151
|
Li YQ, He L, Aryal M, Wicander J, Korza G, Setlow P. Thioflavin-T does not report on electrochemical potential and memory of dormant or germinating bacterial spores. mBio 2023; 14:e0222023. [PMID: 37830807 PMCID: PMC10653816 DOI: 10.1128/mbio.02220-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Bacillus and Clostridium spores cause food spoilage and disease because of spores' dormancy and resistance to microbicides. However, when spores "come back to life" in germination, their resistance properties are lost. Thus, understanding the mechanisms of spore germination could facilitate the development of "germinate to eradicate" strategies. One germination feature is the memory of a pulsed germinant stimulus leading to greater germination following a second pulse. Recent observations of increases in spore binding of the potentiometric dye thioflavin-T early in their germination of spores led to the suggestion that increasing electrochemical potential is how spores "remember" germinant pulses. However, new work finds no increased thioflavin-T binding in the physiological germination of Coatless spores or of intact spores germinating with dodecylamine, even though spore memory is seen in both cases. Thus, using thioflavin-T uptake by germinating spores to assess the involvement of electrochemical potential in memory of germinant exposure, as suggested recently, is questionable.
Collapse
Affiliation(s)
- Yong-qing Li
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| | - Lin He
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
| | - Makunda Aryal
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| | - James Wicander
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
152
|
Wang X, Uppu DSSM, Dickey SW, Burgin DJ, Otto M, Lee JC. Staphylococcus aureus delta toxin modulates both extracellular membrane vesicle biogenesis and amyloid formation. mBio 2023; 14:e0174823. [PMID: 37795985 PMCID: PMC10653798 DOI: 10.1128/mbio.01748-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Extracellular membrane vesicles (MVs) produced by Staphylococcus aureus in planktonic cultures encapsulate a diverse cargo of bacterial proteins, nucleic acids, and glycopolymers that are protected from destruction by external factors. δ-toxin, a member of the phenol soluble modulin family, was shown to be critical for MV biogenesis. Amyloid fibrils co-purified with MVs generated by virulent, community-acquired S. aureus strains, and fibril formation was dependent on expression of the S. aureus δ-toxin gene (hld). Mass spectrometry data confirmed that the amyloid fibrils were comprised of δ-toxin. Although S. aureus MVs were produced in vivo in a localized murine infection model, amyloid fibrils were not observed in the in vivo setting. Our findings provide critical insights into staphylococcal factors involved in MV biogenesis and amyloid formation.
Collapse
Affiliation(s)
- Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Divakara SSM Uppu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Seth W. Dickey
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine,University of Maryland, Bethesda, Maryland, USA
| | - Dylan J. Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jean C. Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
153
|
Akasaka T, Watanabe H, Ono M. In Vivo Near-Infrared Fluorescence Imaging Selective for Soluble Amyloid β Aggregates Using y-Shaped BODIPY Derivative. J Med Chem 2023; 66:14029-14046. [PMID: 37824378 DOI: 10.1021/acs.jmedchem.3c01057] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Soluble amyloid β (Aβ) aggregates, suggested to be the most toxic forms of Aβ, draw attention as therapeutic targets and biomarkers of Alzheimer's disease (AD). As soluble Aβ aggregates are transient and diverse, imaging their diverse forms in vivo is expected to have a marked impact on research and diagnosis of AD. Herein, we report a near-infrared fluorescent (NIRF) probe, BAOP-16, targeting diverse soluble Aβ aggregates. BAOP-16, whose molecular shape resembles "y", showed a marked selective increase in fluorescence intensity upon binding to soluble Aβ aggregates in the near-infrared region and a high binding affinity for them. Additionally, BAOP-16 could detect Aβ oligomers in the brains of Aβ-inoculated model mice. In an in vivo fluorescence imaging study of BAOP-16, brains of AD model mice displayed significantly higher fluorescence signals than those of wild-type mice. These results indicate that BAOP-16 could be useful for the in vivo NIRF imaging of diverse soluble Aβ aggregates.
Collapse
Affiliation(s)
- Takahiro Akasaka
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
154
|
Xu SQ, Sie ZY, Hsu JI, Tan KT. Small Plasma Membrane-Targeted Fluorescent Dye for Long-Time Imaging and Protein Degradation Analyses. Anal Chem 2023; 95:15549-15555. [PMID: 37816133 DOI: 10.1021/acs.analchem.3c01980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Plasma membrane (PM)-targeted fluorescent dyes have become an important tool to visualize morphological and dynamic changes in the cell membrane. However, most of these PM dyes are either too large and thus might potentially perturb the membrane and affect its functions or exhibit a short retention time on the cell membrane. The rapid internalization problem is particularly severe for PM dyes based on cationic and neutral hydrophobic fluorescent dyes, which can be easily transported into the cells by transmembrane potential and passive diffusion mechanisms. In this paper, we report a small but highly specific PM fluorescent dye, PM-1, which exhibits a very long retention time on the plasma membrane with a half-life of approximately 15 h. For biological applications, we demonstrated that PM-1 can be used in combination with protein labeling probes to study ectodomain shedding and endocytosis processes of cell surface proteins and successfully demonstrated that native transmembrane human carbonic anhydrase IX (hCAIX) is degraded via the ectodomain shedding mechanism. In contrast, hCAIX undergoes endocytic degradation in the presence of sheddase inhibitors. We believe that PM-1 can be a versatile tool to provide detailed insights into the dynamic processes of the cell surface proteins.
Collapse
Affiliation(s)
- Shun-Qiang Xu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Zong-Yan Sie
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Jung-I Hsu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| |
Collapse
|
155
|
Subbaiah S P V, Uttamrao PP, Das U, Sundaresan S, Rathinavelan T. Concentration and time-dependent amyloidogenic characteristics of intrinsically disordered N-terminal region of Saccharomyces cerevisiae Stm1. Front Microbiol 2023; 14:1206945. [PMID: 37928673 PMCID: PMC10620681 DOI: 10.3389/fmicb.2023.1206945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Saccharomyces cerevisiae Stm1 protein is a ribosomal association factor, which plays an important role in preserving ribosomes in a nutrition-deprived environment. It is also shown to take part in apoptosis-like cell death. Stm1 N-terminal region (Stm1_N1-113) is shown to recognize purine motif DNA triplex and G-quadruplex. Circular dichroism (CD) spectra of Stm1_N1-113 (enriched in positively-charged Lysine and Arginine; negatively-charged Aspartate; polar-uncharged Threonine, Asparagine, Proline and Serine; hydrophobic Alanine, Valine, and Glycine) collected after 0 and 24 h indicate that the protein assumes beta-sheet conformation at the higher concentrations in contrast to intrinsically disordered conformation seen for its monomeric form found in the crystal structure. Thioflavin-T kinetics experiments indicate that the lag phase is influenced by the salt concentration. Atomic force microscopy (AFM) images collected for a variety of Stm1_N1-113 concentrations (in the range of 1-400 μM) in the presence of 150 mM NaCl at 0, 24, and 48 h indicate a threshold concentration requirement to observe the time-dependent amyloid formation. This is prominent seen at the physiological salt concentration of 150 mM NaCl with the fibrillation observed for 400 μM concentration at 48 h, whereas oligomerization or proto-fibrillation is seen for the other concentrations. Such concentration-dependent fibrillation of Stm1_N1-113 explains that amyloid fibrils formed during the overexpression of Stm1_N1-113 may act as a molecular device to trigger apoptosis-like cell death.
Collapse
Affiliation(s)
- Venkata Subbaiah S P
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Patil Pranita Uttamrao
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Uttam Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Sruthi Sundaresan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | | |
Collapse
|
156
|
Israel LL, Braubach O, Shatalova ES, Chepurna O, Sharma S, Klymyshyn D, Galstyan A, Chiechi A, Cox A, Herman D, Bliss B, Hasen I, Ting A, Arechavala R, Kleinman MT, Patil R, Holler E, Ljubimova JY, Koronyo-Hamaoui M, Sun T, Black KL. Exposure to environmental airborne particulate matter caused wide-ranged transcriptional changes and accelerated Alzheimer's-related pathology: A mouse study. Neurobiol Dis 2023; 187:106307. [PMID: 37739136 DOI: 10.1016/j.nbd.2023.106307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
Air pollution poses a significant threat to human health, though a clear understanding of its mechanism remains elusive. In this study, we sought to better understand the effects of various sized particulate matter from polluted air on Alzheimer's disease (AD) development using an AD mouse model. We exposed transgenic Alzheimer's mice in their prodromic stage to different sized particulate matter (PM), with filtered clean air as control. After 3 or 6 months of exposure, mouse brains were harvested and analyzed. RNA-seq analysis showed that various PM have differential effects on the brain transcriptome, and these effects seemed to correlate with PM size. Many genes and pathways were affected after PM exposure. Among them, we found a strong activation in mRNA Nonsense Mediated Decay pathway, an inhibition in pathways related to transcription, neurogenesis and survival signaling as well as angiogenesis, and a dramatic downregulation of collagens. Although we did not detect any extracellular Aβ plaques, immunostaining revealed that both intracellular Aβ1-42 and phospho-Tau levels were increased in various PM exposure conditions compared to the clean air control. NanoString GeoMx analysis demonstrated a remarkable activation of immune responses in the PM exposed mouse brain. Surprisingly, our data also indicated a strong activation of various tumor suppressors including RB1, CDKN1A/p21 and CDKN2A/p16. Collectively, our data demonstrated that exposure to airborne PM caused a profound transcriptional dysregulation and accelerated Alzheimer's-related pathology.
Collapse
Affiliation(s)
- Liron L Israel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Oliver Braubach
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Ekaterina S Shatalova
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Oksana Chepurna
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Sachin Sharma
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Dmytro Klymyshyn
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Anna Galstyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Antonella Chiechi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Alysia Cox
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - David Herman
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Bishop Bliss
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Irene Hasen
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Amanda Ting
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Rebecca Arechavala
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Eggehard Holler
- Terasaki Institute, Los Angeles, CA 90024, United States of America
| | | | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America.
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America.
| |
Collapse
|
157
|
Barooah N, Karmakar P, Sharanya MK, Mishra M, Bhasikuttan AC, Mohanty J. Spectroscopic features of a perylenediimide probe for sensing amyloid fibrils: in vivo imaging of Aβ-aggregates in a Drosophila model organism. J Mater Chem B 2023; 11:9545-9554. [PMID: 37753638 DOI: 10.1039/d3tb01233f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Customised perylenediimide (PDI) chromophores find diverse applications not only as chemosensors, inorganic-organic semiconductors, photovoltaics, photocatalysts, etc., but also in protein surface engineering, bio-sensors and drug delivery systems. This study focuses on the interaction of a custom synthesized phenylalanine derivatized perylenediimide (L-Phe-PDI) dye with a model protein, insulin, and its structurally distinct fibrils to develop fluorescence sensors for fibrillar aggregates and in vivo imaging applications. Detailed photophysical studies revealed that L-Phe-PDI gets aggregated in the presence of insulin and causes emission quenching at pH 7.4, which in the absence of insulin occurs only at pH ∼2. During in vitro incubation of insulin to its fibrils, the fluorescence intensity of the L-Phe-PDI probe is enhanced to ∼150 fold in a two-stage manner, manifesting the pathways of structural transformation to β-sheet rich mature fibrils. The in vivo sensing has further been validated in living models of the Aβ-mutant Drosophila fly, which is known to develop progressive neurodegeneration comparable to that of human brains with Alzheimer's disease (AD). Bioimaging of the L-Phe-PDI treated Aβ-mutant Drosophila documented the blood-brain/blood-retina-barrier cross-over ability of L-Phe-PDI with no toxic effects. Comparison of the fibrillar images from the brain and eye region with the reference thioflavin T (ThT) probe established the uptake of L-Phe-PDI by the aggregate/fibrillar moieties. The samples from L-Phe-PDI-treated flies apparently displayed reduced fibrillar spots, a possible case of L-Phe-PDI-induced disintegration of fibrillar aggregates at large, an observation substantiated by the improved phenotype activities as compared to the untreated flies. The findings reported both in vitro and in vivo with the L-Phe-PDI material for the first time open up avenues to explore the therapeutic potential of custom-designed PDI derivatives for amyloid fibril sensors and bioimaging.
