151
|
D'Errico G, Alonso-Nocelo M, Vallespinos M, Hermann PC, Alcalá S, García CP, Martin-Hijano L, Valle S, Earl J, Cassiano C, Lombardia L, Feliu J, Monti MC, Seufferlein T, García-Bermejo L, Martinelli P, Carrato A, Sainz B. Tumor-associated macrophage-secreted 14-3-3ζ signals via AXL to promote pancreatic cancer chemoresistance. Oncogene 2019; 38:5469-5485. [PMID: 30936462 DOI: 10.1038/s41388-019-0803-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/28/2019] [Accepted: 03/16/2019] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an inherently chemoresistant tumor. Chemotherapy leads to apoptosis of cancer cells, and in previous studies we have shown that tumor-associated macrophage (TAM) infiltration increases following chemotherapy in PDAC. Since one of the main functions of macrophages is to eliminate apoptotic cells, we hypothesized that TAMs phagocytose chemotherapy-induced apoptotic cells and secrete factors, which favor PDAC chemoresistance. To test this hypothesis, primary human PDAC cultures were treated with conditioned media (CM) from monocyte-derived macrophage cultures incubated with apoptotic PDAC cells (MØApopCM). MØApopCM pretreatment rendered naïve PDAC cells resistant to Gemcitabine- or Abraxane-induced apoptosis. Proteomic analysis of MØApopCM identified YWHAZ/14-3-3 protein zeta/delta (14-3-3ζ), a major regulator of apoptotic cellular pathways, as a potential mediator of chemoresistance, which was subsequently validated in patient transcriptional datasets, serum samples from PDAC patients and using recombinant 14-3-3ζ and inhibitors thereof. Moreover, in mice bearing orthotopic PDAC tumors, the antitumor potential of Gemcitabine was significantly enhanced by elimination of TAMs using clodronate liposomes or by pharmacological inhibition of the Axl receptor tyrosine kinase, a 14-3-3ζ interacting partner. These data highlight a unique regulatory mechanism by which chemotherapy-induced apoptosis acts as a switch to initiate a protumor/antiapoptotic mechanism in PDAC via 14-3-3ζ/Axl signaling, leading to phosphorylation of Akt and activation of cellular prosurvival mechanisms. The data presented therefore challenge the idea that apoptosis of tumor cells is therapeutically beneficial, at least when immune sensor cells, such as macrophages, are present.
Collapse
Affiliation(s)
- Gabriele D'Errico
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Medical Oncology, La Paz University Hospital, Madrid, Spain
| | - Marta Alonso-Nocelo
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Cancer Biology, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain.,Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mireia Vallespinos
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Cancer Biology, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain.,Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Sonia Alcalá
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Cancer Biology, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain.,Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Coral Pedrero García
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Cancer Biology, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain.,Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Laura Martin-Hijano
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Cancer Biology, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain.,Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sandra Valle
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Cancer Biology, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain.,Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Julie Earl
- Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Biomedical Research Network in Cancer (CIBERONC, CB16/12/00446 and CB16/12/00398), Madrid, Spain.,Medical Oncology Department, Ramón y Cajal University Hospital, Alcala University, Madrid, Spain
| | - Chiara Cassiano
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Luis Lombardia
- Molecular Diagnostics Unit-Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jaime Feliu
- Department of Medical Oncology, La Paz University Hospital, Madrid, Spain.,Biomedical Research Network in Cancer (CIBERONC, CB16/12/00446 and CB16/12/00398), Madrid, Spain
| | | | | | | | - Paola Martinelli
- Institute for Cancer Research, Comprehensive Cancer Center, Medical University Wien, Vienna, Austria
| | - Alfredo Carrato
- Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Biomedical Research Network in Cancer (CIBERONC, CB16/12/00446 and CB16/12/00398), Madrid, Spain.,Medical Oncology Department, Ramón y Cajal University Hospital, Alcala University, Madrid, Spain
| | - Bruno Sainz
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain. .,Department of Cancer Biology, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain. .,Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
