151
|
Williams AV, Trainor BC. The impact of sex as a biological variable in the search for novel antidepressants. Front Neuroendocrinol 2018; 50:107-117. [PMID: 29859882 PMCID: PMC6139050 DOI: 10.1016/j.yfrne.2018.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/15/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Abstract
A roadblock to successful treatment for anxiety and depression is the high proportion of individuals that do not respond to existing treatments. Different underlying neurobiological mechanisms may drive similar symptoms, so a more personalized approach to treatment could be more successful. There is increasing evidence that sex is an important biological variable modulating efficacy of antidepressants and anxiolytics. We review evidence for sex-specific effects of traditional monoamine based antidepressants and newer pharmaceuticals targeting kappa opioid receptors (KOR), oxytocin receptors (OTR), and N-methyl-D-aspartate receptors (ketamine). In some cases, similar behavioral effects are observed in both sexes while in other cases strong sex-specific effects are observed. Most intriguing are cases such as ketamine which has similar behavioral effects in males and females, perhaps through sex-specific neurobiological mechanisms. These results show how essential it is to include both males and females in both clinical and preclinical evaluations of novel antidepressants and anxiolytics.
Collapse
Affiliation(s)
- Alexia V Williams
- Department of Psychology, University of California, Davis, CA 95616, United States.
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
152
|
Zhou Y, Kreek MJ. Involvement of Activated Brain Stress Responsive Systems in Excessive and "Relapse" Alcohol Drinking in Rodent Models: Implications for Therapeutics. J Pharmacol Exp Ther 2018; 366:9-20. [PMID: 29669731 PMCID: PMC5988024 DOI: 10.1124/jpet.117.245621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
Addictive diseases, including addiction to alcohol, pose massive public health costs. Addiction is a chronic relapsing disease caused by both the direct effects induced by drugs and persistent neuroadaptations at the molecular, cellular, and behavioral levels. These drug-type specific neuroadaptations are brought on largely by the reinforcing effects of drugs on the central nervous system and environmental stressors. Results from animal experiments have demonstrated important interactions between alcohol and stress-responsive systems. Addiction to specific drugs such as alcohol, psychostimulants, and opioids shares some common direct or downstream effects on the brain's stress-responsive systems, including arginine vasopressin and its V1b receptors, dynorphin and the κ-opioid receptors, pro-opiomelanocortin/β-endorphin and the μ-opioid receptors, and the endocannabinoids. Further study of these systems through laboratory-based and translational research could lead to the discovery of novel treatment targets and the early optimization of interventions (for example, combination) for the pharmacologic therapy of alcoholism.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- Laboratory of Biology of Addictive Diseases, Rockefeller University, New York, New York
| |
Collapse
|
153
|
|
154
|
Bailey S, Husbands S. Targeting opioid receptor signaling in depression: do we need selective κ opioid receptor antagonists? Neuronal Signal 2018; 2:NS20170145. [PMID: 32714584 PMCID: PMC7373229 DOI: 10.1042/ns20170145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/15/2022] Open
Abstract
The opioid receptors are a family of G-protein coupled receptors (GPCRs) with close structural homology. The opioid receptors are activated by a variety of endogenous opioid neuropeptides, principally β-endorphin, dynorphins, leu- and met-enkephalins. The clinical potential of targeting opioid receptors has largely focused on the development of analgesics. However, more recent attention has turned to the role of central opioid receptors in the regulation of stress responses, anhedonia and mood. Activation of the κ opioid receptor (KOP) subtype has been shown in both human and rodent studies to produce dysphoric and pro-depressive like effects. This has led to the idea that selective KOP antagonists might have therapeutic potential as antidepressants. Here we review data showing that mixed μ opioid (MOP) and KOP antagonists have antidepressant-like effects in rodent behavioural paradigms and highlight comparable studies in treatment-resistant depressed patients. We propose that developing multifunctional ligands which target multiple opioid receptors open up the potential for fine-tuning hedonic responses mediated by opioids. This alternative approach towards targeting multiple opioid receptors may lead to more effective treatments for depression.
Collapse
Affiliation(s)
- Sarah J. Bailey
- Drug and Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Stephen M. Husbands
- Drug and Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
155
|
A Central Extended Amygdala Circuit That Modulates Anxiety. J Neurosci 2018; 38:5567-5583. [PMID: 29844022 DOI: 10.1523/jneurosci.0705-18.2018] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/22/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
Both the amygdala and the bed nucleus of the stria terminalis (BNST) have been implicated in maladaptive anxiety characteristics of anxiety disorders. However, the underlying circuit and cellular mechanisms have remained elusive. Here we show that mice with Erbb4 gene deficiency in somatostatin-expressing (SOM+) neurons exhibit heightened anxiety as measured in the elevated plus maze test and the open field test, two assays commonly used to assess anxiety-related behaviors in rodents. Using a combination of electrophysiological, molecular, genetic, and pharmacological techniques, we demonstrate that the abnormal anxiety in the mutant mice is caused by enhanced excitatory synaptic inputs onto SOM+ neurons in the central amygdala (CeA), and the resulting reduction in inhibition onto downstream SOM+ neurons in the BNST. Notably, our results indicate that an increase in dynorphin signaling in SOM+ CeA neurons mediates the paradoxical reduction in inhibition onto SOM+ BNST neurons, and that the consequent enhanced activity of SOM+ BNST neurons is both necessary for and sufficient to drive the elevated anxiety. Finally, we show that the elevated anxiety and the associated synaptic dysfunctions and increased dynorphin signaling in the CeA-BNST circuit of the Erbb4 mutant mice can be recapitulated by stress in wild-type mice. Together, our results unravel previously unknown circuit and cellular processes in the central extended amygdala that can cause maladaptive anxiety.SIGNIFICANCE STATEMENT The central extended amygdala has been implicated in anxiety-related behaviors, but the underlying mechanisms are unclear. Here we found that somatostatin-expressing neurons in the central amygdala (CeA) controls anxiety through modulation of the stria terminalis, a process that is mediated by an increase in dynorphin signaling in the CeA. Our results reveal circuit and cellular dysfunctions that may account for maladaptive anxiety.
Collapse
|
156
|
Schuller HM. Repurposing established cyclic adenosine monophosphate reducing agents for the prevention and therapy of epidermal growth factor receptor inhibitor resistance in non-small cell lung cancer. Transl Lung Cancer Res 2018; 7:S117-S122. [PMID: 29782563 DOI: 10.21037/tlcr.2018.03.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hildegard M Schuller
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
157
|
Nation KM, DeFelice M, Hernandez PI, Dodick DW, Neugebauer V, Navratilova E, Porreca F. Lateralized kappa opioid receptor signaling from the amygdala central nucleus promotes stress-induced functional pain. Pain 2018; 159:919-928. [PMID: 29369967 PMCID: PMC5916844 DOI: 10.1097/j.pain.0000000000001167] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The response of diffuse noxious inhibitory controls (DNIC) is often decreased, or lost, in stress-related functional pain syndromes. Because the dynorphin/kappa opioid receptor (KOR) pathway is activated by stress, we determined its role in DNIC using a model of stress-induced functional pain. Male, Sprague-Dawley rats were primed for 7 days with systemic morphine resulting in opioid-induced hyperalgesia. Fourteen days after priming, when hyperalgesia was resolved, rats were exposed to environmental stress and DNIC was evaluated by measuring hind paw response threshold to noxious pressure (test stimulus) after capsaicin injection in the forepaw (conditioning stimulus). Morphine priming without stress did not alter DNIC. However, stress produced a loss of DNIC in morphine-primed rats in both hind paws that was abolished by systemic administration of the KOR antagonist, nor-binaltorphimine (nor-BNI). Microinjection of nor-BNI into the right, but not left, central nucleus of the amygdala (CeA) prevented the loss of DNIC in morphine-primed rats. Diffuse noxious inhibitory controls were not modulated by bilateral nor-BNI in the rostral ventromedial medulla. Stress increased dynorphin content in both the left and right CeA of primed rats, reaching significance only in the right CeA; no change was observed in the rostral ventromedial medulla or hypothalamus. Although morphine priming alone is not sufficient to influence DNIC, it establishes a state of latent sensitization that amplifies the consequences of stress. After priming, stress-induced dynorphin/KOR signaling from the right CeA inhibits DNIC in both hind paws, likely reflecting enhanced descending facilitation that masks descending inhibition. Kappa opioid receptor antagonists may provide a new therapeutic strategy for stress-related functional pain disorders.
Collapse
Affiliation(s)
| | - Milena DeFelice
- Department of Pharmacology, University of Arizona, Tucson, AZ
| | | | | | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Edita Navratilova
- Department of Pharmacology, University of Arizona, Tucson, AZ
- Mayo Clinic, Scottsdale, AZ
| | - Frank Porreca
- GIDP in Neuroscience, University of Arizona, Tucson, AZ
- Department of Pharmacology, University of Arizona, Tucson, AZ
- Mayo Clinic, Scottsdale, AZ
| |
Collapse
|
158
|
m-Trifluoromethyl-diphenyl Diselenide Regulates Prefrontal Cortical MOR and KOR Protein Levels and Abolishes the Phenotype Induced by Repeated Forced Swim Stress in Mice. Mol Neurobiol 2018; 55:8991-9000. [PMID: 29623611 DOI: 10.1007/s12035-018-1024-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/20/2018] [Indexed: 12/21/2022]
Abstract
The present study aimed to investigate the m-trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] effects on prefrontal cortical MOR and KOR protein levels and phenotype induced by repeated forced swim stress (FSS) in mice. Adult Swiss mice were subjected to repeated FSS sessions, and after that, they performed the spontaneous locomotor/exploratory activity, tail suspension, and splash tests. (m-CF3-PhSe)2 (0.1 to 5 mg/kg) was administered to mice 30 min before the first FSS session and 30 min before the subsequent repeated FSS. (m-CF3-PhSe)2 abolished the phenotype induced by repeated FSS in mice. In addition, a single FSS session increased μ but reduced δ-opioid receptor contents, without changing the κ content. Mice subjected to repeated FSS had an increase in the μ content when compared to those of naïve group or subjected to single FSS. Repeated FSS induced an increase of δ-opioid receptor content compared to those mice subjected to single FSS. However, the δ-opioid receptor contents were lower than those found in the naïve group. The mice subjected to repeated FSS showed an increase in the κ-opioid receptor content when compared to that of the naïve mice. (m-CF3-PhSe)2 regulated the protein contents of μ and κ receptors in mice subjected to repeated FSS. These findings demonstrate that (m-CF3-PhSe)2 was effective to abolish the phenotype induced by FSS, which was accompanied by changes in the contents of cortical μ- and κ-opioid receptors.