Collapse
Affiliation(s)
- Nilotpal Barooah
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Puja Karmakar
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| | - M K Sharanya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| | - Achikanath C Bhasikuttan
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Jyotirmayee Mohanty
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
158
|
Gu J, Zhou X, Sutherland L, Kato M, Jaczynska K, Rizo J, McKnight SL. Oxidative regulation of TDP-43 self-association by a β-to-α conformational switch. Proc Natl Acad Sci U S A 2023; 120:e2311416120. [PMID: 37782781 PMCID: PMC10576115 DOI: 10.1073/pnas.2311416120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023] Open
Abstract
An evolutionarily conserved region of the TDP-43 low-complexity domain (LCD) twenty residues in length can adopt either an α-helical or β-strand conformation. When in the latter conformation, TDP-43 self-associates via the formation of a labile, cross-β structure. Self-association can be monitored via the formation of phase-separated protein droplets. Exposure of droplets to hydrogen peroxide leads to oxidation of conserved methionine residues distributed throughout the LCD. Oxidation disassembles the cross-β structure, thus eliminating both self-association and phase separation. Here, we demonstrate that this process reciprocally enables formation of α-helical structure in precisely the same region formerly functioning to facilitate β-strand-mediated self-association. We further observe that the α-helical conformation allows interaction with a lipid-like detergent and that exposure to lipids enhances the β-to-α conformational switch. We hypothesize that regulation of this oxidative switch will prove to be important to the control of localized translation within vertebrate cells. The experimental observations reported herein were heavily reliant on studies of 1,6-hexanediol, a chemical agent that selectively dissolves labile structures formed via the self-association of protein domains of low sequence complexity. This aliphatic alcohol is shown to exert its dissociative activity primarily via hydrogen-bonding interactions with carbonyl oxygen atoms of the polypeptide backbone. Such observations underscore the central importance of backbone-mediated protein:protein interactions that facilitate the self-association and phase separation of LCDs.
Collapse
Affiliation(s)
- Jinge Gu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Xiaoming Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Lillian Sutherland
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Masato Kato
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75235
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba263-8555, Japan
| | - Klaudia Jaczynska
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Steven L. McKnight
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75235
| |
Collapse
|
159
|
Wu Q, Tian F, Chen W, Wang J, Lei B. Specific Recognition and Adsorption of Volatile Organic Compounds by Using MIL-125-Based Porous Fluorescence Probe Material. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2732. [PMID: 37836373 PMCID: PMC10574030 DOI: 10.3390/nano13192732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 10/15/2023]
Abstract
The severity of the volatile organic compounds (VOCs) issue calls for effective detection and management of VOC materials. Metal-organic frameworks (MOFs) are organic-inorganic hybrid crystals with promising prospects in luminescent sensing for VOC detection and identification. However, MOFs have limitations, including weak response signals and poor sensitivity towards VOCs, limiting their application to specific types of VOC gases. To address the issue of limited recognition and single luminosity for specific VOCs, we have introduced fluorescent guest molecules into MOFs as reference emission centers to enhance sensitivity. This composite material combines the gas adsorption ability of MOFs to effectively adsorb VOCs. We utilized (MIL-125/NH2-MIL-125) as the parent material for adsorbing fluorescent molecules and selected suitable solid fluorescent probes (FGFL-B1) through fluorescence enhancement using thioflavin T and MIL-125. FGFL-B1 exhibited a heightened fluorescence response to various VOCs through charge transfer between fluorescent guest molecules and ligands. The fluorescence enhancement effect of FGFL-B1 on tetrahydrofuran (THF) was particularly pronounced, accompanied by a color change from yellow to yellowish green in the presence of CCl4. FGFL-B1 demonstrated excellent adsorption properties for THF and CCl4, with saturated adsorption capacities of 655.4 mg g-1 and 811.2 mg g-1, respectively. Furthermore, FGFL-B1 displayed strong luminescence stability and reusability, making it an excellent sensing candidate. This study addresses the limitations of MOFs in VOC detection, opening avenues for industrial and environmental applications.
Collapse
Affiliation(s)
| | | | - Wenqian Chen
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (Q.W.); (F.T.)
| | - Jianying Wang
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (Q.W.); (F.T.)
| | - Bo Lei
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (Q.W.); (F.T.)
| |
Collapse
|
160
|
Ramirez J, Pancoe SX, Rhoades E, Petersson EJ. The Effects of Lipids on α-Synuclein Aggregation In Vitro. Biomolecules 2023; 13:1476. [PMID: 37892158 PMCID: PMC10604467 DOI: 10.3390/biom13101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
The small neuronal protein α-synuclein (αS) is found in pre-synaptic terminals and plays a role in vesicle recycling and neurotransmission. Fibrillar aggregates of αS are the hallmark of Parkinson's disease and related neurodegenerative disorders. In both health and disease, interactions with lipids influence αS's structure and function, prompting much study of the effects of lipids on αS aggregation. A comprehensive collection (126 examples) of aggregation rate data for various αS/lipid combinations was presented, including combinations of lipid variations and mutations or post-translational modifications of αS. These data were interpreted in terms of lipid structure to identify general trends. These tabulated data serve as a resource for the community to help in the interpretation of aggregation experiments with lipids and to be potentially used as inputs for computational models of lipid effects on aggregation.
Collapse
Affiliation(s)
- Jennifer Ramirez
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA;
| | - Samantha X. Pancoe
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
161
|
Leitão ADG, Ahammad RU, Spencer B, Wu C, Masliah E, Rissman RA. Novel systemic delivery of a peptide-conjugated antisense oligonucleotide to reduce α-synuclein in a mouse model of Alzheimer's disease. Neurobiol Dis 2023; 186:106285. [PMID: 37690676 PMCID: PMC10584037 DOI: 10.1016/j.nbd.2023.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Neurodegenerative disorders of aging are characterized by the progressive accumulation of proteins such as α-synuclein (α-syn) and amyloid beta (Aβ). Misfolded and aggregated α-syn has been implicated in neurological disorders such as Parkinson's disease, and Dementia with Lewy Bodies, but less so in Alzheimer's Disease (AD), despite the fact that accumulation of α-syn has been confirmed in over 50% of postmortem brains neuropathologically diagnosed with AD. To date, no therapeutic strategy has effectively or consistently downregulated α-syn in AD. Here we tested the hypothesis that by using a systemically-delivered peptide (ApoB11) bound to a modified antisense oligonucleotide against α-syn (ASO-α-syn), we can downregulate α-syn expression in an AD mouse model and improve behavioral and neuropathologic phenotypes. Our results demonstrate that monthly systemic treatment with of ApoB11:ASO α-syn beginning at 6 months of age reduces expression of α-synuclein in the brains of 9-month-old AD mice. Downregulation of α-syn led to reduction in Aβ plaque burden, prevented neuronal loss and astrogliosis. Furthermore, we found that AD mice treated with ApoB11:ASO α-syn had greatly improved hippocampal and spatial memory function in comparison to their control counterparts. Collectively, our data supports the reduction of α-syn through use of systemically-delivered ApoB11:ASO α-syn as a promising future disease-modifying therapeutic for AD.
Collapse
Affiliation(s)
- André D G Leitão
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Rijwan U Ahammad
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America; Alzheimer's Therapeutic Research Institute, Keck School of Medicine of the University of Southern California, San Diego, CA 92121, United States of America
| | - Eliezer Masliah
- Laboratory of Neurogenetics, National Institute of Aging, National Institute of Health, Bethesda, MD 20892, United States of America
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America; Alzheimer's Therapeutic Research Institute, Keck School of Medicine of the University of Southern California, San Diego, CA 92121, United States of America; VA San Diego Healthcare System, San Diego, CA 92161, United States of America.
| |
Collapse
|
162
|
Sinha N, Zahra T, Gahane AY, Rout B, Bhattacharya A, Basu S, Chakrabarti A, Thakur AK. Protein reservoirs of seeds are amyloid composites employed differentially for germination and seedling emergence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:329-346. [PMID: 37675599 DOI: 10.1111/tpj.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Seed protein localization in seed storage protein bodies (SSPB) and their significance in germination are well recognized. SSPB are spherical and contain an assembly of water-soluble and salt-soluble proteins. Although the native structures of some SSPB proteins are explored, their structural arrangement to the functional correlation in SSPB remains unknown. SSPB are morphologically analogous to electron-dense amyloid-containing structures reported in other organisms. Here, we show that wheat, mungbean, barley, and chickpea SSPB exhibit a speckled pattern of amyloids interspersed in an amyloid-like matrix along with native structures, suggesting the composite nature of SSPB. This is confirmed by multispectral imaging methods, electron microscopy, infrared, and X-ray diffraction analysis, using in situ tissue sections, ex vivo protoplasts, and in vitro SSPB. Laser capture microdissection coupled with peptide fingerprinting has shown that globulin 1 and 3 in wheat, and 8S globulin and conglycinin in mungbean are the major amyloidogenic proteins. The amyloid composites undergo a sustained degradation during germination and seedling growth, facilitated by an intricate interplay of plant hormones and proteases. These results would lay down the foundation for understanding the amyloid composite structure during SSPB biogenesis and its evolution across the plant kingdom and have implications in both basic and applied plant biology.
