151
|
COMT and prenatal maternal smoking in associations with conduct problems and crime: the Pelotas 1993 birth cohort study. Sci Rep 2016; 6:29900. [PMID: 27426045 PMCID: PMC4947962 DOI: 10.1038/srep29900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/22/2016] [Indexed: 01/19/2023] Open
Abstract
Conduct problems in childhood and adolescence are significant precursors of crime and violence in young adulthood. The purpose of the current study is to test the interaction between prenatal maternal smoking and COMT Val(158)Met in conduct problems and crime in the 1993 Pelotas Birth Cohort Study. Conduct problems were assessed through the parent version of the Strengths and Difficulties Questionnaire at ages 11 and 15 years. A translated version of a confidential self-report questionnaire was used to collect criminal data at 18 years of age. Negative binomial regression analyses showed an association between prenatal maternal smoking and SDQ conduct problem scores (IRR = 1.24; 95% CI: 1.14-1.34; p < 0.001) at 11 years of age. However, no evidence was found for an association between COMT genotypes and conduct scores or for an interaction between maternal smoking and this gene in predicting conduct problems. Very similar results were obtained using the 15 years conduct scores and crime measure at age 18. Prenatal maternal smoking was associated with crime (IRR = 1.28; 95% CI: 1.09-1.48; p = 0.002) but neither COMT genotypes nor the possible interaction between gene and maternal smoking were significantly associated with crime. Replications of GxE findings across different social contexts are critical for testing the robustness of findings.
Collapse
|
152
|
van Duin EDA, Goossens L, Hernaus D, da Silva Alves F, Schmitz N, Schruers K, van Amelsvoort T. Neural correlates of reward processing in adults with 22q11 deletion syndrome. J Neurodev Disord 2016; 8:25. [PMID: 27429661 PMCID: PMC4946156 DOI: 10.1186/s11689-016-9158-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 07/05/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS) is caused by a microdeletion on chromosome 22q11.2 and associated with an increased risk to develop psychosis. The gene coding for catechol-O-methyl-transferase (COMT) is located at the deleted region, resulting in disrupted dopaminergic neurotransmission in 22q11DS, which may contribute to the increased vulnerability for psychosis. A dysfunctional motivational reward system is considered one of the salient features in psychosis and thought to be related to abnormal dopaminergic neurotransmission. The functional anatomy of the brain reward circuitry has not yet been investigated in 22q11DS. METHODS This study aims to investigate neural activity during anticipation of reward and loss in adult patients with 22q11DS. We measured blood-oxygen-level dependent (BOLD) activity in 16 patients with 22q11DS and 12 healthy controls during a monetary incentive delay task using a 3T Philips Intera MRI system. Data were analysed using SPM8. RESULTS During anticipation of reward, the 22q11DS group alone displayed significant activation in bilateral middle frontal and temporal brain regions. Compared to healthy controls, significantly less activation in bilateral cingulate gyrus extending to premotor, primary motor and somatosensory areas was found. During anticipation of loss, the 22q11DS group displayed activity in the left middle frontal gyrus and anterior cingulate cortex, and relative to controls, they showed reduced brain activation in bilateral (pre)cuneus and left posterior cingulate. Within the 22q11DS group, COMT Val hemizygotes displayed more activation compared to Met hemizygotes in right posterior cingulate and bilateral parietal regions during anticipation of reward. During anticipation of loss, COMT Met hemizygotes compared to Val hemizygotes showed more activation in bilateral insula, striatum and left anterior cingulate. CONCLUSIONS This is the first study to investigate reward processing in 22q11DS. Our preliminary results suggest that people with 22q11DS engage a fronto-temporal neural network. Compared to healthy controls, people with 22q11DS primarily displayed reduced activity in medial frontal regions during reward anticipation. COMT hemizygosity affects responsivity of the reward system in this condition. Alterations in reward processing partly underlain by the dopamine system may play a role in susceptibility for psychosis in 22q11DS.
Collapse
Affiliation(s)
- Esther D. A. van Duin
- />Department of Psychiatry and Psychology, Maastricht University, Maastricht, The Netherlands
| | - Liesbet Goossens
- />Department of Psychiatry and Psychology, Maastricht University, Maastricht, The Netherlands
| | - Dennis Hernaus
- />Department of Psychiatry and Psychology, Maastricht University, Maastricht, The Netherlands
| | - Fabiana da Silva Alves
- />Department of Psychiatry, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Nicole Schmitz
- />Department of Psychiatry, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Koen Schruers
- />Department of Psychiatry and Psychology, Maastricht University, Maastricht, The Netherlands
| | - Therese van Amelsvoort
- />Department of Psychiatry and Psychology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
153
|
The association between the COMT gene Val158Met polymorphism and preschoolers’ autobiographical memory details and narrative cohesiveness. COGNITIVE DEVELOPMENT 2016. [DOI: 10.1016/j.cogdev.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
154
|
Brain white matter structure and COMT gene are linked to second-language learning in adults. Proc Natl Acad Sci U S A 2016; 113:7249-54. [PMID: 27298360 DOI: 10.1073/pnas.1606602113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects' grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype.
Collapse
|
155
|
Jenkins PO, Mehta MA, Sharp DJ. Catecholamines and cognition after traumatic brain injury. Brain 2016; 139:2345-71. [PMID: 27256296 PMCID: PMC4995357 DOI: 10.1093/brain/aww128] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/20/2016] [Indexed: 01/11/2023] Open
Abstract
Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner.
Collapse
Affiliation(s)
- Peter O Jenkins
- 1 The Division of Brain Sciences, The Department of Medicine, Imperial College London, UK
| | - Mitul A Mehta
- 2 Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - David J Sharp
- 1 The Division of Brain Sciences, The Department of Medicine, Imperial College London, UK
| |
Collapse
|
156
|
Catechol-O-methyltransferase activity in erythrocytes from patients with eating disorders. Eat Weight Disord 2016; 21:221-7. [PMID: 26296436 DOI: 10.1007/s40519-015-0213-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/03/2015] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Abnormal feeding has been linked to disruptions in brain dopaminergic activity and recent studies have assessed the role of catechol-O-methyltransferase (COMT) in eating disorders. This is the first study to quantify the soluble catechol-O-methyltransferase (S-COMT) activity in erythrocytes from patients with anorexia nervosa (AN), bulimia nervosa (BN) and binge-eating disorder (BED) and the first study at all to evaluate the COMT on patients with BED. METHODS Forty blood samples from patients with AN, BN and BED and healthy controls were drawn to evaluate S-COMT activity in erythrocytes by high-performance liquid chromatography and mass spectrometry. Since several patients were being treated with fluoxetine 20 mg, they were included in a different group (BN MED and BED MED). Liver homogenates from rats were used to evaluate baseline S-COMT activity in the presence of fluoxetine by the same in vitro procedures and assays. RESULTS Erythrocyte S-COMT activity (pmol/mg prt/h) was significantly increased in patients with BN and BED (41.3 ± 6.8 and 41.4 ± 14, respectively) compared to control group (25.3 ± 9.7). In fluoxetine-treated patients with BN, S-COMT activity (15.9 ± 8.8) was decreased compared to the other BN group; however, in BED group, the difference between BED MED and BED was not observed. In patients with AN, no significant difference was found compared to controls. CONCLUSION Patients with BN and BED presented higher S-COMT activity in erythrocytes, which is in agreement with previous studies on the literature addressing the high-activity COMT allele, Val158, as risk factor for eating disorders. Although in fluoxetine-treated patients with BN the activity of S-COMT was similar to the controls, this is not explained by a direct interaction between fluoxetine and S-COMT as verified in in vitro assays.
Collapse
|
157
|
O'Tuathaigh CMP, Desbonnet L, Moran PM, Kirby BP, Waddington JL. Molecular genetic models related to schizophrenia and psychotic illness: heuristics and challenges. Curr Top Behav Neurosci 2016; 7:87-119. [PMID: 21298380 DOI: 10.1007/7854_2010_111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a heritable disorder that may involve several common genes of small effect and/or rare copy number variation, with phenotypic heterogeneity across patients. Furthermore, any boundaries vis-à-vis other psychotic disorders are far from clear. Consequently, identification of informative animal models for this disorder, which typically relate to pharmacological and putative pathophysiological processes of uncertain validity, faces considerable challenges. In juxtaposition, the majority of mutant models for schizophrenia relate to the functional roles of a diverse set of genes associated with risk for the disorder or with such putative pathophysiological processes. This chapter seeks to outline the evidence from phenotypic studies in mutant models related to schizophrenia. These have commonly assessed the degree to which mutation of a schizophrenia-related gene is associated with the expression of several aspects of the schizophrenia phenotype or more circumscribed, schizophrenia-related endophenotypes; typically, they place specific emphasis on positive and negative symptoms and cognitive deficits, and extend to structural and other pathological features. We first consider the primary technological approaches to the generation of such mutants, to include their relative merits and demerits, and then highlight the diverse phenotypic approaches that have been developed for their assessment. The chapter then considers the application of mutant phenotypes to study pathobiological and pharmacological mechanisms thought to be relevant for schizophrenia, particularly in terms of dopaminergic and glutamatergic dysfunction, and to an increasing range of candidate susceptibility genes and copy number variants. Finally, we discuss several pertinent issues and challenges within the field which relate to both phenotypic evaluation and a growing appreciation of the functional genomics of schizophrenia and the involvement of gene × environment interactions.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland,
| | | | | | | | | |
Collapse
|
158
|
Lebois LAM, Wolff JD, Ressler KJ. Neuroimaging genetic approaches to Posttraumatic Stress Disorder. Exp Neurol 2016; 284:141-152. [PMID: 27109180 DOI: 10.1016/j.expneurol.2016.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/10/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022]
Abstract
Neuroimaging genetic studies that associate genetic and epigenetic variation with neural activity or structure provide an opportunity to link genes to psychiatric disorders, often before psychopathology is discernable in behavior. Here we review neuroimaging genetics studies with participants who have Posttraumatic Stress Disorder (PTSD). Results show that genes related to the physiological stress response (e.g., glucocorticoid receptor and activity, neuroendocrine release), learning and memory (e.g., plasticity), mood, and pain perception are tied to neural intermediate phenotypes associated with PTSD. These genes are associated with and sometimes predict neural structure and function in areas involved in attention, executive function, memory, decision-making, emotion regulation, salience of potential threats, and pain perception. Evidence suggests these risk polymorphisms and neural intermediate phenotypes are vulnerabilities toward developing PTSD in the aftermath of trauma, or vulnerabilities toward particular symptoms once PTSD has developed. Work distinguishing between the re-experiencing and dissociative sub-types of PTSD, and examining other PTSD symptom clusters in addition to the re-experiencing and hyperarousal symptoms, will further clarify neurobiological mechanisms and inconsistent findings. Furthermore, an exciting possibility is that genetic associations with PTSD may eventually be understood through differential intermediate phenotypes of neural circuit structure and function, possibly underlying the different symptom clusters seen within PTSD.