Collapse
|
159
|
Hashemi M, Shakiba M, Sanaei S, Shahkar G, Rezaei M, Mojahed A, Bahari G. Evaluation of prodynorphin gene polymorphisms and their association with heroin addiction in a sample of the southeast Iranian population. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2018; 7:1-6. [PMID: 29911117 PMCID: PMC5991531 DOI: 10.22099/mbrc.2017.27182.1294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Genetic factors are supposed to account for about 30-50% of the predisposition to cocaine and heroin addiction. This study aims at investigating the effect of rs2281285, rs2235749, rs910080 and 68bp VNTR polymorphisms of prodynorphin (PDYN) gene on heroin dependence risk in a sample of the southeast Iranian population. This case-control study was done on 216 heroin dependence subjects and 219 healthy subjects. Genomic DNA was extracted from peripheral blood cells using salting out method. Genotyping of PDYN polymorphisms were performed using polymerase chain reaction (PCR) or PCR-RFLP method. The findings showed that PDYN rs910080 T>C variant significantly increased the risk of heroin dependence (OR=7.91, 95%CI=3.36-18.61, P<0.0001, CC vs TT; OR=7.53, 95%CI=3.30-17.16, P<0.0001, CC vs TT+TC; OR=1.75, 95%CI=1.33-2.32, p<0.0001, C vs T). The rs2235749 C>T, rs2281285 A>G and 68bp VNTR variants of PDYN gene were not associated with heroin dependence. Altogether, our results provide an association between rs910080 polymorphism of PDYN gene and risk of heroin dependence in a sample of the southeast Iranian population.
Collapse
Affiliation(s)
- Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mansour Shakiba
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sara Sanaei
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ghazaleh Shahkar
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Rezaei
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Azizolla Mojahed
- Department of Clinical Psychology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
160
|
Laman-Maharg A, Williams AV, Zufelt MD, Minie VA, Ramos-Maciel S, Hao R, Ordoñes Sanchez E, Copeland T, Silverman JL, Leigh A, Snyder R, Carroll FI, Fennell TR, Trainor BC. Sex Differences in the Effects of a Kappa Opioid Receptor Antagonist in the Forced Swim Test. Front Pharmacol 2018; 9:93. [PMID: 29491835 PMCID: PMC5817081 DOI: 10.3389/fphar.2018.00093] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/26/2018] [Indexed: 11/13/2022] Open
Abstract
There is growing evidence that kappa opioid receptor (KOR) antagonists could be a useful class of therapeutics for treating depression and anxiety. However, the overwhelming majority of preclinical investigations examining the behavioral effects of KOR antagonists have been in male rodents. Here, we examined the effects of the long-acting KOR antagonist nor-binaltophimine (norBNI) on immobility in the forced swim test in males and females of two different rodent species (C57Bl/6J and California mice). Consistent with previous reports, norBNI (10 mg/kg) decreased immobility in the forced swim test for male C57Bl/6J and California mice. Surprisingly, dose-response studies in female C57Bl/6J and California mice showed that norBNI did not reduce immobility. Pharmacokinetic analyses showed that metabolism and brain concentrations of norBNI were similar in male and female C57Bl/6J. In the nucleus accumbens of male but not female C57Bl/6J, norBNI increased phosphorylation of c-Jun N-terminal kinase (pJNK), a putative mechanism for norBNI action. However, no differences in pJNK were observed in male or female California mice. Together, these results suggest that immobility in the forced swim test is less dependent on endogenous KOR signaling in female rodents and highlight the importance of examining the effects of possible therapeutic agents in both males and females.
Collapse
Affiliation(s)
- Abigail Laman-Maharg
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, United States.,Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Alexia V Williams
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Mikaela D Zufelt
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Vanessa A Minie
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | | | - Rebecca Hao
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | | | - Tiffany Copeland
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Jill L Silverman
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Angelina Leigh
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Rodney Snyder
- Research Triangle Institute, Durham, NC, United States
| | - F Ivy Carroll
- Research Triangle Institute, Durham, NC, United States
| | | | - Brian C Trainor
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, United States.,Department of Psychology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
161
|
Knowland D, Lim BK. Circuit-based frameworks of depressive behaviors: The role of reward circuitry and beyond. Pharmacol Biochem Behav 2018; 174:42-52. [PMID: 29309799 PMCID: PMC6340396 DOI: 10.1016/j.pbb.2017.12.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/29/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022]
Abstract
Major depressive disorder (MDD) is a common but serious neuropsychiatric affliction that comprises a diverse set of symptoms such as the inability to feel pleasure, lack of motivation, changes in appetite, and cognitive difficulties. Given the patient to patient symptomatic variability in MDD and differing severities of individual symptoms, it is likely that maladaptive changes in distinct brain areas may mediate discrete symptoms in MDD. The advent and recent surge of studies using viral-genetic approaches have allowed for circuit-specific dissection of networks underlying motivational behavior. In particular, areas such as the ventral tegmental area (VTA), nucleus accumbens (NAc), and ventral pallidum (VP) are thought to generally promote reward, with the medial prefrontal cortex (mPFC) providing top-down control of reward seeking. On the contrary, the lateral habenula (LHb) is considered to be the aversive center of the brain as it has been shown to encode negative valence. The behavioral symptoms of MDD may arise from a disruption in the reward circuitry, hyperactivity of aversive centers, or a combination of the two. Thus, gaining access to specific circuits within the brain and how separate motivational-relevant regions transmit and encode information between each other in the context of separate depression-related symptoms can provide critical knowledge towards symptom-specific treatment of MDD. Here, we review published literature emphasizing circuit- and cell type-specific dissection of depressive-like behaviors in animal models of depression with a particular focus on the chronic social defeat stress model of MDD.
Collapse
Affiliation(s)
- Daniel Knowland
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Byung Kook Lim
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Neurobiology Section Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
162
|
Abstract
The dynorphin/κ-opioid receptor (KOR) system has been previously implicated in the regulation of cognition, but the neural circuitry and molecular mechanisms underlying KOR-mediated cognitive disruption are unknown. Here, we used an operational test of cognition involving timing and behavioral inhibition and found that systemic KOR activation impairs performance of male and female C57BL/6 mice in the differential reinforcement of low response rate (DRL) task. Systemic KOR antagonism also blocked stress-induced disruptions of DRL performance. KOR activation increased 'bursts' of incorrect responses in the DRL task and increased marble burying, suggesting that the observed disruptions in DRL performance may be attributed to KOR-induced increases in compulsive behavior. Local inactivation of KOR by injection of the long-acting antagonist nor-BNI in the ventral tegmental area (VTA), but not the infralimbic prefrontal cortex (PFC) or dorsal raphe nucleus (DRN), prevented disruption of DRL performance caused by systemic KOR activation. Cre-dependent genetic excision of KOR from dopaminergic, but not serotonergic neurons, also blocked KOR-mediated disruption of DRL performance. At the molecular level, we found that these disruptive effects did not require arrestin-dependent signaling, because neither global deletion of G-protein receptor kinase 3 (GRK3) nor cell-specific deletion of GRK3/arrestin-dependent p38α MAPK from dopamine neurons blocked KOR-mediated DRL disruptions. We then showed that nalfurafine, a clinically available G-biased KOR agonist, could also produce DRL disruptions. Together, these studies demonstrate that KOR activation in VTA dopamine neurons disrupts behavioral inhibition in a GRK3/arrestin-independent manner and suggests that KOR antagonists could be beneficial for decreasing stress-induced compulsive behaviors.
Collapse
|
163
|
A Possible Link between Anxiety and Schizophrenia and a Possible Role of Anhedonia. SCHIZOPHRENIA RESEARCH AND TREATMENT 2018; 2018:5917475. [PMID: 29593903 PMCID: PMC5822762 DOI: 10.1155/2018/5917475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/24/2017] [Accepted: 12/10/2017] [Indexed: 12/21/2022]
Abstract
In the prodromal phase of schizophrenia, severe alterations of the visual appearance of the environment have been found, accompanied by a state of intense anxiety. The present study considers the possibility that these alterations really exist in the appearance of objects, but that healthy people do not see them. The image of the world that we see is continuously deformed and fragmented by foreshortenings, partial overlapping, and so on and must be constantly reassembled and interpreted; otherwise, it could change so much that we would hardly recognize it. Since pleasure has been found to be involved in visual and cognitive information processing, the possibility is considered that anhedonia (the reduction of the ability to feel pleasure) might interfere with the correct reconstruction and interpretation of the image of the environment and alter its appearance. The possibility is also considered that these alterations might make the environment hostile, might at times evoke the sensation of being trapped by a predator, and might be the cause of the anxiety that accompanies them. According to some authors, they might also induce delusional ideas, in an attempt to restore meaning in a world that has become chaotic and frightening.
Collapse
|
164
|
Antidepressant-like effects of 3-carboxamido seco-nalmefene (3CS-nalmefene), a novel opioid receptor modulator, in a rat IFN-α-induced depression model. Brain Behav Immun 2018; 67:152-162. [PMID: 28844812 DOI: 10.1016/j.bbi.2017.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/27/2017] [Accepted: 08/22/2017] [Indexed: 01/09/2023] Open
Abstract
Patients receiving the cytokine immunotherapy, interferon-alpha (IFN-α) frequently present with neuropsychiatric consequences and cognitive impairments. Patients (25-80%) report symptoms of depression, including, anhedonia, irritability, fatigue and impaired motivation. Our lab has previously demonstrated treatment (170,000IU/kg sc, 3 times per week for 4weeks) of the pro-inflammatory cytokine, IFN-α, induced a depressive phenotype in rats in the forced swim test (FST). Here, we examine the biological mechanisms underlying behavioral changes induced by IFN-α, which may be reflective of mechanisms underlying inflammation associated depression. We also investigate the potential of 3-carboxamido seco-nalmefene (3CS-nalmefene), a novel opioid modulator (antagonist at mu and partial agonist at kappa and delta opioid receptors in vitro), to reverse IFN-α induced changes. In vitro radioligand receptor binding assays and the [35S] GTPγS were performed to determine the affinity of 3CS-nalmefene for the mu, kappa and delta opioid receptors. IFN-α treatment increased circulating and central markers of inflammation and hypothalamic-pituitaryadrenal (HPA) axis activity (IL-6, IL-1β and corticosterone) while increasing immobility in the FST, impairing of object displacement learning in the object exploration task (OET), and decreasing neuronal proliferation and brain-derived neurotrophic factor (BDNF) in the hippocampus. Treatment with 3CS-nalmefene (0.3mg/kg/sc twice per day, 3 times per week for 4weeks) prevented IFN-α-induced immobility in the FST and impaired object displacement learning. In addition, 3CS-nalmefene prevented IFN-α-induced increases in inflammation and hyperactivity of the HPA-axis, the IFN-α-induced reduction in both neuronal proliferation and BDNF expression in the hippocampus. Overall, these preclinical data would support the hypothesis that opioid receptor modulation is a relevant target for treatment of depression.
Collapse
|
165
|
Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the neural systems that drive alcohol motivation and are disrupted in alcohol use disorders is of critical importance in developing novel treatments. The dynorphin and orexin/hypocretin neuropeptide systems are particularly relevant with respect to alcohol use and misuse. Both systems are strongly associated with alcohol-seeking behaviors, particularly in cases of high levels of alcohol use as seen in dependence. Furthermore, both systems also play a role in stress and anxiety, indicating that disruption of these systems may underlie long-term homeostatic dysregulation seen in alcohol use disorders. These systems are also closely interrelated with one another - dynorphin/kappa opioid receptors and orexin/hypocretin receptors are found in similar regions and hypocretin/orexin neurons also express dynorphin - suggesting that these two systems may work together in the regulation of alcohol seeking and may be mutually disrupted in alcohol use disorders. This chapter reviews studies demonstrating a role for each of these systems in motivated behavior, with a focus on their roles in regulating alcohol-seeking and self-administration behaviors. Consideration is also given to evidence indicating that these neuropeptide systems may be viable targets for the development of potential treatments for alcohol use disorders.
