151
|
|
152
|
Paolini-Bertrand M, Cerini F, Martins E, Scurci I, Hartley O. Rapid and low-cost multiplex synthesis of chemokine analogs. J Biol Chem 2018; 293:19092-19100. [PMID: 30305389 DOI: 10.1074/jbc.ra118.004370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/25/2018] [Indexed: 11/06/2022] Open
Abstract
Peptides represent a promising source of new medicines, but improved technologies are needed to facilitate discovery and optimization campaigns. In particular, longer peptides with multiple disulfide bridges are challenging to produce, and producing large numbers of structurally related variants is dissuasively costly and time-consuming. The principal cost and time drivers are the multiple column chromatography purification steps that are used during the multistep chemical synthesis procedure, which involves both ligation and oxidative refolding steps. In this study, we developed a method for multiplex parallel synthesis of complex peptide analogs in which the structurally variant region of the molecule is produced as a small peptide on a 384-well synthesizer with subsequent ligation to the longer, structurally invariant region and oxidative refolding carried out in-well without any column purification steps. To test the method, we used a panel of 96 analogs of the chemokine RANTES (regulated on activation normal T cell expressed and secreted)/CCL5 (69 residues, two disulfide bridges), which had been synthesized using standard approaches and characterized pharmacologically in an earlier study. Although, as expected, the multiplex method generated chemokine analogs of lower purity than those produced in the original study, it was nonetheless possible to closely match the pharmacological attributes (anti-HIV potency, capacity to elicit G protein signaling, and capacity to elicit intracellular receptor sequestration) of each chemokine analog to reference data from the earlier study. This rapid, low-cost approach has the potential to support discovery and optimization campaigns based on analogs of other chemokines as well as those of other complex peptide and small protein targets of a similar size.
Collapse
Affiliation(s)
- Marianne Paolini-Bertrand
- From the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Fabrice Cerini
- From the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Elsa Martins
- From the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Ilaria Scurci
- From the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Oliver Hartley
- From the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| |
Collapse
|
153
|
Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9. J Virol 2018; 92:JVI.00534-18. [PMID: 29899105 DOI: 10.1128/jvi.00534-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
Klebsiella pneumoniae is one of the most common nosocomial opportunistic pathogens and usually exhibits multiple-drug resistance. Phage therapy, a potential therapeutic to replace or supplement antibiotics, has attracted much attention. However, very few Klebsiella phages have been well characterized because of the lack of efficient genome-editing tools. Here, Cas9 from Streptococcus pyogenes and a single guide RNA (sgRNA) were used to modify a virulent Klebsiella bacteriophage, phiKpS2. We first evaluated the distribution of sgRNA activity in phages and proved that it is largely inconsistent with the predicted activity from current models trained on eukaryotic cell data sets. A simple CRISPR-based phage genome-editing procedure was developed based on the discovery that homologous arms as short as 30 to 60 bp were sufficient to introduce point mutation, gene deletion, and swap. We also demonstrated that weak sgRNAs could be used for precise phage genome editing but failed to select random recombinants, possibly because inefficient cleavage can be tolerated through continuous repair by homologous recombination with the uncut genomes. Small frameshift deletion was proved to be an efficient way to evaluate the essentiality of phage genes. By using the abovementioned strategies, a putative promoter and nine genes of phiKpS2 were successfully deleted. Interestingly, the holin gene can be deleted with little effect on phiKpS2 infection, but the reason is not yet clear. This study established an efficient, time-saving, and cost-effective procedure for phage genome editing, which is expected to significantly promote the development of bacteriophage therapy.IMPORTANCE In the present study, we have addressed efficient, time-saving, and cost-effective CRISPR-based phage genome editing of Klebsiella phage, which has the potential to significantly expand our knowledge of phage-host interactions and to promote applications of phage therapy. The distribution of sgRNA activity was first evaluated in phages. Short homologous arms were proven to be enough to introduce point mutation, small frameshift deletion, gene deletion, and swap into phages, and weak sgRNAs were proven useful for precise phage genome editing but failed to select random recombinants, all of which makes the CRISPR-based phage genome-editing method easier to use.
Collapse
|
154
|
Domingo-Calap P, Delgado-Martínez J. Bacteriophages: Protagonists of a Post-Antibiotic Era. Antibiotics (Basel) 2018; 7:E66. [PMID: 30060506 PMCID: PMC6163168 DOI: 10.3390/antibiotics7030066] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Despite their long success for more than half a century, antibiotics are currently under the spotlight due to the emergence of multidrug-resistant bacteria. The development of new alternative treatments is of particular interest in the fight against bacterial resistance. Bacteriophages (phages) are natural killers of bacteria and are an excellent tool due to their specificity and ecological safety. Here, we highlight some of their advantages and drawbacks as potential therapeutic agents. Interestingly, phages are not only attractive from a clinical point of view, but other areas, such as agriculture, food control, or industry, are also areas for their potential application. Therefore, we propose phages as a real alternative to current antibiotics.
Collapse
Affiliation(s)
- Pilar Domingo-Calap
- Department of Genetics, Universitat de València, 46100 Burjassot, Valencia, Spain.
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Valencia, Spain.
| | | |
Collapse
|
155
|
Carpenter AC, Paulsen IT, Williams TC. Blueprints for Biosensors: Design, Limitations, and Applications. Genes (Basel) 2018; 9:E375. [PMID: 30050028 PMCID: PMC6115959 DOI: 10.3390/genes9080375] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Biosensors are enabling major advances in the field of analytics that are both facilitating and being facilitated by advances in synthetic biology. The ability of biosensors to rapidly and specifically detect a wide range of molecules makes them highly relevant to a range of industrial, medical, ecological, and scientific applications. Approaches to biosensor design are as diverse as their applications, with major biosensor classes including nucleic acids, proteins, and transcription factors. Each of these biosensor types has advantages and limitations based on the intended application, and the parameters that are required for optimal performance. Specifically, the choice of biosensor design must consider factors such as the ligand specificity, sensitivity, dynamic range, functional range, mode of output, time of activation, ease of use, and ease of engineering. This review discusses the rationale for designing the major classes of biosensor in the context of their limitations and assesses their suitability to different areas of biotechnological application.
Collapse
Affiliation(s)
- Alexander C Carpenter
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia.
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Thomas C Williams
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia.
| |
Collapse
|
156
|
Lopes RS, Queiroz MAF, Gomes STM, Vallinoto ACR, Goulart LR, Ishak R. Phage display: an important tool in the discovery of peptides with anti-HIV activity. Biotechnol Adv 2018; 36:1847-1854. [PMID: 30012540 DOI: 10.1016/j.biotechadv.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/14/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
Human immunodeficiency virus (HIV) remains a worldwide health problem despite huge investments and research breakthroughs, and no single drug is effective in killing the virus yet. Among new strategies to control HIV infection, the phage display (PD) technology has become a promising tool in the discovery of peptides that can be used as new drugs, or also as possible vaccine candidates. This review discusses basic aspects of PD and its use to advance two main objectives related to combating HIV-1 infection: the identification of peptides that inhibit virus replication and the identification of peptides that induce the production of neutralizing antibodies. We will cover the different approaches used for mapping and selection of mimotopes, and discuss the promising results of these biologicals as antiviral agents.
Collapse
Affiliation(s)
- Ronaldo Souza Lopes
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| | - Maria Alice Freitas Queiroz
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil
| | - Samara Tatielle Monteiro Gomes
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlândia (Universidade Federal de Uberlândia - UFU), Laboratory of Nanobiotechnology, Av. Amazonas s/n, Bloco 2E, Sala 248 - Campus Umuarama, Uberlândia, MG, CEP 38400-902, Brazil.
| | - Ricardo Ishak
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| |
Collapse
|
157
|
Abstract
Phage display has enabled the rapid isolation of antigen-specific antibodies from combinatorial libraries of the variable heavy chain gene (VH) and variable light chain gene (VL). The method is based on genetic engineering of bacteriophages and repeated rounds of antigen-guided selection by phage biopanning.Next-Generation Sequencing (NGS) coupled with bioinformatics are powerful tools for analyzing the large number of DNA sequences present in an immune library.Here, we describe a method that demonstrates how NGS analysis enhances phage biopanning of complex antibody libraries as well as facilitates the antibody discovery process.
