151
|
Giang TT, Lunprom S, Liao Q, Reungsang A, Salakkam A. Improvement of hydrogen production from Chlorella sp. biomass by acid-thermal pretreatment. PeerJ 2019; 7:e6637. [PMID: 30923655 PMCID: PMC6431539 DOI: 10.7717/peerj.6637] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/18/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Owing to the high growth rate, high protein and carbohydrate contents, and an ability to grow autotrophically, microalgal biomass is regarded as a promising feedstock for fermentative hydrogen production. However, the rigid cell wall of microalgae impedes efficient hydrolysis of the biomass, resulting in low availability of assimilable nutrients and, consequently, low hydrogen production. Therefore, pretreatment of the biomass is necessary in order to achieve higher hydrogen yield (HY). In the present study, acid-thermal pretreatment of Chlorella sp. biomass was investigated. Conditions for the pretreatment, as well as those for hydrogen production from the pretreated biomass, were optimized. Acid pretreatment was also conducted for comparison. RESULTS Under optimum conditions (0.75% (v/v) H2SO4, 160 °C, 30 min, and 40 g-biomass/L), acid-thermal pretreatment yielded 151.8 mg-reducing-sugar/g-biomass. This was around 15 times that obtained from the acid pretreatment under optimum conditions (4% (v/v) H2SO4, 150 min, and 40 g-biomass/L). Fermentation of the acid-thermal pretreated biomass gave 1,079 mL-H2/L, with a HY of 54.0 mL-H2/g-volatile-solids (VS), while only 394 mL/L and 26.3 mL-H2/g-VS were obtained from the acid-pretreated biomass. CONCLUSIONS Acid-thermal pretreatment was effective in solubilizing the biomass of Chlorella sp. Heat exerted synergistic effect with acid to release nutrients from the biomass. Satisfactory HY obtained with the acid-thermal pretreated biomass demonstrates that this pretreatment method was effective, and that it should be implemented to achieve high HY.
Collapse
Affiliation(s)
- Tran T. Giang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
| | - Siriporn Lunprom
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, Thailand
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, China
- Institute of Engineering Thermophysics, Chongqing University, Chongqing, China
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, Thailand
| | - Apilak Salakkam
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
152
|
Gonçalves CF, Menegol T, Rech R. Biochemical composition of green microalgae Pseudoneochloris marina grown under different temperature and light conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
153
|
Cheng DL, Ngo HH, Guo WS, Chang SW, Nguyen DD, Kumar SM. Microalgae biomass from swine wastewater and its conversion to bioenergy. BIORESOURCE TECHNOLOGY 2019; 275:109-122. [PMID: 30579101 DOI: 10.1016/j.biortech.2018.12.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/02/2018] [Accepted: 12/06/2018] [Indexed: 05/21/2023]
Abstract
Ever-increasing swine wastewater (SW) has become a serious environmental concern. High levels of nutrients and toxic contaminants in SW significantly impact on the ecosystem and public health. On the other hand, swine wastewater is considered as valuable water and nutrient source for microalgae cultivation. The potential for converting the nutrients from SW into valuable biomass and then generating bioenergy from it has drawn increasing attention. For this reason, this review comprehensively discussed the biomass production, SW treatment efficiencies, and bioenergy generation potentials through cultivating microalgae in SW. Microalgae species grow well in SW with large amounts of biomass being produced, despite the impact of various parameters (e.g., nutrients and toxicants levels, cultivation conditions, and bacteria in SW). Pollutants in SW can effectively be removed by harvesting microalgae from SW, and the harvested microalgae biomass elicits high potential for conversion to valuable bioenergy.
Collapse
Affiliation(s)
- D L Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - H H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| | - W S Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - S W Chang
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - D D Nguyen
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - S M Kumar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036, India
| |
Collapse
|
154
|
Current Bottlenecks and Challenges of the Microalgal Biorefinery. Trends Biotechnol 2019; 37:242-252. [DOI: 10.1016/j.tibtech.2018.09.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 01/02/2023]
|
155
|
Gissibl A, Care A, Sun A, Hobba G, Nevalainen H, Sunna A. Development of screening strategies for the identification of paramylon-degrading enzymes. J Ind Microbiol Biotechnol 2019; 46:769-781. [PMID: 30806871 DOI: 10.1007/s10295-019-02157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/17/2019] [Indexed: 10/27/2022]
Abstract
Enzymatic degradation of the β-1,3-glucan paramylon could enable the production of bioactive compounds for healthcare and renewable substrates for biofuels. However, few enzymes have been found to degrade paramylon efficiently and their enzymatic mechanisms remain poorly understood. Thus, the aim of this work was to find paramylon-degrading enzymes and ways to facilitate their identification. Towards this end, a Euglena gracilis-derived cDNA expression library was generated and introduced into Escherichia coli. A flow cytometry-based screening assay was developed to identify E. gracilis enzymes that could hydrolyse the fluorogenic substrate fluorescein di-β-D-glucopyranoside in combination with time-saving auto-induction medium. In parallel, four amino acid sequences of potential E. gracilis β-1,3-glucanases were identified from proteomic data. The open reading frame encoding one of these candidate sequences (light_m.20624) was heterologously expressed in E. coli. Finally, a Congo Red dye plate assay was developed for the screening of enzyme preparations potentially able to degrade paramylon. This assay was validated with enzymes assumed to have paramylon-degrading activity and then used to identify four commercial preparations with previously unknown paramylon degradation ability.
Collapse
Affiliation(s)
- Alexander Gissibl
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, 2109, Australia
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Angela Sun
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, 2109, Australia
| | - Graham Hobba
- Agritechnology Pty Ltd, 36 Underwood Road, Borenore, NSW, 2800, Australia
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, 2109, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, 2109, Australia.