Collapse
Affiliation(s)
- Nabodita Sinha
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Talat Zahra
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Avinash Yashwant Gahane
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Bandita Rout
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | | | | | | | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, The Mehta Family Centre For Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
163
|
Liu L, Liu W, Sun Y, Dong X. Design of aggregation-induced emission-active fluorogen-based nanoparticles for imaging and scavenging Alzheimer's β-amyloid by photo-oxygenation. J Mater Chem B 2023; 11:8994-9004. [PMID: 37705421 DOI: 10.1039/d3tb01134h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Photo-oxygenation has emerged as an effective modality for scavenging Alzheimer's amyloid-β (Aβ) plaques. However, limitations of the current photo-oxidants, such as low Aβ-targeting and single functionality, hinder the scavenging of Aβ plaques via photo-oxygenation. Herein, based on an aggregation-induced emission (AIE)-active fluorogen (named TPMD), we designed AIE photo-oxidant nanoparticles (T-LD NPs) for Aβ imaging, inhibition, and disaggregation. The T-LD NPs were prepared by the assembly of hydrophobic TPMD with an Aβ-targeting peptide (LPPFD, L) conjugated amphiphilic polymer (DSPE-PEG). Such T-LD NPs could specifically label Aβ plaques for image-guided therapy. Under laser irradiation, T-LD NPs generated a plethora of reactive oxygen species (ROS), including 1O2, ˙OH, and O2˙-, to oxygenate Aβ species, leading to the potent inhibition of Aβ fibrillization, and significant alleviation of Aβ-mediated neurotoxicity (36% to 10% at 20 μg mL-1). Notably, T-LD NPs could rapidly disaggregate mature Aβ fibrils into fractured β-sheet rich aggregates via photo-oxygenation, resulting in alleviated cytotoxicity. In vivo studies revealed that the photo-activated T-LD NPs scavenged amyloid plaques in the transgenic C. elegans strain CL2006 and extended the lifespan by 4 days. Taken together, this multifunctional T-LD NP integrated Aβ-targeting, near-infrared fluorescence imaging, and photo-oxygenation, provides a new strategy for the development of multifunctional AIE photo-oxidants for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Luqi Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
164
|
Sen S, Ali R, Singh H, Onkar A, Bhadauriya P, Ganesh S, Verma S. An unnatural amino acid modified human insulin derivative for visual monitoring of insulin aggregation. Org Biomol Chem 2023; 21:7561-7566. [PMID: 37671483 DOI: 10.1039/d3ob01038d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Insulin often forms toxic fibrils during production and transportation, which are deposited as amyloids at repeated injection sites in diabetic patients. Distinguishing early fibrils from non-fibrillated insulin is difficult. Herein, we introduce a chemically modified human insulin derivative with a distinct visual colour transition upon aggregation, facilitating insulin quality assessment.
Collapse
Affiliation(s)
- Shantanu Sen
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur-208016, UP, India.
| | - Rafat Ali
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur-208016, UP, India.
| | - Harminder Singh
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur-208016, UP, India.
| | - Akanksha Onkar
- Department of Biological Sciences and Bioengineering, Indian Institution of Technology Kanpur, Kanpur-208016, UP, India
| | - Pratibha Bhadauriya
- Department of Biological Sciences and Bioengineering, Indian Institution of Technology Kanpur, Kanpur-208016, UP, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institution of Technology Kanpur, Kanpur-208016, UP, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur-208016, UP, India.
| |
Collapse
|
165
|
Shahu R, Kumar D, Ali A, Tungare K, Al-Anazi KM, Farah MA, Jobby R, Jha P. Unlocking the Therapeutic Potential of Stevia rebaudiana Bertoni: A Natural Antiglycating Agent and Non-Toxic Support for HDF Cell Health. Molecules 2023; 28:6797. [PMID: 37836640 PMCID: PMC10574660 DOI: 10.3390/molecules28196797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Sugar carbonyl groups interact with protein amino groups, forming toxic components referred to as advanced glycation end products (AGEs). The glycation system (BSA, a model protein, and fructose) was incubated for five weeks at 37 °C in the presence and absence of Stevia leaf extract. The results indicated that the leaf extract (0.5 mg/mL) decreased the incidence of browning (70.84 ± 0.08%), fructosamine (67.27 ± 0.08%), and carbonyl content (64.04 ± 0.09%). Moreover, we observed an 81 ± 8.49% reduction in total AGEs. The inhibition of individual AGE (argpyrimidine, vesper lysine, and pentosidine) was ~80%. The decrease in the protein aggregation was observed with Congo red (46.88 ± 0.078%) and the Thioflavin T (31.25 ± 1.18%) methods in the presence of Stevia leaf extract. The repercussion of Stevia leaf extract on DNA glycation was examined using agarose gel electrophoresis, wherein the DNA damage was reversed in the presence of 1 mg/mL of leaf extract. When the HDF cell line was treated with 0.5 mg/mL of extract, the viability of cells decreased by only ~20% along with the same cytokine IL-10 production, and glucose uptake decreased by 28 ± 1.90% compared to the control. In conclusion, Stevia extract emerges as a promising natural agent for mitigating glycation-associated challenges, holding potential for novel therapeutic interventions and enhanced management of its related conditions.
Collapse
Affiliation(s)
- Rinkey Shahu
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai–Pune Expressway, Bhatan, Panvel, Mumbai 410206, Maharashtra, India (R.J.)
- Amity Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai–Pune Expressway, Bhatan, Panvel, Mumbai 410206, Maharashtra, India
| | - Dinesh Kumar
- Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, Maharashtra, India; (D.K.); (A.A.)
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, Maharashtra, India; (D.K.); (A.A.)
| | - Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to Be University, Plot No. 50, Sector 15, CBD Belapur, Navi Mumbai 400614, Maharashtra, India
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (K.M.A.-A.); (M.A.F.)
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (K.M.A.-A.); (M.A.F.)
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai–Pune Expressway, Bhatan, Panvel, Mumbai 410206, Maharashtra, India (R.J.)
- Amity Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai–Pune Expressway, Bhatan, Panvel, Mumbai 410206, Maharashtra, India
| | - Pamela Jha
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to Be University, Vile Parle (West), Mumbai 400056, Maharashtra, India
| |
Collapse
|
166
|
Cámara-Almirón J, Domínguez-García L, El Mammeri N, Lends A, Habenstein B, de Vicente A, Loquet A, Romero D. Molecular characterization of the N-terminal half of TasA during amyloid-like assembly and its contribution to Bacillus subtilis biofilm formation. NPJ Biofilms Microbiomes 2023; 9:68. [PMID: 37739955 PMCID: PMC10516879 DOI: 10.1038/s41522-023-00437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Biofilms are bacterial communities that result from a cell differentiation process leading to the secretion of an extracellular matrix (ECM) by part of the population. In Bacillus subtilis, the main protein component of the ECM is TasA, which forms a fiber-based scaffold that confers structure to the ECM. The N-terminal half of TasA is strongly conserved among Bacillus species and contains a protein domain, the rigid core (RcTasA), which is critical for the structural and functional properties of the recombinant protein. In this study, we demonstrate that recombinantly purified RcTasA in vitro retains biochemical properties previously observed for the entire protein. Further analysis of the RcTasA amino acid sequence revealed two aggregation-prone stretches and a region of imperfect amino acid repeats, which are known to contribute to functional amyloid assembly. Biochemical characterization of these stretches found in RcTasA revealed their amyloid-like capacity in vitro, contributing to the amyloid nature of RcTasA. Moreover, the study of the imperfect amino acid repeats revealed the critical role of residues D64, K68 and D69 in the structural function of TasA. Experiments with versions of TasA carrying the substitutions D64A and K68AD69A demonstrated a partial loss of function of the protein either in the assembly of the ECM or in the stability of the core and amyloid-like properties. Taken together, our findings allow us to better understand the polymerization process of TasA during biofilm formation and provide knowledge into the sequence determinants that promote the molecular behavior of protein filaments in bacteria.
Collapse
Affiliation(s)
- Jesús Cámara-Almirón
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, (Campus Universitario de Teatinos), Málaga, Spain
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | - Laura Domínguez-García
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, (Campus Universitario de Teatinos), Málaga, Spain
| | - Nadia El Mammeri
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, Pessac, France
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Alons Lends
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, Pessac, France
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV, 1006, Latvia
| | - Birgit Habenstein
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, Pessac, France
| | - Antonio de Vicente
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, (Campus Universitario de Teatinos), Málaga, Spain
| | - Antoine Loquet
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, Pessac, France
| | - Diego Romero
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, (Campus Universitario de Teatinos), Málaga, Spain.
| |
Collapse
|
167
|
Lacham-Hartman S, Moshe R, Ben-Zichri S, Shmidov Y, Bitton R, Jelinek R, Papo N. APPI-Derived Cyclic Peptide Enhances Aβ42 Aggregation and Reduces Aβ42-Mediated Membrane Destabilization and Cytotoxicity. ACS Chem Neurosci 2023; 14:3385-3397. [PMID: 37579500 DOI: 10.1021/acschemneuro.3c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
An amyloid precursor protein inhibitor (APPI) and amyloid beta 42 (Aβ42) are both subdomains of the human transmembrane amyloid precursor protein (APP). In the brains of patients with Alzheimer's disease (AD), Aβ42 oligomerizes into aggregates of various sizes, with intermediate, low-molecular-weight Aβ42 oligomers currently being held to be the species responsible for the most neurotoxic effects associated with the disease. Strategies to ameliorate the toxicity of these intermediate Aβ42 oligomeric species include the use of short, Aβ42-interacting peptides that either inhibit the formation of the Aβ42 oligomeric species or promote their conversion to high-molecular-weight aggregates. We therefore designed such an Aβ42-interacting peptide that is based on the β-hairpin amino acid sequence of the APPI, which exhibits high similarity to the β-sheet-like aggregation site of Aβ42. Upon tight binding of this 20-mer cyclic peptide to Aβ42 (in a 1:1 molar ratio), the formation of Aβ42 aggregates was enhanced, and consequently, Aβ42-mediated cell toxicity was ameliorated. We showed that in the presence of the cyclic peptide, interactions of Aβ42 with both plasma and mitochondrial membranes and with phospholipid vesicles that mimic these membranes were inhibited. Specifically, the cyclic peptide inhibited Aβ42-mediated mitochondrial membrane depolarization and reduced Aβ42-mediated apoptosis and cell death. We suggest that the cyclic peptide modulates Aβ42 aggregation by enhancing the formation of large aggregates─as opposed to low-molecular-weight intermediates─and as such has the potential for further development as an AD therapeutic.
Collapse
Affiliation(s)
- Shiran Lacham-Hartman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Reut Moshe
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Shani Ben-Zichri
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Yulia Shmidov
- Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Ronit Bitton
- Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science &Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science &Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
168
|
Wang L, Hall CE, Uchikawa E, Chen D, Choi E, Zhang X, Bai XC. Structural basis of insulin fibrillation. SCIENCE ADVANCES 2023; 9:eadi1057. [PMID: 37713485 PMCID: PMC10881025 DOI: 10.1126/sciadv.adi1057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
Insulin is a hormone responsible for maintaining normal glucose levels by activating insulin receptor (IR) and is the primary treatment for diabetes. However, insulin is prone to unfolding and forming cross-β fibers. Fibrillation complicates insulin storage and therapeutic application. Molecular details of insulin fibrillation remain unclear, hindering efforts to prevent fibrillation process. Here, we characterized insulin fibrils using cryo-electron microscopy (cryo-EM), showing multiple forms that contain one or more of the protofilaments containing both the A and B chains of insulin linked by disulfide bonds. We solved the cryo-EM structure of one of the fibril forms composed of two protofilaments at 3.2-Å resolution, which reveals both the β sheet conformation of the protofilament and the packing interaction between them that underlie the fibrillation. On the basis of this structure, we designed several insulin mutants that display reduced fibrillation while maintaining native IR signaling activity. These designed insulin analogs may be developed into more effective therapeutics for type 1 diabetes.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Catherine E. Hall
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Emiko Uchikawa
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dailu Chen
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao-chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
169
|
Zhou W, O’Neill CL, Ding T, Zhang O, Rudra JS, Lew MD. Resolving the nanoscale structure of β-sheet assemblies using single-molecule orientation-localization microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557571. [PMID: 37745382 PMCID: PMC10515885 DOI: 10.1101/2023.09.13.557571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Synthetic peptides that self-assemble into cross-β fibrils have remarkable utility as engineered biomaterials due to their modularity and biocompatibility, but their structural and morphological similarity to amyloid species has been a long-standing concern for their translation. Further, their polymorphs are difficult to characterize using spectroscopic and imaging techniques that rely on ensemble averaging to achieve high resolution. Here, we utilize single-molecule orientation-localization microscopy (SMOLM) to characterize fibrils formed by the designed amphipathic enantiomers, KFE8L and KFE8D, and the pathological amyloid-beta peptide Aβ42. SMOLM reveals that the orientations of Nile red, as it transiently binds to both KFE8 and Aβ42, are consistent with a helical (bilayer) ribbon structure and convey the precise tilt of the fibrils' inner and outer backbones. SMOLM also finds polymorphic branched and curved morphologies of KFE8 whose backbones exhibit much more heterogeneity than those of more typical straight fibrils. Thus, SMOLM is a powerful tool to interrogate the structural differences and polymorphism between engineered and pathological cross β-rich fibrils.