Collapse
Affiliation(s)
- Rachel I Anderson
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.,Science and Technology Policy Fellowships, American Association for the Advancement of Science, Washington, DC, USA
| | - David E Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA. .,Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA. .,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA. .,Department of Veterans Affairs, Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
166
|
McHugh KL, Kelly JP. Modulation of the central opioid system as an antidepressant target in rodent models. PROGRESS IN BRAIN RESEARCH 2018; 239:49-87. [DOI: 10.1016/bs.pbr.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
167
|
Abstract
The pineal gland has a romantic history, from pharaonic Egypt, where it was equated with the eye of Horus, through various religious traditions, where it was considered the seat of the soul, the third eye, etc. Recent incarnations of these notions have suggested that N,N-dimethyltryptamine is secreted by the pineal gland at birth, during dreaming, and at near death to produce out of body experiences. Scientific evidence, however, is not consistent with these ideas. The adult pineal gland weighs less than 0.2 g, and its principal function is to produce about 30 µg per day of melatonin, a hormone that regulates circadian rhythm through very high affinity interactions with melatonin receptors. It is clear that very minute concentrations of N,N-dimethyltryptamine have been detected in the brain, but they are not sufficient to produce psychoactive effects. Alternative explanations are presented to explain how stress and near death can produce altered states of consciousness without invoking the intermediacy of N,N-dimethyltryptamine.
Collapse
|
168
|
Clasen MM, Flax SM, Hempel BJ, Cheng K, Rice KC, Riley AL. Antagonism of the kappa opioid receptor attenuates THC-induced place aversions in adult male Sprague-Dawley rats. Pharmacol Biochem Behav 2017; 163:30-35. [PMID: 29100992 DOI: 10.1016/j.pbb.2017.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/17/2017] [Accepted: 10/27/2017] [Indexed: 11/29/2022]
Abstract
RATIONALE Prior research with transgenic mice in which the kappa opioid receptor (KOR) has been suppressed or activated suggests that the aversive effects of THC are mediated by activity of this receptor subtype. If the activity of the KOR system is responsible for mediating the THC's aversive effects, then selective antagonism of the KOR by norBNI should block such aversive effects. To test this hypothesis, rats were pretreated with norBNI 24h prior to place conditioning with THC to assess its effect on the acquisition of THC-induced place aversions. METHODS In Experiment 1, rats pretreated with norBNI (0 or 15mg/kg) were exposed 24h later to one side of a place conditioning chamber and injected with THC (0, 0.56, 1 and 3.2mg/kg). On the next day, they were injected with vehicle and placed on the opposite side of the chamber. This was repeated for a total of five cycles followed by a test of the animal's aversion to the THC-paired side. In Experiment 2, rats were pretreated with norBNI (0 or 30mg/kg) prior to place conditioning 24h later with THC (0 or 3.2mg/kg). RESULTS In Experiment 1, THC produced dose-dependent place aversions that were unaffected by norBNI (15mg/kg). In Experiment 2, THC induced significant place aversions that were fully attenuated by norBNI (30mg/kg). CONCLUSIONS Although 15mg/kg norBNI was ineffective in antagonizing the aversive effects of THC, 30mg/kg norBNI blocked the ability of THC to induce a place aversion. The results of the latter assessment are consistent with prior research with transgenic manipulations of the KOR and provide further evidence for the role of the KOR system in the aversive properties of THC.
Collapse
Affiliation(s)
- Matthew M Clasen
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, Washington, DC 20016, USA.
| | - Shaun M Flax
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, Washington, DC 20016, USA
| | - Briana J Hempel
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, Washington, DC 20016, USA
| | - Kejun Cheng
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Kenner C Rice
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, Washington, DC 20016, USA.
| |
Collapse
|
169
|
Yeung EW, Craggs JG, Gizer IR. Comorbidity of Alcohol Use Disorder and Chronic Pain: Genetic Influences on Brain Reward and Stress Systems. Alcohol Clin Exp Res 2017; 41:1831-1848. [PMID: 29048744 DOI: 10.1111/acer.13491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/25/2017] [Indexed: 01/10/2023]
Abstract
Alcohol use disorder (AUD) is highly comorbid with chronic pain (CP). Evidence has suggested that neuroadaptive processes characterized by reward deficit and stress surfeit are involved in the development of AUD and pain chronification. Neurological data suggest that shared genetic architecture associated with the reward and stress systems may contribute to the comorbidity of AUD and CP. This monograph first delineates the prevailing theories of the development of AUD and pain chronification focusing on the reward and stress systems. It then provides a brief summary of relevant neurological findings followed by an evaluation of evidence documented by molecular genetic studies. Candidate gene association studies have provided some initial support for the genetic overlap between AUD and CP; however, these results must be interpreted with caution until studies with sufficient statistical power are conducted and replications obtained. Genomewide association studies have suggested a number of genes (e.g., TBX19, HTR7, and ADRA1A) that are either directly or indirectly related to the reward and stress systems in the AUD and CP literature. Evidence reviewed in this monograph suggests that shared genetic liability underlying the comorbidity between AUD and CP, if present, is likely to be complex. As the advancement in molecular genetic methods continues, future studies may show broader central nervous system involvement in AUD-CP comorbidity.
Collapse
Affiliation(s)
- Ellen W Yeung
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri.,Institute for Interdisciplinary Salivary Bioscience Research, University of California at Irvine, Irvine, California
| | - Jason G Craggs
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri.,School of Health Professions, University of Missouri, Columbia, Missouri
| | - Ian R Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
170
|
Mosca E, Bersanelli M, Gnocchi M, Moscatelli M, Castellani G, Milanesi L, Mezzelani A. Network Diffusion-Based Prioritization of Autism Risk Genes Identifies Significantly Connected Gene Modules. Front Genet 2017; 8:129. [PMID: 28993790 PMCID: PMC5622537 DOI: 10.3389/fgene.2017.00129] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/04/2017] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is marked by a strong genetic heterogeneity, which is underlined by the low overlap between ASD risk gene lists proposed in different studies. In this context, molecular networks can be used to analyze the results of several genome-wide studies in order to underline those network regions harboring genetic variations associated with ASD, the so-called "disease modules." In this work, we used a recent network diffusion-based approach to jointly analyze multiple ASD risk gene lists. We defined genome-scale prioritizations of human genes in relation to ASD genes from multiple studies, found significantly connected gene modules associated with ASD and predicted genes functionally related to ASD risk genes. Most of them play a role in synapsis and neuronal development and function; many are related to syndromes that can be in comorbidity with ASD and the remaining are involved in epigenetics, cell cycle, cell adhesion and cancer.
Collapse
Affiliation(s)
- Ettore Mosca
- Bioinformatics Group, Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Matteo Bersanelli
- Applied Physics Group, Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Matteo Gnocchi
- Bioinformatics Group, Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Marco Moscatelli
- Bioinformatics Group, Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Gastone Castellani
- Applied Physics Group, Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Luciano Milanesi
- Bioinformatics Group, Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Alessandra Mezzelani
- Bioinformatics Group, Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| |
Collapse
|
171
|
Browne CA, Falcon E, Robinson SA, Berton O, Lucki I. Reversal of Stress-Induced Social Interaction Deficits by Buprenorphine. Int J Neuropsychopharmacol 2017; 21:164-174. [PMID: 29020387 PMCID: PMC5793841 DOI: 10.1093/ijnp/pyx079] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/22/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with post-traumatic stress disorder frequently report persistent problems with social interactions, emerging after a traumatic experience. Chronic social defeat stress is a widely used rodent model of stress that produces robust and sustained social avoidance behavior. The avoidance of other rodents can be reversed by 28 days of treatment with selective serotonin reuptake inhibitors, the only pharmaceutical class approved by the U.S. Food and Drug Administration for treating post-traumatic stress disorder. In this study, the sensitivity of social interaction deficits evoked by 10 days of chronic social defeat stress to prospective treatments for post-traumatic stress disorder was examined. METHODS The effects of acute and repeated treatment with a low dose of buprenorphine (0.25 mg/kg/d) on social interaction deficits in male C57BL/6 mice by chronic social defeat stress were studied. Another cohort of mice was used to determine the effects of the selective serotonin reuptake inhibitor fluoxetine (10 mg/kg/d), the NMDA antagonist ketamine (10 mg/kg/d), and the selective kappa opioid receptor antagonist CERC-501 (1 mg/kg/d). Changes in mRNA expression of Oprm1 and Oprk1 were assessed in a separate cohort. RESULTS Buprenorphine significantly reversed social interaction deficits produced by chronic social defeat stress following 7 days of administration, but not after acute injection. Treatment with fluoxetine for 7 days, but not 24 hours, also reinstated social interaction behavior in mice that were susceptible to chronic social defeat. In contrast, CERC-501 and ketamine failed to reverse social avoidance. Gene expression analysis found: (1) Oprm1 mRNA expression was reduced in the hippocampus and increased in the frontal cortex of susceptible mice and (2) Oprk1 mRNA expression was reduced in the amygdala and increased in the frontal cortex of susceptible mice compared to non-stressed controls and stress-resilient mice. CONCLUSIONS Short-term treatment with buprenorphine and fluoxetine normalized social interaction after chronic social defeat stress. In concert with the changes in opioid receptor expression produced by chronic social defeat stress, we speculate that buprenorphine's efficacy in this model of post-traumatic stress disorder may be associated with the ability of this compound to engage multiple opioid receptors.
Collapse
Affiliation(s)
| | | | | | | | - Irwin Lucki
- Departments of Psychiatry, Philadelphia, Pennsylvania,Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania,University of Pennsylvania, Philadelphia, Pennsylvania,Correspondence: Irwin Lucki, PhD, Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 ()
| |
Collapse
|
172
|
Gao Y, Zhou JJ, Zhu Y, Wang L, Kosten TA, Zhang X, Li DP. Neuroadaptations of presynaptic and postsynaptic GABA B receptor function in the paraventricular nucleus in response to chronic unpredictable stress. Br J Pharmacol 2017. [PMID: 28635080 DOI: 10.1111/bph.13924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Chronic stress impairs GABAA (GABA type A) receptor-mediated inhibition in the hypothalamic paraventricular nucleus (PVN). It is not clear whether GABAB receptor function is also altered. We hypothesize that chronic stress alters GABAB receptor function in PVN corticotrophin-releasing hormone (CRH) neurons to control hypothalamus-pituitary-adrenal axis activity. EXPERIMENTAL APPROACH Whole-cell patch clamp recordings were made of PVN-CRH neurons expressing eGFP driven by CRH promoter in brain slices from unstressed rats and rats exposed to chronic unpredictable mild stress (CUMS). KEY RESULTS CUMS elevated the basal circulating corticosterone levels and increased the basal firing activity of PVN-CRH neurons. Microinjection of GABAB receptor agonist baclofen into the PVN suppressed the increased corticosterone levels in CUMS rats compared with unstressed rats. CUMS blunted the baclofen-induced inhibition on PVN-CRH neurons and outward currents in these neurons. Furthermore, CUMS reduced expression of GABAB1 (GABAB R1) protein in the PVN. Blocking NMDA receptors with AP5 restored the reduced baclofen-induced currents in CUMS rats but had no effect on GABAB1 expression. Furthermore, CUMS treatment augmented the baclofen-induced decrease in the frequency of glutamatergic excitatory postsynaptic currents (EPSCs) and GABAergic inhibitor postsynaptic currents in PVN-CRH neurons. The GABAB receptor antagonist CGP55845 increased the firing activity of PVN-CRH neurons only in CUMS-treated rats and not in unstressed rats. CONCLUSIONS AND IMPLICATIONS These findings suggest that chronic stress impairs postsynaptic GABAB receptor function but augments presynaptic GABAB receptor function in controlling glutamatergic and GABAergic synaptic inputs in PVN-CRH neurons.