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
156
|
Behera B, Acharya A, Gargey IA, Aly N, P B. Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
157
|
Braga VDS, Moreira JB, Costa JAV, Morais MGD. Enhancement of the carbohydrate content in Spirulina by applying CO2, thermoelectric fly ashes and reduced nitrogen supply. Int J Biol Macromol 2019; 123:1241-1247. [DOI: 10.1016/j.ijbiomac.2018.12.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 10/27/2022]
|
158
|
Amoah J, Hasunuma T, Ogino C, Kondo A. 5-Hydroxymethylfurfural production from salt-induced photoautotrophically cultivated Chlorella sorokiniana. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
159
|
Optimal cultivation towards enhanced biomass and floridean starch production by Porphyridium marinum. Int J Biol Macromol 2019; 129:152-161. [PMID: 30711564 DOI: 10.1016/j.ijbiomac.2019.01.207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 12/20/2018] [Accepted: 01/30/2019] [Indexed: 11/24/2022]
Abstract
Optimal conditions for maximal biomass and starch production by the marine red microalgae Porphyridium marinum were investigated. Box-Behnken Design was used to model the effect of light intensity, NaNO3 concentration and salinity on the growth of microalgae but also on their starch and protein contents. These three factors increased biomass production by 13.6% in optimized conditions. A maximum starch production (140.21 μg·mL-1), 30.6% higher than that of the control, was attained at a light intensity of 100 μmol photons·m-2·s-1, a NaNO3 concentration of 1 g·L-1 and a NaCl concentration of 20 g·L-1. FT-IR spectroscopy was used to estimate the biochemical composition (carbohydrate accumulation) of P. marinum and revealed significant changes (P < 0.05) depending on culture conditions. FT-IR analysis highlighted also that the culture conditions leading to highest starch production by P. marinum corresponded to lowest sulfated polysaccharide and protein contents.
Collapse
|
160
|
Abomohra AEF, Elshobary M. Biodiesel, Bioethanol, and Biobutanol Production from Microalgae. MICROALGAE BIOTECHNOLOGY FOR DEVELOPMENT OF BIOFUEL AND WASTEWATER TREATMENT 2019:293-321. [DOI: 10.1007/978-981-13-2264-8_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
161
|
Sabri LS, Sultan AJ, Al-Dahhan MH. Mapping of microalgae culturing via radioactive particle tracking. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
162
|
Naresh Kumar A, Min B, Venkata Mohan S. Defatted algal biomass as feedstock for short chain carboxylic acids and biohydrogen production in the biorefinery format. BIORESOURCE TECHNOLOGY 2018; 269:408-416. [PMID: 30212764 DOI: 10.1016/j.biortech.2018.08.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
The objective of the study was to evaluate the potential application of defatted algal biomass (DAB) residue as a resource for biobased product synthesis in the biorefinery framework. Acid-catalyzed pretreatment of DAB residue resulted in higher reducing sugars (RS) solubilization (0.26 g RS/g DAB) than corresponding base method (0.19 g RS/g DAB). Subsequently, resulting RS were acidogenically fermented for the production of Bio-H2 and short chain carboxylic acids (SCA)/volatile fatty acids (VFA) at varying redox conditions (pH: 6, 7 and 10). Biosystem with pH-6 resulted in higher SCA (0.54 g SCA/g RS) and Bio-H2 production (0.83 l) followed by pH-10 (0.43 g SCA/g RS, 0.71 l) and pH-7 (0.27 g SCA/g RS, 0.48 l). Higher SCA production in pH-6 system resulted in maximum acidification (23%). Algal biomass majorly derived from CO2 and its residues after lipids extraction accounted as major feedstock for acidogenic product synthesis. Evaluation of these studies using DAB residues offers sustainability to algal refineries on its entirety use.
Collapse
Affiliation(s)
- A Naresh Kumar
- Bioengineering and Environmental Sciences Lab, CEEFF CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, CEEFF CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), India; Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
163
|
|
164
|
Seon G, Joo HW, Kim YJ, Park J, Chang YK. Hydrolysis of Lipid-Extracted Chlorella vulgaris by Simultaneous Use of Solid and Liquid Acids. Biotechnol Prog 2018; 35:e2729. [PMID: 30299000 DOI: 10.1002/btpr.2729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/16/2018] [Accepted: 09/28/2018] [Indexed: 11/05/2022]
Abstract
Microalgal biomass was hydrolyzed using a solid acid catalyst with the aid of liquid acid. The use of solid acid as the main catalyst instead of liquid acid was to omit subsequent neutralization and/or desalination steps, which are commonly required in using the resulting hydrolysates for microbial fermentation. The hydrolysis of 10 g/L of lipid-extracted Chlorella vulgaris containing 12.2% carbohydrates using 7.6 g/L Amberlyst 36 and 0.0075 N nitric acid at 150°C resulted in 1.08 g/L of mono-sugars with a yield of 88.5%. For hydrolysis of higher concentrations of the biomass over 10 g/L, the amount of Amberlyst 36 needed to be increased in proportion to the biomass concentration to maintain similar levels of hydrolysis performance. Increasing the solid acid concentration protected the surface of the solid acid from being severely covered by cell debris during the reaction. A hydrolysate of lipid-extracted C. vulgaris 50 g/L was used, with no post-treatment of desalination, for the cultivation of Klebsiella oxytoca producing 2,3-butanediol. Cell growth in the hydrolysate was found to be almost the same as in the conventional medium with the same monosaccharide composition, confirming its fermentation compatibility. It was noticeable that the yield of 2,3-butanediol with the hydrolysate was observed to be 2.6 times higher than that with the conventional medium. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2729, 2019.