Collapse
Affiliation(s)
- Anna Vaisman-Mentesh
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yariv Wine
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
158
|
Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, Krylov VN, Balcão VM. Biotechnological applications of bacteriophages: State of the art. Microbiol Res 2018; 212-213:38-58. [DOI: 10.1016/j.micres.2018.04.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
|
159
|
Buzatti A, Fernandez AD, Arenal A, Pereira E, Monteiro ALG, Molento MB. Sheep polyclonal antibody to map Haemonchus contortus mimotopes using phage display library. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2018; 27:183-190. [DOI: 10.1590/s1984-296120180023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/09/2018] [Indexed: 11/22/2022]
Abstract
Abstract The aim of this study was to evaluate phage display technology for mapping Haemonchus contortus mimotopes. We screened the PhD-7 Phage Display Peptide Library Kit with a sheep polyclonal antibody against H. contortus. After four rounds of selection, 50 phage peptide clones were selected by biopanning and sequenced. Two clones displaying peptide mimotopes of H. contortus proteins were chosen for sheep immunization: clone 6 - mimotope of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and clone 17 - mimotope of a disorganized muscle family member (Dim 1). Twelve sheep were allocated into 3 groups of 4 animals as follow: G1: control group; G2/GAPDH: immunized with clone 6; and G3/Dim1: immunized with clone 17. Four immunizations were performed at intervals of seven days (0, 7, 14, and 21 days). On day 28 post initial vaccination, all groups were orally challenged with 2500 H. contortus infective larvae. The mimotope peptides selected by phage display were recognized by IgG from sheep naturaly infected with H. contortus. The immunization protocol showed an increasein IgG anti-M13 phage titers, but no effect was observed in IgG-specific for the anti-mimotope peptides. This is the first report of successful use of a phage display library for the identification of mimotopes of H. contortus proteins.
Collapse
Affiliation(s)
| | | | | | - Erlán Pereira
- Universidad de Camagüey Ignacio Agramonte Loynaz, Cuba
| | | | | |
Collapse
|
160
|
Xu C, Yang Y, Liu L, Li J, Liu X, Zhang X, Liu Y, Zhang C, Liu X. Microcystin-LR nanobody screening from an alpaca phage display nanobody library and its expression and application. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:220-227. [PMID: 29353171 DOI: 10.1016/j.ecoenv.2018.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Microcystin-LR (MC-LR) is a type of biotoxin that pollutes the ecological environment and food. The study aimed to obtain new nanobodies from phage nanobody library for determination of MC-LR. The toxin was conjugated to keyhole limpet haemocyanin (KLH) and bovine serum albumin (BSA), respectively, then the conjugates were used as coated antigens for enrichment (coated MC-LR-KLH) and screening (coated MC-LR-BSA) of MC-LR phage nanobodies from an alpaca phage display nanobody library. The antigen-specific phage particles were enriched effectively with four rounds of biopanning. At the last round of enrichment, total 20 positive monoclonal phage nanobodies were obtained from the library, which were analyzed after monoclonal phage enzyme linked immunosorbent assay (ELISA), colony PCR and DNA sequencing. The most three positive nanobody genes, ANAb12, ANAb9 and ANAb7 were cloned into pET26b vector, then the nanobodies were expressed in Escherichia coli BL21 respectively. After being purified, the molecular weight (M.W.) of all nanobodies were approximate 15kDa with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The purified nanobodies, ANAb12, ANAb9 and ANAb7 were used to establish the indirect competitive ELISA (IC-ELISA) for MC-LR, and their half-maximum inhibition concentrations (IC50) were 0.87, 1.17 and 1.47μg/L, their detection limits (IC10) were 0.06, 0.08 and 0.12μg/L, respectively. All of them showed strong cross-reactivity (CRs) of 82.7-116.9% for MC-RR, MC-YR and MC-WR, and weak CRs of less than 4.56% for MC-LW, less than 0.1% for MC-LY and MC-LF. It was found that all the IC-ELISAs for MC-LR spiked in tap water samples detection were with good accuracy, stability and repeatability, their recoveries were 84.0-106.5%, coefficient of variations (CVs) were 3.4-10.6%. These results showed that IC-ELISA based on the nanobodies from the alpaca phage display antibody library were promising for high sensitive determination of multiple MCs.
Collapse
Affiliation(s)
- Chongxin Xu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Food Quality and Safety of Jiangsu/Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ying Yang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Liwen Liu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jianhong Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xiaoqin Liu
- Huaihua Vocational and Technical College, Huaihua 418007, China
| | - Xiao Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu/Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuan Liu
- Key Laboratory of Food Quality and Safety of Jiangsu/Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Cunzheng Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu/Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xianjin Liu
- Key Laboratory of Food Quality and Safety of Jiangsu/Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
161
|
Screening and Preliminary Verification of a Phage Display Single-Chain Antibody Library Against Coal Workers' Pneumoconiosis. J Occup Environ Med 2018; 58:1264-1269. [PMID: 27930489 DOI: 10.1097/jom.0000000000000907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES To construct a phage display human antibody library (PDHAL) against pneumoconiosis for the diagnosis and treatment of coal worker pneumoconiosis (CWP). METHODS The PDHAL was established via CWP blood and six positive antibodies were discovered. 867 coal workers (558 CWP and 309 without CWP) and 393 controls were recruited to validate the results. RESULTS A PDHAL against CWP was established, from which six strong positive clones were selected, sequenced and identified as VEGF, interleukin-18, HSP70, HER3, Gz-B and RF. Logistic regression analysis revealed that VEGF (OR (95% CI), 0.02 (0.01to 0.07), P < 0.05), RF-Ab (OR (95% CI): 0.46 (0.28 to 0.73), P < 0.05) and HSP70/HSP-70-Ab (OR (95% CI): 0.71 (0.53 to 0.95), P < 0.05) were protective factors for CWP after adjustment of confounding factors. CONCLUSION The serum VEGF, RF-Ab and HSP-70/HSP-70 antibodies were potential biomarkers for diagnosis and treatment of CWP.