Collapse
Affiliation(s)
- Lauren A M Lebois
- Department of Depression and Anxiety, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Jonathan D Wolff
- Department of Depression and Anxiety, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Kerry J Ressler
- Department of Depression and Anxiety, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
159
|
van Goozen SH, Langley K, Northover C, Hubble K, Rubia K, Schepman K, O'Donovan MC, Thapar A. Identifying mechanisms that underlie links between COMT genotype and aggression in male adolescents with ADHD. J Child Psychol Psychiatry 2016; 57:472-80. [PMID: 26395975 PMCID: PMC5102627 DOI: 10.1111/jcpp.12464] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is a known strong genetic contribution to aggression in those with ADHD. In a previous investigation of a large population cohort, impaired 'emotional/social cognitive' processing, assessed by questionnaire, was observed to mediate the link between COMT Val158Met and aggression in individuals with ADHD. We set out to replicate and extend this finding in a clinical sample, using task-based and physiological assessments of emotional and cognitive processing. Our aim was to test the hypothesis that directly assessed emotional processing mediates the link between COMT Val158Met and aggression in young people with ADHD. METHODS Males aged 10-17 years with ADHD were recruited from UK community clinics (n = 194). Research diagnostic interviews (parent and child) were used to assess psychopathology and generate DSM-IV Conduct Disorder symptom scores. Participants completed tasks assessing executive function (response inhibition and set shifting), empathy for fear, sadness and happiness, and fear conditioning [measured using skin conductance responses (SCR) to aversive stimuli]. RESULTS COMT Val allele carriers showed poorer response inhibition (F = 5.27, p = .02) and set shifting abilities (F = 6.45, p = .01), reduced fear empathy (F = 4.33, p = .04) and reduced autonomic responsiveness (lower SCRs) to the conditioned aversive stimulus (F = 11.74, p = .001). COMT Val158Met did not predict impairments in recognising others' emotions or affective empathy for happiness or sadness. Mediation analysis revealed that impaired fear-related mechanisms indirectly mediated the link between COMT Val158Met and aggression. CONCLUSION Our findings suggest fear mechanisms as possible targets for psychological interventions to disrupt links between genetic risk and aggressive outcomes in ADHD. Our findings also reveal the potential of hypothesis-driven approaches for identifying neuropsychological mechanisms that mediate genetic risk effects on behaviour and psychopathology.
Collapse
Affiliation(s)
| | - Kate Langley
- School of PsychologyCardiff UniversityCardiffUK
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
| | | | | | - Katya Rubia
- Institute of Psychiatry, Psychology and NeuroscienceKings College LondonLondonUK
| | - Karen Schepman
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
- Institute of Psychological Medicine and Clinical NeurosciencesCardiff University School of MedicineCardiffUK
| | - Michael C. O'Donovan
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
- Institute of Psychological Medicine and Clinical NeurosciencesCardiff University School of MedicineCardiffUK
| | - Anita Thapar
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
- Institute of Psychological Medicine and Clinical NeurosciencesCardiff University School of MedicineCardiffUK
| |
Collapse
|
160
|
Li W, Liu B, Xu J, Jiang T, Yu C. Interaction of COMT rs4680 and BDNF rs6265 polymorphisms on functional connectivity density of the left frontal eye field in healthy young adults. Hum Brain Mapp 2016; 37:2468-78. [PMID: 27004987 DOI: 10.1002/hbm.23187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/04/2016] [Accepted: 03/09/2016] [Indexed: 12/19/2022] Open
Abstract
As modulators of dopamine availability and release in the brain, COMT and BDNF polymorphisms have demonstrated interactions on human cognition; however, the underlying neural mechanisms remain largely unknown. In this study, we aimed to investigate the interactions of COMT rs4680 and BDNF rs6265 on global functional connectivity density (gFCD) of the brain in 265 healthy young subjects. We found a significant COMT × BDNF interaction on the gFCD in the left frontal eye field (FEF), showing an inverted U-shape modulation by the presumed dopamine signaling. This finding was consistently repeated in the gFCD analyses using other four connection thresholds. Our findings reveal a COMT × BDNF interaction on the FCD in the left FEF, which may be helpful for understanding the neural mechanisms of the COMT × BDNF interactions on the FEF-related cognitive functions. Hum Brain Mapp 37:2468-2478, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
161
|
Smith CT, Wallace DL, Dang LC, Aarts E, Jagust WJ, D'Esposito M, Boettiger CA. Modulation of impulsivity and reward sensitivity in intertemporal choice by striatal and midbrain dopamine synthesis in healthy adults. J Neurophysiol 2016; 115:1146-56. [PMID: 26683066 PMCID: PMC4808128 DOI: 10.1152/jn.00261.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 12/15/2015] [Indexed: 01/12/2023] Open
Abstract
Converging evidence links individual differences in mesolimbic and mesocortical dopamine (DA) to variation in the tendency to choose immediate rewards ("Now") over larger, delayed rewards ("Later"), or "Now bias." However, to date, no study of healthy young adults has evaluated the relationship between Now bias and DA with positron emission tomography (PET). Sixteen healthy adults (ages 24-34 yr; 50% women) completed a delay-discounting task that quantified aspects of intertemporal reward choice, including Now bias and reward magnitude sensitivity. Participants also underwent PET scanning with 6-[(18)F]fluoro-l-m-tyrosine (FMT), a radiotracer that measures DA synthesis capacity. Lower putamen FMT signal predicted elevated Now bias, a more rapidly declining discount rate with increasing delay time, and reduced willingness to accept low-interest-rate delayed rewards. In contrast, lower FMT signal in the midbrain predicted greater sensitivity to increasing magnitude of the Later reward. These data demonstrate that intertemporal reward choice in healthy humans varies with region-specific measures of DA processing, with regionally distinct associations with sensitivity to delay and to reward magnitude.
Collapse
Affiliation(s)
- Christopher T. Smith
- 1Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina;
| | - Deanna L. Wallace
- 2Helen Wills Neuroscience Institute, University of California, Berkeley, California;
| | - Linh C. Dang
- 2Helen Wills Neuroscience Institute, University of California, Berkeley, California; ,3Lawrence Berkeley National Laboratory, Berkeley, California;
| | - Esther Aarts
- 2Helen Wills Neuroscience Institute, University of California, Berkeley, California; ,4Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands; and
| | - William J. Jagust
- 2Helen Wills Neuroscience Institute, University of California, Berkeley, California; ,3Lawrence Berkeley National Laboratory, Berkeley, California;
| | - Mark D'Esposito
- 2Helen Wills Neuroscience Institute, University of California, Berkeley, California;
| | - Charlotte A. Boettiger
- 1Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina; ,5Department of Psychology & Neuroscience, Bowles Center for Alcohol Studies, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
162
|
Chen CY, Yeh YW, Kuo SC, Ho PS, Liang CS, Yen CH, Lu RB, Huang SY. Catechol-O-methyltransferase gene variants may associate with negative symptom response and plasma concentrations of prolactin in schizophrenia after amisulpride treatment. Psychoneuroendocrinology 2016; 65:67-75. [PMID: 26724569 DOI: 10.1016/j.psyneuen.2015.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 01/04/2023]
Abstract
Catechol-O-methyltransferase (COMT) enzyme is involved in the pathogenesis of psychotic symptoms and may be associated with a therapeutic response to antipsychotic drugs. The aim of this study was to examine the relationship between COMT variants, plasma prolactin level, and the therapeutic effectiveness of amisulpride treatment in patients with schizophrenia. A 12-week naturalistic study of amisulpride treatment was carried out in 185 Han Chinese patients with schizophrenia. The patients were screened for 14 single-nucleotide polymorphisms of the COMT gene. The Positive and Negative Syndrome Scale (PANSS) was used to assess the improvement of psychopathological symptoms from the baseline to the end point in each subject. For better presentation of time-course changes in response status, a mixed model for repeated-measures (MMRM) analysis of symptom improvement during the 12-week treatment period was conducted. The change in plasma prolactin level after amisulpride treatment was also examined (n=51). No significant differences in the genotype frequencies of the COMT variants investigated were observed between responders and non-responders. Moreover, an MMRM analysis of psychopathological symptom improvement during the 12-week treatment course showed that it depended significantly on COMT variants (rs4680, rs4633, and rs6267), particularly regarding changes in negative symptoms. The increase in plasma prolactin levels observed was influenced by the COMT rs4680 variant and was positively correlated with a reduction in PANSS negative scores. Our results suggest that variation of the COMT gene is associated with treatment response regarding negative symptoms and prolactin changes after amisulpride treatment in patients with schizophrenia.