Collapse
Affiliation(s)
- Weiyan Zhou
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Conor L. O’Neill
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Tianben Ding
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Oumeng Zhang
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Jai S. Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Matthew D. Lew
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| |
Collapse
|
170
|
Unnikrishnan AC, Balamurugan K, Shanmugam G. Structural Insights into the Amyloid Fibril Polymorphism Using an Isotope-Edited Vibrational Circular Dichroism Study at the Amino Acid Residue Level. J Phys Chem B 2023; 127:7674-7684. [PMID: 37667494 DOI: 10.1021/acs.jpcb.3c03437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Polymorphism is common in both in vitro and in vivo amyloid fibrils formed by the same peptide/protein. However, the differences in their self-assembled structures at the amino acid level remain poorly understood. In this study, we utilized isotope-edited vibrational circular dichroism (VCD) on a well-known amyloidogenic peptide fragment (N22FGAIL27) of human islet amyloid polypeptide (IAPf) to investigate the structural polymorphism. Two individual isotope-labeled IAPf peptides were used, with a 13C label on the carbonyl group of phenylalanine (IAPf-F) and glycine (IAPf-G). We compared the amyloid-like nanofibril of IAPf induced by solvent casting (fibril B) with our previous report on the same IAPf peptide fibril but with a different fibril morphology (fibril A) formed in an aqueous buffer solution. Fibril B consisted of entangled, laterally fused amyloid-like nanofibrils with a relatively shorter diameter (15-50 nm) and longer length (several microns), while fibril A displayed nanofibrils with a higher diameter (30-60 nm) and shorter length (500 nm-2 μm). The isotope-edited VCD analysis indicated that fibrils B consisted of anti-parallel β-sheet arrangements with glycine residues in the registry and phenylalanine residues out of the registry, which was significantly different from fibrils A, where a mixture of parallel β-sheet and turn structure with the registry at phenylalanine and glycine residues was observed. The VCD analysis, therefore, suggests that polymorphism in amyloid-like fibrils can be attributed to the difference in the packing/arrangement of the individual β-strands in the β-sheet and the difference in the amino acid registry. Our findings provide insights into the structural aspects of fibril polymorphism related to various amyloid diseases and may aid in designing amyloid fibril inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Anagha C Unnikrishnan
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)─Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kanagasabai Balamurugan
- Centre for High Computing, Council of Scientific and Industrial Research (CSIR)─Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)─Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
171
|
Bajad NG, Kumar A, Singh SK. Recent Advances in the Development of Near-Infrared Fluorescent Probes for the in Vivo Brain Imaging of Amyloid-β Species in Alzheimer's Disease. ACS Chem Neurosci 2023; 14:2955-2967. [PMID: 37574911 DOI: 10.1021/acschemneuro.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
The deposition of β-amyloid (Aβ) plaques in the parenchymal and cortical regions of the brain of Alzheimer's disease (AD) patients is considered the foremost pathological hallmark of the disease. The early diagnosis of AD is paramount in order to effective management and treatment of the disease. Developing near-infrared fluorescence (NIRF) probes targeting Aβ species is a potential and attractive approach suitable for the early and timely diagnosis of AD. The advantages of the NIRF probes over other tools include real-time detection, higher sensitivity, resolution, comparatively inexpensive experimental setup, and noninvasive nature. Currently, enormous progress is being observed in the development of NIRF probes for the in vivo imaging of Aβ species. Several strategies, i.e., the classical push-pull approach, "turn-on" effect, aggregation-induced emission (AIE), and resonance energy transfer (RET), have been exploited for development. We have outlined and discussed the recently emerged NIRF probes with different design strategies targeting Aβ species for ex vivo and in vivo imaging. We believe that understanding the recent development enables the prospect of the rational design of probes and will pave the way for developing future novel probes for early diagnosis of AD.
Collapse
Affiliation(s)
- Nilesh Gajanan Bajad
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| |
Collapse
|
172
|
Zhang H, Lv S, Ren F, Liu J, Wang J. Degree of Hydrolysis Regulated by Enzyme Mediation of Wheat Gluten Fibrillation: Structural Characterization and Analysis of the Mechanism of Action. Int J Mol Sci 2023; 24:13529. [PMID: 37686349 PMCID: PMC10488075 DOI: 10.3390/ijms241713529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The impact of different degrees of hydrolysis (DHs) on fibrillation when trypsin mediates wheat gluten (WG) fibrillation has not been thoroughly investigated. This study discussed the differences in amyloid fibrils (AFs) formed from wheat gluten peptides (WGPs) at various DH values. The results from Thioflavin T (ThT) fluorescence analysis indicated that WGPs with DH6 were able to form the most AFs. Changes in Fourier Transform Infrared (FTIR) absorption spectra and secondary structure also suggested a higher degree of fibrillation in DH6 WGPs. Analysis of surface hydrophobicity and ζ-potential showed that DH6 AFs had the highest surface hydrophobicity and the most stable water solutions. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) images revealed the best overall morphology of DH6 AFs. These findings can offer valuable insights into the development of a standardized method for preparing wheat gluten amyloid fibrils.
Collapse
Affiliation(s)
- Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (S.L.); (F.R.); (J.L.)
| | - Shihao Lv
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (S.L.); (F.R.); (J.L.)
| | - Feiyue Ren
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (S.L.); (F.R.); (J.L.)
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (S.L.); (F.R.); (J.L.)
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (S.L.); (F.R.); (J.L.)
| |
Collapse
|
173
|
Gu J, Zhou X, Sutherland L, Kato M, Jaczynska K, Rizo J, McKnight SL. Oxidative regulation of TDP-43 self-association by a β-to-α conformational switch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555361. [PMID: 37693418 PMCID: PMC10491227 DOI: 10.1101/2023.08.29.555361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
An evolutionarily conserved region of the TDP-43 low complexity domain twenty residues in length can adopt either an α-helical or β-strand conformation. When in the latter conformation, TDP-43 self-associates via the formation of a labile, cross-β structure. Self-association can be monitored via the formation of phase separated protein droplets. Exposure of droplets to hydrogen peroxide leads to oxidation of conserved methionine residues distributed throughout the low complexity domain. Oxidation disassembles the cross-β structure, thus eliminating both self-association and phase separation. Here we demonstrate that this process reciprocally enables formation of α-helical structure in precisely the same region formerly functioning to facilitate β-strand mediated self-association. We further observe that the α-helical conformation allows interaction with a lipid-like detergent, and that exposure to lipids enhances the β-to-α conformational switch. We hypothesize that regulation of this oxidative switch will prove to be important to the control of localized translation within vertebrate cells. The experimental observations reported herein were heavily reliant on studies of 1,6-hexanediol, a chemical agent that selectively dissolves labile structures formed via the self-association of protein domains of low sequence complexity. This aliphatic alcohol is shown to exert its dissociative activity primarily via hydrogen bonding interactions with carbonyl oxygen atoms of the polypeptide backbone. Such observations underscore the central importance of backbone-mediated protein:protein interactions that facilitate the self-association and phase separation of low complexity domains. Significance Statement The TDP-43 protein is a constituent of RNA granules involved in regulated translation. TDP-43 contains a C-terminal domain of 150 amino acids of low sequence complexity conspicuously decorated with ten methionine residues. An evolutionarily conserved region (ECR) of 20 residues within this domain can adopt either of two forms of labile secondary structure. Under normal conditions wherein methionine residues are reduced, the ECR forms a labile cross-β structure that enables RNA granule condensation. Upon methionine oxidation, the ECR undergoes a conformational switch to become an α-helix incompatible with self-association and granule integrity. Oxidation of the TDP-43 low complexity domain is hypothesized to occur proximal to mitochondria, thus facilitating dissolution of RNA granules and activation of localized translation.
Collapse
Affiliation(s)
- Jinge Gu
- Department of Biochemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, Texas 75235
| | - Xiaoming Zhou
- Department of Biochemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, Texas 75235
| | - Lillian Sutherland
- Department of Biochemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, Texas 75235
| | - Masato Kato
- Department of Biochemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, Texas 75235
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST) 4-9-1, Anagawa, Inage-ku, Chiba, JAPAN 263-8555
| | - Klaudia Jaczynska
- Department of Biophysics, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, Texas 75235
| | - Josep Rizo
- Department of Biophysics, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, Texas 75235
| | - Steven L. McKnight
- Department of Biochemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, Texas 75235
| |
Collapse
|
174
|
Wojewska MJ, Otero-Jimenez M, Guijarro-Nuez J, Alegre-Abarrategui J. Beyond Strains: Molecular Diversity in Alpha-Synuclein at the Center of Disease Heterogeneity. Int J Mol Sci 2023; 24:13199. [PMID: 37686005 PMCID: PMC10487421 DOI: 10.3390/ijms241713199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Alpha-synucleinopathies (α-synucleinopathies) such as Parkinson's disease (PD), Parkinson's disease dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) are all characterized by aggregates of alpha-synuclein (α-syn), but display heterogeneous clinical and pathological phenotypes. The mechanism underlying this heterogeneity is thought to be due to diversity in the α-syn strains present across the diseases. α-syn obtained from the post-mortem brain of patients who lived with these conditions is heterogenous, and displays a different protease sensitivity, ultrastructure, cytotoxicity, and seeding potential. The primary aim of this review is to summarize previous studies investigating these concepts, which not only reflect the idea of different syn strains being present, but demonstrate that each property explains a small part of a much larger puzzle. Strains of α-syn appear at the center of the correlation between α-syn properties and the disease phenotype, likely influenced by external factors. There are considerable similarities in the properties of disease-specific α-syn strains, but MSA seems to consistently display more aggressive traits. Elucidating the molecular underpinnings of heterogeneity amongst α-synucleinopathies holds promise for future clinical translation, allowing for the development of personalized medicine approaches tackling the root cause of each α-synucleinopathy.