Collapse
|
162
|
de la Cruz S, Madrid R, García-García A, Alcocer M, Martín R, González I, García T. Identification and characterisation of the proteins bound by specific phage-displayed recombinant antibodies (scFv) obtained against Brazil nut and almond extracts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1685-1695. [PMID: 28846130 DOI: 10.1002/jsfa.8640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 02/08/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Almonds and Brazil nuts are widely consumed allergenic nuts whose presence must be declared according to food labelling regulations. Their detection in food products has been recently achieved by ELISA methods with recombinant antibodies (scFv) isolated against complete Brazil nut and almond protein extracts. The screening of phage-scFv libraries against complete protein extracts confers a series of advantages over the use of purified proteins, as recombinant proteins might alter their native folding. However, using this strategy, the nature of the target detected by phage-displayed antibodies remains unknown, and requires further research to identify whether they are nut allergens or other molecules present in the extract, but not related to their allergenic potential. RESULTS Electrophoretic, chromatographic, immunological and spectrometric techniques revealed that the Brazil nut (BE95) and almond (PD1F6 and PD2C9) specific phage-scFvs detected conformational epitopes of the Brazil nut and almond 11S globulins, recognised by WHO/IUIS as Ber e 2 and Pru du 6 major allergens. Circular dichroism data indicated that severe heat treatment would entail loss of epitope structure, disabling scFv for target detection. CONCLUSIONS The presence of important Brazil nut and almond allergens (Ber e 2 and Pru du 6) in foodstuffs can be determined by using phage-display antibodies BE95, PD1F6 and PD2C9 as affinity probes in ELISA. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Silvia de la Cruz
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Raquel Madrid
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Aina García-García
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Marcos Alcocer
- Department of Nutritional Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Rosario Martín
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel González
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Teresa García
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
163
|
Dong S, Bo Z, Zhang C, Feng J, Liu X. Screening for single-chain variable fragment antibodies against multiple Cry1 toxins from an immunized mouse phage display antibody library. Appl Microbiol Biotechnol 2018; 102:3363-3374. [DOI: 10.1007/s00253-018-8797-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 11/25/2022]
|
164
|
San Segundo-Acosta P, Garranzo-Asensio M, Oeo-Santos C, Montero-Calle A, Quiralte J, Cuesta-Herranz J, Villalba M, Barderas R. High-throughput screening of T7 phage display and protein microarrays as a methodological approach for the identification of IgE-reactive components. J Immunol Methods 2018; 456:44-53. [PMID: 29470975 DOI: 10.1016/j.jim.2018.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/10/2018] [Accepted: 02/16/2018] [Indexed: 01/02/2023]
Abstract
Olive pollen and yellow mustard seeds are major allergenic sources with high clinical relevance. To aid with the identification of IgE-reactive components, the development of sensitive methodological approaches is required. Here, we have combined T7 phage display and protein microarrays for the identification of allergenic peptides and mimotopes from olive pollen and mustard seeds. The identification of these allergenic sequences involved the construction and biopanning of T7 phage display libraries of mustard seeds and olive pollen using sera from allergic patients to both biological sources together with the construction of phage microarrays printed with 1536 monoclonal phages from the third/four rounds of biopanning. The screening of the phage microarrays with individual sera from allergic patients enabled the identification of 10 and 9 IgE-reactive unique amino acid sequences from olive pollen and mustard seeds, respectively. Five immunoreactive amino acid sequences displayed on phages were selected for their expression as His6-GST tag fusion proteins and validation. After immunological characterization, we assessed the IgE-reactivity of the constructs. Our results show that protein microarrays printed with T7 phages displaying peptides from allergenic sources might be used to identify allergenic components -peptides, proteins or mimotopes- through their screening with specific IgE antibodies from allergic patients.
Collapse
Affiliation(s)
- Pablo San Segundo-Acosta
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - María Garranzo-Asensio
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Carmen Oeo-Santos
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Montero-Calle
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Joaquín Quiralte
- Unidad de Alergia, Complejo Hospitalario de Jaén, 23007 Jaén, Spain
| | | | - Mayte Villalba
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Rodrigo Barderas
- Biochemistry and Molecular Biology Department I, Chemistry Faculty, Complutense University of Madrid, 28040 Madrid, Spain; UFIEC-ISCIII, 28220 Majadahonda (Madrid), Spain.
| |
Collapse
|
165
|
Li X, Yuan S, Huang M, Gao J, Wu Z, Tong P, Yang A, Chen H. Identification of IgE and IgG epitopes on native Bos d 4 allergen specific to allergic children. Food Funct 2018; 7:2996-3005. [PMID: 27273451 DOI: 10.1039/c6fo00416d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alpha-lactalbumin (ALA) is one of the major allergens in cow's milk. However, research on its conformational epitopes has been relatively limited. In our study, specific antibodies against cow's milk ALA were purified from eight children by two-step affinity chromatography. Subsequently, mimotopes against IgG and IgE were biopanned from Ph.D.-12 and Ph.D.-C7C, respectively. Based on the mimotopes, linear epitopes were defined with the UniProt alignment tool. Conformational epitopes were computed using the Pepitope Server. Six IgE and seven IgG linear epitopes were identified. Meanwhile, five IgE and three IgG conformational epitopes were revealed with PyMOL. The results showed that common residues were identified in both IgE and IgG epitopes and some residues of the conformational epitopes were composed of linear epitopes on bovine α-lactalbumin. The results indicated that the data could be used for developing hypoallergenic dairy products on the basis of epitopes and providing a diagnostic tool for the assessment of patients who are allergic to cow's milk.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and School of Food Science & Technology, Nanchang University, Nanchang 330047, P.R.China
| | - Shuilin Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and School of Food Science & Technology, Nanchang University, Nanchang 330047, P.R.China
| | - Meijia Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and School of Food Science & Technology, Nanchang University, Nanchang 330047, P.R.China
| | - Jinyan Gao
- School of Food Science & Technology, Nanchang University, Nanchang 330047, P.R.China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P.R.China.
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and School of Food Science & Technology, Nanchang University, Nanchang 330047, P.R.China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P.R.China.
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P.R.China.
| |
Collapse
|
166
|
Chen L, Fu W, Zheng L, Wang Y, Liang G. Recent progress in the discovery of myeloid differentiation 2 (MD2) modulators for inflammatory diseases. Drug Discov Today 2018; 23:1187-1202. [PMID: 29330126 DOI: 10.1016/j.drudis.2018.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/09/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Myeloid differentiation protein 2 (MD2), together with Toll-like receptor 4 (TLR4), binds lipopolysaccharide (LPS) with high affinity, inducing the formation of the activated homodimer LPS-MD2-TLR4. MD2 directly recognizes the Lipid A domain of LPS, leading to the activation of downstream signaling of cytokine and chemokine production, and initiation of inflammatory and immune responses. However, excessive activation and potent host responses generate severe inflammatory syndromes such as acute sepsis and septic shock. MD2 is increasingly being considered as an attractive pharmacological target for the development of potent anti-inflammatory agents. In this Keynote review, we provide a comprehensive overview of the recent advances in the structure and biology of MD2, and present MD2 modulators as promising agents for anti-inflammatory intervention.
Collapse
Affiliation(s)
- Lingfeng Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Weitao Fu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lulu Zheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
167
|
Abstract
Among the molecules of the immune system, antibodies, particularly monoclonal antibodies (mAbs), have been shown to be interesting for many biological applications. Due to their ability to recognize only a unique part of their target, mAbs are usually very specific. These targets can have many different compositions, but the most common ones are proteins or peptides that are usually from outside the host, although self-proteins can also be targeted in autoimmune diseases, or in some types of cancer. The parts of a mAb that interact with its target compose the paratope, while the recognized parts of the target compose the epitope. Knowing the epitope is valuable for the improvement of a biological product, e.g., a diagnostic assay, a therapeutic mAb, or a vaccine, as well as for the elucidation of immune responses. The current techniques for epitope mapping rely on the presentation of the target, or parts of it, in a way that it can interact with a certain mAb. Even though there are several techniques available, each has its pros and cons. Thus, the choice for one of them is usually dependent on the preference and availability of the researcher, opening possibility for improvement, or development of alternative techniques. Phage display, for example, is a versatile technology, which allows the presentation of many different oligopeptides that can be tested against different antibodies, fitting the need for an epitope mapping approach. In this chapter, a protocol for the construction of a single-target oligopeptide phage library, as well as for the panning procedure for epitope mapping using phage display is given.
Collapse
Affiliation(s)
| | - Viola Fühner
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
168
|
Rita Costa A, Milho C, Azeredo J, Pires DP. Synthetic Biology to Engineer Bacteriophage Genomes. Methods Mol Biol 2018; 1693:285-300. [PMID: 29119447 DOI: 10.1007/978-1-4939-7395-8_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered towards a wide range of applications including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes are addressed: a yeast-based platform and bacteriophage recombineering of electroporated DNA.
Collapse
Affiliation(s)
- Ana Rita Costa
- LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal
| | - Catarina Milho
- LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal
| | - Joana Azeredo
- LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal
| | - Diana Priscila Pires
- LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal.
| |
Collapse
|
169
|
He B, Jiang L, Duan Y, Chai G, Fang Y, Kang J, Yu M, Li N, Tang Z, Yao P, Wu P, Derda R, Huang J. Biopanning data bank 2018: hugging next generation phage display. Database (Oxford) 2018; 2018:4955852. [PMID: 29688378 PMCID: PMC7206649 DOI: 10.1093/database/bay032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/07/2018] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
Abstract
Database URL The BDB database is available at http://immunet.cn/bdb.