Collapse
Affiliation(s)
- Chun-Yen Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Wei Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shin-Chang Kuo
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Shen Ho
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Sung Liang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Che-Hung Yen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ru-Band Lu
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - San-Yuan Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
163
|
Byrne KA, Davis T, Worthy DA. Dopaminergic Genetic Polymorphisms Predict Rule-based Category Learning. J Cogn Neurosci 2016; 28:959-70. [PMID: 26918585 DOI: 10.1162/jocn_a_00942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Dopaminergic genes play an important role in cognitive function. DRD2 and DARPP-32 dopamine receptor gene polymorphisms affect striatal dopamine binding potential, and the Val158Met single-nucleotide polymorphism of the COMT gene moderates dopamine availability in the pFC. Our study assesses the role of these gene polymorphisms on performance in two rule-based category learning tasks. Participants completed unidimensional and conjunctive rule-based tasks. In the unidimensional task, a rule along a single stimulus dimension can be used to distinguish category members. In contrast, a conjunctive rule utilizes a combination of two dimensions to distinguish category members. DRD2 C957T TT homozygotes outperformed C allele carriers on both tasks, and DARPP-32 AA homozygotes outperformed G allele carriers on both tasks. However, we found an interaction between COMT and task type where Met allele carriers outperformed Val homozygotes in the conjunctive rule task, but both groups performed equally well in the unidimensional task. Thus, striatal dopamine binding may play a critical role in both types of rule-based tasks, whereas prefrontal dopamine binding is important for learning more complex conjunctive rule tasks. Modeling results suggest that striatal dopaminergic genes influence selective attention processes whereas cortical genes mediate the ability to update complex rule representations.
Collapse
|
164
|
Abstract
The specific function of microglia, the tissue resident macrophages of the brain and spinal cord, has been difficult to ascertain because of a lack of tools to distinguish microglia from other immune cells, thereby limiting specific immunostaining, purification, and manipulation. Because of their unique developmental origins and predicted functions, the distinction of microglia from other myeloid cells is critically important for understanding brain development and disease; better tools would greatly facilitate studies of microglia function in the developing, adult, and injured CNS. Here, we identify transmembrane protein 119 (Tmem119), a cell-surface protein of unknown function, as a highly expressed microglia-specific marker in both mouse and human. We developed monoclonal antibodies to its intracellular and extracellular domains that enable the immunostaining of microglia in histological sections in healthy and diseased brains, as well as isolation of pure nonactivated microglia by FACS. Using our antibodies, we provide, to our knowledge, the first RNAseq profiles of highly pure mouse microglia during development and after an immune challenge. We used these to demonstrate that mouse microglia mature by the second postnatal week and to predict novel microglial functions. Together, we anticipate these resources will be valuable for the future study and understanding of microglia in health and disease.
Collapse
|
165
|
Longitudinal study of premorbid adjustment in 22q11.2 deletion (velocardiofacial) syndrome and association with psychosis. Dev Psychopathol 2016; 29:93-106. [PMID: 26864886 DOI: 10.1017/s0954579416000018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Velocardiofacial syndrome, also known as 22q11.2 deletion syndrome (22q11DS), is associated with an increased risk of major psychiatric disorders, including schizophrenia. The emergence of psychotic symptoms in individuals with schizophrenia in the general population is often preceded by a premorbid period of poor or worsening social and/or academic functioning. Our current study evaluated premorbid adjustment (via the Cannon-Spoor Premorbid Adjustment Scale [PAS]) and psychotic symptoms (via the Structured Interview for Prodromal Symptoms and the Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version) in youth with 22q11DS (N = 96), unaffected siblings (N = 40), and community controls (N = 50). The PAS scores indicated greater maladjustment during all developmental periods in individuals with 22q11DS compared to the controls. Many participants with 22q11DS had chronically poor (n = 33) or deteriorating (n = 6) PAS scores. In 22q11DS, chronically poor PAS trajectories and poor childhood and early adolescence academic domain and total PAS scores significantly increased the risk of prodromal symptoms or overt psychosis. Taking into account the catechol-O-methyltransferase (COMT) genotype, the best predictor of (prodromal) psychosis was the early adolescence academic domain score, which yielded higher sensitivity and specificity in the subgroup of youth with 22q11DS and the high-activity (valine) allele. PAS scores may help identify individuals at higher risk for psychosis.
Collapse
|
166
|
Functional connectivity measures as schizophrenia intermediate phenotypes: advances, limitations, and future directions. Curr Opin Neurobiol 2016; 36:7-14. [DOI: 10.1016/j.conb.2015.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/09/2015] [Accepted: 07/25/2015] [Indexed: 01/08/2023]
|
167
|
Jin J, Liu L, Gao Q, Chan RCK, Li H, Chen Y, Wang Y, Qian Q. The divergent impact ofCOMTVal158Met on executive function in children with and without attention-deficit/hyperactivity disorder. GENES BRAIN AND BEHAVIOR 2016; 15:271-9. [DOI: 10.1111/gbb.12270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 12/30/2022]
Affiliation(s)
- J. Jin
- Peking University Sixth Hospital/Institute of Mental Health
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)
- Key Laboratory of Mental Health; Ministry of Health (Peking University)
| | - L. Liu
- Peking University Sixth Hospital/Institute of Mental Health
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)
- Key Laboratory of Mental Health; Ministry of Health (Peking University)
| | - Q. Gao
- Peking University Sixth Hospital/Institute of Mental Health
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)
- Key Laboratory of Mental Health; Ministry of Health (Peking University)
| | - R. C. K. Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology; Chinese Academy of Sciences; Beijing China
| | - H. Li
- Peking University Sixth Hospital/Institute of Mental Health
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)
- Key Laboratory of Mental Health; Ministry of Health (Peking University)
| | - Y. Chen
- Peking University Sixth Hospital/Institute of Mental Health
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)
- Key Laboratory of Mental Health; Ministry of Health (Peking University)
| | - Y. Wang
- Peking University Sixth Hospital/Institute of Mental Health
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)
- Key Laboratory of Mental Health; Ministry of Health (Peking University)
| | - Q. Qian
- Peking University Sixth Hospital/Institute of Mental Health
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)
- Key Laboratory of Mental Health; Ministry of Health (Peking University)
| |
Collapse
|
168
|
Acute effects of cocaine and cannabis on reversal learning as a function of COMT and DRD2 genotype. Psychopharmacology (Berl) 2016; 233:199-211. [PMID: 26572896 PMCID: PMC4700084 DOI: 10.1007/s00213-015-4141-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/20/2015] [Indexed: 12/27/2022]
Abstract
RATIONALE Long-term cannabis and cocaine use has been associated with impairments in reversal learning. However, how acute cannabis and cocaine administration affect reversal learning in humans is not known. OBJECTIVE In this study, we aimed to establish the acute effects of administration of cannabis and cocaine on valence-dependent reversal learning as a function of DRD2 Taq1A (rs1800497) and COMT Val108/158Met (rs4680) genotype. METHODS A double-blind placebo-controlled randomized 3-way crossover design was used. Sixty-one regular poly-drug users completed a deterministic reversal learning task under the influence of cocaine, cannabis, and placebo that enabled assessment of both reward- and punishment-based reversal learning. RESULTS Proportion correct on the reversal learning task was increased by cocaine, but decreased by cannabis. Effects of cocaine depended on the DRD2 genotype, as increases in proportion correct were seen only in the A1 carriers, and not in the A2/A2 homozygotes. COMT genotype did not modulate drug-induced effects on reversal learning. CONCLUSIONS These data indicate that acute administration of cannabis and cocaine has opposite effects on reversal learning. The effects of cocaine, but not cannabis, depend on interindividual genetic differences in the dopamine D2 receptor gene.
Collapse
|
169
|
Abstract
Endophenotypes are quantitative, heritable traits that may help to elucidate the pathophysiologic mechanisms underlying complex disease syndromes, such as schizophrenia. They can be assessed at numerous levels of analysis; here, we review electrophysiological endophenotypes that have shown promise in helping us understand schizophrenia from a more mechanistic point of view. For each endophenotype, we describe typical experimental procedures, reliability, heritability, and reported gene and neurobiological associations. We discuss recent findings regarding the genetic architecture of specific electrophysiological endophenotypes, as well as converging evidence from EEG studies implicating disrupted balance of glutamatergic signaling and GABAergic inhibition in the pathophysiology of schizophrenia. We conclude that refining the measurement of electrophysiological endophenotypes, expanding genetic association studies, and integrating data sets are important next steps for understanding the mechanisms that connect identified genetic risk loci for schizophrenia to the disease phenotype.
Collapse
Affiliation(s)
- Emily Owens
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - David C Glahn
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
170
|
Wendt J, Neubert J, Lindner K, Ernst FD, Homuth G, Weike AI, Hamm AO. Genetic influences on the acquisition and inhibition of fear. Int J Psychophysiol 2015; 98:499-505. [DOI: 10.1016/j.ijpsycho.2014.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/16/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
|
171
|
Sex-dichotomous effects of functional COMT genetic variations on cognitive functions disappear after menopause in both health and schizophrenia. Eur Neuropsychopharmacol 2015; 25:2349-63. [PMID: 26560201 DOI: 10.1016/j.euroneuro.2015.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/12/2015] [Accepted: 10/16/2015] [Indexed: 01/18/2023]
Abstract
Different genetic variations in the catechol-O-methyltransferase (COMT) gene have been indicated to functionally regulate the encoded enzyme. Despite the vast literature on the single nucleotide COMT ValMet polymorphism, the impact of complex haplotypes on cognitive functions has been overlooked. Here we contrasted the effects of complex COMT haplotypes with the ValMet polymorphism on cognitive functions and their interaction with menopause, in healthy subjects and patients with schizophrenia. Healthy adults (N=229) as well as patients with schizophrenia (N=172) underwent a comprehensive cognitive assessment taking into account the menopausal state. Functional COMT variations selectively modulated working memory and executive functions. Strikingly, these effects were present only in adult men but not in women before menopause, in both healthy subjects and patients with schizophrenia. Importantly, the same pattern of COMT-dependent effects present in men reappeared in women after menopause. Thus, functional COMT mutations seem to modulate cognitive functions depending on the hormonal status. These data clarify the importance of taking into account the combined effect of sex, hormonal status and genetics.