Collapse
Affiliation(s)
- Yonggang Gao
- Department of Critical Care and Anesthesiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Preventive Medicine, Hebei University of Chinese Medicine, Shijiazhuang, HeBei, China
| | - Jing-Jing Zhou
- Department of Critical Care and Anesthesiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Zhu
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wang
- Department of Critical Care and Anesthesiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Therese A Kosten
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Hebei Collaborative Innovation Center for Cardiocerebrovascular Disease, Shijiazhuang, Hebei, China
| | - De-Pei Li
- Department of Critical Care and Anesthesiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
173
|
Becker HC. Influence of stress associated with chronic alcohol exposure on drinking. Neuropharmacology 2017; 122:115-126. [PMID: 28431971 PMCID: PMC5497303 DOI: 10.1016/j.neuropharm.2017.04.028] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/24/2022]
Abstract
Stress is commonly regarded as an important trigger for relapse and a significant factor that promotes increased motivation to drink in some individuals. However, the relationship between stress and alcohol is complex, likely changing in form during the transition from early moderated alcohol use to more heavy uncontrolled alcohol intake. A growing body of evidence indicates that prolonged excessive alcohol consumption serves as a potent stressor, producing persistent dysregulation of brain reward and stress systems beyond normal homeostatic limits. This progressive dysfunctional (allostatic) state is characterized by changes in neuroendocrine and brain stress pathways that underlie expression of withdrawal symptoms that reflect a negative affective state (dysphoria, anxiety), as well as increased motivation to self-administer alcohol. This review highlights literature supportive of this theoretical framework for alcohol addiction. In particular, evidence for stress-related neural, physiological, and behavioral changes associated with chronic alcohol exposure and withdrawal experience is presented. Additionally, this review focuses on the effects of chronic alcohol-induced changes in several pro-stress neuropeptides (corticotropin-releasing factor, dynorphin) and anti-stress neuropeptide systems (nocicepton, neuropeptide Y, oxytocin) in contributing to the stress, negative emotional, and motivational consequences of chronic alcohol exposure. Studies involving use of animal models have significantly increased our understanding of the dynamic stress-related physiological mechanisms and psychological underpinnings of alcohol addiction. This, in turn, is crucial for developing new and more effective therapeutics for treating excessive, harmful drinking, particularly stress-enhanced alcohol consumption. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Department of Neuroscience, Medical University of South Carolina, RHJ Department of Veterans Affairs, Charleston, SC 29464, USA.
| |
Collapse
|
174
|
"Effects of the novel relatively short-acting kappa opioid receptor antagonist LY2444296 in behaviors observed after chronic extended-access cocaine self-administration in rats". Psychopharmacology (Berl) 2017; 234:2219-2231. [PMID: 28550455 PMCID: PMC5591939 DOI: 10.1007/s00213-017-4647-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022]
Abstract
RATIONALE The recruitment of the stress circuitry contributes to a shift from positive to negative reinforcement mechanisms sustaining long-term cocaine addiction. The kappa opioid receptor (KOPr) signaling is upregulated by stress and chronic cocaine exposure. While KOPr agonists induce anhedonia and dysphoria, KOPr antagonists display antidepressant and anxiolytic properties. Most of the knowledge on KOPr antagonism is based on drugs with unusual pharmacokinetic and pharmacodynamic properties, complicating interpretation of results. Here we characterized in vivo behavioral and neuroendocrine effects of the novel relatively short-acting KOPr antagonist LY2444296. To date, no study has investigated whether systemic KOPr blockade reduced anxiety-like and depressive-like behaviors in animals previously exposed to chronic extended access cocaine self-administration. OBJECTIVES We tested the effect of LY2444296 in blocking KOPr-mediated aversive and neuroendocrine effects. Then, we tested acute systemic LY2444296 in reducing anxiety- and depression-like behaviors, as well as releasing the stress hormone corticosterone (CORT), observed after chronic extended access (18 h/day for 14 days) cocaine self-administration. RESULTS LY2444296 blocked U69,593-induced place aversion and -reduced motor activity as well as U69,593-induced release of serum CORT, confirming its major site of action, without exerting an effect per se. Acute systemic administration of LY2444296 reduced anxiety-like and depressive-like behaviors, as well as CORT release, in rats tested after chronic extended access cocaine self-administration, but not in cocaine-naïve rats. CONCLUSIONS Results suggest that acute blockade of KOPr by a relatively short-acting antagonist produces therapeutic-like effects selectively in rats with a history of chronic extended access cocaine self-administration.
Collapse
|
175
|
The C-2 derivatives of salvinorin A, ethoxymethyl ether Sal B and β-tetrahydropyran Sal B, have anti-cocaine properties with minimal side effects. Psychopharmacology (Berl) 2017; 234:2499-2514. [PMID: 28536865 PMCID: PMC5542847 DOI: 10.1007/s00213-017-4637-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 05/05/2017] [Indexed: 12/11/2022]
Abstract
RATIONALE Kappa-opioid receptor (KOPr) agonists have pre-clinical anti-cocaine and analgesic effects. However, side effects including sedation, dysphoria, aversion, anxiety and depression limit their therapeutic development. The unique structure of salvinorin A has been used to develop longer acting KOPr agonists. OBJECTIVES We evaluate two novel C-2 analogues of salvinorin A, ethoxymethyl ether Sal B (EOM Sal B) and β-tetrahydropyran Sal B (β-THP Sal B) alongside U50,488 for their ability to modulate cocaine-induced behaviours and side effects, pre-clinically. METHODS Anti-cocaine properties of EOM Sal B were evaluated using the reinstatement model of drug seeking in self-administering rats. EOM Sal B and β-THP Sal B were evaluated for effects on cocaine-induced hyperactivity, spontaneous locomotor activity and sucrose self-administration. EOM Sal B and β-THP Sal B were evaluated for aversive, anxiogenic and depressive-like effects using conditioned place aversion (CPA), elevated plus maze (EPM) and forced swim tests (FSTs), respectively. RESULTS EOM Sal B (0.1, 0.3 mg/kg, intraperitoneally (i.p.)) dose dependently attenuated drug seeking, and EOM Sal B (0.1 mg/kg, i.p.) and β-THP Sal B (1 mg/kg, i.p.) attenuated cocaine-induced hyperactivity. No effects on locomotor activity, open arm times (EPM) or swimming behaviours (FST) were seen with EOM (0.1 or 0.3 mg/kg, i.p.) or β-THP Sal B (1 or 2 mg/kg, i.p.). However, β-THP Sal B decreased time spent in the drug-paired chamber. CONCLUSION EOM Sal B is more potent than Sal A and β-THP Sal B in reducing drug-seeking behaviour with fewer side effects. EOM Sal B showed no effects on sucrose self-administration (0.1 mg/kg), locomotor, depressive-like, aversive-like or anxiolytic effects.
Collapse
|
176
|
Effects of Chronic Social Defeat Stress on Sleep and Circadian Rhythms Are Mitigated by Kappa-Opioid Receptor Antagonism. J Neurosci 2017; 37:7656-7668. [PMID: 28674176 DOI: 10.1523/jneurosci.0885-17.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022] Open
Abstract
Stress plays a critical role in the neurobiology of mood and anxiety disorders. Sleep and circadian rhythms are affected in many of these conditions. Here we examined the effects of chronic social defeat stress (CSDS), an ethological form of stress, on sleep and circadian rhythms. We exposed male mice implanted with wireless telemetry transmitters to a 10 day CSDS regimen known to produce anhedonia (a depressive-like effect) and social avoidance (an anxiety-like effect). EEG, EMG, body temperature, and locomotor activity data were collected continuously during the CSDS regimen and a 5 day recovery period. CSDS affected numerous endpoints, including paradoxical sleep (PS) and slow-wave sleep (SWS), as well as the circadian rhythmicity of body temperature and locomotor activity. The magnitude of the effects increased with repeated stress, and some changes (PS bouts, SWS time, body temperature, locomotor activity) persisted after the CSDS regimen had ended. CSDS also altered mRNA levels of the circadian rhythm-related gene mPer2 within brain areas that regulate motivation and emotion. Administration of the κ-opioid receptor (KOR) antagonist JDTic (30 mg/kg, i.p.) before CSDS reduced stress effects on both sleep and circadian rhythms, or hastened their recovery, and attenuated changes in mPer2 Our findings show that CSDS produces persistent disruptions in sleep and circadian rhythmicity, mimicking attributes of stress-related conditions as they appear in humans. The ability of KOR antagonists to mitigate these disruptions is consistent with previously reported antistress effects. Studying homologous endpoints across species may facilitate the development of improved treatments for psychiatric illness.SIGNIFICANCE STATEMENT Stress plays a critical role in the neurobiology of mood and anxiety disorders. We show that chronic social defeat stress in mice produces progressive alterations in sleep and circadian rhythms that resemble features of depression as it appears in humans. Whereas some of these alterations recover quickly upon cessation of stress, others persist. Administration of a kappa-opioid receptor (KOR) antagonist reduced stress effects or hastened recovery, consistent with the previously reported antistress effects of this class of agents. Use of endpoints, such as sleep and circadian rhythm, that are homologous across species will facilitate the implementation of translational studies that better predict clinical outcomes in humans, improve the success of clinical trials, and facilitate the development of more effective therapeutics.
Collapse
|
177
|
Lalanne L, Ayranci G, Filliol D, Gavériaux-Ruff C, Befort K, Kieffer BL, Lutz PE. Kappa opioid receptor antagonism and chronic antidepressant treatment have beneficial activities on social interactions and grooming deficits during heroin abstinence. Addict Biol 2017; 22:1010-1021. [PMID: 27001273 PMCID: PMC5590636 DOI: 10.1111/adb.12392] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 01/14/2016] [Accepted: 02/18/2016] [Indexed: 01/11/2023]
Abstract
Addiction is a chronic brain disorder that progressively invades all aspects of personal life. Accordingly, addiction to opiates severely impairs interpersonal relationships, and the resulting social isolation strongly contributes to the severity and chronicity of the disease. Uncovering new therapeutic strategies that address this aspect of addiction is therefore of great clinical relevance. We recently established a mouse model of heroin addiction in which, following chronic heroin exposure, 'abstinent' mice progressively develop a strong and long-lasting social avoidance phenotype. Here, we explored and compared the efficacy of two pharmacological interventions in this mouse model. Because clinical studies indicate some efficacy of antidepressants on emotional dysfunction associated with addiction, we first used a chronic 4-week treatment with the serotonergic antidepressant fluoxetine, as a reference. In addition, considering prodepressant effects recently associated with kappa opioid receptor signaling, we also investigated the kappa opioid receptor antagonist norbinaltorphimine (norBNI). Finally, we assessed whether fluoxetine and norBNI could reverse abstinence-induced social avoidance after it has established. Altogether, our results show that two interspaced norBNI administrations are sufficient both to prevent and to reverse social impairment in heroin abstinent animals. Therefore, kappa opioid receptor antagonism may represent a useful approach to alleviate social dysfunction in addicted individuals.
