [PMID: 37057959 DOI: 10.1089/can.2022.0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Background: Spasticity continues to be a very prevalent, highly invalidating, and difficult-to-manage symptom in patients with multiple sclerosis (MS). The aim of this systematic review is to evaluate the effectiveness of the use of cannabis and cannabinoids in these patients, evaluating its use as an additional therapy. Methods: We performed a systematic review of the literature searching in the major scientific databases (PubMed, Scopus, EMBASE, WOS, and Cochrane Library) for articles from January 2017 to May 2022 containing information about the effectiveness of cannabis and cannabinoids in patients with insufficient response to first-line oral antispastic treatment. Results: A total of five medium high-quality articles were selected to be part of the study and all evaluated the effectiveness of the tetrahydrocannabinol (THC) and cannabidiol (CBD) spray. The effectiveness of this drug and the significant improvements are produced on the patient-related spasticity assessment scales, obtaining improvement up to 45%; and on quality of life, producing a decrease in the appearance of symptoms related to spasticity, as well as an increase in the development of basic activities of daily living. The average dose is 5-7 sprays/day. The discontinuation rate for these treatments is around 40% due to lack of effectiveness and adverse events. All reported adverse effects are mild to moderate in severity and their incidence is ∼17%, although this figure tends to decrease with drug use. Conclusions: Adding the THC:CBD sprays have been shown to be more effective in treating MS spasticity than optimizing the dose of first-line antispastic drugs in selected responders patients. The safety and tolerability profiles remain in line with those obtained in other trials. More patients would benefit from treatment if the initial response search period was extended.
Collapse
Affiliation(s)
- Carmen Martinez-Paz
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Seville, Seville, Spain
| | - Emilio García-Cabrera
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Seville, Seville, Spain
| | - Ángel Vilches-Arenas
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
183
|
Maroto-García J, Martínez-Escribano A, Delgado-Gil V, Mañez M, Mugueta C, Varo N, García de la Torre Á, Ruiz-Galdón M. Biochemical biomarkers for multiple sclerosis. Clin Chim Acta 2023; 548:117471. [PMID: 37419300 DOI: 10.1016/j.cca.2023.117471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is the most frequent demyelinating disease of the central nervous system. Although there is currently no definite cure for MS, new therapies have recently been developed based on a continuous search for new biomarkers. DEVELOPMENT MS diagnosis relies on the integration of clinical, imaging and laboratory findings as there is still no singlepathognomonicclinical feature or diagnostic laboratory biomarker. The most commonly laboratory test used is the presence of immunoglobulin G oligoclonal bands (OCB) in cerebrospinal fluid of MS patients. This test is now included in the 2017 McDonald criteria as a biomarker of dissemination in time. Nevertheless, there are other biomarkers currently in use such as kappa free light chain, which has shown higher sensitivity and specificity for MS diagnosis than OCB. In addition, other potential laboratory tests involved in neuronal damage, demyelination and/or inflammation could be used for detecting MS. CONCLUSIONS CSF and serum biomarkers have been reviewed for their use in MS diagnosis and prognosis to stablish an accurate and prompt MS diagnosis, crucial to implement an adequate treatment and to optimize clinical outcomes over time.
Collapse
Affiliation(s)
- Julia Maroto-García
- Biochemistry Department, Clínica Universidad de Navarra, Spain; Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain.
| | - Ana Martínez-Escribano
- Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain; Laboratory Medicine, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-ARRIXACA, Murcia, Spain
| | - Virginia Delgado-Gil
- Neurology Department, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - Minerva Mañez
- Neurology Department, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - Carmen Mugueta
- Biochemistry Department, Clínica Universidad de Navarra, Spain
| | - Nerea Varo
- Biochemistry Department, Clínica Universidad de Navarra, Spain
| | - Ángela García de la Torre
- Clinical Analysis Service, Hospital Universitario Virgen de la Victoria, Malaga, Spain; The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| | - Maximiliano Ruiz-Galdón
- Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain; Clinical Analysis Service, Hospital Universitario Virgen de la Victoria, Malaga, Spain; The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| |
Collapse
|
184
|
Wang J, Yang L. The role of exosomes in central nervous system tissue regeneration and repair. Biomed Mater 2023; 18:052003. [PMID: 37399812 DOI: 10.1088/1748-605x/ace39c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Exosomes are membrane-bound vesicles secreted by various cell types into the extracellular environment and contain kinds of bioactive molecules. These molecules can mediate various biological processes such as cell differentiation, proliferation, and survival, making them attractive for tissue regeneration and repair. Owing to their nanoscale size, bilayer membrane structure, and receptor-mediated transcytosis, exosomes can cross the blood-brain barrier (BBB) and reach the central nervous system (CNS) tissue. Additionally, exosomes can be loaded with exogenous substances after isolation. It has been suggested that exosomes could be used as natural drug carriers to transport therapeutic agents across the BBB and have great potential for CNS disease therapy by promoting tissue regeneration and repair. Herein, we discuss perspectives on therapeutic strategies to treat neurodegenerative disease or spinal cord injury using a variety of cell types-derived exosomes with kinds of exosomal contents, as well as engineering strategies of specific functional and exosome administration routes.