Collapse
|
172
|
López-García P, Young L, Marín J, Molero P, Ortuño F. Influencia del polimorfismo Val158Met COMT en el procesamiento de contexto en pacientes del espectro de la esquizofrenia y en sus familiares. Schizophr Res Cogn 2015. [DOI: 10.1016/j.scog.2015.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
173
|
López-García P, Young L, Marín J, Molero P, Ortuño F. The impact of the Val158Met COMT polymorphism on context processing in patients on the schizophrenia spectrum and their relatives. Schizophr Res Cogn 2015. [DOI: 10.1016/j.scog.2015.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
174
|
Winkler EA, Yue JK, McAllister TW, Temkin NR, Oh SS, Burchard EG, Hu D, Ferguson AR, Lingsma HF, Burke JF, Sorani MD, Rosand J, Yuh EL, Barber J, Tarapore PE, Gardner RC, Sharma S, Satris GG, Eng C, Puccio AM, Wang KKW, Mukherjee P, Valadka AB, Okonkwo DO, Diaz-Arrastia R, Manley GT. COMT Val 158 Met polymorphism is associated with nonverbal cognition following mild traumatic brain injury. Neurogenetics 2015; 17:31-41. [PMID: 26576546 DOI: 10.1007/s10048-015-0467-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022]
Abstract
Mild traumatic brain injury (mTBI) results in variable clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism in catechol-o-methyltransferase (COMT), an enzyme which degrades catecholamine neurotransmitters, may influence cognitive deficits following moderate and/or severe head trauma. However, this has been disputed, and its role in mTBI has not been studied. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val (158) Met polymorphism influences outcome on a cognitive battery 6 months following mTBI--Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), Trail Making Test (TMT) Trail B minus Trail A time, and California Verbal Learning Test, Second Edition Trial 1-5 Standard Score (CVLT-II). All patients had an emergency department Glasgow Coma Scale (GCS) of 13-15, no acute intracranial pathology on head CT, and no polytrauma as defined by an Abbreviated Injury Scale (AIS) score of ≥3 in any extracranial region. Results in 100 subjects aged 40.9 (SD 15.2) years (COMT Met (158) /Met (158) 29 %, Met (158) /Val (158) 47 %, Val (158) /Val (158) 24 %) show that the COMT Met (158) allele (mean 101.6 ± SE 2.1) associates with higher nonverbal processing speed on the WAIS-PSI when compared to Val (158) /Val (158) homozygotes (93.8 ± SE 3.0) after controlling for demographics and injury severity (mean increase 7.9 points, 95 % CI [1.4 to 14.3], p = 0.017). The COMT Val (158) Met polymorphism did not associate with mental flexibility on the TMT or with verbal learning on the CVLT-II. Hence, COMT Val (158) Met may preferentially modulate nonverbal cognition following uncomplicated mTBI.Registry: ClinicalTrials.gov Identifier NCT01565551.
Collapse
Affiliation(s)
- Ethan A Winkler
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - John K Yue
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Thomas W McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nancy R Temkin
- Departments of Neurological Surgery and Biostatistics, University of Washington, Seattle, WA, USA
| | - Sam S Oh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Esteban G Burchard
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Donglei Hu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Adam R Ferguson
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Hester F Lingsma
- Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands
| | - John F Burke
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Marco D Sorani
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Jonathan Rosand
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Esther L Yuh
- Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA.,Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Jason Barber
- Departments of Neurological Surgery and Biostatistics, University of Washington, Seattle, WA, USA
| | - Phiroz E Tarapore
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Raquel C Gardner
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Neurology, San Francisco Veterans Administration Medical Center, San Francisco, CA, USA
| | - Sourabh Sharma
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Gabriela G Satris
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Celeste Eng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kevin K W Wang
- Center for Neuroproteomics and Biomarkers Research, Departments of Psychiatry and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Pratik Mukherjee
- Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA.,Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | | | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA. .,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA.
| | | |
Collapse
|
175
|
Genes of the dopaminergic system selectively modulate top-down but not bottom-up attention. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 15:104-16. [PMID: 25253063 DOI: 10.3758/s13415-014-0320-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cognitive performance is modulated by the neurotransmitter dopamine (DA). Recently, it has been proposed that DA has a strong impact on top-down but not on bottom-up selective visual attention. We tested this assumption by analyzing the influence of two gene variants of the dopaminergic system. Both the catechol O-methyltransferase (COMT) protein and the dopamine transporter (DAT) protein are crucial for the degradation and inactivation of DA. These metabolizing proteins modulate the availability of DA, especially in the prefrontal cortex and basal ganglia. The functional COMT Val158Met polymorphism of the COMT gene represents two coding variants, valine and methionine. In Met allele carriers, the COMT activity is reduced three- to fourfold. A variable number of tandem repeats (VNTR) polymorphism exists in the DAT1 gene, which encodes DAT. The DAT density was reported to be about 50% higher for the DAT1 10-repeat than the DAT1 9-repeat allele. We assessed attention via two experimental tasks that predominantly measure either top-down processing (the Stroop task) or bottom-up processing (the Posner-Cuing task). Carriers of the Met allele of the COMT Val158Met polymorphism displayed better performance in the Stroop task, but did not outperform the other participants in the Posner-Cuing task. The same result was noted for carriers of the DAT1 10-repeat allele. From these findings, we suggest that normal variations of the dopaminergic system impact more strongly on top-down than on bottom-up attention.
Collapse
|
176
|
Podina I, Popp R, Pop I, David D. Genetic Correlates of Maladaptive Beliefs: COMT VAL(158)MET and Irrational Cognitions Linked Depending on Distress. Behav Ther 2015; 46:797-808. [PMID: 26520222 DOI: 10.1016/j.beth.2015.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 06/11/2015] [Accepted: 06/14/2015] [Indexed: 11/18/2022]
Abstract
Maladaptive/irrational beliefs are significant cognitive vulnerability mechanisms in psychopathology. They are more likely to be associated with a genetic vulnerability marker under conditions of emotional distress when irrational beliefs are more salient. Therefore, in the current study we investigated the COMT Val(158)Met gene variation in relation to irrational beliefs, assuming this relationship depended on the level of emotional distress. Two hundred and sixty-seven genotyped volunteers were assessed for core/general maladaptive beliefs, as well as trait emotional distress. We focused on context-independent measures of irrational beliefs and emotional distress in the absence of a stressor. As expected, the relationship between COMT Val(158)Met and irrational beliefs depended on the level of emotional distress (f(2)=.314). The COMT Val(158)Met-irrationality association was significant only when individuals fell in the average to above average range of emotional distress. Furthermore, within this range the Met allele seemed to relate to higher irrational beliefs. These results were significant for overall irrational beliefs and its subtypes, but not for rational beliefs, the functional counterpart of irrationality. In light of the study's limitations, the results should be considered as preliminary. If replicable, these findings have potential implications for therapygenetics, changing the view that COMT Val(158)Met might be of greater relevance when treatment modality does not rely on cognitive variables.
Collapse
Affiliation(s)
| | - Radu Popp
- Iuliu Hatieganu University of Medicine and Pharmacy
| | - Ioan Pop
- Iuliu Hatieganu University of Medicine and Pharmacy
| | - Daniel David
- Babeş-Bolyai University; Icahn School of Medicine at Mount Sinai
| |
Collapse
|
177
|
Tunbridge EM, Dunn G, Murray RM, Evans N, Lister R, Stumpenhorst K, Harrison PJ, Morrison PD, Freeman D. Genetic moderation of the effects of cannabis: catechol-O-methyltransferase (COMT) affects the impact of Δ9-tetrahydrocannabinol (THC) on working memory performance but not on the occurrence of psychotic experiences. J Psychopharmacol 2015; 29:1146-51. [PMID: 26464454 DOI: 10.1177/0269881115609073] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cannabis use can induce cognitive impairments and psychotic experiences. A functional polymorphism in the catechol-O-methyltransferase (COMT) gene (Val(158)Met) appears to influence the immediate cognitive and psychotic effects of cannabis, or ∆(9)-tetrahydrocannabinol (THC), its primary psychoactive ingredient. This study investigated the moderation of the impact of experimentally administered THC by COMT. Cognitive performance and psychotic experiences were studied in participants without a psychiatric diagnosis, using a between-subjects design (THC vs. placebo). The effect of COMT Val(158)Met genotype on the cognitive and psychotic effects of THC, administered intravenously in a double-blind, placebo-controlled manner to 78 participants who were vulnerable to paranoia, was examined. The results showed interactive effects of genotype and drug group (THC or placebo) on working memory, assayed using the Digit Span Backwards task. Specifically, THC impaired performance in COMT Val/Val, but not Met, carriers. In contrast, the effect of THC on psychotic experiences, measured using the Community Assessment of Psychic Experiences (CAPE) positive dimension, was unaffected by COMT genotype. This study is the largest to date examining the impact of COMT genotype on response to experimentally administered THC, and the first using a purely non-clinical cohort. The data suggest that COMT genotype moderates the cognitive, but not the psychotic, effects of acutely administered THC.