152
|
Lankadasari MB, Mukhopadhyay P, Mohammed S, Harikumar KB. TAMing pancreatic cancer: combat with a double edged sword. Mol Cancer 2019; 18:48. [PMID: 30925924 PMCID: PMC6441154 DOI: 10.1186/s12943-019-0966-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
Among all the deadly cancers, pancreatic cancer ranks seventh in mortality. The absence of any grave symptoms coupled with the unavailability of early prognostic and diagnostic markers make the disease incurable in most of the cases. This leads to a late diagnosis, where the disease would have aggravated and thus, incurable. Only around 20% of the cases present the early disease diagnosis. Surgical resection is the prime option available for curative local disease but in the case of advanced cancer, chemotherapy is the standard treatment modality although the patients end up with drug resistance and severe side effects. Desmoplasia plays a very important role in chemoresistance associated with pancreatic cancer and consists of a thick scar tissue around the tumor comprised of different cell populations. The interplay between this heterogenous population in the tumor microenvironment results in sustained tumor growth and metastasis. Accumulating evidences expose the crucial role played by the tumor-associated macrophages in pancreatic cancer and this review briefly presents the origin from their parent lineage and the importance in maintaining tumor hallmarks. Finally we have tried to address their role in imparting chemoresistance and the therapeutic interventions leading to reduced tumor burden.
Collapse
Affiliation(s)
- Manendra Babu Lankadasari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State, 695014, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Pramiti Mukhopadhyay
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State, 695014, India.,Present address: Graduate School of Biomedical Sciences, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Sabira Mohammed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State, 695014, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State, 695014, India.
| |
Collapse
|
153
|
Noe JT, Mitchell RA. Tricarboxylic acid cycle metabolites in the control of macrophage activation and effector phenotypes. J Leukoc Biol 2019; 106:359-367. [PMID: 30768807 DOI: 10.1002/jlb.3ru1218-496r] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jordan T. Noe
- Department of Biochemistry and Molecular GeneticsUniversity of Louisville Louisville Kentucky USA
- J.G. Brown Cancer CenterUniversity of Louisville Louisville Kentucky USA
| | - Robert A. Mitchell
- Department of Biochemistry and Molecular GeneticsUniversity of Louisville Louisville Kentucky USA
- J.G. Brown Cancer CenterUniversity of Louisville Louisville Kentucky USA
- Department of Microbiology and ImmunologyUniversity of Louisville Louisville Kentucky USA
- Department of MedicineUniversity of Louisville Louisville Kentucky USA
| |
Collapse
|
154
|
Sanchez LR, Borriello L, Entenberg D, Condeelis JS, Oktay MH, Karagiannis GS. The emerging roles of macrophages in cancer metastasis and response to chemotherapy. J Leukoc Biol 2019; 106:259-274. [PMID: 30720887 DOI: 10.1002/jlb.mr0218-056rr] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Macrophages represent a heterogeneous group of cells, capable of carrying out distinct functions in a variety of organs and tissues. Even within individual tissues, their functions can vary with location. Tumor-associated macrophages (TAMs) specialize into three major subtypes that carry out multiple tasks simultaneously. This is especially true in the context of metastasis, where TAMs establish most of the cellular and molecular prerequisites for successful cancer cell dissemination and seeding to the secondary site. Perivascular TAMs operate in the perivascular niche, where they promote tumor angiogenesis and aid in the assembly of intravasation sites called tumor microenvironment of metastasis (TMEM). Streaming TAMs co-migrate with tumor cells (irrespective of the perivascular niche) and promote matrix remodeling, tumor cell invasiveness, and an immunosuppressive local microenvironment. Premetastatic TAMs are recruited to the premetastatic niche, where they can assist in tumor cell extravasation, seeding, and metastatic colonization. The dynamic interplay between TAMs and tumor cells can also modify the ability of the latter to resist cytotoxic chemotherapy (a phenotype known as environment-mediated drug resistance) and induce chemotherapy-mediated pro-metastatic microenvironmental changes. These observations suggest that future therapeutics should be designed to target TAMs with the aim of suppressing the metastatic potential of tumors and rendering chemotherapy more efficient.