Collapse
Affiliation(s)
- Jingtao Wang
- Guangzhou Xinhua University, No.19 Huamei Road, Guangzhou, Guangdong 510520, People's Republic of China
| | - Lingyan Yang
- Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, People's Republic of China
| |
Collapse
|
185
|
Temmerman J, Engelborghs S, Bjerke M, D’haeseleer M. Cerebrospinal fluid inflammatory biomarkers for disease progression in Alzheimer's disease and multiple sclerosis: a systematic review. Front Immunol 2023; 14:1162340. [PMID: 37520580 PMCID: PMC10374015 DOI: 10.3389/fimmu.2023.1162340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 08/01/2023] Open
Abstract
Inflammatory processes are involved in the pathophysiology of both Alzheimer's disease (AD) and multiple sclerosis (MS) but their exact contribution to disease progression remains to be deciphered. Biomarkers are needed to define pathophysiological processes of these disorders, who may increasingly co-exist in the elderly generations of the future, due to the rising prevalence in both and ameliorated treatment options with improved life expectancy in MS. The purpose of this review was to provide a systematic overview of inflammatory biomarkers, as measured in the cerebrospinal fluid (CSF), that are associated with clinical disease progression. International peer-reviewed literature was screened using the PubMed and Web of Science databases. Disease progression had to be measured using clinically validated tests representing baseline functional and/or cognitive status, the evolution of such clinical scores over time and/or the transitioning from one disease stage to a more severe stage. The quality of included studies was systematically evaluated using a set of questions for clinical, neurochemical and statistical characteristics of the study. A total of 84 papers were included (twenty-five for AD and 59 for MS). Elevated CSF levels of chitinase-3-like protein 1 (YKL-40) were associated with disease progression in both AD and MS. Osteopontin and monocyte chemoattractant protein-1 were more specifically related to disease progression in AD, whereas the same was true for interleukin-1 beta, tumor necrosis factor alpha, C-X-C motif ligand 13, glial fibrillary acidic protein and IgG oligoclonal bands in MS. We observed a broad heterogeneity of studies with varying cohort characterization, non-disclosure of quality measures for neurochemical analyses and a lack of adequate longitudinal designs. Most of the retrieved biomarkers are related to innate immune system activity, which seems to be an important mediator of clinical disease progression in AD and MS. Overall study quality was limited and we have framed some recommendations for future biomarker research in this field. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021264741.