Collapse
Affiliation(s)
| | - Graham Dunn
- Centre for Biostatistics, Institute of Population Health, University of Manchester, Manchester, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK
| | - Nicole Evans
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Rachel Lister
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | | | - Paul D Morrison
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK
| | - Daniel Freeman
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
178
|
Blair C, Sulik M, Willoughby M, Mills-Koonce R, Petrill S, Bartlett C, Greenberg M. Catechol-O-methyltransferase Val158met polymorphism interacts with early experience to predict executive functions in early childhood. Dev Psychobiol 2015; 57:833-41. [PMID: 26251232 PMCID: PMC5241672 DOI: 10.1002/dev.21332] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/26/2015] [Indexed: 12/14/2022]
Abstract
Numerous studies demonstrate that the Methionine variant of the catechol-O-methyltransferase Val158Met polymorphism, which confers less efficient catabolism of catecholamines, is associated with increased focal activation of prefrontal cortex (PFC) and higher levels of executive function abilities. By and large, however, studies of COMT Val158Met have been conducted with adult samples and do not account for the context in which development is occurring. Effects of early adversity on stress response physiology and the inverted U shape relating catecholamine levels to neural activity in PFC indicate the need to take into account early experience when considering relations between genes such as COMT and executive cognitive ability. Consistent with this neurobiology, we find in a prospective longitudinal sample of children and families (N = 1292) that COMT Val158Met interacts with early experience to predict executive function abilities in early childhood. Specifically, the Valine variant of the COMT Val158Met polymorphism, which confers more rather than less efficient catabolism of catecholamines is associated with higher executive function abilities at child ages 48 and 60 months and with faster growth of executive function for children experiencing early adversity, as indexed by cumulative risk factors in the home at child ages 7, 15, 24, and 36 months. Findings indicate the importance of the early environment for the relation between catecholamine genes and developmental outcomes and demonstrate that the genetic moderation of environmental risk is detectable in early childhood.
Collapse
Affiliation(s)
- Clancy Blair
- Department of Applied Psychology, NYU, 246 Greene St, Kimball Hall, 8th floor, New York, NY 10003.
| | - Michael Sulik
- Department of Applied Psychology, NYU, 246 Greene St, Kimball Hall, 8th floor, New York, NY 10003
| | - Michael Willoughby
- Frank Porter Graham Child Development Center, 521 S. Greensboro Street, CB 8185, NC 27599
| | - Roger Mills-Koonce
- Frank Porter Graham Child Development Center, 521 S. Greensboro Street, CB 8185, NC 27599
| | - Stephen Petrill
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210
| | - Christopher Bartlett
- The Research Institute at Nationwide Children's Hospital & The Ohio State University, 575 Children's Crossroad WB5149, Columbus, OH 43215
| | - Mark Greenberg
- Department of HDFS, 110 Henderson South, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
179
|
Korner G, Noain D, Ying M, Hole M, Flydal MI, Scherer T, Allegri G, Rassi A, Fingerhut R, Becu-Villalobos D, Pillai S, Wueest S, Konrad D, Lauber-Biason A, Baumann CR, Bindoff LA, Martinez A, Thöny B. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency. Brain 2015; 138:2948-63. [PMID: 26276013 DOI: 10.1093/brain/awv224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2023] Open
Abstract
Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum.
Collapse
Affiliation(s)
- Germaine Korner
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 2 Affiliated with the Neuroscience Centre Zurich ZNZ, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | - Daniela Noain
- 4 Department of Neurology, University Hospital of Zurich, Zürich, Switzerland
| | - Ming Ying
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Magnus Hole
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marte I Flydal
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Tanja Scherer
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | - Gabriella Allegri
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | - Anahita Rassi
- 6 Division of Clinical Chemistry and Biochemistry, Department of Paediatrics, University of Zürich, Zürich, Switzerland
| | - Ralph Fingerhut
- 7 Swiss Newborn Screening Laboratory, University Children's Hospital, Zurich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | | | - Samyuktha Pillai
- 9 Institute of Physiology, University of Zurich, Zürich, Switzerland
| | - Stephan Wueest
- 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland 10 Division of Endocrinology, Department of Pediatrics, University of Zurich, Switzerland
| | - Daniel Konrad
- 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland 10 Division of Endocrinology, Department of Pediatrics, University of Zurich, Switzerland
| | - Anna Lauber-Biason
- 11 Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Christian R Baumann
- 2 Affiliated with the Neuroscience Centre Zurich ZNZ, Zürich, Switzerland 4 Department of Neurology, University Hospital of Zurich, Zürich, Switzerland
| | - Laurence A Bindoff
- 12 Department of Clinical Medicine K1, University of Bergen, Norway 13 Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Aurora Martinez
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Beat Thöny
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 2 Affiliated with the Neuroscience Centre Zurich ZNZ, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| |
Collapse
|
180
|
|
181
|
de Koning MB, van Duin EDA, Boot E, Bloemen OJN, Bakker JA, Abel KM, van Amelsvoort TAMJ. PRODH rs450046 and proline x COMT Val¹⁵⁸ Met interaction effects on intelligence and startle in adults with 22q11 deletion syndrome. Psychopharmacology (Berl) 2015; 232:3111-22. [PMID: 26068888 DOI: 10.1007/s00213-015-3971-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/04/2015] [Indexed: 11/29/2022]
Abstract
RATIONALE 22q11 deletion syndrome (22q11DS) is associated with an increased risk for psychotic disorders, suggesting a relationship between genotypes and the pathophysiology of psychotic disorders. Two genes in the deleted region, catechol-O-methyl-transferase (COMT) and proline dehydrogenase (oxidase) 1 (PRODH), contain polymorphisms associated with neuropsychiatric phenotypes. OBJECTIVES Here, we explored the association between polymorphisms and full-scale intelligence (FSIQ), startle reactivity (SR) and prepulse inhibition (PPI) in adults with 22q11DS. METHODS Forty-five adults with 22q11DS were genotyped for PRODH rs450046, rs372055 and COMT Val(158)Met. Plasma proline levels, FSIQ, SR and PPI were measured. RESULTS Thirty-five percent of the subjects were hyperprolinemic with a median proline value of 456 μmol/L. C allele carriers of PRODH rs450046 had a lower FSIQ compared to T allele carriers, indicating the C allele to be a risk allele (C allele: mean FSIQ 60.2 (sd 8.7); T allele: mean FSIQ 73.7 (sd 11.5); F 1,43 = 7.59; p = 0.009; partial η (2) = 0.15). A significant interaction effect of proline levels and COMT Val(158)Met genotype was found for SR (F 1,16 = 7.9; p = 0.01; partial η (2) = 0.33), but not for PPI and FSIQ. In subjects with hyperprolinemia, the COMT Val(158)Met genotype effect on SR was stronger than in subjects with normal proline levels. CONCLUSIONS Overall, these data provide further evidence for the risk effect of elevated proline levels combined with the COMT Met allele and support the possibilities of using 22q11DS as a model to investigate genotype effects on psychiatric disorders.
Collapse
Affiliation(s)
- Mariken B de Koning
- Arkin Mental Health Care, Baron G.A. Tindalstraat 27, 1019 TS, Amsterdam, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
182
|
Storozheva ZI, Kirenskaya AV, Proshin AT. The neuromediator mechanisms of the cognitive deficit in schizophrenia. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415030095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
183
|
Dauvilliers Y, Tafti M, Landolt HP. Catechol-O-methyltransferase, dopamine, and sleep-wake regulation. Sleep Med Rev 2015; 22:47-53. [DOI: 10.1016/j.smrv.2014.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 12/31/2022]
|
184
|
Vinther-Jensen T, Nielsen T, Budtz-Jørgensen E, Larsen I, Hansen M, Hasholt L, Hjermind L, Nielsen J, Nørremølle A. Psychiatric and cognitive symptoms in Huntington's disease are modified by polymorphisms in catecholamine regulating enzyme genes. Clin Genet 2015; 89:320-7. [DOI: 10.1111/cge.12628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022]
Affiliation(s)
- T. Vinther-Jensen
- Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
- Department of Cellular and Molecular Medicine, Section of Neurogenetics; University of Copenhagen; Copenhagen Denmark
| | - T.T. Nielsen
- Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - E. Budtz-Jørgensen
- Department of Biostatistics; University of Copenhagen; Copenhagen Denmark
| | - I.U. Larsen
- Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
- Department of Psychology; University of Copenhagen; Copenhagen Denmark
| | - M.M. Hansen
- Department of Cellular and Molecular Medicine, Section of Neurogenetics; University of Copenhagen; Copenhagen Denmark
| | - L. Hasholt
- Department of Cellular and Molecular Medicine, Section of Neurogenetics; University of Copenhagen; Copenhagen Denmark
| | - L.E. Hjermind
- Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
- Department of Cellular and Molecular Medicine, Section of Neurogenetics; University of Copenhagen; Copenhagen Denmark
| | - J.E. Nielsen
- Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
- Department of Cellular and Molecular Medicine, Section of Neurogenetics; University of Copenhagen; Copenhagen Denmark
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - A. Nørremølle
- Department of Cellular and Molecular Medicine, Section of Neurogenetics; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
185
|
Papenberg G, Lindenberger U, Bäckman L. Aging-related magnification of genetic effects on cognitive and brain integrity. Trends Cogn Sci 2015; 19:506-14. [PMID: 26187033 DOI: 10.1016/j.tics.2015.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/11/2015] [Accepted: 06/22/2015] [Indexed: 11/17/2022]
Abstract
Heritability studies document substantial genetic influences on cognitive performance and decline in old age. Increasing evidence shows that effects of genetic variations on cognition, brain structure, and brain function become stronger as people age. Disproportionate impairments are typically observed for older individuals carrying disadvantageous genotypes of different candidate genes. These data support the resource-modulation hypothesis, which states that genetic effects are magnified in persons with constrained neural resources, such as older adults. However, given that findings are not unequivocal, we discuss the need to address several factors that may resolve inconsistencies in the extant literature (gene-gene and gene-environment interactions, study populations, gene-environment correlations, and epigenetic mechanisms).