Collapse
Affiliation(s)
- L Lalanne
- Translational Medicine and Neurogenetics Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U 964, CNRS UMR 7104, Université de Strasbourg, France
- Département de Psychiatrie I, Hôpital Civil, Centre Hospitalier Régional Universitaire de Strasbourg, France
| | - G Ayranci
- Translational Medicine and Neurogenetics Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U 964, CNRS UMR 7104, Université de Strasbourg, France
- Douglas Institute Research Centre, McGill University, Canada
| | - D Filliol
- Translational Medicine and Neurogenetics Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U 964, CNRS UMR 7104, Université de Strasbourg, France
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Université de Strasbourg, CNRS, Faculté de Psychologie, Neuropôle de Strasbourg, France
| | - C Gavériaux-Ruff
- Translational Medicine and Neurogenetics Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U 964, CNRS UMR 7104, Université de Strasbourg, France
| | - K Befort
- Translational Medicine and Neurogenetics Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U 964, CNRS UMR 7104, Université de Strasbourg, France
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Université de Strasbourg, CNRS, Faculté de Psychologie, Neuropôle de Strasbourg, France
| | - B L Kieffer
- Translational Medicine and Neurogenetics Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U 964, CNRS UMR 7104, Université de Strasbourg, France
- Douglas Institute Research Centre, McGill University, Canada
| | - P-E Lutz
- Translational Medicine and Neurogenetics Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U 964, CNRS UMR 7104, Université de Strasbourg, France
- McGill Group for Suicide Studies, Douglas Institute Research Centre, McGill University, Canada
| |
Collapse
|
178
|
Opiates Modulate Noxious Chemical Nociception through a Complex Monoaminergic/Peptidergic Cascade. J Neurosci 2017; 36:5498-508. [PMID: 27194330 DOI: 10.1523/jneurosci.4520-15.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/13/2016] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED The ability to detect noxious stimuli, process the nociceptive signal, and elicit an appropriate behavioral response is essential for survival. In Caenorhabditis elegans, opioid receptor agonists, such as morphine, mimic serotonin, and suppress the overall withdrawal from noxious stimuli through a pathway requiring the opioid-like receptor, NPR-17. This serotonin- or morphine-dependent modulation can be rescued in npr-17-null animals by the expression of npr-17 or a human κ opioid receptor in the two ASI sensory neurons, with ASI opioid signaling selectively inhibiting ASI neuropeptide release. Serotonergic modulation requires peptides encoded by both nlp-3 and nlp-24, and either nlp-3 or nlp-24 overexpression mimics morphine and suppresses withdrawal. Peptides encoded by nlp-3 act differentially, with only NLP-3.3 mimicking morphine, whereas other nlp-3 peptides antagonize NLP-3.3 modulation. Together, these results demonstrate that opiates modulate nociception in Caenorhabditis elegans through a complex monoaminergic/peptidergic cascade, and suggest that this model may be useful for dissecting opiate signaling in mammals. SIGNIFICANCE STATEMENT Opiates are used extensively to treat chronic pain. In Caenorhabditis elegans, opioid receptor agonists suppress the overall withdrawal from noxious chemical stimuli through a pathway requiring an opioid-like receptor and two distinct neuropeptide-encoding genes, with individual peptides from the same gene functioning antagonistically to modulate nociception. Endogenous opioid signaling functions as part of a complex, monoaminergic/peptidergic signaling cascade and appears to selectively inhibit neuropeptide release, mediated by a α-adrenergic-like receptor, from two sensory neurons. Importantly, receptor null animals can be rescued by the expression of the human κ opioid receptor, and injection of human opioid receptor ligands mimics exogenous opiates, highlighting the utility of this model for dissecting opiate signaling in mammals.
Collapse
|
179
|
The long-term effects of stress and kappa opioid receptor activation on conditioned place aversion in male and female California mice. Behav Brain Res 2017. [PMID: 28625549 DOI: 10.1016/j.bbr.2017.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Psychosocial stress leads to the activation of kappa opioid receptors (KORs), which induce dysphoria and facilitate depression-like behaviors. However, less is known about the long-term effects of stress and KORs in females. We examined the long-term effects of social defeat stress on the aversive properties of KOR activation in male and female California mice (Peromyscus californicus) using a conditioned place aversion paradigm. Female California mice naïve to social defeat, formed a place aversion following treatment with 2.5mg/kg of the KOR agonist U50,488, but females exposed to defeat did not form a place aversion to this dose. This supports the finding by others that social defeat weakens the aversive properties of KOR agonists. In contrast, both control and stressed males formed an aversion to 10mg/kg of U50,488. We also examined EGR1 immunoreactivity, an indirect marker of neuronal activity, in the nucleus accumbens (NAc) and found that stress and treatment with 10mg/kg of U50,488 increased EGR1 immunoreactivity in the NAc core in females but reduced activation in males. The effects of stress and U50,488 on EGR1 were specific to the NAc, as we found no differences in the bed nucleus of the stria terminalis. In summary, our data indicate important sex differences in the long-term effects of stress and indicate the need for further study of the molecular mechanisms mediating the behavioral effects of KOR in both males and females.
Collapse
|
180
|
Vázquez López JL, Schild L, Günther T, Schulz S, Neurath H, Becker A. The effects of kratom on restraint-stress-induced analgesia and its mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2017; 205:178-185. [PMID: 28501425 DOI: 10.1016/j.jep.2017.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mitragyna speciosa and its extracts are called kratom (dried leaves, extract). They contain several alkaloids with an affinity for different opioid receptors. They are used in traditional medicine for the treatment of different diseases, as a substitute by opiate addicts, and to mitigate opioid withdrawal symptoms. Apart from their medical properties, they are used to enhance physical endurance and as a means of overcoming stress. PURPOSE The aim of this study was to determine the mechanisms underlying the effects of kratom on restraint-stress-induced analgesia which occurs during or following exposure to a stressful or fearful stimulus. METHODS To gain further insights into the action of kratom on stress, we conducted experiments using restraint stress as a test system and stress-induced analgesia as a test parameter. Using transgenic mu opioid-receptor (MOR) deficient mice, we studied the involvement of this receptor type. We used nor-binaltorphimine (BNT), an antagonist at kappa opioid receptors (KOR), to study functions of this type of receptor. Membrane potential assay was also employed to measure the intrinsic activity of kratom in comparison to U50,488, a highly selective kappa agonist. RESULTS Treatment with kratom diminished stress-induced analgesia in wildtype and MOR knockout animals. Pretreatment of MOR deficient mice with BNT resulted in similar effects. In comparison to U50,488, kratom exhibited negligible intrinsic activity at KOR alone. CONCLUSIONS The results suggest that the use of kratom as a pharmacological tool to mitigate withdrawal symptoms is related to its action on KOR.
Collapse
Affiliation(s)
- José Luis Vázquez López
- Otto-von-Guericke University, Faculty of Medicine, Institute of Pharmacology and Toxicology, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Lorenz Schild
- Otto-von-Guericke-University, Faculty of Medicine, Department of Pathobiochemistry, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Thomas Günther
- Friedrich Schiller University Jena, Jena University Hospital, Institute of Pharmacology and Toxicology, Drackendorfer Str. 1, 07747 Jena, Germany
| | - Stefan Schulz
- Friedrich Schiller University Jena, Jena University Hospital, Institute of Pharmacology and Toxicology, Drackendorfer Str. 1, 07747 Jena, Germany
| | - Hartmud Neurath
- Center of Pharmacology and Toxicology, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Axel Becker
- Otto-von-Guericke University, Faculty of Medicine, Institute of Pharmacology and Toxicology, Leipziger Str. 44, 39120 Magdeburg, Germany.
| |
Collapse
|
181
|
Anderson RI, Becker HC. Role of the Dynorphin/Kappa Opioid Receptor System in the Motivational Effects of Ethanol. Alcohol Clin Exp Res 2017; 41:1402-1418. [PMID: 28425121 DOI: 10.1111/acer.13406] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
Evidence has demonstrated that dynorphin (DYN) and the kappa opioid receptor (KOR) system contribute to various psychiatric disorders, including anxiety, depression, and addiction. More recently, this endogenous opioid system has received increased attention as a potential therapeutic target for treating alcohol use disorders. In this review, we provide an overview and synthesis of preclinical studies examining the influence of alcohol (ethanol [EtOH]) exposure on DYN/KOR expression and function, as well as studies examining the effects of DYN/KOR manipulation on EtOH's rewarding and aversive properties. We then describe work that has characterized effects of KOR activation and blockade on EtOH self-administration and EtOH dependence/withdrawal-related behaviors. Finally, we address how the DYN/KOR system may contribute to stress-EtOH interactions. Despite an apparent role for the DYN/KOR system in motivational effects of EtOH, support comes from relatively few studies. Nevertheless, review of this literature reveals several common themes: (i) rodent strains genetically predisposed to consume more EtOH generally appear to have reduced DYN/KOR tone in brain reward circuitry; (ii) acute and chronic EtOH exposure typically up-regulate the DYN/KOR system; (iii) KOR antagonists reduce behavioral indices of negative affect associated with stress and chronic EtOH exposure/withdrawal; and (iv) KOR antagonists are effective in reducing EtOH consumption, but are often more efficacious under conditions that engender high levels of consumption, such as dependence or stress exposure. These results support the contention that the DYN/KOR system plays a significant role in contributing to dependence- and stress-induced elevation in EtOH consumption. Overall, more comprehensive analyses (on both behavioral and mechanistic levels) are needed to provide additional insight into how the DYN/KOR system is engaged and adapts to influence the motivation effects of EtOH. This information will be critical for the development of new pharmacological agents targeting KORs as promising novel therapeutics for alcohol use disorders and comorbid affective disorders.