Collapse
|
175
|
Leimu L, Haavisto O, Nesati V, Holm P, Haapalinna A, Salbo R, Pesonen U. Development of an in vitro aggregation assay for long synthetic polypeptide, amyloidogenic gelsolin fragment AGelD187N 173-242. PLoS One 2023; 18:e0290179. [PMID: 37590229 PMCID: PMC10434866 DOI: 10.1371/journal.pone.0290179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Aggregation of the gelsolin protein fragment is the hallmark of the hereditary systemic disease gelsolin amyloidosis. As with other protein misfolding diseases, there is an urgent need for efficient disease-modifying treatment for gelsolin amyloidosis. The formation of amyloids can be reproduced by incubating the disease-causing amyloidogenic 8 kDa polypeptide, 70-residue gelsolin protein fragment, AGelD187N 173-242, in vitro and monitoring the process by thioflavin T dye. However, for screening of potential aggregation inhibitors, the required protein amounts are large and the biotechnological production of amyloidogenic proteins has many challenges. Conversely, use of shorter synthetic regions of AGelD187N 173-242 does not mimic the in vivo aggregation kinetics of full-length fragment as they have different aggregation propensity. In this study, we present an in vitro aggregation assay for full-length AGelD187N 173-242 that has been produced by solid-phase chemical synthesis and after that monomerized carefully. Chemical synthesis allows us to produce high quantities of full-length fragment efficiently and at low cost. We demonstrate that the generated aggregates are fibrillar in nature and how the purity, terminal modification, initial aggregates and seeding affect the aggregation kinetics of a synthetic gelsolin fragment. We also present sufficient quality criteria for the initial monomerized synthetic polypeptide.
Collapse
Affiliation(s)
- Laura Leimu
- R&D, Orion Pharma, Orion Corporation, Turku, Finland
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Oskar Haavisto
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Victor Nesati
- R&D, Orion Pharma, Orion Corporation, Turku, Finland
| | - Patrik Holm
- R&D, Orion Pharma, Orion Corporation, Turku, Finland
| | | | - Rune Salbo
- R&D, Orion Pharma, Orion Corporation, Turku, Finland
| | - Ullamari Pesonen
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
176
|
Chatterjee T, Das G, Chatterjee BK, Ghosh S, Chakrabarti P. The Role of Protein- L-isoaspartyl Methyltransferase (PIMT) in the Suppression of Toxicity of the Oligomeric Form of Aβ42, in Addition to the Inhibition of Its Fibrillization. ACS Chem Neurosci 2023; 14:2888-2901. [PMID: 37535852 DOI: 10.1021/acschemneuro.3c00281] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
The oligomeric form of amyloid-β peptide (Aβ42) plays a crucial role in the pathogenesis of Alzheimer's disease (AD) and is responsible for cognitive deficits. The soluble oligomers are believed to be more toxic compared to the fibril form. Protein-L-isoaspartyl methyltransferase (PIMT) is a repair enzyme that converts aberrant isoAsp residues, formed spontaneously on isomerization of normal Asp and Asn residues, back to typical Asp. It was shown to inhibit the fibrillization of Aβ42 (containing three Asp residues), and here, we investigate its effect on the size, conformation, and toxicity of Aβ42 oligomers (AβO). Far-UV CD indicated a shift in the conformational feature of AβOs from the random coil to β-sheet in the presence of PIMT. Binding of bis-ANS to different AβOs (obtained using different concentrations of Aβ42 monomer) indicated the correlation of size of oligomers to hydrophobicity: the smallest AβO having the highest hydrophobicity is the most toxic. Dynamic light scattering showed an increase in size of AβO with the addition of PIMT, a contrasting role to that on Aβ fibril. Assays using PC12-derived neurons showed the neuroprotective role of PIMT against AβO-induced toxicity. Furthermore, we have elaborated on the molecular mechanism of the antifibrillar action of PIMT and how this function is correlated with its enzymatic activity. PIMT has a more pronounced effect on AβO as compared to a small heat shock protein, pointing to its importance for the amelioration of the adverse effect of both Aβ42 oligomers and fibrils.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Gaurav Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Barun K Chatterjee
- Department of Physics, Bose Institute, 93/1 A.P.C. Road, Kolkata 700054, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
177
|
Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J 2023; 480:1217-1240. [PMID: 37584410 DOI: 10.1042/bcj20230241] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
178
|
Patel CK, Rani C, Kumar R, Mukherjee TK. Macromolecular Crowding Promotes Re-entrant Liquid-Liquid Phase Separation of Human Serum Transferrin and Prevents Surface-Induced Fibrillation. Biomacromolecules 2023; 24:3917-3928. [PMID: 37503577 DOI: 10.1021/acs.biomac.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Protein aggregation and inactivation upon surface immobilization are major limiting factors for analytical applications in biotechnology-related fields. Protein immobilization on solid surfaces often requires multi-step surface passivation, which is time-consuming and inefficient. Herein, we have discovered that biomolecular condensates of biologically active human serum transferrin (Tf) can effectively prevent surface-induced fibrillation and preserve the native-like conformation of phase-separated Tf over a period of 30 days. It has been observed that macromolecular crowding promotes homotypic liquid-liquid phase separation (LLPS) of Tf through enthalpically driven multivalent hydrophobic interactions possibly via the involvement of its low-complexity domain (residues 3-20) containing hydrophobic amino acids. The present LLPS of Tf is a rare example of salt-mediated re-entrant phase separation in a broad range of salt concentrations (0-3 M) solely via the involvement of hydrophobic interactions. Notably, no liquid-to-solid-like phase transition has been observed over a period of 30 days, suggesting the intact conformational integrity of phase-separated Tf, as revealed from single droplet Raman, circular dichroism, and Fourier transform infrared spectroscopy measurements. More importantly, we discovered that the phase-separated condensates of Tf completely inhibit the surface-induced fibrillation of Tf, illustrating the protective role of these liquid-like condensates against denaturation and aggregation of biomolecules. The cell mimicking compact aqueous compartments of biomolecular condensates with a substantial amount of interfacial water preserve the structure and functionality of Tf. Our present study highlights an important functional aspect of biologically active protein condensates and may have wide-ranging implications in cell physiology and biotechnological applications.
Collapse
Affiliation(s)
- Chinmaya Kumar Patel
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Chanchal Rani
- Department of Physics, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Rajesh Kumar
- Department of Physics, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Tushar Kanti Mukherjee
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
179
|
Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Timokhina EN, Serebryakova OG, Shchepochkin AV, Averkov MA, Utepova IA, Demina NS, Radchenko EV, Palyulin VA, Fisenko VP, Bachurin SO, Chupakhin ON, Charushin VN, Richardson RJ. Derivatives of 9-phosphorylated acridine as butyrylcholinesterase inhibitors with antioxidant activity and the ability to inhibit β-amyloid self-aggregation: potential therapeutic agents for Alzheimer's disease. Front Pharmacol 2023; 14:1219980. [PMID: 37654616 PMCID: PMC10466253 DOI: 10.3389/fphar.2023.1219980] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023] Open
Abstract
We investigated the inhibitory activities of novel 9-phosphoryl-9,10-dihydroacridines and 9-phosphorylacridines against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CES). We also studied the abilities of the new compounds to interfere with the self-aggregation of β-amyloid (Aβ42) in the thioflavin test as well as their antioxidant activities in the ABTS and FRAP assays. We used molecular docking, molecular dynamics simulations, and quantum-chemical calculations to explain experimental results. All new compounds weakly inhibited AChE and off-target CES. Dihydroacridines with aryl substituents in the phosphoryl moiety inhibited BChE; the most active were the dibenzyloxy derivative 1d and its diphenethyl bioisostere 1e (IC50 = 2.90 ± 0.23 µM and 3.22 ± 0.25 µM, respectively). Only one acridine, 2d, an analog of dihydroacridine, 1d, was an effective BChE inhibitor (IC50 = 6.90 ± 0.55 μM), consistent with docking results. Dihydroacridines inhibited Aβ42 self-aggregation; 1d and 1e were the most active (58.9% ± 4.7% and 46.9% ± 4.2%, respectively). All dihydroacridines 1 demonstrated high ABTS•+-scavenging and iron-reducing activities comparable to Trolox, but acridines 2 were almost inactive. Observed features were well explained by quantum-chemical calculations. ADMET parameters calculated for all compounds predicted favorable intestinal absorption, good blood-brain barrier permeability, and low cardiac toxicity. Overall, the best results were obtained for two dihydroacridine derivatives 1d and 1e with dibenzyloxy and diphenethyl substituents in the phosphoryl moiety. These compounds displayed high inhibition of BChE activity and Aβ42 self-aggregation, high antioxidant activity, and favorable predicted ADMET profiles. Therefore, we consider 1d and 1e as lead compounds for further in-depth studies as potential anti-AD preparations.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Yu Astakhova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Timokhina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Olga G. Serebryakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Alexander V. Shchepochkin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Maxim A. Averkov
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Irina A. Utepova
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Nadezhda S. Demina
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir P. Fisenko
- Department of Pharmacology of the Institute of Biodesign and Complex System Modeling of Biomedical Science & Technology Park of Sechenov I.M., First Moscow State Medical University, Moscow, Russia
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Oleg N. Chupakhin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Valery N. Charushin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Rudy J. Richardson
- Department of Pharmacology of the Institute of Biodesign and Complex System Modeling of Biomedical Science & Technology Park of Sechenov I.M., First Moscow State Medical University, Moscow, Russia
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
180
|
Liu L, Li X, Chen N, Chen X, Xing L, Zhou X, Liu S. Influence of cadmium ion on denaturation kinetics of hen egg white-lysozyme under thermal and acidic conditions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122650. [PMID: 36989696 DOI: 10.1016/j.saa.2023.122650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
To study the influence of Cd(II) ions on denaturation kinetics of hen egg white lysozyme (HEWL) under thermal and acidic conditions, spontaneous Raman spectroscopy in conjunction with Thioflavin-T fluorescence, AFM imaging, far-UV circular dichroism spectroscopy, and transmittance assays was conducted. Four distinctive Raman spectral markers for protein tertiary and secondary structures were recorded to follow the kinetics of conformational transformation. Through comparing variations of these markers in the presence or absence of Cd(II) ions, Cd(II) ions show an ability to efficiently accelerate the disruption of tertiary structure, and meanwhile, to promote the direct formation of organized β-sheets from the uncoiling of α-helices by skipping intermediate random coils. More significantly, with the action of Cd(II) ions, the initially resulting oligomers with disordered structures tend to assemble into aggregates with random structures like gels more than amyloid fibrils, along with a so-called "off-pathway" denaturation pathway. Our results advance the in-depth understanding of corresponding ion-specific effects.