Collapse
Affiliation(s)
- Gyeongho Seon
- Dept. of Chemical & Biomolecular Engineering, Daejeon, 34141, Republic of Korea
| | - Hyun Woo Joo
- Dept. of Chemical & Biomolecular Engineering, Daejeon, 34141, Republic of Korea
| | - Yong Jae Kim
- Dept. of Chemical & Biomolecular Engineering, Daejeon, 34141, Republic of Korea
| | - Juyi Park
- Advanced Biomass R&D Center, Daejeon, 34141, Republic of Korea
| | - Yong Keun Chang
- Dept. of Chemical & Biomolecular Engineering, Daejeon, 34141, Republic of Korea.,Advanced Biomass R&D Center, Daejeon, 34141, Republic of Korea
| |
Collapse
|
165
|
|
166
|
Rempel A, Machado T, Treichel H, Colla E, Margarites AC, Colla LM. Saccharification of Spirulina platensis biomass using free and immobilized amylolytic enzymes. BIORESOURCE TECHNOLOGY 2018; 263:163-171. [PMID: 29738979 DOI: 10.1016/j.biortech.2018.04.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
We aimed to use physical methods of microalgal biomass rupture to study saccharification strategies using free and immobilized amylolytic enzymes. The biomass of Spirulina platensis, which consists of 50-60% carbohydrates, was exposed to physical cell rupture treatments, with better results obtained using freeze/thaw cycles following by gelatinization. In saccharification tests, it was possible to hydrolyze Spirulina biomass with hydrolysis efficiencies above 99% and 83%, respectively, using 1% (v/v) of free enzymes or 1% (m/v) of amylolytic enzymes immobilized together. The use of free and immobilized enzymes yielded high levels of conversion of polysaccharides to simple sugars in Spirulina biomass, showing that these processes are promising for the advancement of bioethanol production using microalgal biomass.
Collapse
Affiliation(s)
- Alan Rempel
- Graduation in Civil and Environmental Engineering, University of Passo Fundo (UPF), Campus I, km 171, BR 285, P.O. Box 611, 99001-970 Passo Fundo, Rio Grande do Sul, Brazil
| | - Tainara Machado
- Food Engineering Course, University of Passo Fundo (UPF), Campus I, km 171, BR 285, P.O. Box 611, 99001-970 Passo Fundo, Rio Grande do Sul, Brazil
| | - Helen Treichel
- Graduation in Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - Eliane Colla
- Graduation in Food Technology, Federal Technological University of Paraná (UTFPR), Av. Brasil, 4232, 85884-000, P.O. Box 271, Medianeira, Paraná, Brazil
| | - Ana Cláudia Margarites
- Graduation in Civil and Environmental Engineering, University of Passo Fundo (UPF), Campus I, km 171, BR 285, P.O. Box 611, 99001-970 Passo Fundo, Rio Grande do Sul, Brazil
| | - Luciane Maria Colla
- Graduation in Civil and Environmental Engineering, University of Passo Fundo (UPF), Campus I, km 171, BR 285, P.O. Box 611, 99001-970 Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
167
|
Ibrahim MF, Kim SW, Abd-Aziz S. Advanced bioprocessing strategies for biobutanol production from biomass. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2018; 91:1192-1204. [DOI: 10.1016/j.rser.2018.04.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
168
|
|
169
|
Cheng HH, Syu JC, Tien SY, Whang LM. Biological acetate production from carbon dioxide by Acetobacterium woodii and Clostridium ljungdahlii: The effect of cell immobilization. BIORESOURCE TECHNOLOGY 2018; 262:229-234. [PMID: 29709841 DOI: 10.1016/j.biortech.2018.04.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the acetate production from gas mixture of hydrogen (H2) and carbon dioxide (CO2) in the ratio of 7:3 using two acetogens: Acetobacterium woodii and Clostridium ljungdahlii. Batch result shows A. woodii performed two-phase degradation with the presence of glucose that lactate was produced from glucose and was reutilized for the production of butyrate and few acetate, while only acetate was detected when providing gas mixture. C. ljungdahlii produced butyrate and ethanol along with acetate when glucose was introduced, while only ethanol and acetate were found by feeding gas mixture. The acetate-to-ethanol (A/E) ratio can be enhanced by cell immobilization, while GAC immobilization produced only acetate and the production rate reached 0.072 mmol/d under fed-batch operation. Acetate production rate increased from 18 to 28 mmol/L/d with GAC immobilization when gas flowrate increased from 100 to 300 mL/min in anaerobic fluidized membrane bioreactor (AFMBR), and a highest A/E ratio of 30 implies the possible application of acetate recovery from H2 and CO2.
Collapse
Affiliation(s)
- Hai-Hsuan Cheng
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Jyun-Cyuan Syu
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Shih-Yuan Tien
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Liang-Ming Whang
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan; Sustainable Environment Research Center (SERC), National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy (RCETS), National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan.
| |
Collapse
|
170
|
Pavón-Suriano SG, Ortega-Clemente LA, Curiel-Ramírez S, Jiménez-García MI, Pérez-Legaspi IA, Robledo-Narváez PN. Evaluation of colour temperatures in the cultivation of Dunaliella salina and Nannochloropsis oculata in the production of lipids and carbohydrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21332-21340. [PMID: 28741207 DOI: 10.1007/s11356-017-9764-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
The production of biofuels from microalgae is a promising and sustainable alternative. Its production is determined by the content of lipids and carbohydrates, which is different for each microalgae species and is affected by environmental factors, being lighting one of the principal determining their biochemical composition. The colour temperature (electromagnetic radiation and light spectrum) is a determining factor for the production of lipids and carbohydrates in microalgae. The aim of this assay was to evaluate the effect of three colour temperatures (6500, 10,000 and 20,000 °K) on the biomass (cel mL-1), biomass production and productivity (g L-1 and g L-1 day-1), lipid and carbohydrate content (%), lipid and carbohydrate production and productivity (mg L-1 and mg L-1 day-1), composition and content of fatty acids (%) in two microalgae species: Dunaliella salina and Nannochloropsis oculata. The highest cell density was observed for N. oculata in stationary phase in the control (83.93 × 106 cel mL-1). However, higher lipid content was obtained in D. salina in stationary phase at 10,000 °K (80%), while N. oculata showed 67% at 6500 °K. The highest carbohydrate content was 25% in stationary phase for D. salina at 20,000 °K. Regarding the production of lipids, D. salina reached a maximum of 523 mg L-1 in exponential phase at 6500 and 10,000 °K. The highest carbohydrate production was 38 mg L-1 for D. salina in exponential phase at 20,000 °K. In both microalgae, 15 different fatty acids were identified; the most abundant was palmitic acid with 35.8% for N. oculata in stationary phase at 10,000 °K, while D. salina showed 67% of polyunsaturated fatty acids in exponential phase at 6500 °K. In conclusion, the ideal colour temperature for microalgae culture to obtain biofuels should be based on the biomolecule of interest, being necessary to individually evaluate for each species.