Collapse
Affiliation(s)
- Joke Temmerman
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universiteit Antwerpen, Department of Biomedical Sciences and Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Wilrijk, Antwerp, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
| | - Sebastiaan Engelborghs
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universiteit Antwerpen, Department of Biomedical Sciences and Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Wilrijk, Antwerp, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
| | - Maria Bjerke
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universiteit Antwerpen, Department of Biomedical Sciences and Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Wilrijk, Antwerp, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Clinical Biology, Laboratory of Clinical Neurochemistry, Jette, Brussels, Belgium
| | - Miguel D’haeseleer
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
- National MS Center (NMSC), Neurology, Melsbroek, Steenokkerzeel, Belgium
| |
Collapse
|
186
|
Greene N, Quéré S, Bury DP, Mazerolle F, M'Hari M, Loubert A, Regnault A, Higuchi K. Establishing clinically meaningful within-individual improvement thresholds for eight patient-reported outcome measures in people with relapsing-remitting multiple sclerosis. J Patient Rep Outcomes 2023; 7:61. [PMID: 37402086 DOI: 10.1186/s41687-023-00594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/22/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND As disease-modifying therapies do not reverse the course of multiple sclerosis (MS), assessment of therapeutic success involves documenting patient-reported outcomes (PROs) concerning health-related quality of life, disease and treatment-related symptoms, and the impact of symptoms on function. Interpreting PRO data involves going beyond statistical significance to calculate within-patient meaningful change scores. These thresholds are needed for each PRO in order to fully interpret the PRO data. This analysis of PRO data from the PROMiS AUBAGIO study, which utilized 8 PRO instruments in teriflunomide-treated relapsing-remitting MS (RRMS) patients, was designed to estimate clinically meaningful within-individual improvement thresholds in the same manner, for 8 PRO instruments. RESULTS The analytical approach followed a triangulation exercise that considered results from anchor- and distribution-based methods and graphical representations of empirical cumulative distribution functions in PRO scores in groups defined by anchor variables. Data from 8 PRO instruments (MSIS-29 v2, FSMC, MSPS, MSNQ, TSQM v1.4, PDDS, HRPQ-MS v2, and HADS) were assessed from 434 RRMS patients. For MSIS-29 v2, FSMC, MSPS, and MSNQ total scores, available anchor variables enabled both anchor- and distribution-based methods to be applied. For instruments with no appropriate anchor available, distribution-based methods were applied. A recommended value for meaningful within-individual improvement was defined by comparing mean change in PRO scores between participants showing improvement of one or two categories in the anchor variable or those showing no change. A "lower bound" estimate was calculated using distribution-based methods. An improvement greater than the lower-bound estimate was considered "clinically meaningful". CONCLUSION This analysis produced estimates for assessing meaningful within-individual improvements for 8 PRO instruments used in MS studies. These estimates should be useful for interpreting scores and communicating study results and should facilitate decision-making by regulatory and healthcare authorities where these 8 PROs are commonly employed.
Collapse
Affiliation(s)
| | | | | | | | - Manal M'Hari
- Modus Outcomes, A Division of THREAD, Lyon, France
| | | | | | | |
Collapse
|
187
|
Samjoo IA, Drudge C, Walsh S, Tiwari S, Brennan R, Boer I, Häring DA, Klotz L, Adlard N, Banhazi J. Comparative efficacy of therapies for relapsing multiple sclerosis: a systematic review and network meta-analysis. J Comp Eff Res 2023; 12:e230016. [PMID: 37265062 PMCID: PMC10508312 DOI: 10.57264/cer-2023-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
Aim: To assess the relative efficacy of disease-modifying therapies (DMTs) for relapsing multiple sclerosis (RMS) including newer therapies (ozanimod, ponesimod, ublituximab) using network meta-analysis (NMA). Materials & methods: Bayesian NMAs for annualised relapse rate (ARR) and time to 3-month and 6-month confirmed disability progression (3mCDP and 6mCDP) were conducted. Results: For each outcome, the three most efficacious treatments versus placebo were monoclonal antibody (mAb) therapies: alemtuzumab, ofatumumab, and ublituximab for ARR; alemtuzumab, ocrelizumab, and ofatumumab for 3mCDP; and alemtuzumab, natalizumab, and either ocrelizumab or ofatumumab (depending on the CDP definition used for included ofatumumab trials) for 6mCDP. Conclusion: The most efficacious DMTs for RMS were mAb therapies. Of the newer therapies, only ublituximab ranked among the three most efficacious treatments (for ARR).
Collapse
Affiliation(s)
| | | | - Sarah Walsh
- Value & Evidence, EVERSANA™, Burlington, Ontario, Canada
| | | | | | | | | | - Luisa Klotz
- Department of Neurology, University Hospital Münster, Westfälische-Wilhelms-University Münster, Münster, Germany
| | | | | |
Collapse
|
188
|
Zettl UK, Rommer PS, Aktas O, Wagner T, Richter J, Oschmann P, Cepek L, Elias-Hamp B, Gehring K, Chan A, Hecker M. Interferon beta-1a sc at 25 years: a mainstay in the treatment of multiple sclerosis over the period of one generation. Expert Rev Clin Immunol 2023; 19:1343-1359. [PMID: 37694381 DOI: 10.1080/1744666x.2023.2248391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Interferon beta (IFN beta) preparations are an established group of drugs used for immunomodulation in patients with multiple sclerosis (MS). Subcutaneously (sc) applied interferon beta-1a (IFN beta-1a sc) has been in continuous clinical use for 25 years as a disease-modifying treatment. AREAS COVERED Based on data published since 2018, we discuss recent insights from analyses of the pivotal trial PRISMS and its long-term extension as well as from newer randomized studies with IFN beta-1a sc as the reference treatment, the use of IFN beta-1a sc across the patient life span and as a bridging therapy, recent data regarding the mechanisms of action, and potential benefits of IFN beta-1a sc regarding vaccine responses. EXPERT OPINION IFN beta-1a sc paved the way to effective immunomodulatory treatment of MS, enabled meaningful insights into the disease process, and remains a valid therapeutic option in selected vulnerable MS patient groups.