Collapse
Affiliation(s)
- Luis Rivera Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Surgery, Montefiore Medical Center, Bronx, New York, USA
| | - Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Surgery, Montefiore Medical Center, Bronx, New York, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Pathology, Montefiore Medical Center, Bronx, New York, USA
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
155
|
Long T, Liu Z, Zhou X, Yu S, Tian H, Bao Y. Identification of differentially expressed genes and enriched pathways in lung cancer using bioinformatics analysis. Mol Med Rep 2019; 19:2029-2040. [PMID: 30664219 PMCID: PMC6390056 DOI: 10.3892/mmr.2019.9878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 10/16/2018] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer‑associated mortality worldwide. The aim of the present study was to identify the differentially expressed genes (DEGs) and enriched pathways in lung cancer by bioinformatics analysis, and to provide potential targets for diagnosis and treatment. Valid microarray data of 31 pairs of lung cancer tissues and matched normal samples (GSE19804) were obtained from the Gene Expression Omnibus database. Significance analysis of the gene expression profile was used to identify DEGs between cancer tissues and normal tissues, and a total of 1,970 DEGs, which were significantly enriched in biological processes, were screened. Through the Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, 77 KEGG pathways associated with lung cancer were identified, among which the Toll‑like receptor pathway was observed to be important. Protein‑protein interaction network analysis extracted 1,770 nodes and 10,667 edges, and identified 10 genes with key roles in lung cancer with highest degrees, hub centrality and betweenness. Additionally, the module analysis of protein‑protein interactions revealed that 'chemokine signaling pathway', 'cell cycle' and 'pathways in cancer' had a close association with lung cancer. In conclusion, the identified DEGs, particularly the hub genes, strengthen the understanding of the development and progression of lung cancer, and certain genes (including advanced glycosylation end‑product specific receptor and epidermal growth factor receptor) may be used as candidate target molecules to diagnose, monitor and treat lung cancer.
Collapse
Affiliation(s)
- Tingting Long
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zijing Liu
- Department of Clinical Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xing Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shuang Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hui Tian
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yixi Bao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
156
|
|
157
|
Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 2019; 138:302-325. [PMID: 30639256 PMCID: PMC7115878 DOI: 10.1016/j.addr.2019.01.005] [Citation(s) in RCA: 632] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022]
Abstract
Many different iron oxide nanoparticles have been evaluated over the years, for a wide variety of biomedical applications. We here summarize the synthesis, surface functionalization and characterization of iron oxide nanoparticles, as well as their (pre-) clinical use in diagnostic, therapeutic and theranostic settings. Diagnostic applications include liver, lymph node, inflammation and vascular imaging, employing mostly magnetic resonance imaging but recently also magnetic particle imaging. Therapeutic applications encompass iron supplementation in anemia and advanced cancer treatments, such as modulation of macrophage polarization, magnetic fluid hyperthermia and magnetic drug targeting. Because of their properties, iron oxide nanoparticles are particularly useful for theranostic purposes. Examples of such setups, in which diagnosis and therapy are intimately combined and in which iron oxide nanoparticles are used, are image-guided drug delivery, image-guided and microbubble-mediated opening of the blood-brain barrier, and theranostic tissue engineering. Together, these directions highlight the versatility and the broad applicability of iron oxide nanoparticles, and indicate the integration in future medical practice of multiple iron oxide nanoparticle-based materials.