Collapse
Affiliation(s)
- Salim Gabriel Pavón-Suriano
- Tecnológico Nacional de México, Instituto Tecnológico de Boca del Río, División de Estudios de Posgrado e Investigación, Km. 12 Carr. Veracruz-Córdoba, P.O. Box 94290, Boca del Río, Veracruz, Mexico
| | - Luis Alfredo Ortega-Clemente
- Tecnológico Nacional de México, Instituto Tecnológico de Boca del Río, División de Estudios de Posgrado e Investigación, Km. 12 Carr. Veracruz-Córdoba, P.O. Box 94290, Boca del Río, Veracruz, Mexico.
| | - Sergio Curiel-Ramírez
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Ensenada-Tijuana No. 3917, Fraccionamiento Playitas C.P. 22860 en, Ensenada, Baja California, Mexico
| | - María Isabel Jiménez-García
- Tecnológico Nacional de México, Instituto Tecnológico de Boca del Río, División de Estudios de Posgrado e Investigación, Km. 12 Carr. Veracruz-Córdoba, P.O. Box 94290, Boca del Río, Veracruz, Mexico
| | - Ignacio Alejandro Pérez-Legaspi
- Tecnológico Nacional de México, Instituto Tecnológico de Boca del Río, División de Estudios de Posgrado e Investigación, Km. 12 Carr. Veracruz-Córdoba, P.O. Box 94290, Boca del Río, Veracruz, Mexico
| | - Paula Natalia Robledo-Narváez
- Tecnológico Nacional de México, Instituto Tecnológico Superior de Tierra Blanca, Maestría en Ciencias de los Alimentos y Biotecnología, Avenida Veracruz S/n Esquina Héroes de Puebla Colonia Pemex, Tierra Blanca, Veracruz, Mexico
| |
Collapse
|
171
|
Phong WN, Show PL, Le CF, Tao Y, Chang JS, Ling TC. Improving cell disruption efficiency to facilitate protein release from microalgae using chemical and mechanical integrated method. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
172
|
Salama ES, Hwang JH, El-Dalatony MM, Kurade MB, Kabra AN, Abou-Shanab RAI, Kim KH, Yang IS, Govindwar SP, Kim S, Jeon BH. Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: A review. BIORESOURCE TECHNOLOGY 2018; 258:365-375. [PMID: 29501272 DOI: 10.1016/j.biortech.2018.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Microalgal biomass has received much attention as feedstock for biofuel production due to its capacity to accumulate a substantial amount of biocomponents (including lipid, carbohydrate, and protein), high growth rate, and environmental benefit. However, commercial realization of microalgal biofuel is a challenge due to its low biomass production and insufficient technology for complete utilization of biomass. Recently, advanced strategies have been explored to overcome the challenges of conventional approaches and to achieve maximum possible outcomes in terms of growth. These strategies include a combination of stress factors; co-culturing with other microorganisms; and addition of salts, flue gases, and phytohormones. This review summarizes the recent progress in the application of single and combined abiotic stress conditions to stimulate microalgal growth and its biocomponents. An innovative schematic model is presented of the biomass-energy conversion pathway that proposes the transformation of all potential biocomponents of microalgae into biofuels.
Collapse
Affiliation(s)
- El-Sayed Salama
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jae-Hoon Hwang
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32817, USA
| | - Marwa M El-Dalatony
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Akhil N Kabra
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Il-Seung Yang
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sanjay P Govindwar
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sunjoon Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
173
|
García-Cubero R, Moreno-Fernández J, Acién-Fernández F, García-González M. How to combine CO2 abatement and starch production in Chlorella vulgaris. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
174
|
Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.03.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
175
|
Htet AN, Noguchi M, Ninomiya K, Tsuge Y, Kuroda K, Kajita S, Masai E, Katayama Y, Shikinaka K, Otsuka Y, Nakamura M, Honda R, Takahashi K. Application of microalgae hydrolysate as a fermentation medium for microbial production of 2-pyrone 4,6-dicarboxylic acid. J Biosci Bioeng 2018; 125:717-722. [DOI: 10.1016/j.jbiosc.2017.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022]
|
176
|
Soliman RM, Younis SA, El-Gendy NS, Mostafa SSM, El-Temtamy SA, Hashim AI. Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae. J Appl Microbiol 2018; 125:422-440. [PMID: 29675837 DOI: 10.1111/jam.13886] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 11/27/2022]
Abstract
AIMS Marine seaweeds (macroalgae) cause an eutrophication problem and affects the touristic activities. The success of the production of the third-generation bioethanol from marine macroalgae depends mainly on the development of an ecofriendly and eco-feasible pretreatment (i.e. hydrolysis) technique, a highly effective saccharification step and finally an efficient bioethanol fermentation step. Therefore, this study aimed to investigate the potentiality of different marine macroalgal strains, collected from Egyptian coasts, for bioethanol production via different saccharification processes. METHODS AND RESULTS Different marine macroalgal strains, red Jania rubens, green Ulva lactuca and brown Sargassum latifolium, have been collected from Egyptian Mediterranean and Red Sea shores. Different hydrolysis processes were evaluated to maximize the extraction of fermentable sugars; thermochemical hydrolysis with diluted acids (HCl and H2 SO4 ) and base (NaOH), hydrothermal hydrolysis followed by saccharification with different fungal strains and finally, thermochemical hydrolysis with diluted HCl, followed by fungal saccharification. The hydrothermal hydrolysis of S. latifolium followed by biological saccharification using Trichoderma asperellum RM1 produced maximum total sugars of 510 mg g-1 macroalgal biomass. The integration of the hydrothermal and fungal hydrolyses of the macroalgal biomass with a separate batch fermentation of the produced sugars using two Saccharomyces cerevisiae strains, produced approximately 0·29 g bioethanol g-1 total reducing sugars. A simulated regression modelling for the batch bioethanol fermentation was also performed. CONCLUSIONS This study supported the possibility of using seaweeds as a renewable source of bioethanol throughout a suggested integration of macroalgal biomass hydrothermal and fungal hydrolyses with a separate batch bioethanol fermentation process of the produced sugars. SIGNIFICANCE AND IMPACT OF THE STUDY The usage of marine macroalgae (i.e. seaweeds) as feedstock for bioethanol; an alternative and/or complimentary to petro-fuel, would act as triple fact solution; bioremediation process for ecosystem, renewable energy source and economy savings.