Collapse
Affiliation(s)
- Uwe Klaus Zettl
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Paulus Stefan Rommer
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | - Andrew Chan
- Department of Neurology, Inselspital Bern, University Hospital Bern, Bern, Switzerland
| | - Michael Hecker
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
189
|
Sungur M, Ovayolu N, Akçalı A. The Effect of Acupressure Applied to Patients With Multiple Sclerosis on Fatigue. Holist Nurs Pract 2023; 37:184-194. [PMID: 37335146 DOI: 10.1097/hnp.0000000000000588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
This study was conducted in order to examine the effect of acupressure applied to patients with multiple sclerosis on fatigue. The patients meeting the inclusion criteria were assigned to intervention (n = 30) and control (n = 30) groups. The data of the study were collected using a questionnaire and the Fatigue Severity Scale. During the study, the control group received its routine treatment; on the other hand, the intervention group received routine treatment and also the certified researcher, receiving the acupressure training, applied acupressure to the intervention group by using the points Li4, ST36 and SP6 3 times a week for a total of 4 weeks. The postacupressure fatigue mean score was 5.2 ± 0.7 in the intervention group and 5.9 ± 0.7 in the control group, and there was a significant difference in the control and intervention groups in terms of postacupressure fatigue mean scores (P < .05). According to these results of the study, it can be recommended to provide acupressure training to patients with multiple sclerosis in order to decrease the fatigue associated with multiple sclerosis.
Collapse
Affiliation(s)
- Meltem Sungur
- Department of Nursing, Yusuf Şerefoğlu Faculty of Health Sciences, Kilis 7 Aralık University, Kilis, Turkey (Ms Sungur); Faculty of Health Sciences, Sanko University, Gaziantep, Turkey (Dr Ovayolu); and Faculty of Medicine, Department of Internal Medicine, Department of Neurology, Gaziantep University, Gaziantep, Turkey (Dr Akçalı)
| | | | | |
Collapse
|
190
|
Locus for severity implicates CNS resilience in progression of multiple sclerosis. Nature 2023; 619:323-331. [PMID: 37380766 PMCID: PMC10602210 DOI: 10.1038/s41586-023-06250-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that results in significant neurodegeneration in the majority of those affected and is a common cause of chronic neurological disability in young adults1,2. Here, to provide insight into the potential mechanisms involved in progression, we conducted a genome-wide association study of the age-related MS severity score in 12,584 cases and replicated our findings in a further 9,805 cases. We identified a significant association with rs10191329 in the DYSF-ZNF638 locus, the risk allele of which is associated with a shortening in the median time to requiring a walking aid of a median of 3.7 years in homozygous carriers and with increased brainstem and cortical pathology in brain tissue. We also identified suggestive association with rs149097173 in the DNM3-PIGC locus and significant heritability enrichment in CNS tissues. Mendelian randomization analyses suggested a potential protective role for higher educational attainment. In contrast to immune-driven susceptibility3, these findings suggest a key role for CNS resilience and potentially neurocognitive reserve in determining outcome in MS.
Collapse
|
191
|
Weatherley G, Araujo RP, Dando SJ, Jenner AL. Could Mathematics be the Key to Unlocking the Mysteries of Multiple Sclerosis? Bull Math Biol 2023; 85:75. [PMID: 37382681 PMCID: PMC10310626 DOI: 10.1007/s11538-023-01181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune, neurodegenerative disease that is driven by immune system-mediated demyelination of nerve axons. While diseases such as cancer, HIV, malaria and even COVID have realised notable benefits from the attention of the mathematical community, MS has received significantly less attention despite the increasing disease incidence rates, lack of curative treatment, and long-term impact on patient well-being. In this review, we highlight existing, MS-specific mathematical research and discuss the outstanding challenges and open problems that remain for mathematicians. We focus on how both non-spatial and spatial deterministic models have been used to successfully further our understanding of T cell responses and treatment in MS. We also review how agent-based models and other stochastic modelling techniques have begun to shed light on the highly stochastic and oscillatory nature of this disease. Reviewing the current mathematical work in MS, alongside the biology specific to MS immunology, it is clear that mathematical research dedicated to understanding immunotherapies in cancer or the immune responses to viral infections could be readily translatable to MS and might hold the key to unlocking some of its mysteries.