Collapse
Affiliation(s)
- Bifang He
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| | - Lixu Jiang
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| | - Yaocong Duan
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| | - Guoshi Chai
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| | - Yewei Fang
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| | - Juanjuan Kang
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| | - Min Yu
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| | - Ning Li
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| | - Zhongjie Tang
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| | - Pengcheng Yao
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| | - Pengcheng Wu
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| |
Collapse
|
170
|
Rübsam K, Weber L, Jakob F, Schwaneberg U. Directed evolution of polypropylene and polystyrene binding peptides. Biotechnol Bioeng 2017; 115:321-330. [DOI: 10.1002/bit.26481] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Kristin Rübsam
- RWTH Aachen University; Worringerweg 3; Aachen Germany
- DWI - Leibniz-Institute for Interactive Materials; Forckenbeckstraße 50; Aachen Germany
| | - Lina Weber
- DWI - Leibniz-Institute for Interactive Materials; Forckenbeckstraße 50; Aachen Germany
| | - Felix Jakob
- DWI - Leibniz-Institute for Interactive Materials; Forckenbeckstraße 50; Aachen Germany
| | - Ulrich Schwaneberg
- RWTH Aachen University; Worringerweg 3; Aachen Germany
- DWI - Leibniz-Institute for Interactive Materials; Forckenbeckstraße 50; Aachen Germany
| |
Collapse
|
171
|
ten Brummelhuis N, Wilke P, Börner HG. Identification of Functional Peptide Sequences to Lead the Design of Precision Polymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/26/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Niels ten Brummelhuis
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Patrick Wilke
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
172
|
Perret G, Boschetti E. Aptamer affinity ligands in protein chromatography. Biochimie 2017; 145:98-112. [PMID: 29054800 DOI: 10.1016/j.biochi.2017.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
The present review deals with the place of single chain oligonucleotide ligands (aptamers) in affinity chromatography applied to proteins. Aptamers are not the only affinity ligands available but they represent an emerging and highly promising route that advantageously competes with antibodies in immunopurification processes. A historical background of affinity chromatography from the beginning of the discipline to the most recent outcomes is first presented. Then the focus is centered on aptamers which represent the last step so far to the long quest for affinity ligands associating very high specificity, availability and strong stability against most harsh cleaning agents required in chromatography. Then technologies of ligand selection from large libraries followed by the most appropriate chemical grafting approaches are described and supported by a number of bibliographic references. Experimental results assembled from relevant published paper are reported; they are selected by their practical applicability and potential use at large scale. The review concludes with specific remarks and future developments that are expected in the near future to turn this technology into a large acceptance for preparative applications.
Collapse
|
173
|
Jafari B, Hamzeh-Mivehroud M, Moosavi-Movahedi AA, Dastmalchi S. Identification of Novel Single-Domain Antibodies against FGF7 Using Phage Display Technology. SLAS DISCOVERY 2017; 23:193-201. [DOI: 10.1177/2472555217728520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factor 7 (FGF7) is a member of the fibroblast growth factor (FGF) family of proteins. FGF7 is of stromal origin and produces a paracrine effect on epithelial cells. In the current investigation, we aimed to identify new single-domain antibodies (sdAbs) against FGF7 using phage display technology. The vector harboring the codon-optimized DNA sequence for FGF7 protein was transformed into Escherichia coli BL21 (DE3) pLysS, and then the protein was expressed at the optimized condition. Enzyme-linked immunosorbent assay, circular dichroism spectropolarimetry, and in vitro scratch assay experiments were used to confirm the proper folding and functionality of the purified FGF7 protein. The purity of the produced FGF7 was 92%, with production yield of 3.5 mg/L of culture. Panning against the purified FGF7 was performed, and the identified single-domain antibodies showed significant affinity. Further investigation on one of the selected sdAb displaying phage clones showed concentration-dependent binding to FGF7. The selected sdAb can be used for developing novel tumor-suppressing agents where inhibition of FGF7 is required.
Collapse
Affiliation(s)
- Behzad Jafari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
174
|
Sun MGF, Kim PM. Data driven flexible backbone protein design. PLoS Comput Biol 2017; 13:e1005722. [PMID: 28837553 PMCID: PMC5587332 DOI: 10.1371/journal.pcbi.1005722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/06/2017] [Accepted: 08/11/2017] [Indexed: 11/18/2022] Open
Abstract
Protein design remains an important problem in computational structural biology. Current computational protein design methods largely use physics-based methods, which make use of information from a single protein structure. This is despite the fact that multiple structures of many protein folds are now readily available in the PDB. While ensemble protein design methods can use multiple protein structures, they treat each structure independently. Here, we introduce a flexible backbone strategy, FlexiBaL-GP, which learns global protein backbone movements directly from multiple protein structures. FlexiBaL-GP uses the machine learning method of Gaussian Process Latent Variable Models to learn a lower dimensional representation of the protein coordinates that best represent backbone movements. These learned backbone movements are used to explore alternative protein backbones, while engineering a protein within a parallel tempered MCMC framework. Using the human ubiquitin-USP21 complex as a model we demonstrate that our design strategy outperforms current strategies for the interface design task of identifying tight binding ubiquitin variants for USP21.
Collapse
Affiliation(s)
- Mark G. F. Sun
- Department of Computer Science, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Philip M. Kim
- Department of Computer Science, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
175
|
|
176
|
Vivcharuk V, Baardsnes J, Deprez C, Sulea T, Jaramillo M, Corbeil CR, Mullick A, Magoon J, Marcil A, Durocher Y, O’Connor-McCourt MD, Purisima EO. Assisted Design of Antibody and Protein Therapeutics (ADAPT). PLoS One 2017; 12:e0181490. [PMID: 28750054 PMCID: PMC5531539 DOI: 10.1371/journal.pone.0181490] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/30/2017] [Indexed: 11/19/2022] Open
Abstract
Effective biologic therapeutics require binding affinities that are fine-tuned to their disease-related molecular target. The ADAPT (Assisted Design of Antibody and Protein Therapeutics) platform aids in the selection of mutants that improve/modulate the affinity of antibodies and other biologics. It uses a consensus z-score from three scoring functions and interleaves computational predictions with experimental validation, significantly enhancing the robustness of the design and selection of mutants. The platform was tested on three antibody Fab-antigen systems that spanned a wide range of initial binding affinities: bH1-VEGF-A (44 nM), bH1-HER2 (3.6 nM) and Herceptin-HER2 (0.058 nM). Novel triple mutants were obtained that exhibited 104-, 46- and 32-fold improvements in binding affinity for each system, respectively. Moreover, for all three antibody-antigen systems over 90% of all the intermediate single and double mutants that were designed and tested showed higher affinities than the parent sequence. The contributions of the individual mutants to the change in binding affinity appear to be roughly additive when combined to form double and triple mutants. The new interactions introduced by the affinity-enhancing mutants included long-range electrostatics as well as short-range nonpolar interactions. This diversity in the types of new interactions formed by the mutants was reflected in SPR kinetics that showed that the enhancements in affinities arose from increasing on-rates, decreasing off-rates or a combination of the two effects, depending on the mutation. ADAPT is a very focused search of sequence space and required only 20-30 mutants for each system to be made and tested to achieve the affinity enhancements mentioned above.