Collapse
Affiliation(s)
- Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| |
Collapse
|
186
|
Bowers H, Smith D, de la Salle S, Choueiry J, Impey D, Philippe T, Dort H, Millar A, Daigle M, Albert PR, Beaudoin A, Knott V. COMT polymorphism modulates the resting-state EEG alpha oscillatory response to acute nicotine in male non-smokers. GENES, BRAIN, AND BEHAVIOR 2015; 14:466-76. [PMID: 26096691 PMCID: PMC4514526 DOI: 10.1111/gbb.12226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 11/28/2022]
Abstract
Performance improvements in cognitive tasks requiring executive functions are evident with nicotinic acetylcholine receptor (nAChR) agonists, and activation of the underlying neural circuitry supporting these cognitive effects is thought to involve dopamine neurotransmission. As individual difference in response to nicotine may be related to a functional polymorphism in the gene encoding catechol-O-methyltransferase (COMT), an enzyme that strongly influences cortical dopamine metabolism, this study examined the modulatory effects of the COMT Val158Met polymorphism on the neural response to acute nicotine as measured with resting-state electroencephalographic (EEG) oscillations. In a sample of 62 healthy non-smoking adult males, a single dose (6 mg) of nicotine gum administered in a randomized, double-blind, placebo-controlled design was shown to affect α oscillatory activity, increasing power of upper α oscillations in frontocentral regions of Met/Met homozygotes and in parietal/occipital regions of Val/Met heterozygotes. Peak α frequency was also found to be faster with nicotine (vs. placebo) treatment in Val/Met heterozygotes, who exhibited a slower α frequency compared to Val/Val homozygotes. The data tentatively suggest that interindividual differences in brain α oscillations and their response to nicotinic agonist treatment are influenced by genetic mechanisms involving COMT.
Collapse
Affiliation(s)
- H. Bowers
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - D. Smith
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - S. de la Salle
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - J. Choueiry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - D. Impey
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - T. Philippe
- University of Ottawa Institute of Mental Health Research, Royal Ottawa Mental Health Care Centre, Ottawa, ON, Canada
| | - H. Dort
- University of Ottawa Institute of Mental Health Research, Royal Ottawa Mental Health Care Centre, Ottawa, ON, Canada
| | - A. Millar
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - M. Daigle
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - P. R. Albert
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - A. Beaudoin
- University of Ottawa Institute of Mental Health Research, Royal Ottawa Mental Health Care Centre, Ottawa, ON, Canada
| | - V. Knott
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Institute of Mental Health Research, Royal Ottawa Mental Health Care Centre, Ottawa, ON, Canada
| |
Collapse
|
187
|
Association between autism spectrum disorder in individuals with velocardiofacial (22q11.2 deletion) syndrome and PRODH and COMT genotypes. Psychiatr Genet 2015; 24:269-72. [PMID: 25325218 DOI: 10.1097/ypg.0000000000000062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Velocardiofacial (VCFS; 22q11.2 deletion) syndrome is a genetic disorder that results from a hemizygous deletion of the q11.2 region on chromosome 22, and is associated with greatly increased risk for psychiatric disorders, including autism spectrum disorder (ASD) and schizophrenia. There is emerging evidence for the involvement of catechol-O-methyltransferase (COMT) and proline dehydrogenase (oxidase) 1 (PRODH) in the psychiatric phenotype of individuals with VCFS. Here, we tested the hypothesis that PRODH and COMT are associated with ASD in youths with VCFS. We found that individuals with VCFS and the low-activity alleles of both PRODH and COMT (rs4819756A and rs4680A) were more likely to present with ASD as compared with individuals with VCFS and the high-activity alleles of these genes [P<0.05; odds ratio=6.0 (95% confidence interval=1.27-28.26; N=87)]. Our results suggest that PRODH and COMT may interact to contribute to the ASD phenotype in individuals with VCFS.
Collapse
|
188
|
Córdova-Palomera A, Tornador C, Falcón C, Bargalló N, Nenadic I, Deco G, Fañanás L. Altered amygdalar resting-state connectivity in depression is explained by both genes and environment. Hum Brain Mapp 2015; 36:3761-76. [PMID: 26096943 DOI: 10.1002/hbm.22876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/05/2015] [Accepted: 06/02/2015] [Indexed: 12/19/2022] Open
Abstract
Recent findings indicate that alterations of the amygdalar resting-state fMRI connectivity play an important role in the etiology of depression. While both depression and resting-state brain activity are shaped by genes and environment, the relative contribution of genetic and environmental factors mediating the relationship between amygdalar resting-state connectivity and depression remain largely unexplored. Likewise, novel neuroimaging research indicates that different mathematical representations of resting-state fMRI activity patterns are able to embed distinct information relevant to brain health and disease. The present study analyzed the influence of genes and environment on amygdalar resting-state fMRI connectivity, in relation to depression risk. High-resolution resting-state fMRI scans were analyzed to estimate functional connectivity patterns in a sample of 48 twins (24 monozygotic pairs) informative for depressive psychopathology (6 concordant, 8 discordant and 10 healthy control pairs). A graph-theoretical framework was employed to construct brain networks using two methods: (i) the conventional approach of filtered BOLD fMRI time-series and (ii) analytic components of this fMRI activity. Results using both methods indicate that depression risk is increased by environmental factors altering amygdalar connectivity. When analyzing the analytic components of the BOLD fMRI time-series, genetic factors altering the amygdala neural activity at rest show an important contribution to depression risk. Overall, these findings show that both genes and environment modify different patterns the amygdala resting-state connectivity to increase depression risk. The genetic relationship between amygdalar connectivity and depression may be better elicited by examining analytic components of the brain resting-state BOLD fMRI signals.
Collapse
Affiliation(s)
- Aldo Córdova-Palomera
- Unidad de Antropología, Departamento de Biología Animal, Facultad de Biología and Instituto de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Cristian Tornador
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carles Falcón
- Medical Image Core facility, the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomedicina y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Nuria Bargalló
- Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Medical Image Core facility, the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Diagnóstico por Imagen, Hospital Clínico, Barcelona, Spain
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain
| | - Lourdes Fañanás
- Unidad de Antropología, Departamento de Biología Animal, Facultad de Biología and Instituto de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
189
|
Inhibition of catechol-O-methyl transferase (COMT) by tolcapone restores reductions in microtubule-associated protein 2 (MAP2) and synaptophysin (SYP) following exposure of neuronal cells to neurotropic HIV. J Neurovirol 2015; 21:535-43. [PMID: 26037113 DOI: 10.1007/s13365-015-0354-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/08/2015] [Accepted: 05/20/2015] [Indexed: 12/13/2022]
Abstract
This investigation aimed to assess whether inhibition of cathecol-O-methyl transferase (COMT) by tolcapone could provide neuroprotection against HIV-associated neurodegenerative effects. This study was conducted based on a previous work, which showed that a single nucleotide polymorphism (SNP) at position 158 (val158met) in COMT, resulted in 40 % lower COMT activity. Importantly, this reduction confers a protective effect against HIV-associated neurocognitive disorders (HAND), which have been linked to HIV-associated brain changes. SH-SY5Y-differentiated neurons were exposed to macrophage-propagated HIV (neurotropic MACS2-Br strain) in the presence or absence of tolcapone for 6 days. RNA was extracted, and qPCR was performed using Qiagen RT2 custom array consisting of genes for neuronal and synaptic integrity, COMT and pro-inflammatory markers. Immunofluorescence was conducted to validate the gene expression changes at the protein level. Our findings demonstrated that HIV significantly increased the messenger RNA (mRNA) expression of COMT while reducing the expression of microtubule-associated protein 2 (MAP2) (p = 0.0015) and synaptophysin (SYP) (p = 0.012) compared to control. A concomitant exposure of tolcapone ameliorated the perturbed expression of MAP2 (p = 0.009) and COMT (p = 0.024) associated with HIV. Immunofluorescence revealed a trend reduction of SYP and MAP2 with exposure to HIV and that concomitant exposure of tolcapone increased SYP (p = 0.016) compared to HIV alone. Our findings demonstrated in vitro that inhibition of COMT can ameliorate HIV-associated neurodegenerative changes that resulted in the decreased expression of the structural and synaptic components MAP2 and SYP. As HIV-associated dendritic and synaptic damage are contributors to HAND, inhibition of COMT may represent a potential strategy for attenuating or preventing some of the symptoms of HAND.
Collapse
|
190
|
Markett S, Montag C, Heeren B, Saryiska R, Lachmann B, Weber B, Reuter M. Voxelwise eigenvector centrality mapping of the human functional connectome reveals an influence of the catechol-O-methyltransferase val158met polymorphism on the default mode and somatomotor network. Brain Struct Funct 2015; 221:2755-65. [PMID: 26025199 DOI: 10.1007/s00429-015-1069-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/21/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Sebastian Markett
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany.
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany.
| | | | - Behrend Heeren
- Institute for Numerical Simulation, University of Bonn, Bonn, Germany
| | - Rayna Saryiska
- Department of Psychology, University of Ulm, Ulm, Germany
| | - Bernd Lachmann
- Department of Psychology, University of Ulm, Ulm, Germany
| | - Bernd Weber
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Life and Brain Center Bonn, Bonn, Germany
- Department of Epileptology, University Clinics Bonn, Bonn, Germany
| | - Martin Reuter
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
| |
Collapse
|
191
|
Variation in serotonin transporter linked polymorphic region (5-HTTLPR) short/long genotype modulates resting frontal electroencephalography asymmetries in children. Dev Psychopathol 2015; 28:239-50. [PMID: 25990287 DOI: 10.1017/s0954579415000413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous studies have documented the serotonin transporter linked polymorphic region (5-HTTLPR) as a genetic susceptibility variant that contributes to variability in outcomes related to affective psychopathology, with the short allele associated with negative affectivity and the long allele associated with positive affectivity. In a separate but related line of research, extensive evidence suggests that frontal electroencephalography (EEG) hemispheric asymmetry in the alpha band is also associated with risk for affective psychopathologies, with leftward asymmetry associated with approach-related behavior patterns and rightward frontal EEG asymmetry associated with withdrawn behavioral tendencies. We examined frontal EEG hemispheric asymmetries in relation to 5-HTTLPR genotyping in 70 children between 4 and 6 years of age. Analyses revealed that frontal EEG lateralization interacted with genotype such that children homozygous for the short allele exhibited rightward frontal EEG asymmetries, children who were homozygous for the long allele consistently exhibited a positive pattern of leftward asymmetry, and heterozygotes exhibited equivalent left and right frontal activity. These findings suggest that the 5-HTTLPR short allele may provide a degree of susceptibility for later affective psychopathology in adolescence and adulthood, through mediation of frontal brain activity that is associated with cognitive-behavioral withdrawal tendencies and negative affectivity.