Collapse
Affiliation(s)
- Georgia Weatherley
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Robyn P Araujo
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Samantha J Dando
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Adrianne L Jenner
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
192
|
Chaney AM, Cropper HC, Jain P, Wilson E, Simonetta F, Johnson EM, Alam IS, Patterson ITJ, Swarovski M, Stevens MY, Wang Q, Azevedo C, Nagy SC, Ramos Benitez J, Deal EM, Vogel H, Andreasson KI, James ML. PET imaging of TREM1 identifies CNS-infiltrating myeloid cells in a mouse model of multiple sclerosis. Sci Transl Med 2023; 15:eabm6267. [PMID: 37379371 DOI: 10.1126/scitranslmed.abm6267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS) that causes substantial morbidity and diminished quality of life. Evidence highlights the central role of myeloid lineage cells in the initiation and progression of MS. However, existing imaging strategies for detecting myeloid cells in the CNS cannot distinguish between beneficial and harmful immune responses. Thus, imaging strategies that specifically identify myeloid cells and their activation states are critical for MS disease staging and monitoring of therapeutic responses. We hypothesized that positron emission tomography (PET) imaging of triggering receptor expressed on myeloid cells 1 (TREM1) could be used to monitor deleterious innate immune responses and disease progression in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. We first validated TREM1 as a specific marker of proinflammatory, CNS-infiltrating, peripheral myeloid cells in mice with EAE. We show that the 64Cu-radiolabeled TREM1 antibody-based PET tracer monitored active disease with 14- to 17-fold higher sensitivity than translocator protein 18 kDa (TSPO)-PET imaging, the established approach for detecting neuroinflammation in vivo. We illustrate the therapeutic potential of attenuating TREM1 signaling both genetically and pharmacologically in the EAE mice and show that TREM1-PET imaging detected responses to an FDA-approved MS therapy with siponimod (BAF312) in these animals. Last, we observed TREM1+ cells in clinical brain biopsy samples from two treatment-naïve patients with MS but not in healthy control brain tissue. Thus, TREM1-PET imaging has potential for aiding in the diagnosis of MS and monitoring of therapeutic responses to drug treatment.
Collapse
Affiliation(s)
- Aisling M Chaney
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Haley C Cropper
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Poorva Jain
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Edward Wilson
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva 1205, Switzerland
- Translational Research Centre in Onco-Haematology, Faculty of Medicine, University of Geneva, Geneva 1205, Switzerland
| | - Emily M Johnson
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Israt S Alam
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Ian T J Patterson
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Michelle Swarovski
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
| | - Marc Y Stevens
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Qian Wang
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
| | - Carmen Azevedo
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Sydney C Nagy
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Javier Ramos Benitez
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
| | - Emily M Deal
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Katrin I Andreasson
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Michelle L James
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Department of Neurology and Neurological Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
193
|
Insights into the genetic architecture of multiple sclerosis severity. Nature 2023:10.1038/d41586-023-01787-3. [PMID: 37380837 DOI: 10.1038/d41586-023-01787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
|
194
|
Bridgeman CJ, Shah SA, Oakes RS, Jewell CM. Dissecting regulatory T cell expansion using polymer microparticles presenting defined ratios of self-antigen and regulatory cues. Front Bioeng Biotechnol 2023; 11:1184938. [PMID: 37441198 PMCID: PMC10334287 DOI: 10.3389/fbioe.2023.1184938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Biomaterials allow for the precision control over the combination and release of cargo needed to engineer cell outcomes. These capabilities are particularly attractive as new candidate therapies to treat autoimmune diseases, conditions where dysfunctional immune cells create pathogenic tissue environments during attack of self-molecules termed self-antigens. Here we extend past studies showing combinations of a small molecule immunomodulator co-delivered with self-antigen induces antigen-specific regulatory T cells. In particular, we sought to elucidate how different ratios of these components loaded in degradable polymer particles shape the antigen presenting cell (APC) -T cell interactions that drive differentiation of T cells toward either inflammatory or regulatory phenotypes. Using rapamycin (rapa) as a modulatory cue and myelin self-peptide (myelin oligodendrocyte glycoprotein- MOG) - self-antigen attacked during multiple sclerosis (MS), we integrate these components into polymer particles over a range of ratios and concentrations without altering the physicochemical properties of the particles. Using primary cell co-cultures, we show that while all ratios of rapa:MOG significantly decreased expression of co-stimulation molecules on dendritic cells (DCs), these levels were insensitive to the specific ratio. During co-culture with primary T cell receptor transgenic T cells, we demonstrate that the ratio of rapa:MOG controls the expansion and differentiation of these cells. In particular, at shorter time points, higher ratios induce regulatory T cells most efficiently, while at longer time points the processes are not sensitive to the specific ratio. We also found corresponding changes in gene expression and inflammatory cytokine secretion during these times. The in vitro results in this study contribute to in vitro regulatory T cell expansion techniques, as well as provide insight into future studies to explore other modulatory effects of rapa such as induction of maintenance or survival cues.