Collapse
Affiliation(s)
- Victor Vivcharuk
- Human Health Therapeutics, National Research Council Canada, Montreal, QC, Canada
| | - Jason Baardsnes
- Human Health Therapeutics, National Research Council Canada, Montreal, QC, Canada
| | - Christophe Deprez
- Human Health Therapeutics, National Research Council Canada, Montreal, QC, Canada
| | - Traian Sulea
- Human Health Therapeutics, National Research Council Canada, Montreal, QC, Canada
| | - Maria Jaramillo
- Human Health Therapeutics, National Research Council Canada, Montreal, QC, Canada
| | | | - Alaka Mullick
- Human Health Therapeutics, National Research Council Canada, Montreal, QC, Canada
| | - Joanne Magoon
- Human Health Therapeutics, National Research Council Canada, Montreal, QC, Canada
| | - Anne Marcil
- Human Health Therapeutics, National Research Council Canada, Montreal, QC, Canada
| | - Yves Durocher
- Human Health Therapeutics, National Research Council Canada, Montreal, QC, Canada
| | | | - Enrico O. Purisima
- Human Health Therapeutics, National Research Council Canada, Montreal, QC, Canada
| |
Collapse
|
177
|
Peptide Inhibitors Targeting the Neisseria gonorrhoeae Pivotal Anaerobic Respiration Factor AniA. Antimicrob Agents Chemother 2017; 61:AAC.00186-17. [PMID: 28584144 DOI: 10.1128/aac.00186-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/27/2017] [Indexed: 12/24/2022] Open
Abstract
Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, which is highly prevalent worldwide and has a major impact on reproductive and neonatal health. The superbug status of N. gonorrhoeae necessitates the development of drugs with different mechanisms of action. Here, we focused on targeting the nitrite reductase AniA, which is a pivotal component of N. gonorrhoeae anaerobic respiration and biofilm formation. Our studies showed that gonococci expressing AniA containing the altered catalytic residues D137A and H280A failed to grow under anaerobic conditions, demonstrating that the nitrite reductase function is essential. To facilitate the pharmacological targeting of AniA, new crystal structures of AniA were refined to 1.90-Å and 2.35-Å resolutions, and a phage display approach with libraries expressing randomized linear dodecameric peptides or heptameric peptides flanked by a pair of cysteine residues was utilized. Biopanning experiments led to the identification of 29 unique peptides, with 1 of them, C7-3, being identified multiple times. Evaluation of their ability to interact with AniA using enzyme-linked immunosorbent assay and computational docking studies revealed that C7-3 was the most promising inhibitor, binding near the type 2 copper site of the enzyme, which is responsible for interaction with nitrite. Subsequent enzymatic assays and biolayer interferometry with a synthetic C7-3 and its derivatives, C7-3m1 and C7-3m2, demonstrated potent inhibition of AniA. Finally, the MIC50 value of C7-3 and C7-3m2 against anaerobically grown N. gonorrhoeae was 0.6 mM. We present the first peptide inhibitors of AniA, an enzyme that should be further exploited for antigonococcal drug development.
Collapse
|
178
|
Abstract
Life on Earth is incredibly diverse. Yet, underneath that diversity, there are a number of constants and highly conserved processes: all life is based on DNA and RNA; the genetic code is universal; biology is limited to a small subset of potential chemistries. A vast amount of knowledge has been accrued through describing and characterizing enzymes, biological processes and organisms. Nevertheless, much remains to be understood about the natural world. One of the goals in Synthetic Biology is to recapitulate biological complexity from simple systems made from biological molecules-gaining a deeper understanding of life in the process. Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of engineering even the most highly conserved biological processes. It encompasses a range of methodologies to create variation in a population and to select individual variants with the desired function-be it a ligand, enzyme, pathway or even whole organisms. Here, we present some of the basic frameworks that underpin all evolution platforms and review some of the recent contributions from directed evolution to synthetic biology, in particular methods that have been used to engineer the Central Dogma and the genetic code.
Collapse
|
179
|
Rami A, Behdani M, Yardehnavi N, Habibi-Anbouhi M, Kazemi-Lomedasht F. An overview on application of phage display technique in immunological studies. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
180
|
Golec P, Żelechowska K, Karczewska-Golec J, Karczewski J, Leśniewski A, Łoś M, Węgrzyn G, Kłonkowski AM. Bacteriophages as Factories for Eu 2O 3 Nanoparticle Synthesis. Bioconjug Chem 2017; 28:1834-1841. [PMID: 28482148 DOI: 10.1021/acs.bioconjchem.7b00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of phage display to identify peptides with an ability to bind and synthesize Eu2O3 nanoparticles is demonstrated in this report. This is the first report of modified phages specifically binding a lanthanide. The peptides exposed on virions revealed very strong binding to Eu2O3 nanoparticles and the ability to catalyze Eu2O3 nanoparticles' formation from Eu(OH)3 and Eu(NO3)3 solutions. The luminescence emission spectrum of Eu3+ ions indicated that these ions existed mostly in sites deviated from the inversion symmetry in crystalline Eu2O3 aggregates and gelatinous Eu(OH)3 precipitate. The ability of phage-displayed peptides to catalyze formation of Eu2O3 nanoparticles provides a useful tool for a low-cost and effective synthesis of lanthanide nanoparticles, which serve as attractive biomedical sensors or fluorescent labels, among their other applications.
Collapse
Affiliation(s)
- Piotr Golec
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Kamila Żelechowska
- Faculty of Applied Physics and Mathematics, Solid State Physics Department, Gdansk University of Technology , Narutowicza 11/12, 80-233 Gdansk, Poland
| | | | - Jakub Karczewski
- Faculty of Applied Physics and Mathematics, Solid State Physics Department, Gdansk University of Technology , Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Adam Leśniewski
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | | | - Andrzej M Kłonkowski
- Faculty of Chemistry, University of Gdansk , Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
181
|
Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017; 12:02D301. [DOI: 10.1116/1.4978435] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
182
|
Guo Z, Li D, Peng H, Kang J, Jiang X, Xie X, Sun D, Jiang H. Specific hepatic stellate cell-penetrating peptide targeted delivery of a KLA peptide reduces collagen accumulation by inducing apoptosis. J Drug Target 2017; 25:715-723. [PMID: 28447897 DOI: 10.1080/1061186x.2017.1322598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Liver fibrosis is an aberrant wound-healing process to chronic hepatic inflammation and is characterized by excessive accumulation of extracellular matrix (ECM) that is produced by activated hepatic stellate cells (HSCs). Thus, activated HSCs play a key role in the pathogenesis of liver fibrosis and are a potential target for the treatment of liver fibrosis. Herein, we report that a specific HSC-penetrating peptide reduced collagen accumulation by inducing the apoptosis of HSC-T6 cells. We first screened HSC-specific transduction peptides and identified a novel HSC-targeted cell-penetrating peptide (HTP) that specifically interacted with HSC-T6 cells. A chimeric peptide termed HTPK25 was consequently generated by coupling HTP with the antimicrobial peptide KLA, which is capable of initiating cell apoptosis in mammalian cells. HTPK25 entered cells in a dose-dependent manner, reduced the cell viability and induced apoptosis via the caspase 3 pathway in HSC-T6 cells. Furthermore, HTPK25 inhibited the α-smooth muscle actin and collagen I expression in HSC-T6 cells. Our results demonstrated that the HTP was able to specifically and efficiently deliver the KLA peptide into HSC-T6 cells to induce apoptosis, indicating that HTP-delivered functional agents may present a promising approach for liver fibrosis therapy.
Collapse
Affiliation(s)
- Zhengrong Guo
- a Department of Gastroenterology , The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology , Shijiazhuang , Hebei , P.R. China
| | - Dong Li
- b The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital , Shijiazhuang , Hebei , P.R. China
| | - Huanyan Peng
- b The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital , Shijiazhuang , Hebei , P.R. China
| | - Jiwen Kang
- b The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital , Shijiazhuang , Hebei , P.R. China
| | - Xiaoyu Jiang
- a Department of Gastroenterology , The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology , Shijiazhuang , Hebei , P.R. China
| | - Xiaoli Xie
- a Department of Gastroenterology , The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology , Shijiazhuang , Hebei , P.R. China
| | - Dianxing Sun
- b The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital , Shijiazhuang , Hebei , P.R. China
| | - Huiqing Jiang
- a Department of Gastroenterology , The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology , Shijiazhuang , Hebei , P.R. China
| |
Collapse
|
183
|
Wei X, Liu Q, Gao Y, Yang J, Wang B, Yang G, Zhang S, Zhou H. Two epitopes responsible for the catalytic activity of heme oxygenase-1 identified by phage display. FEBS Open Bio 2017; 7:719-726. [PMID: 28469983 PMCID: PMC5407895 DOI: 10.1002/2211-5463.12217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022] Open
Abstract
Heme oxygenase‐1 (HO‐1) catalyzes the oxidative degradation of heme. The catalytic mechanism of the HO‐1 reaction has been determined gradually by studies of its crystal structure and HO‐1 mutants. However, the neutralizing epitopes responsible for HO‐1 activity remain elusive. Screening of a phage display library revealed four epitopes that could interact with the polyclonal antibody prepared by immunizing rabbits with the purified HO‐1 protein. Two of these four epitopes are responsible for HO‐1 catalytic activity because their antibodies were able to neutralize HO‐1 activity. The results of the present study shed further light on the molecular character of HO‐1.