Collapse
|
192
|
Wallace DL, Aarts E, d'Oleire Uquillas F, Dang LC, Greer SM, Jagust WJ, D'Esposito M. Genotype status of the dopamine-related catechol-O-methyltransferase (COMT) gene corresponds with desirability of "unhealthy" foods. Appetite 2015; 92:74-80. [PMID: 25963102 DOI: 10.1016/j.appet.2015.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/07/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
The role of dopamine is extensively documented in weight regulation and food intake in both animal models and humans. Yet the role of dopamine has not been well studied in individual differences for food desirability. Genotype status of the dopamine-related catechol-O-methyltransferase (COMT) gene has been shown to influence dopamine levels, with greater COMT enzymatic activity in val/val individuals corresponding to greater degradation of dopamine. Decreased dopamine has been associated with poorer cognitive control and diminished goal-directed behavior in various behavioral paradigms. Additionally, dopaminergic-rich regions such as the frontal cortex and dorsal striatum have been shown to be important for supporting food-related decision-making. However, the role of dopamine, as assessed by COMT genotype status, in food desirability has not been fully explored. Therefore, we utilized an individual's COMT genotype status (n = 61) and investigated food desirability based on self-rated "healthy" and "unhealthy" food perceptions. Here we found val/val individuals (n = 19) have greater desirability for self-rated "unhealthy" food items, but not self-rated "healthy" food items, as compared to val/met (n = 24) and met/met (n = 18) individuals (p < 0.005). Utilizing an objective health measure for the food items, we also found val/val and val/met individuals have greater desirability for objectively defined "unhealthy" food items, as compared to met/met individuals (p < 0.01). This work further substantiates the role of dopamine in food-related behaviors and more specifically in relationship to food desirability for "unhealthy" food items.
Collapse
Affiliation(s)
- Deanna L Wallace
- Helen Wills Neuroscience Institute, University of California, 132 Barker Hall, Berkeley, CA 94720-3190, USA; Department of Neurosurgery, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94143, USA.
| | - Esther Aarts
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, room 0.56, 6525 EN Nijmegen, The Netherlands
| | - Federico d'Oleire Uquillas
- Helen Wills Neuroscience Institute, University of California, 132 Barker Hall, Berkeley, CA 94720-3190, USA
| | - Linh C Dang
- Department of Psychology, Vanderbilt University, 219 Wilson Hall, 111 21st Avenue, Nashville, TN 37203, USA
| | - Stephanie M Greer
- Helen Wills Neuroscience Institute, University of California, 132 Barker Hall, Berkeley, CA 94720-3190, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, 132 Barker Hall, Berkeley, CA 94720-3190, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, 132 Barker Hall, Berkeley, CA 94720-3190, USA
| |
Collapse
|
193
|
Moskovitz J, Walss-Bass C, Cruz DA, Thompson PM, Hairston J, Bortolato M. The enzymatic activities of brain catechol-O-methyltransferase (COMT) and methionine sulphoxide reductase are correlated in a COMT Val/Met allele-dependent fashion. Neuropathol Appl Neurobiol 2015; 41:941-51. [PMID: 25640985 DOI: 10.1111/nan.12219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/07/2015] [Indexed: 01/05/2023]
Abstract
AIMS The enzyme catechol-O-methyltransferase (COMT) plays a primary role in the metabolism of catecholamine neurotransmitters and is implicated in the modulation of cognitive and emotional responses. The best characterized single nucleotide polymorphism (SNP) of the COMT gene consists of a valine (Val)-to-methionine (Met) substitution at codon 108/158. The Met-containing variant confers a marked reduction in COMT catalytic activity. We recently showed that the activity of recombinant COMT is positively regulated by the enzyme Met sulphoxide reductase (MSR), which counters the oxidation of Met residues of proteins. The current study was designed to assess whether brain COMT activity may be correlated to MSR in an allele-dependent fashion. METHODS COMT and MSR activities were measured from post-mortem samples of prefrontal cortices, striata and cerebella of 32 subjects by using catechol and dabsyl-Met sulphoxide as substrates, respectively. Allelic discrimination of COMT Val(108/185) Met SNP was performed using the Taqman 5'nuclease assay. RESULTS Our studies revealed that, in homozygous carriers of Met, but not Val alleles, the activity of COMT and MSR was significantly correlated throughout all tested brain regions. CONCLUSION These results suggest that the reduced enzymatic activity of Met-containing COMT may be secondary to Met sulphoxidation and point to MSR as a key molecular determinant for the modulation of COMT activity.
Collapse
Affiliation(s)
- Jackob Moskovitz
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, USA
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Science, School of Medicine, University of Texas Health Science Center, Houston, USA
| | - Dianne A Cruz
- Southwest Brain Bank, Department of Psychiatry, School of Medicine, University of Texas Health Science Center, San Antonio, USA
| | - Peter M Thompson
- Southwest Brain Bank, Department of Psychiatry, School of Medicine, University of Texas Health Science Center, San Antonio, USA
| | - Jenaqua Hairston
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, USA
| |
Collapse
|
194
|
Harrison PJ. The current and potential impact of genetics and genomics on neuropsychopharmacology. Eur Neuropsychopharmacol 2015; 25:671-81. [PMID: 23528807 DOI: 10.1016/j.euroneuro.2013.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 01/30/2013] [Accepted: 02/22/2013] [Indexed: 01/19/2023]
Abstract
One justification for the major scientific and financial investments in genetic and genomic studies in medicine is their therapeutic potential, both for revealing novel targets for drugs which treat the disease process, as well as allowing for more effective and safe use of existing medications. This review considers the extent to which this promise has yet been realised within psychopharmacology, how things are likely to develop in the foreseeable future, and the key issues involved. It draws primarily on examples from schizophrenia and its treatments. One observation is that there is evidence for a range of genetic influences on different aspects of psychopharmacology in terms of discovery science, but far less evidence that meets the standards required before such discoveries impact upon clinical practice. One reason is that results reveal complex genetic influences that are hard to replicate and usually of very small effect. Similarly, the slow progress being made in revealing the genes that underlie the major psychiatric syndromes hampers attempts to apply the findings to identify novel drug targets. Nevertheless, there are some intriguing positive findings of various kinds, and clear potential for genetics and genomics to play an increasing and major role in psychiatric drug discovery.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom.
| |
Collapse
|
195
|
Villemonteix T, De Brito SA, Slama H, Kavec M, Balériaux D, Metens T, Baijot S, Mary A, Ramoz N, Septier M, Gorwood P, Peigneux P, Massat I. Structural correlates of COMT Val158Met polymorphism in childhood ADHD: a voxel-based morphometry study. World J Biol Psychiatry 2015; 16:190-9. [PMID: 25495556 DOI: 10.3109/15622975.2014.984629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The Val158-allele of the catechol-O-methyltransferase (COMT) Val158Met (rs4680) functional polymorphism has been identified as a risk factor for antisocial behaviour in attention-deficit/hyperactivity disorder (ADHD). Here, we used voxel-based morphometry to investigate the effects of Val158Met polymorphism on grey matter (GM) volumes in a sample of 7-13-year-old children. METHODS MRI and genotype data were obtained for 38 children with combined-type ADHD and 24 typically developing (TD) children. Four regions of interest were identified: striatum, cerebellum, temporal lobe and inferior frontal gyrus (IFG). RESULTS When compared to TD children, those with ADHD had a significant decrease of GM volume in the IFG. Volume in this region was negatively correlated with ratings of hyperactivity/impulsivity symptoms. Furthermore, the smaller GM volume in the IFG was attributed to the presence of the Met158-allele, as only children with ADHD carrying a Met158-allele exhibited such decrease in the IFG. Children with ADHD homozygotes for the Val158-allele presented increased GM volume in the caudate nucleus when compared with TD children. CONCLUSIONS This study provides the first evidence of a modulation of ADHD-related GM volume alterations by Val158Met in two key regions, possibly mediating the relationship between Val158Met polymorphism and antisocial behaviour in children with ADHD.