Collapse
Affiliation(s)
- R M Soliman
- Process Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt
| | - S A Younis
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt
| | - N Sh El-Gendy
- Process Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt
| | - S S M Mostafa
- Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - S A El-Temtamy
- Process Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt
| | - A I Hashim
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
177
|
Biogas production from different lignocellulosic biomass sources: advances and perspectives. 3 Biotech 2018; 8:233. [PMID: 29725572 DOI: 10.1007/s13205-018-1257-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022] Open
Abstract
The present work summarizes different sources of biomass used as raw material for the production of biogas, focusing mainly on the use of plants that do not compete with the food supply. Biogas obtained from edible plants entails a developed technology and good yield of methane production; however, its use may not be sustainable. Biomass from agricultural waste is a cheap option, but in general, with lower methane yields than those obtained from edible plants. On the other hand, the use of algae or aquatic plants promises to be an efficient and sustainable option with high yields of methane produced, but it necessary to overcome the existing technological barriers. Moreover, these last raw materials have the additional advantage that they can be obtained from wastewater treatment and, therefore, they could be applied to the concept of biorefinery. An estimation of methane yield per hectare per year of the some types of biomass and operational conditions employed is presented as well. In addition, different strategies to improve the yield of biogas, such as physical, chemical, and biological pretreatments, are presented. Other alternatives for enhanced the biogas production such as bioaugmentation and biohythane are showed and finally perspectives are mentioned.
Collapse
|
178
|
Kushwaha D, Srivastava N, Mishra I, Upadhyay SN, Mishra PK. Recent trends in biobutanol production. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0041] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Finite availability of conventional fossil carbonaceous fuels coupled with increasing pollution due to their overexploitation has necessitated the quest for renewable fuels. Consequently, biomass-derived fuels are gaining importance due to their economic viability and environment-friendly nature. Among various liquid biofuels, biobutanol is being considered as a suitable and sustainable alternative to gasoline. This paper reviews the present state of the preprocessing of the feedstock, biobutanol production through fermentation and separation processes. Low butanol yield and its toxicity are the major bottlenecks. The use of metabolic engineering and integrated fermentation and product recovery techniques has the potential to overcome these challenges. The application of different nanocatalysts to overcome the existing challenges in the biobutanol field is gaining much interest. For the sustainable production of biobutanol, algae, a third-generation feedstock has also been evaluated.
Collapse
Affiliation(s)
- Deepika Kushwaha
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Ishita Mishra
- Green Brick Eco Solutions, Okha Industrial Area , New Delhi 110020 , India
| | - Siddh Nath Upadhyay
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| |
Collapse
|
179
|
Urriola PE, Mielke JA, Mao Q, Hung YT, Kurtz JF, Johnston LJ, Shurson GC, Chen C, Saqui-Salces M. Evaluation of a partially de-oiled microalgae product in nursery pig diets. Transl Anim Sci 2018; 2:169-183. [PMID: 32704701 PMCID: PMC7200485 DOI: 10.1093/tas/txy013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/11/2018] [Indexed: 01/26/2023] Open
Abstract
Although microalgae can be used as a source of energy and macronutrients in pig diets, there is limited information on the use of partially de-oiled microalgae coproducts in swine feeding programs. The objectives of this study were to evaluate the effects of a partially de-oiled microalgae extract (MAE) in nursery pig diets on growth performance and health status. A total of 300 pigs (initial BW = 6.3 ± 2.1 kg) were used in a 42-d experiment. Treatments included a standard corn-soybean meal control diet, and diets containing 1, 5, 10, or 20% MAE replacing primarily corn. The ME content of MAE was calculated from the chemical composition, and diets were formulated to meet or exceed nutrient requirements for nursery pigs. Pigs were stratified by weaning BW into 12 blocks in a randomized complete block design, with sex distributed evenly among blocks. Pens of pigs (5 pigs/pen) were assigned randomly within block to one of five dietary treatments. Pig BW and feed disappearance were recorded weekly. On day 42, 30 pigs were harvested and sections of the jejunum and ileum were collected for gut morphology analysis, and a liver sample was collected for metabolomic analysis using liquid chromatography-mass spectroscopy. Data were analyzed by ANOVA with diet as treatment effect, and contrasts were used to test linear or quadratic effects of dietary MAE inclusion level. Overall, pigs fed 1% and 5% MAE had the greatest (quadratic P < 0.05) ADG, resulting from greater (quadratic P < 0.05) ADFI. There was a tendency for a greater number of pigs requiring injectable treatments (P = 0.16) and a greater mortality (P = 0.14) in pigs fed the control diet than pigs in any of the diets with the MAE. Final BW increased (P < 0.05) for pigs fed 1% and 5% MAE diets. The improvements in ADG were not explained by differences in mucosa height or goblet cell count among dietary treatments. Pigs fed diets containing 1% or 5% MAE had relatively less concentration (P < 0.05) of ammonia in the liver and had changes in metabolites associated with the urea cycle. In conclusion, feeding MAE resulted in increased growth responses and may have beneficial health effects when fed to nursery pigs.