Collapse
Affiliation(s)
- Rachel I Anderson
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina.,Department of Neuroscience , Medical University of South Carolina, Charleston, South Carolina.,RHJ Department of Veterans Affairs Medical Center , Charleston, South Carolina
| |
Collapse
|
182
|
Machado-Vieira R, Henter ID, Zarate CA. New targets for rapid antidepressant action. Prog Neurobiol 2017; 152:21-37. [PMID: 26724279 PMCID: PMC4919246 DOI: 10.1016/j.pneurobio.2015.12.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Current therapeutic options for major depressive disorder (MDD) and bipolar disorder (BD) are associated with a lag of onset that can prolong distress and impairment for patients, and their antidepressant efficacy is often limited. All currently approved antidepressant medications for MDD act primarily through monoaminergic mechanisms. Glutamate is the major excitatory neurotransmitter in the central nervous system, and glutamate and its cognate receptors are implicated in the pathophysiology of MDD, and in the development of novel therapeutics for this disorder. The rapid and robust antidepressant effects of the N-methyl-d-aspartate (NMDA) antagonist ketamine were first observed in 2000. Since then, other NMDA receptor antagonists have been studied in MDD. Most have demonstrated relatively modest antidepressant effects compared to ketamine, but some have shown more favorable characteristics. This article reviews the clinical evidence supporting the use of novel glutamate receptor modulators with direct affinity for cognate receptors: (1) non-competitive NMDA receptor antagonists (ketamine, memantine, dextromethorphan, AZD6765); (2) subunit (GluN2B)-specific NMDA receptor antagonists (CP-101,606/traxoprodil, MK-0657); (3) NMDA receptor glycine-site partial agonists (GLYX-13); and (4) metabotropic glutamate receptor (mGluR) modulators (AZD2066, RO4917523/basimglurant). We also briefly discuss several other theoretical glutamate receptor targets with preclinical antidepressant-like efficacy that have yet to be studied clinically; these include α-amino-3-hydroxyl-5-methyl-4-isoxazoleproprionic acid (AMPA) agonists and mGluR2/3 negative allosteric modulators. The review also discusses other promising, non-glutamatergic targets for potential rapid antidepressant effects, including the cholinergic system (scopolamine), the opioid system (ALKS-5461), corticotropin releasing factor (CRF) receptor antagonists (CP-316,311), and others.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ioline D Henter
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
183
|
Epigenetic mechanisms of alcoholism and stress-related disorders. Alcohol 2017; 60:7-18. [PMID: 28477725 DOI: 10.1016/j.alcohol.2017.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 12/20/2022]
Abstract
Stress-related disorders, such as anxiety, early life stress, and posttraumatic stress disorder appear to be important factors in promoting alcoholism, as alcohol consumption can temporarily attenuate the negative affective symptoms of these disorders. Several molecules involved in signaling pathways may contribute to the neuroadaptation induced during alcohol dependence and stress disorders, and among these, brain-derived neurotrophic factor (BDNF), corticotropin releasing factor (CRF), neuropeptide Y (NPY) and opioid peptides (i.e., nociceptin and dynorphin) are involved in the interaction of stress and alcohol. In fact, alterations in the expression and function of these molecules have been associated with the pathophysiology of stress-related disorders and alcoholism. In recent years, various studies have focused on the epigenetic mechanisms that regulate chromatin architecture, thereby modifying gene expression. Interestingly, epigenetic modifications in specific brain regions have been shown to be associated with the neurobiology of psychiatric disorders, including alcoholism and stress. In particular, the enzymes responsible for chromatin remodeling (i.e., histone deacetylases and methyltransferases, DNA methyltransferases) have been identified as common molecular mechanisms for the interaction of stress and alcohol and have become promising therapeutic targets to treat or prevent alcoholism and associated emotional disorders.
Collapse
|
184
|
Francis TC, Lobo MK. Emerging Role for Nucleus Accumbens Medium Spiny Neuron Subtypes in Depression. Biol Psychiatry 2017; 81:645-653. [PMID: 27871668 PMCID: PMC5352537 DOI: 10.1016/j.biopsych.2016.09.007] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
The ventral striatum (nucleus accumbens) and its role in mood, reward, and motivation has been the focus of significant research. Despite this interest, little work has addressed cell type-specific distinctions in medium spiny neurons (MSNs), the main projection neurons in the nucleus accumbens and dorsal striatum, and their function in relation to stress and depression. Previous work has shown opposing roles for D1 and D2 receptor MSN subtypes in depression-like outcomes to stress, particularly in regard to repeated neuronal stimulation and excitatory transmission. Yet the mechanisms of action are still unknown. We discuss potential mechanisms by which MSN subtype function promotes dichotomous behavioral outcomes caused by differences in cellular plasticity, subcellular signaling pathways, and genetic expression. This review aims to address our current understanding about the role of nucleus accumbens MSN subtypes in stress-related depression behavior and speculates on how currently understood mechanisms contribute to factors that control the activity of MSNs.
Collapse
Affiliation(s)
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
185
|
Xie JY, De Felice M, Kopruszinski CM, Eyde N, LaVigne J, Remeniuk B, Hernandez P, Yue X, Goshima N, Ossipov M, King T, Streicher JM, Navratilova E, Dodick D, Rosen H, Roberts E, Porreca F. Kappa opioid receptor antagonists: A possible new class of therapeutics for migraine prevention. Cephalalgia 2017; 37:780-794. [PMID: 28376659 DOI: 10.1177/0333102417702120] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Stress is the most commonly reported migraine trigger. Dynorphin, an endogenous opioid peptide acting preferentially at kappa opioid receptors (KORs), is a key mediator of stress responses. The aim of this study was to use an injury-free rat model of functional cephalic pain with features of migraine and medication overuse headache (MOH) to test the possible preventive benefit of KOR blockade on stress-induced cephalic pain. Methods Following sumatriptan priming to model MOH, rats were hyper-responsive to environmental stress, demonstrating delayed cephalic and extracephalic allodynia and increased levels of CGRP in the jugular blood, consistent with commonly observed clinical outcomes during migraine. Nor-binaltorphimine (nor-BNI), a long-acting KOR antagonist or CYM51317, a novel short-acting KOR antagonist, were given systemically either during sumatriptan priming or immediately before environmental stress challenge. The effects of KOR blockade in the amygdala on stress-induced allodynia was determined by administration of nor-BNI into the right or left central nucleus of the amygdala (CeA). Results KOR blockade prevented both stress-induced allodynia and increased plasma CGRP. Stress increased dynorphin content and phosphorylated KOR in both the left and right CeA in sumatriptan-primed rats. However, KOR blockade only in the right CeA prevented stress-induced cephalic allodynia as well as extracephalic allodynia, measured in either the right or left hindpaws. U69,593, a KOR agonist, given into the right, but not the left, CeA, produced allodynia selectively in sumatriptan-primed rats. Both stress and U69,593-induced allodynia were prevented by right CeA U0126, a mitogen-activated protein kinase inhibitor, presumably acting downstream of KOR. Conclusions Our data reveal a novel lateralized KOR circuit that mediated stress-induced cutaneous allodynia and increased plasma CGRP in an injury-free model of functional cephalic pain with features of migraine and medication overuse headache. Selective, small molecule, orally available, and reversible KOR antagonists are currently in development and may represent a novel class of preventive therapeutics for migraine.
Collapse
Affiliation(s)
- Jennifer Y Xie
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Milena De Felice
- 2 School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Caroline M Kopruszinski
- 3 Department of Pharmacology, Biological Sciences Section, Federal University of Parana, Curitiba, Brazil
| | - Nathan Eyde
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Justin LaVigne
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Bethany Remeniuk
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Pablo Hernandez
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Xu Yue
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Naomi Goshima
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Michael Ossipov
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Tamara King
- 4 Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| | - John M Streicher
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Edita Navratilova
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | | | - Hugh Rosen
- 6 Scripps Research Institute, La Jolla, CA, USA
| | - Ed Roberts
- 6 Scripps Research Institute, La Jolla, CA, USA
| | - Frank Porreca
- 1 Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA.,5 Mayo Clinic, Phoenix, AZ USA
| |
Collapse
|
186
|
Rahiman SSF, Morgan M, Gray P, Shaw PN, Cabot PJ. Inhibitory effects of dynorphin 3-14 on the lipopolysaccharide-induced toll-like receptor 4 signalling pathway. Peptides 2017; 90:48-54. [PMID: 28219695 DOI: 10.1016/j.peptides.2017.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 01/24/2023]
Abstract
Dynorphin 1-17 (DYN 1-17) is biotransformed rapidly to a range of fragments in rodent inflamed tissue with dynorphin 3-14 (DYN 3-14) being the most stable and prevalent. DYN 1-17 has been shown previously to be involved in the regulation of inflammatory response following tissue injury, in which the biotransformation fragments of DYN 1-17 may possess similar features. This study investigated the effects of DYN 3-14 on lipopolysaccharide (LPS)-induced nuclear factor-kappaB/p65 (NF-κB/p65) nuclear translocation and the release of pro-inflammatory cytokines interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) in differentiated THP-1 cells. Treatment with DYN 3-14 (10nM) resulted in 35% inhibition of the LPS-induced nuclear translocation of NF-κB/p65. Furthermore, DYN 3-14 modulated both IL-1β and TNF-α release; inhibiting IL-1β and paradoxically augmenting TNF-α release in a concentration-independent manner. A number of opioids have been implicated in the modulation of the toll-like receptor 4 (TLR4), highlighting the complexity of their immunomodulatory effects. To determine whether DYN 3-14 modulates TLR4, HEK-Blue™-hTLR4 cells were stimulated with LPS in the presence of DYN 3-14. DYN 3-14 (10μM) inhibited TLR4 activation in a concentration-dependent fashion by suppressing the LPS signals around 300-fold lower than LPS-RS, a potent TLR4 antagonist. These findings indicate that DYN 3-14 is a potential TLR4 antagonist that alters cellular signaling in response to LPS and cytokine release, implicating a role for biotransformed endogenous opioid peptides in immunomodulation.
Collapse
Affiliation(s)
- Siti Sarah Fazalul Rahiman
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, QLD, Australia; School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Michael Morgan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Paul Gray
- School of Medicine, The University of Queensland, Herston 4006, QLD, Australia; Department of Anaesthesia, Princess Alexandra Hospital, Woolloongabba 4102, QLD, Australia
| | - Paul Nicholas Shaw
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, QLD, Australia
| | - Peter John Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, QLD, Australia.
| |
Collapse
|
187
|
Age-dependent regulation of GABA transmission by kappa opioid receptors in the basolateral amygdala of Sprague-Dawley rats. Neuropharmacology 2017; 117:124-133. [PMID: 28163104 DOI: 10.1016/j.neuropharm.2017.01.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/26/2017] [Accepted: 01/29/2017] [Indexed: 12/17/2022]
Abstract
Anxiety disorders are one of the most common and debilitating mental illnesses worldwide. Growing evidence indicates an age-dependent rise in the incidence of anxiety disorders from adolescence through adulthood, suggestive of underlying neurodevelopmental mechanisms. Kappa opioid receptors (KORs) are known to contribute to the development and expression of anxiety; however, the functional role of KORs in the basolateral amygdala (BLA), a brain structure critical in mediating anxiety, particularly across ontogeny, are unknown. Using whole-cell patch-clamp electrophysiology in acute brain slices from adolescent (postnatal day (P) 30-45) and adult (P60+) male Sprague-Dawley rats, we found that the KOR agonist, U69593, increased the frequency of GABAA-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in the adolescent BLA, without an effect in the adult BLA or on sIPSC amplitude at either age. The KOR effect was blocked by the KOR antagonist, nor-BNI, which alone did not alter GABA transmission at either age, and the effect of the KOR agonist was TTX-sensitive. Additionally, KOR activation did not alter glutamatergic transmission in the BLA at either age. In contrast, U69593 inhibited sIPSC frequency in the central amygdala (CeA) at both ages, without altering sIPSC amplitude. Western blot analysis of KOR expression indicated that KOR levels were not different between the two ages in either the BLA or CeA. This is the first study to provide compelling evidence for a novel and unique neuromodulatory switch in one of the primary brain regions involved in initiating and mediating anxiety that may contribute to the ontogenic rise in anxiety disorders.