Collapse
Affiliation(s)
- Xuran Wei
- Beijing Key Laboratory of Blood Safety and Supply Technologies Beijing Institute of Transfusion Medicine China
| | - Qingjun Liu
- Beijing Key Laboratory of Blood Safety and Supply Technologies Beijing Institute of Transfusion Medicine China
| | - Yaping Gao
- Institute of Basic Medical Sciences Academy of Military Medical Sciences Beijing China
| | - Jun Yang
- Beijing Key Laboratory of Blood Safety and Supply Technologies Beijing Institute of Transfusion Medicine China
| | - Bo Wang
- Beijing Key Laboratory of Blood Safety and Supply Technologies Beijing Institute of Transfusion Medicine China
| | - Guang Yang
- Institute of Basic Medical Sciences Academy of Military Medical Sciences Beijing China
| | - Shihui Zhang
- Beijing Key Laboratory of Blood Safety and Supply Technologies Beijing Institute of Transfusion Medicine China
| | - Hong Zhou
- Beijing Key Laboratory of Blood Safety and Supply Technologies Beijing Institute of Transfusion Medicine China
| |
Collapse
|
184
|
Fagète S, Botas-Perez L, Rossito-Borlat I, Adea K, Gueneau F, Ravn U, Rousseau F, Kosco-Vilbois M, Fischer N, Hartley O. Dual display: phage selection driven by co-engagement of two targets by two different antibody fragments. Protein Eng Des Sel 2017; 30:575-582. [DOI: 10.1093/protein/gzx021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/13/2017] [Indexed: 01/03/2023] Open
|
185
|
Coppock MB, Warner CR, Dorsey B, Orlicki JA, Sarkes DA, Lai BT, Pitram SM, Rohde RD, Malette J, Wilson JA, Kearney P, Fang KC, Law SM, Candelario SL, Farrow B, Finch AS, Agnew HD, Heath JR, Stratis‐Cullum DN. Protein catalyzed capture agents with tailored performance for in vitro and in vivo applications. Biopolymers 2017; 108:e22934. [PMID: 27539157 PMCID: PMC6585716 DOI: 10.1002/bip.22934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/25/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
We report on peptide-based ligands matured through the protein catalyzed capture (PCC) agent method to tailor molecular binders for in vitro sensing/diagnostics and in vivo pharmacokinetics parameters. A vascular endothelial growth factor (VEGF) binding peptide and a peptide against the protective antigen (PA) protein of Bacillus anthracis discovered through phage and bacterial display panning technologies, respectively, were modified with click handles and subjected to iterative in situ click chemistry screens using synthetic peptide libraries. Each azide-alkyne cycloaddition iteration, promoted by the respective target proteins, yielded improvements in metrics for the application of interest. The anti-VEGF PCC was explored as a stable in vivo imaging probe. It exhibited excellent stability against proteases and a mean elimination in vivo half-life (T1/2 ) of 36 min. Intraperitoneal injection of the reagent results in slow clearance from the peritoneal cavity and kidney retention at extended times, while intravenous injection translates to rapid renal clearance. The ligand competed with the commercial antibody for binding to VEGF in vivo. The anti-PA ligand was developed for detection assays that perform in demanding physical environments. The matured anti-PA PCC exhibited no solution aggregation, no fragmentation when heated to 100°C, and > 81% binding activity for PA after heating at 90°C for 1 h. We discuss the potential of the PCC agent screening process for the discovery and enrichment of next generation antibody alternatives.
Collapse
Affiliation(s)
- Matthew B. Coppock
- Sensors and Electron Devices DirectorateU.S. Army Research LaboratoryAdelphiMD20783
| | - Candice R. Warner
- Excet, SpringfieldVA 22151 supporting USA Edgewood Chemical Biological CenterAberdeen Proving GroundMD21010
| | - Brandi Dorsey
- Federal Staffing Resources, Annapolis, MD supporting U.S. Army Research LaboratoryAdelphiMD20783
| | - Joshua A. Orlicki
- Weapons and Materials Research DirectorateU.S. Army Research LaboratoryAberdeen Proving GroundMD21005
| | - Deborah A. Sarkes
- Sensors and Electron Devices DirectorateU.S. Army Research LaboratoryAdelphiMD20783
| | - Bert T. Lai
- Indi Molecular6162 Bristol ParkwayCulver CityCA90230
| | | | | | | | | | | | | | | | | | - Blake Farrow
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology1200 East California BoulevardPasadenaCA91125
| | - Amethist S. Finch
- Sensors and Electron Devices DirectorateU.S. Army Research LaboratoryAdelphiMD20783
| | | | - James R. Heath
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology1200 East California BoulevardPasadenaCA91125
| | | |
Collapse
|
186
|
Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library. Anal Biochem 2017; 518:53-59. [DOI: 10.1016/j.ab.2016.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/18/2022]
|
187
|
Hu YF, Zhao D, Yu XL, Hu YL, Li RC, Ge M, Xu TQ, Liu XB, Liao HY. Identification of Bacterial Surface Antigens by Screening Peptide Phage Libraries Using Whole Bacteria Cell-Purified Antisera. Front Microbiol 2017; 8:82. [PMID: 28184219 PMCID: PMC5266700 DOI: 10.3389/fmicb.2017.00082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/11/2017] [Indexed: 01/10/2023] Open
Abstract
Bacterial surface proteins can be good vaccine candidates. In the present study, we used polyclonal antibodies purified with intact Erysipelothrix rhusiopthiae to screen phage-displayed random dodecapeptide and loop-constrained heptapeptide libraries, which led to the identification of mimotopes. Homology search of the mimotope sequences against E. rhusiopthiae-encoded ORF sequences revealed 14 new antigens that may localize on the surface of E. rhusiopthiae. When these putative surface proteins were used to immunize mice, 9/11 antigens induced protective immunity. Thus, we have demonstrated that a combination of using the whole bacterial cells to purify antibodies and using the phage-displayed peptide libraries to determine the antigen specificities of the antibodies can lead to the discovery of novel bacterial surface antigens. This can be a general approach for identifying surface antigens for other bacterial species.
Collapse
Affiliation(s)
- Yun-Fei Hu
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| | - Dun Zhao
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| | - Xing-Long Yu
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| | - Yu-Li Hu
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| | - Run-Cheng Li
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| | - Meng Ge
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| | - Tian-Qi Xu
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| | - Xiao-Bo Liu
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| | - Hua-Yuan Liao
- College of Veterinary Medicine, Preventive Veterinary Medicine, Hunan Agricultural University Changsha, China
| |
Collapse
|
188
|
Hansen CS, Østerbye T, Marcatili P, Lund O, Buus S, Nielsen M. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping. PLoS One 2017; 12:e0168453. [PMID: 28095436 PMCID: PMC5240915 DOI: 10.1371/journal.pone.0168453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 12/01/2016] [Indexed: 11/19/2022] Open
Abstract
Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation of the data provided in such large-scale screenings is far from trivial and in most cases it requires advanced computational and statistical skills. Here, we present an online application for automated identification of linear B cell epitopes, allowing the non-expert user to analyse peptide microarray data. The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots. Demonstrating utility, the application was used to identify and address the antibody specificity of 18 linear epitope regions in Human Serum Albumin (HSA), using peptide microarray data consisting of fully substituted peptides spanning the entire sequence of HSA and incubated with polyclonal rabbit anti-HSA (and mouse anti-rabbit-Cy3). The application is made available at: www.cbs.dtu.dk/services/ArrayPitope.