Collapse
Affiliation(s)
- Pedro E Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN
| | - Joey A Mielke
- Department of Animal Science, University of Minnesota, St. Paul, MN
| | - Qingqing Mao
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | - Yuan-Tai Hung
- Department of Animal Science, University of Minnesota, St. Paul, MN
| | - John F Kurtz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | - Lee J Johnston
- West Central Research and Outreach Center, University of Minnesota, Morris, MN
| | - Gerald C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | | |
Collapse
|
180
|
|
181
|
Martínez-Ruiz EB, Martínez-Jerónimo F. Exposure to the herbicide 2,4-D produces different toxic effects in two different phytoplankters: A green microalga (Ankistrodesmus falcatus) and a toxigenic cyanobacterium (Microcystis aeruginosa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1566-1578. [PMID: 29070448 DOI: 10.1016/j.scitotenv.2017.10.145] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
The extensive use of 2,4-dichlorophenoxiacetic acid (2,4-D) in agriculture is an important source of pollution to water and soil. Toxicity of commonly used herbicides to non-target, planktonic photosynthetic organisms has not been described completely yet. Therefore, we determined the effect of subinhibitory 2,4-D concentrations on the Chlorophycean alga Ankistrodesmus falcatus and on a toxigenic strain of the cyanobacterium Microcystis aeruginosa. Population growth, photosynthetic pigments, macromolecular biomarkers (carbohydrates, lipids, and protein), and antioxidant enzymes (catalase [CAT], glutathione peroxidase [GPx], and superoxide dismutase [SOD]) were quantified, and the integrated biomarker response (IBR) was calculated. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations were also performed. The 96-h median inhibitory concentration (IC50) for 2,4-D was 1353.80 and 71.20mgL-1 for the alga and the cyanobacterium, respectively. Under 2,4-D stress, both organisms increased pigments and macromolecules concentration, modified the activity of all the evaluated enzymes, and exhibited ultrastructural alterations. M. aeruginosa also increased microcystins production, and A. falcatus showed external morphological alterations. The green alga was tolerant to high concentrations of the herbicide, whereas the cyanobacterium exhibited sensitivity comparable to other phytoplankters. Both organisms were tolerant to comparatively high concentrations of the herbicide; however, negative effects on the assessed biomarkers and cell morphology were significant. Moreover, stimulation of the production of cyanotoxins under chemical stress could increase the risk for the biota in aquatic environments, related to herbicides pollution in eutrophic freshwater ecosystems.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico
| | - Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico.
| |
Collapse
|
182
|
Biomass based hydrogen production by dark fermentation — recent trends and opportunities for greener processes. Curr Opin Biotechnol 2018; 50:136-145. [DOI: 10.1016/j.copbio.2017.12.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/30/2017] [Indexed: 01/01/2023]
|
183
|
de Farias Silva CE, Meneghello D, Bertucco A. A systematic study regarding hydrolysis and ethanol fermentation from microalgal biomass. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
184
|
Gifuni I, Olivieri G, Pollio A, Marzocchella A. Identification of an industrial microalgal strain for starch production in biorefinery context: The effect of nitrogen and carbon concentration on starch accumulation. N Biotechnol 2018; 41:46-54. [DOI: 10.1016/j.nbt.2017.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/20/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022]
|
185
|
Toledo-Cervantes A, Garduño Solórzano G, Campos JE, Martínez-García M, Morales M. Characterization of Scenedesmus obtusiusculus AT-UAM for high-energy molecules accumulation: deeper insight into biotechnological potential of strains of the same species. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018; 17:16-23. [PMID: 29276696 PMCID: PMC5730379 DOI: 10.1016/j.btre.2017.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/11/2017] [Accepted: 11/30/2017] [Indexed: 12/01/2022]
Abstract
Scenedesmus obtusiusculus AT-UAM, isolated from Cuatro Ciénegas wetlands in Mexico was taxonomically, molecularly and biochemically compared to S. obtusiusculus CCAP 276/25 (Culture Collection of Algae and Protozoa, Scotland, UK). Analysis of Internal Transcribed Spacer 2 (ITS2) secondary structures confirmed that the mexican strain belongs to S. obtusiusculus with one change in the ITS2 nucleotide sequence. However, both strains exhibited different biochemical and fatty acid profiles and therefore biotechnological potential, emphasizing the need for deeper studies among strains of the same species. Furthermore, the biochemical variations of S. obtusiusculus AT-UAM under nitrogen starvation and different levels of irradiance were evaluated. The maximum lipid production (1730 mg L-1) was obtained at 613 μmol m-2 s-1 while the highest carbohydrate content (49%) was achieved at 896 μmol m-2 s-1. Additionally, this strain was capable of storing lipids (∼52%) and carbohydrates (∼40%) under outdoor condition depending on the light availability in the cultivation broth.
Collapse
Affiliation(s)
- Alma Toledo-Cervantes
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana – Iztapalapa, Ciudad de México, Mexico
| | | | - Jorge E. Campos
- Lab. Bioquímica Molecular, UBIPRO, FES Iztacala, UNAM, Mexico
| | | | - Marcia Morales
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Ciudad de México, Mexico
| |
Collapse
|
186
|
Arriola MB, Velmurugan N, Zhang Y, Plunkett MH, Hondzo H, Barney BM. Genome sequences of Chlorella sorokiniana UTEX 1602 and Micractinium conductrix SAG 241.80: implications to maltose excretion by a green alga. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:566-586. [PMID: 29178410 DOI: 10.1111/tpj.13789] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Green algae represent a key segment of the global species capable of photoautotrophic-driven biological carbon fixation. Algae partition fixed-carbon into chemical compounds required for biomass, while diverting excess carbon into internal storage compounds such as starch and lipids or, in certain cases, into targeted extracellular compounds. Two green algae were selected to probe for critical components associated with sugar production and release in a model alga. Chlorella sorokiniana UTEX 1602 - which does not release significant quantities of sugars to the extracellular space - was selected as a control to compare with the maltose-releasing Micractinium conductrix SAG 241.80 - which was originally isolated from an endosymbiotic association with the ciliate Paramecium bursaria. Both strains were subjected to three sequencing approaches to assemble their genomes and annotate their genes. This analysis was further complemented with transcriptional studies during maltose release by M. conductrix SAG 241.80 versus conditions where sugar release is minimal. The annotation revealed that both strains contain homologs for the key components of a putative pathway leading to cytosolic maltose accumulation, while transcriptional studies found few changes in mRNA levels for the genes associated with these established intracellular sugar pathways. A further analysis of potential sugar transporters found multiple homologs for SWEETs and tonoplast sugar transporters. The analysis of transcriptional differences revealed a lesser and more measured global response for M. conductrix SAG 241.80 versus C. sorokiniana UTEX 1602 during conditions resulting in sugar release, providing a catalog of genes that might play a role in extracellular sugar transport.