Collapse
Affiliation(s)
- Christopher J. Bridgeman
- Fischell Department of Bioengineering, University of Maryland College Park, Baltimore, MD, United states
| | - Shrey A. Shah
- Fischell Department of Bioengineering, University of Maryland College Park, Baltimore, MD, United states
| | - Robert S. Oakes
- Fischell Department of Bioengineering, University of Maryland College Park, Baltimore, MD, United states
- United States Department of Veterans Affairs, Baltimore, MD, United states
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland College Park, Baltimore, MD, United states
- United States Department of Veterans Affairs, Baltimore, MD, United states
- Robert E Fischell Institute of Biomedical Devices, University of Maryland College Park, Baltimore, MD, United states
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, United states
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, United states
| |
Collapse
|
195
|
Yang Y, Song R, Gao Y, Yu H, Wang S. Regulatory mechanisms and therapeutic potential of JAB1 in neurological development and disorders. Mol Med 2023; 29:80. [PMID: 37365502 DOI: 10.1186/s10020-023-00675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
c-Jun activation domain binding protein-1 (JAB1) is a multifunctional regulator that plays vital roles in diverse cellular processes. It regulates AP-1 transcriptional activity and also acts as the fifth component of the COP9 signalosome complex. While JAB1 is considered an oncoprotein that triggers tumor development, recent studies have shown that it also functions in neurological development and disorders. In this review, we summarize the general features of the JAB1 gene and protein, and present recent updates on the regulation of JAB1 expression. Moreover, we also highlight the functional roles and regulatory mechanisms of JAB1 in neurodevelopmental processes such as neuronal differentiation, synaptic morphogenesis, myelination, and hair cell development and in the pathogenesis of some neurological disorders such as Alzheimer's disease, multiple sclerosis, neuropathic pain, and peripheral nerve injury. Furthermore, current challenges and prospects are discussed, including updates on drug development targeting JAB1.