Collapse
Affiliation(s)
- Christian Skjødt Hansen
- Center for Biological Sequence Analysis, Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Thomas Østerbye
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paolo Marcatili
- Center for Biological Sequence Analysis, Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ole Lund
- Center for Biological Sequence Analysis, Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Nielsen
- Center for Biological Sequence Analysis, Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
189
|
Forier C, Boschetti E, Ouhammouch M, Cibiel A, Ducongé F, Nogré M, Tellier M, Bataille D, Bihoreau N, Santambien P, Chtourou S, Perret G. DNA aptamer affinity ligands for highly selective purification of human plasma-related proteins from multiple sources. J Chromatogr A 2017; 1489:39-50. [PMID: 28179082 DOI: 10.1016/j.chroma.2017.01.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/18/2023]
Abstract
Nucleic acid aptamers are promising ligands for analytical and preparative-scale affinity chromatography applications. However, a full industrial exploitation requires that aptamer-grafted chromatography media provide a number of high technical standards that remained largely untested. Ideally, they should exhibit relatively high binding capacity associated to a very high degree of specificity. In addition, they must be highly resistant to harsh cleaning/sanitization conditions, as well as to prolonged and repeated exposure to biological environment. Here, we present practical examples of aptamer affinity chromatography for the purification of three human therapeutic proteins from various sources: Factor VII, Factor H and Factor IX. In a single chromatographic step, three DNA aptamer ligands enabled the efficient purification of their target protein, with an unprecedented degree of selectivity (from 0.5% to 98% of purity in one step). Furthermore, these aptamers demonstrated a high stability under harsh sanitization conditions (100h soaking in 1M NaOH). These results pave the way toward a wider adoption of aptamer-based affinity ligands in the industrial-scale purification of not only plasma-derived proteins but also of any other protein in general.
Collapse
Affiliation(s)
| | | | | | | | - Frédéric Ducongé
- CEA, I2BM, MIRCen, UMR 9199, Université Paris Saclay, Fontenay aux Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Liang Alvin AW, Tanaka M, Okochi M. Characterization of particulate matter binding peptides screened from phage display. J Biosci Bioeng 2017; 123:621-624. [PMID: 28094103 DOI: 10.1016/j.jbiosc.2016.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/21/2016] [Indexed: 12/25/2022]
Abstract
Particulate matter (PM), especially particulates with diameters of less than 2.5 μm, can penetrate the alveolar region and increase the risk of respiratory diseases. This has stimulated research efforts to develop detection methods so that counter measures can be taken. In this study, four PM binding peptides were obtained by phage display and binding characteristics of these peptides were investigated using the peptide array. The strongest binding peptide, WQDFGAVRSTRS, displayed a binding property, measured in terms of spot intensity, 11.4 times higher than that of the negative control, AAAAA. Inductively coupled plasma mass spectrometry (ICPMS) analysis of the transition metal compounds in the PM bound to the peptide spots was performed, and two peptides showed higher binding towards Cu and Zn compounds in PM. These results suggest that the screened peptides could serve as an indicator of transition metal compounds, which are related to adverse health effects, contained in PM.
Collapse
Affiliation(s)
- Aw Wei Liang Alvin
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan; Office for the Impulsing Paradigm Change Through Disruptive Technologies Program (ImPACT), Japan Science and Technology Agency (JST), Tokyo Headquarters 2 K's Gobancho 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan; Office for the Impulsing Paradigm Change Through Disruptive Technologies Program (ImPACT), Japan Science and Technology Agency (JST), Tokyo Headquarters 2 K's Gobancho 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan.
| |
Collapse
|
191
|
Development of a novel imaging agent using peptide-coated gold nanoparticles toward brain glioma stem cell marker CD133. Acta Biomater 2017; 47:182-192. [PMID: 27721007 DOI: 10.1016/j.actbio.2016.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022]
Abstract
CD133 is known as biomarker for glioblastoma (GBM) and also serves as a marker for cancer stem cells (CSCs), which carry out tumorigenesis and resist conventional therapeutics. The presence of CD133-presenting CSC is a one of the factors in maintenance of the tumorigenic potential of GBM. Thus, CD133 is a potential target for accurate diagnosis of GBM, which could improve its poor prognosis for patients when CSCs are present. Herein we designed a small peptide-based imaging agent with stimulus-responsive properties. A novel small peptide, CBP4, was screened by a phage display technique, and demonstrated binding to the target CD133 (ECD) comparable to that of an antibody. As a quencher, we used gold nanoparticles (GNPs); the targeting peptide was conjugated to GNPs with high efficiency. By means of a quenching effect, the peptide-coated GNP showed 'signal on-off' properties depending upon the presence of the target. In addition, the particles exhibited biocompatibility when localized in the cytosol. Thus, this study demonstrated that the peptide-coated GNPs can be utilized as an imaging agent for accurate diagnosis of GBM, and further as a drug carrier for therapeutic approaches. STATEMENT OF SIGNIFICANCE The diagnosis and determination of prognosis made by cancer stem cell markers could be a key strategy to eradicate cancer stem cells and cure the cancer. The significance of this study is the characterization of quenching-based signal on-off mechanism and showed that the active targeting via peptide can contribute to the design of a stimulus-responsive cellular imaging agent. Moreover, small peptide based nano complexation showed specific recognition of the target stem cell and internalized on cellular cyotosol with stimulus responsive fluorescence. With its novel biocompatibility, the strategy might be a promising tool for drug carrier systems able to measure and visualize the delivered efficiency at intracellular sites.
Collapse
|
192
|
Abstract
Aptamers are nucleic acid-based scaffolds that can bind with high affinity to a variety of biological targets. Aptamers are identified from large DNA or RNA libraries through a process of directed molecular evolution (SELEX). Chemical modification of nucleic acids considerably increases the functional and structural diversity of aptamer libraries and substantially increases the affinity of the aptamers. Additionally, modified aptamers exhibit much greater resistance to biodegradation. The evolutionary selection of modified aptamers is conditioned by the possibility of the enzymatic synthesis and replication of non-natural nucleic acids. Wild-type or mutant polymerases and their non-natural nucleotide substrates that can support SELEX are highlighted in the present review. A focus is made on the efforts to find the most suitable type of nucleotide modifications and the engineering of new polymerases. Post-SELEX modification as a complementary method will be briefly considered as well.
Collapse
Affiliation(s)
- Sergey A Lapa
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Edward N Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
193
|
Martins IM, Reis RL, Azevedo HS. Phage Display Technology in Biomaterials Engineering: Progress and Opportunities for Applications in Regenerative Medicine. ACS Chem Biol 2016; 11:2962-2980. [PMID: 27661443 DOI: 10.1021/acschembio.5b00717] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The field of regenerative medicine has been gaining momentum steadily over the past few years. The emphasis in regenerative medicine is to use various in vitro and in vivo approaches that leverage the intrinsic healing mechanisms of the body to treat patients with disabling injuries and chronic diseases such as diabetes, osteoarthritis, and degenerative disorders of the cardiovascular and central nervous system. Phage display has been successfully employed to identify peptide ligands for a wide variety of targets, ranging from relatively small molecules (enzymes, cell receptors) to inorganic, organic, and biological (tissues) materials. Over the past two decades, phage display technology has advanced tremendously and has become a powerful tool in the most varied fields of research, including biotechnology, materials science, cell biology, pharmacology, and diagnostics. The growing interest in and success of phage display libraries is largely due to its incredible versatility and practical use. This review discusses the potential of phage display technology in biomaterials engineering for applications in regenerative medicine.