Collapse
Affiliation(s)
- Liming Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xinfei Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ning Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Lei Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiaoguo Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Shilin Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
181
|
Medina S, Miller M. Synthetic Colonic Mucus Enables the Development of Modular Microbiome Organoids. RESEARCH SQUARE 2023:rs.3.rs-3164407. [PMID: 37577510 PMCID: PMC10418553 DOI: 10.21203/rs.3.rs-3164407/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The human colon is home to more than a trillion microorganisms that modulate diverse gastrointestinal processes and pathophysiologies. Our understanding of how this gut ecosystem impacts human health, although evolving, is still in its nascent stages and has been slowed by the lack of accessible and scalable tools suitable to studying complex host-mucus-microbe interactions. In this work, we report a synthetic gel-like material capable of recapitulating the varied structural, mechanical, and biochemical profiles of native human colonic mucus to develop compositionally simple microbiome screening platforms with broad utility in microbiology and drug discovery. The viscous fibrillar material is realized through the templated assembly of a fluorine-rich amino acid at liquid-liquid phase separated interfaces. The fluorine-assisted mucus surrogate (FAMS) can be decorated with various mucins to serve as a habitat for microbial colonization and be integrated with human colorectal epithelial cells to generate multicellular artificial mucosae, which we refer to as a microbiome organoid. Notably, FAMS are made with inexpensive and commercially available materials, and can be generated using simple protocols and standard laboratory hardware. As a result, this platform can be broadly incorporated into various laboratory settings to advance our understanding of probiotic biology and inform in vivo approaches. If implemented into high throughput screening approaches, FAMS may represent a valuable tool in drug discovery to study compound metabolism and gut permeability, with an exemplary demonstration of this utility presented here.
Collapse
|
182
|
Tao S, Yang EJ, Zong G, Mou PK, Ren G, Pu Y, Chen L, Kwon HJ, Zhou J, Hu Z, Khosravi A, Zhang Q, Du Y, Shi WQ, Shim JS. ER translocon inhibitor ipomoeassin F inhibits triple-negative breast cancer growth via blocking ER molecular chaperones. Int J Biol Sci 2023; 19:4020-4035. [PMID: 37705743 PMCID: PMC10496495 DOI: 10.7150/ijbs.82012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 09/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer where no effective therapy has been developed. Here, we report that the natural product ER translocon inhibitor ipomoeassin F is a selective inhibitor of TNBC cell growth. A proteomic analysis of TNBC cells revealed that ipomoeassin F significantly reduced the levels of ER molecular chaperones, including PDIA6 and PDIA4, and induced ER stress, unfolded protein response (UPR) and autophagy in TNBC cells. Mechanistically, ipomoeassin F, as an inhibitor of Sec61α-containing ER translocon, blocks ER translocation of PDIA6, inducing its proteasomal degradation. Silencing of PDIA6 or PDIA4 by RNA interferences or treatment with a small molecule inhibitor of the protein disulfide isomerases in TNBC cells successfully recapitulated the ipomoeassin F phenotypes, including the induction of ER stress, UPR and autophagy, suggesting that the reduction of PDIAs is the key mediator of the pharmacological effects of ipomoeassin F. Moreover, ipomoeassin F significantly suppressed TNBC growth in a mouse tumor xenograft model, with a marked reduction in PDIA6 and PDIA4 levels in the tumor samples. Our study demonstrates that Sec61α-containing ER translocon and PDIAs are potential drug targets for TNBC and suggests that ipomoeassin F could serve as a lead for developing ER translocon-targeted therapy for TNBC.
Collapse
Affiliation(s)
- Shishi Tao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Eun Ju Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Pui Kei Mou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guowen Ren
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yue Pu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Liang Chen
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ho Jeong Kwon
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jianhong Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Zhijian Hu
- Feinstein Institute for Medical Research, Northwell Health, 350 Community Dr., Manhasset, New York, 11030, USA
| | - Arman Khosravi
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, USA
| | - Qingyang Zhang
- Department of Mathematical Sciences, University of Arkansas, Arkansas 72701, USA
| | - Yuchun Du
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Wei Q. Shi
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, USA
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
183
|
Rastogi V, Jain A, Kumar P, Yadav P, Porwal M, Chaturvedi S, Chandra P, Verma A. A critical review on the role of nanotheranostics mediated approaches for targeting β amyloid in Alzheimer's. J Drug Target 2023:1-20. [PMID: 37459647 DOI: 10.1080/1061186x.2023.2238250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Alzheimer's is one of the most common neurodegenerative illnesses that affect brain cellular function. In this disease, the neurons in the brain are considered to be decaying steadily but consistently by the accumulation of amyloid mass, particularly the β-amyloids, amyloid proteins, and Tau proteins. The most responsible amyloid-proteins are amyloid-40 and amyloid-42, which have a high probability of accumulating in excess over the brain cell, interfering with normal brain cell function and triggering brain cell death. The advancement of pharmaceutical sciences leads to the development of Nanotheranostics technology, which may be used to diagnose and treat Alzheimer's. They are the colloidal nanoparticles functionalised with the therapeutic moiety as well as a diagnostic moiety. This article discusses the prognosis of Alzheimer's, various nanotheranostics approaches (nanoparticles, quantum dots, aptamers, dendrimers, etc), and their recent advancement in managing Alzheimer's. Also, various in-vitro and in-vivo diagnostic methodologies were discussed with respect to nanotheranostics.
Collapse
Affiliation(s)
- Vaibhav Rastogi
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | - Anjali Jain
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | - Prashant Kumar
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | - Pragya Yadav
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Mayur Porwal
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | | | - Phool Chandra
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| |
Collapse
|
184
|
Zlatar L, Timm T, Lochnit G, Bilyy R, Bäuerle T, Munoz-Becerra M, Schett G, Knopf J, Heichel J, Ali MJ, Schapher M, Paulsen F, Herrmann M. Neutrophil Extracellular Traps Drive Dacryolithiasis. Cells 2023; 12:1857. [PMID: 37508521 PMCID: PMC10377949 DOI: 10.3390/cells12141857] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Mucopeptide concretions, previously called dacryoliths, are macroscopic stones that commonly obstruct the lacrimal sac. The mechanism behind dacryolithiasis remains unclear; however, the involvement of various immune cells, including neutrophils, has been confirmed. These findings remain limited, and no information on neutrophil extracellular traps (NETs), essentially involved in the pathogenesis of other lithiases, is available yet. Here, we employ microcomputed tomography, magnetic resonance tomography, histochemistry, mass spectrometry, and enzyme activity analyses to investigate the role of neutrophils and NETs in dacryolithiasis. We classify mucopeptide concretions into three types, with respect to the quantity of cellular and acellular material, polysaccharides, and mucosubstances. We propose the role of neutrophils and NETs within the existing model of gradual formation and growth of mucopeptide concretions, with neutrophils contributing to the initial stages of dacryolithiasis, as they localized on the inner (older) parts of the tissue. As NETs localized on the outer (newer) parts of the tissue, we link their role to the late stages of dacryolithiasis, presumably maintaining the proinflammatory environment and preventing efficient clearance. An abundance of IgG on the surface indicates the involvement of the adaptive immune system later as well. These findings bring new perspectives on dacryolithiasis, in which the innate and adaptive immune system are essentially involved.
Collapse
Affiliation(s)
- Leticija Zlatar
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Thomas Timm
- Institute of Biochemistry, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Rostyslav Bilyy
- Department of Histology, Cytology, Embryology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Tobias Bäuerle
- Institute of Radiology, Preclinical Imaging Platform Erlangen (PIPE), Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Marco Munoz-Becerra
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Jens Heichel
- Department and Policlinic of Ophthalmology, Martin Luther University of Halle-Wittenberg, 06108 Halle, Germany
| | - Mohammad Javed Ali
- Govindram Seksaria Institute of Dacryology, L.V. Prasad Eye Institute, Road No 2, Banjara Hills, Hyderabad 500034, India
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Mirco Schapher
- Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus University, 90419 Nürnberg, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
185
|
Watt KJC, Meade RM, James TD, Mason JM. Development of a hydroxyflavone-labelled 4554W peptide probe for monitoring αS aggregation. Sci Rep 2023; 13:10968. [PMID: 37414785 PMCID: PMC10326036 DOI: 10.1038/s41598-023-37655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023] Open
Abstract
Parkinson's is the second most common neurodegenerative disease, with the number of individuals susceptible due to increase as a result of increasing life expectancy and a growing worldwide population. However, despite the number of individuals affected, all current treatments for PD are symptomatic-they alleviate symptoms, but do not slow disease progression. A major reason for the lack of disease-modifying treatments is that there are currently no methods to diagnose individuals during the earliest stages of the disease, nor are there any methods to monitor disease progression at a biochemical level. Herein, we have designed and evaluated a peptide-based probe to monitor αS aggregation, with a particular focus on the earliest stages of the aggregation process and the formation of oligomers. We have identified the peptide-probe K1 as being suitable for further development to be applied to number of applications including: inhibition of αS aggregation; as a probe to monitor αS aggregation, particularly at the earliest stages before Thioflavin-T is active; and a method to detect early-oligomers. With further development and in vivo validation, we anticipate this probe could be used for the early diagnosis of PD, a method to evaluate the effectiveness of potential therapeutics, and as a tool to help in the understanding of the onset and development of PD.
Collapse
Affiliation(s)
- Kathryn J C Watt
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Richard M Meade
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Jody M Mason
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
186
|
Nikiforova A, Sedov I. Molecular Design of Magnetic Resonance Imaging Agents Binding to Amyloid Deposits. Int J Mol Sci 2023; 24:11152. [PMID: 37446329 DOI: 10.3390/ijms241311152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The ability to detect and monitor amyloid deposition in the brain using non-invasive imaging techniques provides valuable insights into the early diagnosis and progression of Alzheimer's disease and helps to evaluate the efficacy of potential treatments. Magnetic resonance imaging (MRI) is a widely available technique offering high-spatial-resolution imaging. It can be used to visualize amyloid deposits with the help of amyloid-binding diagnostic agents injected into the body. In recent years, a number of amyloid-targeted MRI probes have been developed, but none of them has entered clinical practice. We review the advances in the field and deduce the requirements for the molecular structure and properties of a diagnostic probe candidate. These requirements make up the base for the rational design of MRI-active small molecules targeting amyloid deposits. Particular attention is paid to the novel cryo-EM structures of the fibril aggregates and their complexes, with known binders offering the possibility to use computational structure-based design methods. With continued research and development, MRI probes may revolutionize the diagnosis and treatment of neurodegenerative diseases, ultimately improving the lives of millions of people worldwide.
Collapse
Affiliation(s)
- Alena Nikiforova
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| |
Collapse
|
187
|
De Sio S, Waegele J, Bhatia T, Voigt B, Lilie H, Ott M. Inherent Adaptivity of Alzheimer Peptides to Crowded Environments. Macromol Biosci 2023; 23:e2200527. [PMID: 37066978 DOI: 10.1002/mabi.202200527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Amyloid β (Aβ) is the major constituent in senile plaques of Alzheimer's disease in which peptides initially undergo structural conversions to form elongated fibrils. The impact of crowding on the fibrillation pathways of Aβ40 and Aβ42 , the most common peptide isoforms are studied. PEG and Ficoll are used as model crowders to mimic a macromolecular enriched surrounding. The fibrillar growth is monitored with the help of ThT-fluorescence assays in order to extract two rates describing primary and secondary processes of nucleation and growth. Techniques as fluorescence correlation spectroscopy and analytical ultracentrifugation are used to discuss oligomeric states; fibril morphologies are investigated using negative-staining transmission electron microscopy. While excluded volume effects imposed by macromolecular crowding are expected to always increase rates of intermolecular interactions and structural conversion, a vast variety of effects are found depending on the peptide, the crowder, or ionic strength of the solution. While investigations of the obtained rates with respect to a reactant-occluded model are capable to display specific surface interactions with the crowder, the employment of crystallization-like models reveal the crowder-induced entropic gain withΔ Δ G fib crow = - 116 ± 21 k $\Delta \Delta G_{\text{fib}}^{\text{crow}}=-116\pm 21\; k$ J mol-1 per volume fraction of the crowder.