Collapse
Affiliation(s)
- Yu Yang
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Ruying Song
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Yiming Gao
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
| | - Shuai Wang
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
196
|
Peng Y, Zhou M, Yang H, Qu R, Qiu Y, Hao J, Bi H, Guo D. Regulatory Mechanism of M1/M2 Macrophage Polarization in the Development of Autoimmune Diseases. Mediators Inflamm 2023; 2023:8821610. [PMID: 37332618 PMCID: PMC10270764 DOI: 10.1155/2023/8821610] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/21/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Macrophages are innate immune cells in the organism and can be found in almost tissues and organs. They are highly plastic and heterogeneous cells and can participate in the immune response, thereby playing a crucial role in maintaining the immune homeostasis of the body. It is well known that undifferentiated macrophages can polarize into classically activated macrophages (M1 macrophages) and alternatively activated macrophages (M2 macrophages) under different microenvironmental conditions. The directions of macrophage polarization can be regulated by a series of factors, including interferon, lipopolysaccharide, interleukin, and noncoding RNAs. To elucidate the role of macrophages in various autoimmune diseases, we searched the literature on macrophages with the PubMed database. Search terms are as follows: macrophages, polarization, signaling pathways, noncoding RNA, inflammation, autoimmune diseases, systemic lupus erythematosus, rheumatoid arthritis, lupus nephritis, Sjogren's syndrome, Guillain-Barré syndrome, and multiple sclerosis. In the present study, we summarize the role of macrophage polarization in common autoimmune diseases. In addition, we also summarize the features and recent advances with a particular focus on the immunotherapeutic potential of macrophage polarization in autoimmune diseases and the potentially effective therapeutic targets.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Mengxian Zhou
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hong Yang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao 266033, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Yan Qiu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| |
Collapse
|
197
|
Rashidbenam Z, Ozturk E, Pagnin M, Theotokis P, Grigoriadis N, Petratos S. How does Nogo receptor influence demyelination and remyelination in the context of multiple sclerosis? Front Cell Neurosci 2023; 17:1197492. [PMID: 37361998 PMCID: PMC10285164 DOI: 10.3389/fncel.2023.1197492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Multiple sclerosis (MS) can progress with neurodegeneration as a consequence of chronic inflammatory mechanisms that drive neural cell loss and/or neuroaxonal dystrophy in the central nervous system. Immune-mediated mechanisms can accumulate myelin debris in the disease extracellular milieu during chronic-active demyelination that can limit neurorepair/plasticity and experimental evidence suggests that potentiated removal of myelin debris can promote neurorepair in models of MS. The myelin-associated inhibitory factors (MAIFs) are integral contributors to neurodegenerative processes in models of trauma and experimental MS-like disease that can be targeted to promote neurorepair. This review highlights the molecular and cellular mechanisms that drive neurodegeneration as a consequence of chronic-active inflammation and outlines plausible therapeutic approaches to antagonize the MAIFs during the evolution of neuroinflammatory lesions. Moreover, investigative lines for translation of targeted therapies against these myelin inhibitors are defined with an emphasis on the chief MAIF, Nogo-A, that may demonstrate clinical efficacy of neurorepair during progressive MS.
Collapse
Affiliation(s)
- Zahra Rashidbenam
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
198
|
Fang X, Lu Y, Fu Y, Liu Z, Kermode AG, Qiu W, Ling L, Liu C. Cerebrospinal Fluid Chloride Is Associated with Disease Activity of Relapsing-Remitting Multiple Sclerosis: A Retrospective Cohort Study. Brain Sci 2023; 13:924. [PMID: 37371400 DOI: 10.3390/brainsci13060924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Blood-brain barrier dysfunction in active multiple sclerosis (MS) lesions leads to pathological changes in the cerebrospinal fluid (CSF). This study aimed to investigate the possible association between routine CSF findings, especially CSF chloride, at the time of the first lumbar puncture and the relapse risk and disability progression of relapsing-remitting MS (RRMS). METHODS This retrospective study included 77 patients with RRMS at the MS Center of our institution from January 2012 to December 2020. The Anderson and Gill (AG) model and Spearman correlation analysis were used to explore predictors of relapse and disability during follow-up. RESULTS In the multivariate AG model, patients with elevated CSF chloride level (hazard ratio [HR], 1.1; 95% confidence interval [CI]: 1.06-1.22; p = 0.001) had a high risk of MS relapse. Using median values of CSF chloride (123.2 mmol/L) as a cut-off, patients with CSF chloride level ≥ 123.2 mmol/L had a 120% increased relapse risk compared with those with CSF chloride level < 123.2 mmol/L (HR = 2.20; 95% CI: 1.19-4.05; p = 0.012). CONCLUSIONS Elevated CSF chloride levels might be a biologically unfavorable predictive factor for disease relapse in RRMS.