Collapse
|
188
|
Elizabeth de Sousa Rodrigues M, Bekhbat M, Houser MC, Chang J, Walker DI, Jones DP, Oller do Nascimento CM, Barnum CJ, Tansey MG. Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice. Brain Behav Immun 2017; 59:158-172. [PMID: 27592562 PMCID: PMC5154856 DOI: 10.1016/j.bbi.2016.08.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/19/2016] [Accepted: 08/31/2016] [Indexed: 11/25/2022] Open
Abstract
The mechanisms underlying the association between chronic psychological stress, development of metabolic syndrome (MetS), and behavioral impairment in obesity are poorly understood. The aim of the present study was to assess the effects of mild chronic psychological stress on metabolic, inflammatory, and behavioral profiles in a mouse model of diet-induced obesity. We hypothesized that (1) high-fat high-fructose diet (HFHF) and psychological stress would synergize to mediate the impact of inflammation on the central nervous system in the presence of behavioral dysfunction, and that (2) HFHF and stress interactions would impact insulin and lipid metabolism. C57Bl/6 male mice underwent a combination of HFHF and two weeks of chronic psychological stress. MetS-related conditions were assessed using untargeted plasma metabolomics, and structural and immune changes in the gut and liver were evaluated. Inflammation was measured in plasma, liver, gut, and brain. Our results show a complex interplay of diet and stress on gut alterations, energetic homeostasis, lipid metabolism, and plasma insulin levels. Psychological stress and HFHF diet promoted changes in intestinal tight junctions proteins and increases in insulin resistance and plasma cholesterol, and impacted the RNA expression of inflammatory factors in the hippocampus. Stress promoted an adaptive anti-inflammatory profile in the hippocampus that was abolished by diet treatment. HFHF increased hippocampal and hepatic Lcn2 mRNA expression as well as LCN2 plasma levels. Behavioral changes were associated with HFHF and stress. Collectively, these results suggest that diet and stress as pervasive factors exacerbate MetS-related conditions through an inflammatory mechanism that ultimately can impact behavior. This rodent model may prove useful for identification of possible biomarkers and therapeutic targets to treat metabolic syndrome and mood disorders.
Collapse
Affiliation(s)
- Maria Elizabeth de Sousa Rodrigues
- Department of Physiology, School of Medicine at Emory University, United States,Department of Physiology of Nutrition, Federal University of Sao Paulo, SP, Brazil
| | - Mandakh Bekhbat
- Department of Physiology, School of Medicine at Emory University, United States.
| | - Madelyn C. Houser
- Department of Physiology, School of Medicine at Emory University, United States
| | - Jianjun Chang
- Department of Physiology, School of Medicine at Emory University, United States.
| | - Douglas I. Walker
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine at Emory University, United States
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine at Emory University, United States
| | | | | | - Malú G. Tansey
- Department of Physiology, School of Medicine at Emory University, United States,Corresponding author at: Emory University School of Medicine, 605L Whitehead Biomedical Res. Bldg., 615 Michael Street, Atlanta, GA 30322-3110, United States
| |
Collapse
|
189
|
Donahue RJ, Venkataraman A, Carroll FI, Meloni EG, Carlezon WA. Pituitary Adenylate Cyclase-Activating Polypeptide Disrupts Motivation, Social Interaction, and Attention in Male Sprague Dawley Rats. Biol Psychiatry 2016; 80:955-964. [PMID: 26229039 PMCID: PMC4684793 DOI: 10.1016/j.biopsych.2015.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/03/2015] [Accepted: 06/10/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Severe or prolonged stress can trigger psychiatric illnesses including mood and anxiety disorders. Recent work indicates that pituitary adenylate cyclase-activating polypeptide (PACAP) plays an important role in regulating stress effects. In rodents, exogenous PACAP administration can produce persistent elevations in the acoustic startle response, which may reflect anxiety-like signs including hypervigilance. We investigated whether PACAP causes acute or persistent alterations in behaviors that reflect other core features of mood and anxiety disorders (motivation, social interaction, and attention). METHODS Using male Sprague Dawley rats, we examined if PACAP (.25-1.0 µg, intracerebroventricular infusion) affects motivation as measured in the intracranial self-stimulation test. We also examined if PACAP alters interactions with a conspecific in the social interaction test. Finally, we examined if PACAP affects performance in the 5-choice serial reaction time task, which quantifies attention and error processing. RESULTS Dose-dependent disruptions in motivation, social interaction, and attention were produced by PACAP, as reflected by increases in reward thresholds, decreases in social behaviors, and decreases in correct responses and alterations in posterror accuracy. Behavior normalized quickly in the intracranial self-stimulation and 5-choice serial reaction time task tests but remained dysregulated in the social interaction test. Effects on attention were attenuated by the corticotropin-releasing factor receptor-1 antagonist antalarmin but not the κ opioid receptor antagonist JDTic. CONCLUSIONS Our findings suggest that PACAP affects numerous domains often dysregulated in mood and anxiety disorders, but that individual signs depend on brain substrates that are at least partially independent. This work may help to devise therapeutics that mitigate specific signs of these disorders.
Collapse
Affiliation(s)
- Rachel J Donahue
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - Archana Venkataraman
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - F Ivy Carroll
- RTI International, Research Triangle Park, North Carolina
| | - Edward G Meloni
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts.
| |
Collapse
|
190
|
Taylor GT, Manzella F. Kappa Opioids, Salvinorin A and Major Depressive Disorder. Curr Neuropharmacol 2016; 14:165-76. [PMID: 26903446 PMCID: PMC4825947 DOI: 10.2174/1570159x13666150727220944] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/11/2015] [Accepted: 07/24/2015] [Indexed: 12/13/2022] Open
Abstract
Opioids are traditionally associated with pain, analgesia and drug abuse. It is now clear,
however, that the opioids are central players in mood. The implications for mood disorders, particularly
clinical depression, suggest a paradigm shift from the monoamine neurotransmitters to the opioids either
alone or in interaction with monoamine neurons. We have a special interest in dynorphin, the last of
the major endogenous opioids to be isolated and identified. Dynorphin is derived from the Greek word
for power, dynamis, which hints at the expectation that the neuropeptide held for its discoverers. Yet,
dynorphin and its opioid receptor subtype, kappa, has always taken a backseat to the endogenous b-endorphin and the
exogenous morphine that both bind the mu opioid receptor subtype. That may be changing as the dynorphin/ kappa system
has been shown to have different, often opposite, neurophysiological and behavioral influences. This includes major
depressive disorder (MDD). Here, we have undertaken a review of dynorphin/ kappa neurobiology as related to behaviors,
especially MDD. Highlights include the unique features of dynorphin and kappa receptors and the special relation of a
plant-based agonist of the kappa receptor salvinorin A. In addition to acting as a kappa opioid agonist, we conclude that
salvinorin A has a complex pharmacologic profile, with potential additional mechanisms of action. Its unique neurophysiological
effects make Salvinorina A an ideal candidate for MDD treatment research.
Collapse
Affiliation(s)
| | - Francesca Manzella
- Behavioral Neuroscience/ Psychology Univ. Missouri - St. Louis, One University Blvd, St. Louis, MO 63121 USA.
| |
Collapse
|
191
|
Lecca S, Trusel M, Mameli M. Footshock-induced plasticity of GABABsignalling in the lateral habenula requires dopamine and glucocorticoid receptors. Synapse 2016; 71. [DOI: 10.1002/syn.21948] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/10/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Salvatore Lecca
- Institut du Fer à Moulin; Paris France
- Institut national de la santé et de la recherche médicale, UMR-S 839; Paris France
- Université Pierre et Marie Curie Paris; France
| | - Massimo Trusel
- Institut du Fer à Moulin; Paris France
- Institut national de la santé et de la recherche médicale, UMR-S 839; Paris France
- Université Pierre et Marie Curie Paris; France
| | - Manuel Mameli
- Institut du Fer à Moulin; Paris France
- Institut national de la santé et de la recherche médicale, UMR-S 839; Paris France
- Université Pierre et Marie Curie Paris; France
| |
Collapse
|
192
|
Brust TF, Morgenweck J, Kim SA, Rose JH, Locke JL, Schmid CL, Zhou L, Stahl EL, Cameron MD, Scarry SM, Aubé J, Jones SR, Martin TJ, Bohn LM. Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria. Sci Signal 2016; 9:ra117. [PMID: 27899527 PMCID: PMC5231411 DOI: 10.1126/scisignal.aai8441] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Agonists targeting the kappa opioid receptor (KOR) have been promising therapeutic candidates because of their efficacy for treating intractable itch and relieving pain. Unlike typical opioid narcotics, KOR agonists do not produce euphoria or lead to respiratory suppression or overdose. However, they do produce dysphoria and sedation, side effects that have precluded their clinical development as therapeutics. KOR signaling can be fine-tuned to preferentially activate certain pathways over others, such that agonists can bias signaling so that the receptor signals through G proteins rather than other effectors such as βarrestin2. We evaluated a newly developed G protein signaling-biased KOR agonist in preclinical models of pain, pruritis, sedation, dopamine regulation, and dysphoria. We found that triazole 1.1 retained the antinociceptive and antipruritic efficacies of a conventional KOR agonist, yet it did not induce sedation or reductions in dopamine release in mice, nor did it produce dysphoria as determined by intracranial self-stimulation in rats. These data demonstrated that biased agonists may be used to segregate physiological responses downstream of the receptor. Moreover, the findings suggest that biased KOR agonists may present a means to treat pain and intractable itch without the side effects of dysphoria and sedation and with reduced abuse potential.
Collapse
Affiliation(s)
- Tarsis F Brust
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jenny Morgenweck
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Susy A Kim
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jamie H Rose
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jason L Locke
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Cullen L Schmid
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Lei Zhou
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Edward L Stahl
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Michael D Cameron
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Sarah M Scarry
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas J Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Laura M Bohn
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
193
|
Riters LV, Cordes MA, Stevenson SA. Prodynorphin and kappa opioid receptor mRNA expression in the brain relates to social status and behavior in male European starlings. Behav Brain Res 2016; 320:37-47. [PMID: 27913257 DOI: 10.1016/j.bbr.2016.11.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022]
Abstract
Numerous animal species display behavioral changes in response to changes in social status or territory possession. For example, in male European starlings only males that acquire nesting sites display high rates of sexual and agonistic behavior. Past studies show that mu and delta opioid receptors regulate behaviors associated with social ascension or defeat. Opioids also act at kappa receptors, with dynorphin binding with the highest affinity; however, the role of these opioids in social behavior has not been well studied. We observed flocks of male starlings during the breeding season and ran quantitative real-time polymerase chain reaction (qPCR) to measure expression of kappa opioid receptors (OPRK1) and prodynorphin (PDYN) in brain regions involved in social behavior and motivation (ventral tegmental area [VTA], medial preoptic nucleus [mPOA]) and vocal behavior (Area X). Males with nesting territories displayed more sexual/agonistic behavior than males without nesting territories. They also had lower OPRK1 expression in VTA and mPOA. OPRK1 expression in VTA correlated negatively with sexual/agonistic behaviors, consistent with past studies showing kappa receptors in VTA to inhibit sociosexual behaviors. PDYN in mPOA correlated negatively with a measure of nesting behavior that may also reflect sexual motivation. PDYN in Area X related positively to song. Distinct patterns of OPRK1 and PDYN expression in VTA, mPOA, and Area X related to gonad volume, suggesting that breeding condition may modify (or be modified by) OPRK1 and PDYN expression. Studies are now needed to further characterize the role of OPRK1 and PDYN in status-appropriate social behaviors.