Collapse
Affiliation(s)
- Seyed Mohammadali Dadfar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Karolin Roemhild
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Institute of Pathology, Medical Faculty, RWTH Aachen University Clinic, Aachen, Germany
| | - Natascha I Drude
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Nuclear Medicine, RWTH Aachen University Clinic, Aachen, Germany; Leibniz Institute for Interactive Materials - DWI, RWTH Aachen University, Aachen, Germany
| | - Saskia von Stillfried
- Institute of Pathology, Medical Faculty, RWTH Aachen University Clinic, Aachen, Germany
| | - Ruth Knüchel
- Institute of Pathology, Medical Faculty, RWTH Aachen University Clinic, Aachen, Germany
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
158
|
NLRP3/Caspase-1 inflammasome activation is decreased in alveolar macrophages in patients with lung cancer. PLoS One 2018; 13:e0205242. [PMID: 30365491 PMCID: PMC6203254 DOI: 10.1371/journal.pone.0205242] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022] Open
Abstract
Lung cancer (LC) remains the leading cause of cancer-related mortality. The interaction of cancer cells with their microenvironment, results in tumor escape or elimination. Alveolar macrophages (AMs) play a significant role in lung immunoregulation, however their role in LC has been outshined by the study of tumor associated macrophages. Inflammasomes are key components of innate immune responses and can exert either tumor-suppressive or oncogenic functions, while their role in lung cancer is largely unknown. We thus investigated the NLRP3 pathway in Bronchoalveolar Lavage derived alveolar macrophages and peripheral blood leukocytes from patients with primary lung cancer and healthy individuals. IL-1β and IL-18 secretion was significantly higher in unstimulated peripheral blood leukocytes from LC patients, while IL-1β secretion could be further increased upon NLRP3 stimulation. In contrast, in LC AMs, we observed a different profile of IL-1β secretion, characterized mainly by the impairment of IL-1β production in NLRP3 stimulated cells. AMs also exhibited an impaired TLR4/LPS pathway as shown by the reduced induction of IL-6 and TNF-α. Our results support the hypothesis of tumour induced immunosuppression in the lung microenvironment and may provide novel targets for cancer immunotherapy.
Collapse
|
159
|
Barabutis N, Schally AV, Siejka A. P53, GHRH, inflammation and cancer. EBioMedicine 2018; 37:557-562. [PMID: 30344124 PMCID: PMC6284454 DOI: 10.1016/j.ebiom.2018.10.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022] Open
Abstract
P53 is a transcription factor very often mutated in malignancies. It functions towards the regulation of important cellular activities, such as cell cycle, senescence and apoptosis. Since inflammation and cancer are strongly associated through common pathways, P53 can suppress inflammation in a plethora of human tissues. Growth Hormone - Releasing Hormone is a hypothalamic peptide with a great capacity to affect the complex networks of cellular regulation via GHRH - specific receptors. GHRH antagonistic and agonistic analogs have been developed for clinical applications, including treatment of benign prostatic hyperplasia, breast, prostate and lung cancers, diabetes and neurodegenerative diseases. The epicenter of the current manuscript is the protective role of P53 against inflammation and cancer and emphasizes the p53 – mediated beneficial effects of GHRH antagonists in various human diseases. Inflammation is tightly associated with cancer. GHRH antagonists induce P53 expression. P53 exerts a protective effect against cancer and inflammation.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| | - Andrew V Schally
- Department of Pathology and Divisions of Hematology/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33156, USA; Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33156, USA
| | - Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Poland
| |
Collapse
|
160
|
Tao Z, Li SX, Cui X, Huang Y, Zhu S, Wang Y, Tan H, Ma X. The prognostic value of preoperative inflammatory indexes in gallbladder carcinoma with hepatic involvement. Cancer Biomark 2018; 22:551-557. [PMID: 29865040 DOI: 10.3233/cbm-181230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neutrophil-Lymphocyte Ratio (NLR) and Platelet-Lymphocyte Ratio (PLR) have been considered as indicators for prognosis in various cancers. However, the prognostic values of NLR and PLR have never been tested in gallbladder carcinoma (GBC) with hepatic involvement. OBJECTIVE The aim of the current study was to assess the prognostic significance of NLR, PLR, and other candidate biomarkers in GBC with liver involvement. METHODS Receiver operating characteristic (ROC) curve analyses were utilized to pinpoint the cut-off values for NLR, PLR, and Monocyte-Lymphocyte Ratio (MLR). Univariate analyses were employed to estimate the impact of NLR, PLR, MLR, and other inflammatory indexes on median survival. Multivariate analyses were used to verify the independent prognostic predictors. RESULTS Eighty four patients were enrolled from 2009 to 2017. The cut-off values for NLR, PLR, and MLR were 3.20, 117.75, and 0.25, respectively. Univariate analyses revealed that TNM stage, NLR, PLR, MLR, lactate dehydrogenase, alkaline phosphatase, and carcinoembryonic antigen were significantly associated with decreased survival in GBC with hepatic involvement. Advanced TNM stage (P< 0.001) and elevated preoperative NLR (P= 0.002) were significantly associated with lower median survival periods, as revealed by multivariate analyses. CONCLUSIONS These findings suggest that preoperative NLR may be an independent prognostic factor in evaluating prognosis in GBC with liver involvement.