Collapse
Affiliation(s)
- Matthew B Arriola
- Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Natarajan Velmurugan
- Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, 55108, USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Mary H Plunkett
- Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, 55108, USA
| | - Hanna Hondzo
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, 55108, USA
| | - Brett M Barney
- Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
187
|
Abomohra AEF, El-Naggar AH, Baeshen AA. Potential of macroalgae for biodiesel production: Screening and evaluation studies. J Biosci Bioeng 2018; 125:231-237. [PMID: 29037768 DOI: 10.1016/j.jbiosc.2017.08.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/30/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022]
Abstract
Nowadays, biofuel production is a fast expanding industry and is facing a growing dilemma about a feedstock source capable of keeping up with demand. Recently, macroalgae have been attracting a wide attention as a source for biofuel. In the present study, ten macroalgae were collected and screened as biodiesel feedstocks. As a result of their high biomass production and relatively high lipid content, Ulva lactuca, Padina boryana and Ulva intestinalis showed the highest significant lipids and fatty acid methyl esters (FAMEs) areal productivities among the studied species. Saturated fatty acids (SAFs) showed insignificant differences in the selected species, with noticeably significant higher polyunsaturated fatty acids (PUFAs) content in U. lactuca by 4.2 and 3 times, with respect to P. boryana and U. intestinalis, respectively. The recorded increase in PUFAs was attributed to higher content of C16:4n-3, C18:3n-3 and C18:4n-3. By lipid fractionation, P. boryana showed significant higher concentration of neutral lipids (37.7 mg g-1 CDW, representing 46.7% of total fatty acids) in comparison to U. lactuca and U. intestinalis, which showed 16% and 17% lower neutral lipid fractions, respectively. In addition, biodiesel characteristics of the studied macroalgae complied with that of international standards. Furthermore, oil-free residual biomass can be readily converted into fermentable sugars or biogas due to its high carbohydrates content, which adds to the economics of macroalgae as biofuel feedstock. In conclusion, the present study confirmed that macroalgae represent an attractive alternative renewable feedstock for biodiesel and other biofuels.
Collapse
Affiliation(s)
- Abd El-Fatah Abomohra
- New Energy Department, School of Energy and Power Engineering, Jiangsu University, 212013 Jiangsu, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Amal Hamed El-Naggar
- Biological Science Department, Science Faculty for Girls, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Areej Ali Baeshen
- Biological Science Department, Science Faculty for Girls, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
188
|
|
189
|
Utilization of Microalgal Biofractions for Bioethanol, Higher Alcohols, and Biodiesel Production: A Review. ENERGIES 2017. [DOI: 10.3390/en10122110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
190
|
Wang Y, Ho SH, Yen HW, Nagarajan D, Ren NQ, Li S, Hu Z, Lee DJ, Kondo A, Chang JS. Current advances on fermentative biobutanol production using third generation feedstock. Biotechnol Adv 2017; 35:1049-1059. [DOI: 10.1016/j.biotechadv.2017.06.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/08/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022]
|
191
|
Khan MI, Lee MG, Shin JH, Kim JD. Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production. AMB Express 2017; 7:19. [PMID: 28063146 PMCID: PMC5218947 DOI: 10.1186/s13568-016-0320-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 12/26/2016] [Indexed: 01/12/2023] Open
Abstract
Microalgae are considered to be the future promising sources of biofuels and bio products. The algal carbohydrates can be fermented to bioethanol after pretreatment process. Efficient pretreatment of the biomass is one of the major requirements for commercialization of the algal based biofuels. In present study the microalga, M. aeruginsa was used for pretreatment optimization and bioethanol production. Treatment of algal biomass with CaO before acid and/or enzymatic hydrolysis enhanced the degradation of algal cells. Monomeric sugars yield was increased more than twice when biomass was pretreated with CaO. Similarly, an increase was noted in the amount of fermentable sugars when biomass was subjected to invertase saccharification after acid or lysozyme pretreatment. Highest yield of fermentable sugars (16 mM/ml) in the centrifuged algal juice was obtained. 4 Different microorganisms' species were used individually and in combination for converting centrifuged algal juice to bioethanol. Comparatively higher yield of bioethanol (60 mM/ml) was obtained when the fermenter microorganisms were used in combination. The results demonstrated that M. arginase biomass can be efficiently pretreated to get higher yield of fermentable sugars for enhanced yield of bioethanol production.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Biotechnology, Chonnam Natational University, San96-1, Dun-Duk Dong, Yeosu, Chonnam 550-749 Korea
| | - Moon Geon Lee
- Department of Biotechnology, Chonnam Natational University, San96-1, Dun-Duk Dong, Yeosu, Chonnam 550-749 Korea
| | - Jin Hyuk Shin
- Department of Biotechnology, Chonnam Natational University, San96-1, Dun-Duk Dong, Yeosu, Chonnam 550-749 Korea
| | - Jong Deog Kim
- Department of Biotechnology, Chonnam Natational University, San96-1, Dun-Duk Dong, Yeosu, Chonnam 550-749 Korea
- Research Center on Anti-Obesity and Health Care, Chonnam National University, San96-1, Dun-Duk Dong, Yeosu, Chonnam 550-749 Korea
| |
Collapse
|
192
|
Guldhe A, Kumari S, Ramanna L, Ramsundar P, Singh P, Rawat I, Bux F. Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:299-315. [PMID: 28803154 DOI: 10.1016/j.jenvman.2017.08.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/28/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
Microalgae are recognized as one of the most powerful biotechnology platforms for many value added products including biofuels, bioactive compounds, animal and aquaculture feed etc. However, large scale production of microalgal biomass poses challenges due to the requirements of large amounts of water and nutrients for cultivation. Using wastewater for microalgal cultivation has emerged as a potential cost effective strategy for large scale microalgal biomass production. This approach also offers an efficient means to remove nutrients and metals from wastewater making wastewater treatment sustainable and energy efficient. Therefore, much research has been conducted in the recent years on utilizing various wastewater streams for microalgae cultivation. This review identifies and discusses the opportunities and challenges of different wastewater streams for microalgal cultivation. Many alternative routes for microalgal cultivation have been proposed to tackle some of the challenges that occur during microalgal cultivation in wastewater such as nutrient deficiency, substrate inhibition, toxicity etc. Scope and challenges of microalgal biomass grown on wastewater for various applications are also discussed along with the biorefinery approach.