Collapse
Affiliation(s)
- Lauren V Riters
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706, USA.
| | - Melissa A Cordes
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706, USA
| | - Sharon A Stevenson
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
194
|
Khaloo P, Sadeghi B, Ostadhadi S, Norouzi-Javidan A, Haj-Mirzaian A, Zolfagharie S, Dehpour AR. Lithium attenuated the behavioral despair induced by acute neurogenic stress through blockade of opioid receptors in mice. Biomed Pharmacother 2016; 83:1006-1015. [DOI: 10.1016/j.biopha.2016.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/04/2016] [Accepted: 08/07/2016] [Indexed: 11/25/2022] Open
|
195
|
Exposure to morphine-associated cues increases mu opioid receptor mRNA expression in the nucleus accumbens of Wistar Kyoto rats. Behav Brain Res 2016; 313:208-213. [DOI: 10.1016/j.bbr.2016.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/21/2016] [Accepted: 07/11/2016] [Indexed: 11/22/2022]
|
196
|
Carlezon WA, Krystal AD. Kappa-Opioid Antagonists for Psychiatric Disorders: From Bench to Clinical Trials. Depress Anxiety 2016; 33:895-906. [PMID: 27699938 PMCID: PMC5288841 DOI: 10.1002/da.22500] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 12/15/2022] Open
Abstract
Kappa-opioid receptor (KOR) antagonists are currently being considered for the treatment of a variety of neuropsychiatric conditions, including depressive, anxiety, and substance abuse disorders. A general ability to mitigate the effects of stress, which can trigger or exacerbate these conditions, may explain their putative efficacy across such a broad array of conditions. The discovery of their potentially therapeutic effects evolved from preclinical research designed to characterize the molecular mechanisms by which experience causes neuroadaptations in the nucleus accumbens (NAc), a key element of brain reward circuitry. This research established that exposure to drugs of abuse or stress increases the activity of the transcription factor CREB (cAMP response element binding protein) in the NAc, which leads to elevated expression of the opioid peptide dynorphin that in turn causes core signs of depressive- and anxiety-related disorders. Disruption of KORs-the endogenous receptors for dynorphin-produces antidepressant- and anxiolytic-like actions in screening procedures that identify standard drugs of these classes, and reduces stress effects in tests used to study addiction and stress-related disorders. Although interest in this target is high, prototypical KOR antagonists have extraordinarily persistent pharmacodynamic effects that complicate clinical trials. The development of shorter acting KOR antagonists together with more rapid designs for clinical trials may soon provide insight on whether these drugs are efficacious as would be predicted by preclinical work. If successful, KOR antagonists would represent a unique example in psychiatry where the therapeutic mechanism of a drug class is understood before it is shown to be efficacious in humans.
Collapse
Affiliation(s)
- William A. Carlezon
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont MA
| | - Andrew D. Krystal
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC
| |
Collapse
|
197
|
Negrete R, García Gutiérrez MS, Manzanares J, Maldonado R. Involvement of the dynorphin/KOR system on the nociceptive, emotional and cognitive manifestations of joint pain in mice. Neuropharmacology 2016; 116:315-327. [PMID: 27567942 DOI: 10.1016/j.neuropharm.2016.08.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/29/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022]
Abstract
Joint pain is a major clinical problem mainly associated to osteoarthritis, and characterized by articular cartilage degradation resulting in a complex chronic pain state that includes nociceptive, emotional and cognitive manifestations. Memory impairment, depressive- and anxiety-like symptoms have been reported to be associated with chronic pain, leading to a decrease of life quality. In this study, we evaluated the involvement of the endogenous dynorphin/kappa opioid receptor (KOR) system on the nociceptive, emotional, cognitive, neurochemical and epigenetic manifestations of joint pain. The murine model of monosodium iodoacetate (MIA) was used to induce joint pain in knockout mice for KOR (KOR-KO), prodynorphin (PDYN-KO) and their wild-type (WT) littermates. KOR-KO and PDYN-KO mice developed mechanical allodynia after intra-articular injection of MIA. This allodynia was significantly increased in both KOR-KO and PDYN-KO when compared to WT mice. Accordingly, both mutants showed increased microglial activation on the lumbar section of the spinal cord after MIA. The emotional responses were evaluated by measuring anxiety-like behaviour in the elevated plus maze and anhedonia as depressive-like behaviour, and cognitive alterations in the object recognition paradigm. Emotional and cognitive impairments after joint pain were differently modified in KOR-KO and PDYN-KO mice. Alterations of corticotropin-releasing factor (CRF) on the amygdala and hippocampus and down regulation of histone 3 acetylation on the amygdala suggest a possible mechanism to explain these emotional and cognitive manifestations. Our results reveal a specific involvement of the dynorphin/KOR system on joint pain manifestations that are usually associated to osteoarthritis.
Collapse
Affiliation(s)
- Roger Negrete
- Laboratory of Neuropharmacology, Department of Experimental and Health Science, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - María Salud García Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Science, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain.
| |
Collapse
|
198
|
Guerrieri E, Bermudez M, Wolber G, Berzetei-Gurske IP, Schmidhammer H, Spetea M. Structural determinants of diphenethylamines for interaction with the κ opioid receptor: Synthesis, pharmacology and molecular modeling studies. Bioorg Med Chem Lett 2016; 26:4769-4774. [PMID: 27567368 DOI: 10.1016/j.bmcl.2016.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
The κ opioid (KOP) receptor crystal structure in an inactive state offers nowadays a valuable platform for inquiry into receptor function. We describe the synthesis, pharmacological evaluation and docking calculations of KOP receptor ligands from the class of diphenethylamines using an active-like structure of the KOP receptor attained by molecular dynamics simulations. The structure-activity relationships derived from computational studies was in accordance with pharmacological activities of targeted diphenethylamines at the KOP receptor established by competition binding and G protein activation in vitro assays. Our analysis identified that agonist binding results in breaking of the Arg156-Thr273 hydrogen bond, which stabilizes the inactive receptor conformation, and a crucial hydrogen bond with His291 is formed. Compounds with a phenolic 4-hydroxy group do not form the hydrogen bond with His291, an important residue for KOP affinity and agonist activity. The size of the N-substituent hosted by the hydrophobic pocket formed by Val108, Ile316 and Tyr320 considerably influences binding and selectivity, with the n-alkyl size limit being five carbon atoms, while bulky substituents turn KOP agonists in antagonists. Thus, combination of experimental and molecular modeling strategies provides an initial framework for understanding the structural features of diphenethylamines that are essential to promote binding affinity and selectivity for the KOP receptor, and may be involved in transduction of the ligand binding event into molecular changes, ultimately leading to receptor activation.
Collapse
Affiliation(s)
- Elena Guerrieri
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Ilona P Berzetei-Gurske
- Biosciences Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, United States
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
199
|
Muñoa I, Urizar I, Casis L, Irazusta J, Subirán N. The epigenetic regulation of the opioid system: new individualized prompt prevention and treatment strategies. J Cell Biochem 2016; 116:2419-26. [PMID: 25974312 DOI: 10.1002/jcb.25222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 12/18/2022]
Abstract
The most well-known physiological effect associated with opiod system is their efficacy in pain reduction or analgesia, although their effect on a variety of other physiological and physiophological functions has become apparent in recent years. This review is an attempt to clarify in more detail the epigenetic regulation of opioid system to understand with more precision their transcriptional and posttranscriptional regulation in multiple pyisiological and pharmacological contexts. The opioid receptors show an epigenetic regulation and opioid peptide precursors by methylation, chromatin remodeling and microRNA. Although the opioid receptor promoters have similarity between them, they use different epigenetic regulation forms and they exhibit different pattern of expression during the cell differentiation. DNA methylation is also confirmed in opioid peptide precursors, being important for gene expression and tissue specificity. Understanding the epigenetic basis of those physiological and physiopathological procesess is essential for the development of individualized prompt prevention and treatment strategies.
Collapse
Affiliation(s)
- Iraia Muñoa
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Itziar Urizar
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Luis Casis
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Jon Irazusta
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Nerea Subirán
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|
200
|
Khaliq T, Williams TD, Senadheera SN, Aldrich JV. Development of a robust, sensitive and selective liquid chromatography-tandem mass spectrometry assay for the quantification of the novel macrocyclic peptide kappa opioid receptor antagonist [D-Trp]CJ-15,208 in plasma and application to an initial pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1028:11-15. [PMID: 27318293 DOI: 10.1016/j.jchromb.2016.05.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
Abstract
Selective kappa opioid receptor (KOR) antagonists may have therapeutic potential as treatments for substance abuse and mood disorders. Since [D-Trp]CJ-15,208 (cyclo[Phe-d-Pro-Phe-d-Trp]) is a novel potent KOR antagonist in vivo, it is imperative to evaluate its pharmacokinetic properties to assist the development of analogs as potential therapeutic agents, necessitating the development and validation of a quantitative method for determining its plasma levels. A method for quantifying [D-Trp]CJ-15,208 was developed employing high performance liquid chromatography-tandem mass spectrometry in mouse plasma. Sample preparation was accomplished through a simple one-step protein precipitation method with acetonitrile, and [D-Trp]CJ-15,208 analyzed following HPLC separation on a Hypersil BDS C8 column. Multiple reaction monitoring (MRM), based on the transitions m/z 578.1→217.1 and 245.0, was specific for [D-Trp]CJ-15,208, and MRM based on the transition m/z 566.2→232.9 was specific for the internal standard without interference from endogenous substances in blank mouse plasma. The assay was linear over the concentration range 0.5-500ng/mL with a mean r(2)=0.9987. The mean inter-day accuracy and precision for all calibration standards were 93-118% and 8.9%, respectively. The absolute recoveries were 85±6% and 81±9% for [D-Trp]CJ-15,208 and the internal standard, respectively. The analytical method had excellent sensitivity with a lower limit of quantification of 0.5ng/mL using a sample volume of 20μL. The method was successfully applied to an initial pharmacokinetic study of [D-Trp]CJ-15,208 following intravenous administration to mice.
Collapse
Affiliation(s)
- Tanvir Khaliq
- Department of Medicinal Chemistry, the University of Kansas, Lawrence, KS 66045, USA; Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Todd D Williams
- Mass Spectrometry and Analytical Proteomics Laboratory, the University of Kansas, Lawrence, KS 66045, USA
| | - Sanjeewa N Senadheera
- Department of Medicinal Chemistry, the University of Kansas, Lawrence, KS 66045, USA
| | - Jane V Aldrich
- Department of Medicinal Chemistry, the University of Kansas, Lawrence, KS 66045, USA; Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|