Collapse
Affiliation(s)
- Ivone M. Martins
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of
the European Institute of Excellence on Tissue Engineering and Regenerative
Medicine, AvePark, 4805-717 Barco, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- CEB − Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Rui L. Reis
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of
the European Institute of Excellence on Tissue Engineering and Regenerative
Medicine, AvePark, 4805-717 Barco, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena S. Azevedo
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of
the European Institute of Excellence on Tissue Engineering and Regenerative
Medicine, AvePark, 4805-717 Barco, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- School of Engineering & Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
- Institute
of Bioengineering, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
194
|
Ma H, O'Kennedy R. Recombinant antibody fragment production. Methods 2016; 116:23-33. [PMID: 27871972 DOI: 10.1016/j.ymeth.2016.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/12/2023] Open
Abstract
Recombinant antibodies are now very important in both therapeutics and diagnostics and offer significant advantages over conventional antibodies. The generation of a single-chain variable antibody fragment (scFv) (a common and important recombinant antibody format) is used to demonstrate the construction of a recombinant antibody library. An immunotube-based two-day panning approach, using Escherichia coli as an expression system, is utilised for antibody screening. The methods used for antibody selection and purification using immobilised metal affinity chromatography (IMAC) are described.
Collapse
Affiliation(s)
- H Ma
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland.
| | - R O'Kennedy
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
195
|
Karimi M, Mirshekari H, Moosavi Basri SM, Bahrami S, Moghoofei M, Hamblin MR. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv Drug Deliv Rev 2016; 106:45-62. [PMID: 26994592 PMCID: PMC5026880 DOI: 10.1016/j.addr.2016.03.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 02/08/2023]
Abstract
The main goal of drug delivery systems is to target therapeutic cargoes to desired cells and to ensure their efficient uptake. Recently a number of studies have focused on designing bio-inspired nanocarriers, such as bacteriophages, and synthetic carriers based on the bacteriophage structure. Bacteriophages are viruses that specifically recognize their bacterial hosts. They can replicate only inside their host cell and can act as natural gene carriers. Each type of phage has a particular shape, a different capacity for loading cargo, a specific production time, and their own mechanisms of supramolecular assembly, that have enabled them to act as tunable carriers. New phage-based technologies have led to the construction of different peptide libraries, and recognition abilities provided by novel targeting ligands. Phage hybridization with non-organic compounds introduces new properties to phages and could be a suitable strategy for construction of bio-inorganic carriers. In this review we try to cover the major phage species that have been used in drug and gene delivery systems, and the biological application of phages as novel targeting ligands and targeted therapeutics.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirshekari
- Advanced Nanobiotechnology & Nanomedicine Research Group [ANNRG], Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Mohsen Moghoofei
- Student Research Committee, Iran University of Medical Sciences, Tehran, IR, Iran; Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
196
|
Qi L, Liu Y, Tao H, Xiao N, Li J, Kong L, Hou L. Screening a Phage Display Library for Two Novel OmpU-Binding Peptides with Adhesion Antagonistic Activity against Vibrio mimicus. PLoS One 2016; 11:e0165092. [PMID: 27832083 PMCID: PMC5104426 DOI: 10.1371/journal.pone.0165092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/08/2016] [Indexed: 01/11/2023] Open
Abstract
Vibrio mimicus is a pathogen that causes ascites disease in fish. We have previously demonstrated that the outer membrane protein U (OmpU) is an important adhesin in V. mimicus. Here eight specific OmpU-binding phage clones, which presented three different OmpU-binding peptides (designated P1, P2, P3), were screened from a commercially available phage displayed 12-mer peptide library using rOmpU protein as target. Then, synthetic OmpU-binding peptides were measured for their adhesion antagonistic activity and binding affinity via adhesion inhibition test and non-competitive ELISA, respectively. The results showed that after co-incubated with the mixture of rOmpU and P3, visible green fluorescence could be observed on the epithelioma papulosum cyprinidi (EPC) cells surface; while the EPC cells co-incubated with the mixture of rOmpU and P1/P2 exhibited little green fluorescence. The average adhesion number of V. mimicus 04–14 isolate before and after treatment with peptide was 21.4 ± 1.5, 20.8 ± 0.8 (irrelevant peptide), 20.2 ± 0.5 (P3), 5.1 ± 0.7 (P1) and 3.4 ± 0.8 (P2), respectively. There was a significant decrease in the adhesive level of 04–14 isolate treated with P1/ P2 compared to the untreated isolate (p<0.01). The affinity constants of P1 and P2 were (6.17 ± 0.19) × 108 L/mol and (1.24 ± 0.56) × 109 L/mol, respectively. Furthermore, protective effects of P1 and P2 on grass carps challenged with V. mimicus were preliminary detected. It was found there was delayed death of fish in the groups treated with P1/P2, and the survival rate of challenged fish improved with the increase of the dose of adhesion antagonistic peptide. Taken together, two novel OmpU-binding peptides, which possessed adhesion antagonistic activity, high affinity and a certain degree of antibacterial activity against V. mimicus, were screened and identified.
Collapse
Affiliation(s)
- Lifang Qi
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Yan Liu
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Huizhu Tao
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Ning Xiao
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Jinnian Li
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P. R. China
- * E-mail:
| | - Lingyan Kong
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Liting Hou
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P. R. China
| |
Collapse
|
197
|
Schwarz B, Uchida M, Douglas T. Biomedical and Catalytic Opportunities of Virus-Like Particles in Nanotechnology. Adv Virus Res 2016; 97:1-60. [PMID: 28057256 DOI: 10.1016/bs.aivir.2016.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Within biology, molecules are arranged in hierarchical structures that coordinate and control the many processes that allow for complex organisms to exist. Proteins and other functional macromolecules are often studied outside their natural nanostructural context because it remains difficult to create controlled arrangements of proteins at this size scale. Viruses are elegantly simple nanosystems that exist at the interface of living organisms and nonliving biological machines. Studied and viewed primarily as pathogens to be combatted, viruses have emerged as models of structural efficiency at the nanoscale and have spurred the development of biomimetic nanoparticle systems. Virus-like particles (VLPs) are noninfectious protein cages derived from viruses or other cage-forming systems. VLPs provide incredibly regular scaffolds for building at the nanoscale. Composed of self-assembling protein subunits, VLPs provide both a model for studying materials' assembly at the nanoscale and useful building blocks for materials design. The robustness and degree of understanding of many VLP structures allow for the ready use of these systems as versatile nanoparticle platforms for the conjugation of active molecules or as scaffolds for the structural organization of chemical processes. Lastly the prevalence of viruses in all domains of life has led to unique activities of VLPs in biological systems most notably the immune system. Here we discuss recent efforts to apply VLPs in a wide variety of applications with the aim of highlighting how the common structural elements of VLPs have led to their emergence as paradigms for the understanding and design of biological nanomaterials.
Collapse
Affiliation(s)
- B Schwarz
- Indiana University, Bloomington, IN, United States
| | - M Uchida
- Indiana University, Bloomington, IN, United States
| | - T Douglas
- Indiana University, Bloomington, IN, United States.
| |
Collapse
|
198
|
A polystyrene binding target-unrelated peptide isolated in the screening of phage display library. Anal Biochem 2016; 512:120-128. [DOI: 10.1016/j.ab.2016.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/18/2016] [Accepted: 08/16/2016] [Indexed: 01/18/2023]
|
199
|
Guliy OI, Zaitsev BD, Borodina IA, Teplykh AA, Ignatov OV. An acoustic method for the analysis of bacterial cells. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916040138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
200
|
Abstract
Titanium is the ninth most abundant element in the Earth's crust and some organisms sequester it avidly, though no essential biological role has yet been recognized. This Minireview addresses how the properties of titanium, especially in an oxic aqueous environment, might make a biological role difficult to recognize. It further considers how new -omic technologies might overcome the limitations of the past and help to reveal a specific role for this metal. While studies with well established model organisms have their rightful place, organisms that are known avid binders or sequesterers of titanium should be promising places to investigate a biological role.
Collapse
Affiliation(s)
- Mark R Zierden
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| | - Ann M Valentine
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|