Collapse
Affiliation(s)
- Zhihang Tao
- Department of Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Department of Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Stanley Xiangyu Li
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Xiwei Cui
- Department of Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yamin Huang
- Department of Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sha Zhu
- Department of Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yexiao Wang
- Department of Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Huixin Tan
- Department of Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuelei Ma
- Department of Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Department of Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
161
|
Zheng X, Wu K, Liao S, Pan Y, Sun Y, Chen X, Zhang Y, Xia S, Hu Y, Zhang J. MicroRNA-transcription factor network analysis reveals miRNAs cooperatively suppress RORA in oral squamous cell carcinoma. Oncogenesis 2018; 7:79. [PMID: 30293994 PMCID: PMC6174157 DOI: 10.1038/s41389-018-0089-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/02/2018] [Accepted: 09/09/2018] [Indexed: 12/26/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents over 90% of oral cancer incidence, while its mechanisms of tumorigenesis remain poorly characterized. In this study, we applied RNA-seq and microRNA-seq methodologies in four pairs of cancer and adjacent normal tissues to profile the contribution of miRNAs to tumorigenesis-altered functional pathways by constructing a comprehensive miRNA-mediated mRNA regulatory network. There were 213 differentially expressed (DE) miRNAs and 2172 DE mRNAs with the involvement of negative miRNA-mRNA interactions identified by at least two pairs of cancerous tissues. GO analysis revealed that the upregulated microRNAs significantly contributed to a global down-regulation of a number of transcription factors (TFs) in OSCC. Among the negative regulatory networks between the selected miRNAs (133) and TFs (167), circadian rhythm genes (RORA, RORB, RORC, and CLOCK) simultaneously regulated by multiple microRNAs were of particular interest. For instance, RORA transcript was predicted to be targeted by 25 co-upregulated miRNAs, of which, miR-503-5p, miR-450b-5p, miR-27a-3p, miR-181a-5p and miR-183-5p were further validated to directly target RORA, resulting in a stronger effect on RORA suppression together. In addition, we showed that the mRNA and protein expression levels of RORα were significantly decreased in most OSCC samples, associated with advanced clinical stage and poor prognosis. RORα significantly suppressed the proliferation of OSCC cells in vitro and in vivo. Attenuated RORα decreased p53 protein expression and suppressed p53 phosphorylation activity. Altogether, our results strongly suggest the importance of the role of miRNAs in regulating the activity of circadian rhythm-related TFs network during OSCC tumorigenesis, and provide further clues to understand the clinical link between circadian rhythm and cancer therapy.