Collapse
Affiliation(s)
- Abhishek Guldhe
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Luveshan Ramanna
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Prathana Ramsundar
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Poonam Singh
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
193
|
Yuan Y, Liu H, Li X, Qi W, Cheng D, Tang T, Zhao Q, Wei W, Sun Y. Enhancing Carbohydrate Productivity of Chlorella sp. AE10 in Semi-continuous Cultivation and Unraveling the Mechanism by Flow Cytometry. Appl Biochem Biotechnol 2017; 185:419-433. [DOI: 10.1007/s12010-017-2667-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/17/2017] [Indexed: 11/24/2022]
|
194
|
Growth and Proximate Composition of Scenedesmus obliquus and Selenastrum bibraianum Cultured in Different Media and Condition. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40011-017-0938-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
195
|
de Jesus SS, Maciel Filho R. Potential of algal biofuel production in a hybrid photobioreactor. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.05.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
196
|
Su HY, Chou HH, Chow TJ, Lee TM, Chang JS, Huang WL, Chen HJ. Improvement of outdoor culture efficiency of cyanobacteria by over-expression of stress tolerance genes and its implication as bio-refinery feedstock. BIORESOURCE TECHNOLOGY 2017; 244:1294-1303. [PMID: 28457721 DOI: 10.1016/j.biortech.2017.04.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/02/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
This study was undertaken to increase the biomass and carbohydrate productivities of a freshwater cyanobacterium Synechococcus elongatus under hot outdoor conditions through genetic manipulation to facilitate the application of using the cyanobacterial biomass as bio-refinery feedstocks. The stress tolerance genes (hspA, osmotin) were expressed in S. elongatus to improve their growth under various environment stresses of outdoor cultivation. The results revealed that over-expression of hspA and osmotin significantly improved temperature (45°C), high light intensity, and salt tolerances of S. elongatus cells, making it capable of efficiently growing in seawater under outdoor cultivation. The carbohydrate productivity of these stress tolerant strains was also 15-30-fold higher than that of the control strain, although the carbohydrate contents of the recombinant and control strains were similar. Our findings demonstrate that the genetic engineering for improved stresses tolerance in S. elongatus could facilitate the feasibility of using cyanobacteria as feedstock for bio-refinery industry.
Collapse
Affiliation(s)
- Hsiang-Yen Su
- Department of Biotechnology, Fooyin University, Kaohsiung 831, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan
| | - Hsiang-Hui Chou
- Department of Biotechnology, Fooyin University, Kaohsiung 831, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Te-Jin Chow
- Department of Biotechnology, Fooyin University, Kaohsiung 831, Taiwan
| | - Tse-Min Lee
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng-Kung University, Tainan 701, Taiwan; Reserach Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Lii Huang
- Department of Agronomy, National Chiayi University, Chiayi 600, Taiwan
| | - Hsien-Jung Chen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
197
|
Moreno-Marrodan C, Liguori F, Barbaro P, Caporali S, Merlo L, Oldani C. Metal Nanoparticles Supported on Perfluorinated Superacid Polymers: A Family of Bifunctional Catalysts for the Selective, One-Pot Conversion of Vegetable Substrates in Water. ChemCatChem 2017. [DOI: 10.1002/cctc.201700945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Carmen Moreno-Marrodan
- Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti Organo Metallici; Via Madonna del Piano 10 50019 Sesto Fiorentino, Firenze Italy
| | - Francesca Liguori
- Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti Organo Metallici; Via Madonna del Piano 10 50019 Sesto Fiorentino, Firenze Italy
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti Organo Metallici; Via Madonna del Piano 10 50019 Sesto Fiorentino, Firenze Italy
| | - Stefano Caporali
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali; Via Giusti 9 50121 Firenze Italy
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi; Via Madonna del Piano 10 50019 Sesto Fiorentino, Firenze Italy
| | - Luca Merlo
- Solvay Specialty Polymers (Italy) S.p.A.; Viale Lombardia 20 20021 Bollate Milano Italy
| | - Claudio Oldani
- Solvay Specialty Polymers (Italy) S.p.A.; Viale Lombardia 20 20021 Bollate Milano Italy
| |
Collapse
|
198
|
Kushwaha D, Upadhyay SN, Mishra PK. Growth of Cyanobacteria: Optimization for Increased Carbohydrate Content. Appl Biochem Biotechnol 2017; 184:1247-1262. [PMID: 28986746 DOI: 10.1007/s12010-017-2620-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/29/2017] [Indexed: 01/05/2023]
Abstract
Growths of Lyngbya limnetica and Oscillatoria obscura were investigated at varying pH, light intensity, temperature, and trace element concentration with a view to optimize these parameters for obtaining the maximum carbohydrate content. The maximum growth for both strains was obtained at pH 9.0 and temperature 20 ± 3 °C using a light intensity of 68.0 μmol m-2 s-1 with continuous shaking. Growth under the nitrogen starvation condition affected the carbohydrate content more compared to the phosphorus starvation, and maximum concentrations were found as 0.660 and 0.621 g/g of dry biomass for L. limnetica and O. obscura, respectively. Under the optimized nitrogen-rich conditions, the specific growth rates for the two strains were found to be 0.187 and 0.215 day-1, respectively. The two-stage growth studies under nitrogen-rich (stage I) followed by nitrogen starvation (stage II) conditions were performed, and maximum biomass and carbohydrate productivity were found as 0.088 and 0.423 g L-1 day-1 for L. limnetica. This is the first ever attempt to evaluate and optimize various parameters affecting the growth of cyanobacterial biomass of L. limnetica and O. obscura as well as their carbohydrate contents.
Collapse
Affiliation(s)
- Deepika Kushwaha
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India
| | - S N Upadhyay
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India.
| |
Collapse
|
199
|
Choo MY, Oi LE, Show PL, Chang JS, Ling TC, Ng EP, Phang SM, Juan JC. Recent progress in catalytic conversion of microalgae oil to green hydrocarbon: A review. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.06.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
200
|
|