Collapse
Affiliation(s)
- Xingwei Fang
- Faculty of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaxin Lu
- Clinical Data Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yongmei Fu
- Emergency Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zifeng Liu
- Clinical Data Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Allan G Kermode
- Perron Institute, University of Western Australia, Nedlands, WA 6009, Australia
| | - Wei Qiu
- Neurology Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Li Ling
- Faculty of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Clinical Research Design Division, Clinical Research Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chunxin Liu
- Emergency Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
199
|
Hatem A, El Ayoubi NK, Habahbeh M, Ghanim Z, Al-Naqshbandi M, Raki A, Joudi H, Sahraian MA. Current and future trends in multiple sclerosis management: Near East perspective. Mult Scler Relat Disord 2023; 76:104800. [PMID: 37307691 DOI: 10.1016/j.msard.2023.104800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/10/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) prevalence is rising in the Middle East. Most MS medications are available in the region, but not all, possibly affecting neurologists' prescribing habits. OBJECTIVES To provide an overview of the current practices of Near East (NE) healthcare practitioners by probing their prescribing decisions, to report the COVID-19 impacts on neurologists' prescribing habits, and to explore the future relevance of current medication used in MS management among other newcomers. METHODS A cross-sectional study was carried out using an online survey from April 27, 2022, to July 5, 2022. The questionnaire was designed with the input of five neurologists representing five NE countries (Iran, Iraq, Lebanon, Jordan & Palestine). They identified several factors that play a crucial role in the optimal care of MS patients. The link was shared among neurologists using snowball sampling. RESULTS The survey included 98 neurologists. Effectiveness and safety balance was the most important factor considered when selecting the MS treatment. Among patients with MS, the most challenging factor for the patients was thought to be related to family planning, followed by affordability and tolerability of side effects. In the treatment of mild to moderate relapsing remitting multiple sclerosis (RRMS) in men, Interferon beta 1a SC, Fingolimod, and Glatiramer acetate were the most commonly recommended treatments. Dimethyl fumarate substituted fingolimod in female patients. Interferon beta 1a SC was the safest treatment for mild to moderate RRMS. Interferon beta 1a SC was preferred over other treatments for patients with mild to moderate MS and planning for pregnancy (56.6%) or breastfeeding (60.2%). Fingolimod was not a choice for these patients. Neurologists seemed to discuss the top three treatments of Natalizumab, Ocrelizumab, and Cladribine with patients with highly active MS. When asked to position future disease-modifying therapies five years from today, more than 45% of physicians expressed a lack of information on Bruton's tyrosine kinase (BTK) inhibitors. CONCLUSIONS Most neurologists in the NE region followed Middle East North Africa Committee for Treatment and Research in Multiple Sclerosis (MENACTRIMS) recommendations for prescribing treatment. The treatment choice also depended on the availability of disease-modifying therapies (DMTs) in the region. Regarding the use of upcoming DMTs, there is a clear need for real-world data, long-term extension studies, and comparative studies to support their efficacy and safety profiles in treating patients with MS.
Collapse
Affiliation(s)
- Anmar Hatem
- MS Clinic, Baghdad Teaching Hospital, Medical City Complex, Baghdad, Iraq
| | - Nabil K El Ayoubi
- Department of Neurology, Nehme and Therese Multiple Sclerosis Center, American University of Beirut, Beirut, Lebanon
| | - Majed Habahbeh
- Department of Medicine, Neurology Section, King Hussein Medical Centre, Amman, Jordan
| | - Zaid Ghanim
- Al-Quds University-School of Medicine, Abu-Dis, East Jerusalem, West Bank, Palestine; Internal Medicine Department, Palestine Medical Complex, Ramallah, West Bank, Palestine
| | | | - Abed Raki
- Merck Serono Middle East FZ-Ltd, Dubai, United Arab Emirates
| | - Hoda Joudi
- Merck Serono Middle East FZ-Ltd, Dubai, United Arab Emirates
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
200
|
Rasouli-Saravani A, Jahankhani K, Moradi S, Gorgani M, Shafaghat Z, Mirsanei Z, Mehmandar A, Mirzaei R. Role of microbiota short-chain fatty acid chains in the pathogenesis of autoimmune diseases. Biomed Pharmacother 2023; 162:114620. [PMID: 37004324 DOI: 10.1016/j.biopha.2023.114620] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
There is emerging evidence that microbiota and its metabolites play an important role in helath and diseases. In this regard, gut microbiota has been found as a crucial component that influences immune responses as well as immune-related disorders such as autoimmune diseases. Gut bacterial dysbiosis has been shown to cause disease and altered microbiota metabolite synthesis, leading to immunological and metabolic dysregulation. Of note, microbiota in the gut produce short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, and remodeling in these microbiota metabolites has been linked to the pathophysiology of a number of autoimmune disorders such as type 1 diabetes, multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, celiac disease, and systemic lupus erythematosus. In this review, we will address the most recent findings from the most noteworthy studies investigating the impact of microbiota SCFAs on various autoimmune diseases.
Collapse
Affiliation(s)
- Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Moradi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Mehmandar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|