Collapse
Affiliation(s)
- Silvia De Sio
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| | - Jana Waegele
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| | - Twinkle Bhatia
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| | - Bruno Voigt
- Department of Physics, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Strasse 7, Halle, 06120, Saxony-Anhalt, Germany
| | - Hauke Lilie
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| | - Maria Ott
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| |
Collapse
|
188
|
Holden MR, Krzesinski BJ, Weismiller HA, Shady JR, Margittai M. MAP2 caps tau fibrils and inhibits aggregation. J Biol Chem 2023; 299:104891. [PMID: 37286038 PMCID: PMC10404690 DOI: 10.1016/j.jbc.2023.104891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/13/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Fibrils of the microtubule-associated protein tau are intimately linked to the pathology of Alzheimer's disease (AD) and related neurodegenerative disorders. A current paradigm for pathology spreading in the human brain is that short tau fibrils transfer between neurons and then recruit naive tau monomers onto their tips, perpetuating the fibrillar conformation with high fidelity and speed. Although it is known that the propagation could be modulated in a cell-specific manner and thereby contribute to phenotypic diversity, there is still limited understanding of how select molecules are involved in this process. MAP2 is a neuronal protein that shares significant sequence homology with the repeat-bearing amyloid core region of tau. There is discrepancy about MAP2's involvement in pathology and its relationship with tau fibrillization. Here, we employed the entire repeat regions of 3R and 4R MAP2, to investigate their modulatory role in tau fibrillization. We find that both proteins block the spontaneous and seeded aggregation of 4R tau, with 4R MAP2 being slightly more potent. The inhibition of tau seeding is observed in vitro, in HEK293 cells, and in AD brain extracts, underscoring its broader scope. MAP2 monomers specifically bind to the end of tau fibrils, preventing recruitment of further tau and MAP2 monomers onto the fibril tip. The findings uncover a new function for MAP2 as a tau fibril cap that could play a significant role in modulating tau propagation in disease and may hold promise as a potential intrinsic protein inhibitor.
Collapse
Affiliation(s)
- Michael R Holden
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Brad J Krzesinski
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Hilary A Weismiller
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Justin R Shady
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA.
| |
Collapse
|
189
|
Sie YY, Chen LC, Li CJ, Yuan YH, Hsiao SH, Lee MH, Wang CC, Hou WC. Inhibition of Acetylcholinesterase and Amyloid-β Aggregation by Piceatannol and Analogs: Assessing In Vitro and In Vivo Impact on a Murine Model of Scopolamine-Induced Memory Impairment. Antioxidants (Basel) 2023; 12:1362. [PMID: 37507902 PMCID: PMC10376691 DOI: 10.3390/antiox12071362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, no drug is effective in delaying the cognitive impairment of Alzheimer's disease, which ranks as one of the top 10 causes of death worldwide. Hydroxylated stilbenes are active compounds that exist in fruit and herbal plants. Piceatannol (PIC) and gnetol (GNT), which have one extra hydroxyl group in comparison to resveratrol (RSV), and rhapontigenin (RHA) and isorhapontigenin (isoRHA), which were metabolized from PIC in vivo and contain the same number of hydroxyl groups as RSV, were evaluated for their effects on Alzheimer's disease-associated factors in vitro and in animal experiments. Among the five hydroxylated stilbenes, PIC was shown to be the most active in DPPH radical scavenging and in inhibitory activities against acetylcholinesterase and amyloid-β peptide aggregations, with concentrations for half-maximal inhibitions of 40.2, 271.74, and 0.48 μM. The different interactions of the five hydroxylated stilbenes with acetylcholinesterase or amyloid-β were obtained by molecular docking. The scopolamine-induced ICR mice fed with PIC (50 mg/kg) showed an improved learning behavior in the passive avoidance tests and had significant differences (p < 0.05) compared with those in the control group. The RHA and isoRHA at 10 μM were proven to stimulate neurite outgrowths in the SH-SY5Y cell models. These results reveal that nutraceuticals or functional foods containing PIC have the potential for use in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yi-Yan Sie
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Liang-Chieh Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Cai-Jhen Li
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Hsiang Yuan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Sheng-Hung Hsiao
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Mei-Hsien Lee
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Chiung Wang
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Wen-Chi Hou
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
190
|
Liang Y, Song J, Wang J, Liu H, Wu X, He B, Zhang X, Wang J. Investigating the Effects of NaCl on the Formation of AFs from Gluten in Cooked Wheat Noodles. Int J Mol Sci 2023; 24:9907. [PMID: 37373055 DOI: 10.3390/ijms24129907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
To clarify the effect of NaCl concentration (0-2.0%) on the formation of amyloid fibrils (AFs) in cooked wheat noodles, the morphology, surface hydrophobicity, secondary structure, molecular weight distribution, microstructure, and crystal structure of AFs were investigated in this paper. Fluorescence data and Congo red stain images confirmed the presence of AFs and revealed that the 0.4% NaCl concentration promoted the production of AFs. The surface hydrophobicity results showed that the hydrophobicity of AFs increased significantly from 3942.05 to 6117.57 when the salt concentration increased from 0 to 0.4%, indicating that hydrophobic interactions were critical for the formation of AFs. Size exclusion chromatography combined with gel electrophoresis plots showed that the effect of NaCl on the molecular weight of AFs was small and mainly distributed in the range of 5-7.1 KDa (equivalent to 40-56 amino acid residues). X-ray diffraction and AFM images showed that the 0.4% NaCl concentration promoted the formation and longitudinal growth of AFs, while higher NaCl concentrations inhibited the formation and expansion of AFs. This study contributes to the understanding of the mechanism of AF formation in wheat flour processing and provides new insight into wheat gluten aggregation behavior.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiayang Song
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiayi Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xingquan Wu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xia Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
191
|
Kumar M, I Ivanova M, Ramamoorthy A. Ganglioside GM1 produces stable, short, and cytotoxic Aβ 40 protofibrils. Chem Commun (Camb) 2023; 59:7040-7043. [PMID: 37204424 PMCID: PMC10266803 DOI: 10.1039/d3cc02186f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Monosialoganglioside GM1-bound amyloid β-peptides have been found in patients' brains exhibiting early pathological changes of Alzheimer's disease. Herein, we report the ability of non-micellar GM1 to modulate Aβ40 aggregation resulting in the formation of stable, short, rod-like, and cytotoxic Aβ40 protofibrils with the ability to potentiate both Aβ40 and Aβ42 aggregation.
Collapse
Affiliation(s)
- Manjeet Kumar
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
192
|
Kim A, Martinez-Valbuena I, Li J, Lang AE, Kovacs GG. Disease-Specific α-Synuclein Seeding in Lewy Body Disease and Multiple System Atrophy Are Preserved in Formaldehyde-Fixed Paraffin-Embedded Human Brain. Biomolecules 2023; 13:936. [PMID: 37371515 DOI: 10.3390/biom13060936] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Recent studies have been able to detect α-synuclein (αSyn) seeding in formaldehyde-fixed paraffin-embedded (FFPE) tissues from patients with synucleinopathies using seed amplification assays (SAAs), but with relatively low sensitivity due to limited protein extraction efficiency. With the aim of introducing an alternative option to frozen tissues, we developed a streamlined protein extraction protocol for evaluating disease-specific seeding in FFPE human brain. We evaluated the protein extraction efficiency of different tissue preparations, deparaffinizations, and protein extraction buffers using formaldehyde-fixed and FFPE tissue of a single Lewy body disease (LBD) subject. Alternatively, we incorporated heat-induced antigen retrieval and dissociation using a commercially available kit. Our novel protein extraction protocol has been optimized to work with 10 sections of 4.5-µm-thickness or 2-mm-diameter micro-punch of FFPE tissue that can be used to seed SAAs. We demonstrated that extracted proteins from FFPE still preserve seeding potential and further show disease-specific seeding in LBD and multiple system atrophy. To the best of our knowledge, our study is the first to recapitulate disease-specific αSyn seeding behaviour in FFPE human brain. Our findings open new perspectives in re-evaluating archived human brain tissue, extending the disease-specific seeding assays to larger cohorts to facilitate molecular subtyping of synucleinopathies.
Collapse
Affiliation(s)
- Ain Kim
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S6, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S6, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
193
|
MacKeigan TP, Morgan ML, Stys PK. Quantitation of Tissue Amyloid via Fluorescence Spectroscopy Using Controlled Concentrations of Thioflavin-S. Molecules 2023; 28:molecules28114483. [PMID: 37298959 DOI: 10.3390/molecules28114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Amyloids are misfolded proteins that aggregate into fibrillar structures, the accumulation of which is associated with the pathogenesis of many neurodegenerative diseases, such as Alzheimer's disease (AD). Early, sensitive detection of these misfolded aggregates is of great interest to the field, as amyloid deposition begins well before the presentation of clinical symptoms. Thioflavin-S (ThS) is a fluorescent probe commonly used to detect amyloid pathology. Protocols for ThS staining vary, but they often use high staining concentrations followed by differentiation, which causes varying levels of non-specific staining and potentially leaves more subtle amyloid deposition unidentified. In this study, we developed an optimized ThS staining protocol for the sensitive detection of β-amyloids in the widely used 5xFAD Alzheimer's mouse model. Controlled dye concentrations together with fluorescence spectroscopy and advanced analytical methods enabled not only the visualization of plaque pathology, but also the detection of subtle and widespread protein misfolding throughout the 5xFAD white matter and greater parenchyma. Together, these findings demonstrate the efficacy of a controlled ThS staining protocol and highlight the potential use of ThS for the detection of protein misfolding that precedes clinical manifestation of disease.
Collapse
Affiliation(s)
- Tatiana P MacKeigan
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Megan L Morgan
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
194
|
Yang X, Guan C, Ma C, Xu H. Nuclei-induced formation of amyloid fibrils in whey protein: Effects of enzyme hydrolysis on the ability of nuclei to induce fibril formation. Food Chem 2023; 410:135433. [PMID: 36640658 DOI: 10.1016/j.foodchem.2023.135433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Homogeneous and secondary nuclei (HN and SN) are aggregates formed at different stages of whey protein isolate (WPI) self-assembly. More fibrils can form when HN/SN are added as nuclei than when WPI self-assembles. We evaluated the effect of hydrolysis treatment on fibril-induction ability of nuclei derived from WPI, and investigated the relationship between induction ability and nuclear structure. Hydrolyzed SN-induced 9.47% more WPI fibrils than unhydrolyzed SN-induced. Infrared spectroscopy, X-ray diffraction analysis, and atomic force microscopy were used to examine the structural changes in hydrolyzed nuclei and the fibrils induced using these nuclei. We concluded that hydrolysis treatment led to a looser inter-β-sheet packaging in nuclei by increasing the inter-β-sheet distance. The inter-β-sheet distance of cross-β structure was a key determinant of fibril-induction ability of nuclei, which could be enhanced when inter-β-sheet structure was moderately loose. This research may provide a theoretical basis for the mechanism of nuclei-induced WPI fibrillation.