Collapse
|
196
|
Lee J, Green MF, Calkins ME, Greenwood TA, Gur RE, Gur RC, Lazzeroni LC, Light GA, Nuechterlein KH, Radant AD, Seidman LJ, Siever LJ, Silverman JM, Sprock J, Stone WS, Sugar CA, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Braff DL. Verbal working memory in schizophrenia from the Consortium on the Genetics of Schizophrenia (COGS) study: the moderating role of smoking status and antipsychotic medications. Schizophr Res 2015; 163:24-31. [PMID: 25248939 PMCID: PMC4368500 DOI: 10.1016/j.schres.2014.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/03/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Working memory impairment has been extensively studied in schizophrenia, but less is known about moderators of the impairment. Using the Consortium on the Genetics of Schizophrenia case-control study (COGS-2), we examined smoking status, types of antipsychotic medication, and history of substance as moderators for working memory impairment in schizophrenia. METHODS From 5 sites, 1377 patients with schizophrenia or schizoaffective, depressed type and 1037 healthy controls completed the letter-number span (LNS) task. The LNS uses intermixed letter and digit stimuli that increase from 2 up to 8 stimuli. In the forward condition, participants repeated the letters and numbers in the order they were presented. In the reorder condition, participants repeated the digits in ascending order followed by letters in alphabetical order. RESULTS Schizophrenia patients performed more poorly than controls, with a larger difference on reorder than forward conditions. Deficits were associated with symptoms, functional capacity, and functional outcome. Patients who smoked showed larger impairment than nonsmoking patients, primarily due to deficits on the reorder condition. The impairing association of smoking was more pronounced among patients taking first-generation than those taking second-generation antipsychotic medications. Correlations between working memory and community functioning were stronger for nonsmokers. History of substance use did not moderate working memory impairment. CONCLUSIONS Results confirm the working memory impairment in schizophrenia, and indicate smoking status as an important moderator for these deficits. The greater impairment in smokers may reflect added burden of smoking on general health or that patients with greater deficits are more likely to smoke.
Collapse
Affiliation(s)
- Junghee Lee
- Department of Psychiatry and Biobehavioral Science, Geffen School of Medicine, University of California Los Angeles, CA, United States; VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States.
| | - Michael F. Green
- Department of Psychiatry and Biobehavioral Science, Geffen School of Medicine, University of California Los Angeles, CA, United States
,VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Monica E. Calkins
- Department of Psychiatry, University of Pennsylvania, Philadelphia, United States
| | - Tiffany A. Greenwood
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, United States
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, United States
| | - Laura C. Lazzeroni
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA United States
,Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Gregory A. Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
,VISN22, Mental Illness Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, United States
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Science, Geffen School of Medicine, University of California Los Angeles, CA, United States
| | - Allen D. Radant
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, WA, United States
,VA Puget Sound Healthcare System, Seattle, WA, United States
| | - Larry J. Seidman
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
,Massachusetts Mental Health Center Public Psychiatry Devision of the Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Larry J. Siever
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, United States
,James J. Peters VA Medical Center, New York, NY, United States
| | - Jeremy M. Silverman
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, United States
,James J. Peters VA Medical Center, New York, NY, United States
| | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
,VISN22, Mental Illness Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, United States
| | - William S. Stone
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
,Massachusetts Mental Health Center Public Psychiatry Devision of the Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Catherine A. Sugar
- Department of Psychiatry and Biobehavioral Science, Geffen School of Medicine, University of California Los Angeles, CA, United States
,VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
,Department of Biostatistics, University of California Los Angeles, CA, United States
| | - Neal R. Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Debby W. Tsuang
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, WA, United States
,VA Puget Sound Healthcare System, Seattle, WA, United States
| | - Ming T. Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
,Institute for Genomic Medicine, University of California, San Diego, CA, United States
,Harvard Institute of Psychiatry Epidemiology and Genetics, Boston, MA, United States
| | - Bruce I. Turetsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia, United States
| | - David L. Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
,VISN22, Mental Illness Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
197
|
Featherstone RE, McMullen MF, Ward KR, Bang J, Xiao J, Siegel SJ. EEG biomarkers of target engagement, therapeutic effect, and disease process. Ann N Y Acad Sci 2015; 1344:12-26. [DOI: 10.1111/nyas.12745] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Robert E. Featherstone
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Mary F. McMullen
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Katelyn R. Ward
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Jakyung Bang
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Jane Xiao
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Steven J. Siegel
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| |
Collapse
|
198
|
Barzman D, Geise C, Lin PI. Review of the genetic basis of emotion dysregulation in children and adolescents. World J Psychiatry 2015; 5:112-117. [PMID: 25815260 PMCID: PMC4369540 DOI: 10.5498/wjp.v5.i1.112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/21/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Previous evidence suggests that emotion dysregulation may have different biological correlates between adults and children/adolescents. Although the role of genetic factors has been extensively studied in adult-onset emotion dysregulation, the genetic basis for pediatric-onset emotion dysregulation remains elusive. The current review article presents a summary of previous studies that have suggested a few genetic variants associated with pediatric emotion dysregulation. Among these candidate loci, many prior studies have been focused on serotonin transporter promoter gene polymorphism 5-HTTLPR. Certain alleles of the 5-HTTLPR gene polymorphism have been found to be associated with traits associated with emotion dysregulation, such as aggression, affect reactivity, and insecure attachment. Additionally, genetic variants involving dopamine and neurophysiological biomarkers like the COMT Val158Met (rs460) and dopamine receptor D2/ ankyrin repeat and kinase domain containing one polymorphisms may play a role in emotion dysregulation. Inconsistent findings have been noted, possibly due to the heterogeneity in study designs and characteristics of different populations. Further research on the role of genetic predetermination of emotion dysregulation in children and adolescents is warranted.
Collapse
|
199
|
Tsang J, Fullard JF, Giakoumaki SG, Katsel P, Katsel P, Karagiorga VE, Greenwood TA, Braff DL, Siever LJ, Bitsios P, Haroutunian V, Roussos P. The relationship between dopamine receptor D1 and cognitive performance. NPJ SCHIZOPHRENIA 2015; 1:14002. [PMID: 27336024 PMCID: PMC4849437 DOI: 10.1038/npjschz.2014.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cognitive impairment cuts across traditional diagnostic boundaries and is one of the most typical symptoms in various psychiatric and neurobiological disorders. AIMS The objective of this study was to examine the genetic association between 94 candidate genes, including receptors and enzymes that participate in neurotransmission, with measures of cognition. METHODS The Clinical Dementia Rating (CDR), a global measure of cognition, and genotypes derived from a custom array of 1,536 single-nucleotide polymorphisms (SNPs) in 94 genes were available for a large postmortem cohort of Caucasian cases with Alzheimer's disease (AD), schizophrenia and controls (n=727). A cohort of healthy young males (n=1,493) originating from the LOGOS project (Learning On Genetics Of Schizophrenia Spectrum) profiled across multiple cognitive domains was available for targeted SNP genotyping. Gene expression was quantified in the superior temporal gyrus of control samples (n=109). The regulatory effect on transcriptional activity was assessed using the luciferase reporter system. RESULTS The rs5326-A allele at the promoter region of dopamine receptor D1 (DRD1) locus was associated with: (i) poorer cognition (higher CDR) in the postmortem cohort (P=9.325×10(-4)); (ii) worse cognitive performance relevant to strategic planning in the LOGOS cohort (P=0.008); (iii) lower DRD1 gene expression in the superior temporal gyrus of controls (P=0.038); and (iv) decreased transcriptional activity in human neuroblastoma (SH-SY5Y) cells (P=0.026). CONCLUSIONS An interdisciplinary approach combining genetics with cognitive and molecular neuroscience provided a possible mechanistic link among DRD1 and alterations in cognitive performance.
Collapse
Affiliation(s)
- Jonathan Tsang
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Department of Psychiatry, New York, NY, USA
- Friedman Brain Institute, New York, NY, USA
| | | | | | | | | | | | - David L Braff
- Department of Psychiatry, University of California, San Diego, CA, USA
- VISN-22 Mental Illness Research, Education, and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
| | - Larry J Siever
- Department of Psychiatry, New York, NY, USA
- James J. Peters VA Medical Center, Mental Illness Research Education and Clinical Center (MIRECC), 130 West Kingsbridge Road, Bronx, NY, USA
| | - Panos Bitsios
- Department of Psychiatry, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
- Computational Medicine Laboratory, Institute of Computer Science at FORTH, Heraklion, Greece
| | - Vahram Haroutunian
- Department of Psychiatry, New York, NY, USA
- Friedman Brain Institute, New York, NY, USA
- James J. Peters VA Medical Center, Mental Illness Research Education and Clinical Center (MIRECC), 130 West Kingsbridge Road, Bronx, NY, USA
| | - Panos Roussos
- Department of Psychiatry, New York, NY, USA
- Friedman Brain Institute, New York, NY, USA
- James J. Peters VA Medical Center, Mental Illness Research Education and Clinical Center (MIRECC), 130 West Kingsbridge Road, Bronx, NY, USA
- Department of Genetics and Genomic Sciences, New York, NY, USA
- Institute for Genomics and Multiscale Biology, New York, NY, USA
| |
Collapse
|
200
|
Konishi Y, Tanii H, Otowa T, Sasaki T, Motomura E, Fujita A, Umekage T, Tochigi M, Kaiya H, Okazaki Y, Okada M. Gender-specific association between the COMT Val158Met polymorphism and openness to experience in panic disorder patients. Neuropsychobiology 2015; 69:165-74. [PMID: 24852514 DOI: 10.1159/000360737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/19/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Because major depression and panic disorder are both more prevalent among females and since several lines of evidence suggest that genetic factors might influence an individual's vulnerability to panic disorder, gene-gender interactions are being examined in such psychiatric disorders and mental traits. A number of studies have suggested that specific genes, e.g. catechol-O-methyltransferase (COMT), might lead to distinct clinical characteristics of panic disorder. METHOD We compared gender-specific personality-related psychological factors of 470 individuals with panic disorder and 458 healthy controls in terms of their COMT Val158Met polymorphism and their scores on the Revised NEO Personality Inventory (NEO PI-R) and State-Trait Anxiety Inventory (STAI) with a 1-way analysis of covariance. RESULTS In the male panic disorder patients, the NEO PI-R score for openness to experience was significantly lower in the Met/Met carrier group, whereas there was no such association among the female panic disorder patients or the male or female control groups. CONCLUSION The gender-specific effect of the COMT genotype suggests that the COMT Val/Met genotype may influence a personality trait, openness to experience, in males with panic disorder.
Collapse
Affiliation(s)
- Yoshiaki Konishi
- Department of Psychiatry, Division of Neuroscience, Graduate School of Medicine, Brain Science and Animal Model Research Center, Mie University, Tsu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|