Collapse
Affiliation(s)
- Xiaotong Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Chen Guan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Caihong Ma
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Honghua Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
195
|
Chen Y, Liu Q, Mi S, Yuan S, Yu H, Guo Y, Cheng Y, Qian H, Xie Y, Yao W. The impact of modified polystyrene on lysozyme fibrillation studied by surface-enhanced Raman spectroscopy (SERS). Int J Biol Macromol 2023:124937. [PMID: 37217050 DOI: 10.1016/j.ijbiomac.2023.124937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Nanoplastics could modulate the fibrillation of amyloid proteins. However, many chemical functional groups are adsorbed to change the interfacial chemistry of nanoplastics in the real world. Herein, this study aimed to investigate the effects of polystyrene (PS), carboxyl modified PS (PS-COOH), and amino modified PS (PS-NH2) on the fibrillation of hen egg-white lysozyme (HEWL). Due to the differences in the interfacial chemistry, concentration was considered an essential factor. PS-NH2 (10 μg/mL) could promote the fibrillation of HEWL similar to PS (50 μg/mL) and PS-COOH (50 μg/mL). Moreover, promoting the primary nucleation step of amyloid fibril formation was the primary reason. The differences in spatial conformation of HEWL were characterized by Fourier transform-infrared spectroscopy and surface enhanced Raman spectroscopy (SERS). Strikingly, a particular signal of SERS of HEWL incubated with PS-NH2 at 1610 cm-1 was found due to the interaction between amino group of PS-NH2 and tryptophan (or tyrosine) of HEWL. Therefore, a new perspective was provided to understand the regulation of interfacial chemistry of nanoplastics on the fibrillation of amyloid proteins. Additionally, this study suggested that SERS could be a powerful method to investigate the interactions between proteins and nanoparticles.
Collapse
Affiliation(s)
- Yulun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Qingrun Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Shuna Mi
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
196
|
Olari LR, Bauer R, Gil Miró M, Vogel V, Cortez Rayas L, Groß R, Gilg A, Klevesath R, Rodríguez Alfonso AA, Kaygisiz K, Rupp U, Pant P, Mieres-Pérez J, Steppe L, Schäffer R, Rauch-Wirth L, Conzelmann C, Müller JA, Zech F, Gerbl F, Bleher J, Preising N, Ständker L, Wiese S, Thal DR, Haupt C, Jonker HRA, Wagner M, Sanchez-Garcia E, Weil T, Stenger S, Fändrich M, von Einem J, Read C, Walther P, Kirchhoff F, Spellerberg B, Münch J. The C-terminal 32-mer fragment of hemoglobin alpha is an amyloidogenic peptide with antimicrobial properties. Cell Mol Life Sci 2023; 80:151. [PMID: 37198527 DOI: 10.1007/s00018-023-04795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides. This approach led to the identification of a C-terminal 32-mer fragment of alpha-hemoglobin, termed HBA(111-142). The non-fibrillar peptide has membranolytic activity against various bacterial species, while the HBA(111-142) fibrils aggregated bacteria to promote their phagocytotic clearance. Further, HBA(111-142) fibrils selectively inhibited measles and herpes viruses (HSV-1, HSV-2, HCMV), but not SARS-CoV-2, ZIKV and IAV. HBA(111-142) is released from its precursor by ubiquitous aspartic proteases under acidic conditions characteristic at sites of infection and inflammation. Thus, HBA(111-142) is an amyloidogenic AMP that may specifically be generated from a highly abundant precursor during bacterial or viral infection and may play an important role in innate antimicrobial immune responses.
Collapse
Affiliation(s)
- Lia-Raluca Olari
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, 89081, Ulm, Germany
| | - Marta Gil Miró
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Verena Vogel
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, 89081, Ulm, Germany
| | - Laura Cortez Rayas
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Andrea Gilg
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Raphael Klevesath
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, 89081, Ulm, Germany
| | - Armando A Rodríguez Alfonso
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Ulm University Medical Center, 89081, Ulm, Germany
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Kübra Kaygisiz
- Max-Planck-Institute for Polymer Research Mainz, 55128, Mainz, Germany
| | - Ulrich Rupp
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Pradeep Pant
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Joel Mieres-Pérez
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Lena Steppe
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Ramona Schäffer
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Lena Rauch-Wirth
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Janis A Müller
- Institute of Virology, Philipps University Marburg, 35043, Marburg, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Fabian Gerbl
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jana Bleher
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Nico Preising
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Ulm University Medical Center, 89081, Ulm, Germany
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Ulm University Medical Center, 89081, Ulm, Germany
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Dietmar R Thal
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, UZ-Leuven, 3000, Leuven, Belgium
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Hendrik R A Jonker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt am Main, Germany
| | - Manfred Wagner
- Max-Planck-Institute for Polymer Research Mainz, 55128, Mainz, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Tanja Weil
- Max-Planck-Institute for Polymer Research Mainz, 55128, Mainz, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Clarissa Read
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
197
|
Shetty M, Malhotra S. Novel Tracers for the Imaging of Cardiac Amyloidosis. J Nucl Med Technol 2023:jnmt.123.265568. [PMID: 37192820 DOI: 10.2967/jnmt.123.265568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
Radionuclide scintigraphy with technetium-labeled bisphosphonates has brought a paradigm shift in diagnosing cardiac amyloidosis (CA), with transthyretin CA now being effectively diagnosed without the need for tissue biopsy. Yet, deficits remain, such as methods for the noninvasive diagnosis of light-chain CA, means to detect CA early, prognostication, monitoring, and therapy response assessment. To address these issues, there has been growing interest in the development and implementation of amyloid-specific radiotracers for PET. The aim of this review is to educate the reader on these novel imaging tracers. Though still investigational, these novel tracers-given their many advantages-are clearly the future of nuclear imaging in CA.
Collapse
Affiliation(s)
- Mrinali Shetty
- Columbia University Irving Medical Center, New York, New York; and
| | | |
Collapse
|
198
|
Lee S, Dagar A, Cho I, Kim K, Park IW, Yoon S, Cha M, Shin J, Kim HY, Kim I, Kim Y. 4-Acyl-3,4-dihydropyrrolo[1,2- a]pyrazine Derivative Rescued the Hippocampal-Dependent Cognitive Decline of 5XFAD Transgenic Mice by Dissociating Soluble and Insoluble Aβ Aggregates. ACS Chem Neurosci 2023. [PMID: 37171100 DOI: 10.1021/acschemneuro.2c00788] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Cerebral amyloid-β (Aβ) deposition is a representative hallmark of Alzheimer's disease (AD). Development of Aβ-clearing small molecules could be an advantageous therapeutic strategy for Aβ clearance considering the advantages in terms of side effects, cost-effectiveness, stability, and oral bioavailability. Here, we report an Aβ-dissociating small molecule, YIAD-0121, a derivative of 4-acyl-3,4-dihydropyrrolo[1,2-a]pyrazine. Through a series of anti-Aβ screening assays, YIAD-0121 was identified to inhibit Aβ aggregation and dissociate preformed Aβ fibrils in vitro. Furthermore, the administration of YIAD-0121 in 5XFAD transgenic AD mice inhibited the increase of cerebral Aβ aggregation and progression of hippocampus-dependent cognitive decline, with ameliorated neuroinflammation.
Collapse
Affiliation(s)
- Songmin Lee
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Anuradha Dagar
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Illhwan Cho
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Kyeonghwan Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - In Wook Park
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Soljee Yoon
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Minhae Cha
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Jisu Shin
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Ikyon Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
199
|
Wang C, Jiang W, Tan D, Huang L, Li J, Qiao Q, Yadav P, Liu X, Xu Z. Monitoring amyloid aggregation via a twisted intramolecular charge transfer (TICT)-based fluorescent sensor array. Chem Sci 2023; 14:4786-4795. [PMID: 37181777 PMCID: PMC10171079 DOI: 10.1039/d2sc06710b] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Imaging amyloid-beta (Aβ) aggregation is critical for understanding the pathology and aiding the pre-symptomatic intervention of Alzheimer's disease (AD). Amyloid aggregation consists of multiple phases with increasing viscosities and demands probes with broad dynamic ranges and gradient sensitivities for continuous monitoring. Yet, existing probes designed based on the twisted intramolecular charge transfer (TICT) mechanism mainly focused on donor engineering, limiting the sensitivities and/or dynamic ranges of these fluorophores to a narrow window. Herein, using quantum chemical calculations, we investigated multiple factors affecting the TICT process of fluorophores. It includes the conjugation length, the net charge of the fluorophore scaffold, the donor strength, and the geometric pre-twisting. We have established an integrative framework for tuning TICT tendencies. Based on this framework, a platter of hemicyanines with varied sensitivities and dynamic ranges is synthesized, forming a sensor array and enabling the observation of various stages of Aβ aggregations. This approach will significantly facilitate the development of TICT-based fluorescent probes with tailored environmental sensitivities for numerous applications.
Collapse
Affiliation(s)
- Chao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- Fluorescence Research Group, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Wenchao Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Davin Tan
- Fluorescence Research Group, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Lu Huang
- Fluorescence Research Group, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
- Ocean College, Minjiang University Fuzhou 350108 China
| | - Jin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Priya Yadav
- Fluorescence Research Group, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
200
|
Li X, Zhou Y, Lu Z, Shan R, Sun D, Li J, Li P. Switchable enzyme mimics based on self-assembled peptides for polyethylene terephthalate degradation. J Colloid Interface Sci 2023; 646:198-208. [PMID: 37196493 DOI: 10.1016/j.jcis.2023.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Polyethylene terephthalate (PET), the most abundant polyester plastic, has become a global concern due to its refractoriness and accumulation in the environment. In this study, inspired by the structure and catalytic mechanism of the native enzyme, peptides, based on supramolecular self-assembly, were developed to construct enzyme mimics for PET degradation, which were achieved by combining the enzymatic active sites of serine, histidine and aspartate with the self-assembling polypeptide MAX. The two designed peptides with differences in hydrophobic residues at two positions exhibited a conformational transition from random coil to β-sheet by changing the pH and temperature, and the catalytic activity followed the self-assembly "switch" with the fibrils formed β-sheet, which could catalyze PET efficiently. Although the two peptides possessed same catalytic site, they showed different catalytic activities. Analysis of the structure - activity relationship of the enzyme mimics suggested that the high catalytic activity of the enzyme mimics for PET could be attributed to the formation of stable fibers of peptides and ordered arrangement of molecular conformation; in addition, hydrogen bonding and hydrophobic interactions, as the major forces, promoted effects of enzyme mimics on PET degradation. Enzyme mimics with PET-hydrolytic activity are a promising material for degrading PET and reducing environmental pollution.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Yaoling Zhou
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Zirui Lu
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Ruida Shan
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China.
| |
Collapse
|