Collapse
Affiliation(s)
- Xueqing Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kejing Wu
- Center for Genome Analysis, ABLife Inc, Wuhan, Hubei, 430075, China
| | - Shengjie Liao
- Center for Genome Analysis, ABLife Inc, Wuhan, Hubei, 430075, China.,Laboratory for Genome Regulation and Human Health, ABLife Inc, Wuhan, Hubei, 430075, China
| | - Yuemei Pan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yanan Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinming Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc, Wuhan, Hubei, 430075, China.,Laboratory for Genome Regulation and Human Health, ABLife Inc, Wuhan, Hubei, 430075, China
| | - Shu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaying Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiali Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China. .,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
162
|
Nasry WHS, Rodriguez-Lecompte JC, Martin CK. Role of COX-2/PGE2 Mediated Inflammation in Oral Squamous Cell Carcinoma. Cancers (Basel) 2018; 10:cancers10100348. [PMID: 30248985 PMCID: PMC6211032 DOI: 10.3390/cancers10100348] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/16/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
A significant amount of research indicates that the cyclooxygenase/prostaglandin E2 (PGE2) pathway of inflammation contributes to the development and progression of a variety of cancers, including squamous cell carcinoma of the oral cavity and oropharynx (OSCC). Although there have been promising results from studies examining the utility of anti-inflammatory drugs in the treatment of OSCC, this strategy has been met with only variable success and these drugs are also associated with toxicities that make them inappropriate for some OSCC patients. Improved inflammation-targeting therapies require continued study of the mechanisms linking inflammation and progression of OSCC. In this review, a synopsis of OSCC biology will be provided, and recent insights into inflammation related mechanisms of OSCC pathobiology will be discussed. The roles of prostaglandin E2 and cluster of differentiation factor 147 (CD147) will be presented, and evidence for their interactions in OSCC will be explored. Through continued investigation into the protumourigenic pathways of OSCC, more treatment modalities targeting inflammation-related pathways can be designed with the hope of slowing tumour progression and improving patient prognosis in patients with this aggressive form of cancer.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
163
|
Alterations of Signaling Pathways Related to the Immune System in Breast Cancer: New Perspectives in Patient Management. Int J Mol Sci 2018; 19:ijms19092733. [PMID: 30213113 PMCID: PMC6165530 DOI: 10.3390/ijms19092733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 01/03/2023] Open
Abstract
In recent years, immune manipulation for cancer treatment, including breast cancer, has been increasingly gaining consent, and many attempts have been made, mainly by either strengthening the immune response (IR) or by inhibiting immune evasion. Therefore, elucidating the related mechanisms is of importance due to the potential to improve the management of cancer patients by immunotherapy. This review article summarized some recent experimental studies, which have discovered novel alterations of signaling pathways related to the immune system in breast cancer. These altered signaling pathways have been grouped according to the general biological mechanism involved: tumor-initiating cells (TICs), cancer stem cells (CSCs), immune evasion, tumor growth and progression, prediction of clinical outcome and prediction of response, or resistance to chemotherapy. These altered pathways related to the immune system open clinical opportunities for the prognosis or treatment of patients. Many of these pathways are related to the origin of breast cancer and immune evasion. We recommended development of new drugs which act on these molecular pathways, and the designing of clinical trials to be carried out mainly in breast cancer patients who required adjuvant treatment.
Collapse
|
164
|
Ruytinx P, Proost P, Van Damme J, Struyf S. Chemokine-Induced Macrophage Polarization in Inflammatory Conditions. Front Immunol 2018; 9:1930. [PMID: 30245686 PMCID: PMC6137099 DOI: 10.3389/fimmu.2018.01930] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
Macrophages represent a heterogeneous cell population and are known to display a remarkable plasticity. In response to distinct micro-environmental stimuli, e.g., tumor stroma vs. infected tissue, they polarize into different cell subtypes. Originally, two subpopulations were defined: classically activated macrophages or M1, and alternatively activated macrophages or M2. Nowadays, the M1/M2 classification is considered as an oversimplified approach that does not adequately cover the total spectrum of macrophage phenotypes observed in vivo. Especially in pathological circumstances, macrophages behave as plastic cells modifying their expression and transcription profile along a continuous spectrum with M1 and M2 phenotypes as extremes. Here, we focus on the effect of chemokines on macrophage differentiation and polarization in physiological and pathological conditions. In particular, we discuss chemokine-induced macrophage polarization in inflammatory diseases, including obesity, cancer, and atherosclerosis.
Collapse
Affiliation(s)
- Pieter Ruytinx
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, REGA Institute KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, REGA Institute KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, REGA Institute KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, REGA Institute KU Leuven, Leuven, Belgium
| |
Collapse
|
165
|
McKelvey KJ, Hudson AL, Back M, Eade T, Diakos CI. Radiation, inflammation and the immune response in cancer. Mamm Genome 2018; 29:843-865. [PMID: 30178305 PMCID: PMC6267675 DOI: 10.1007/s00335-018-9777-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/22/2018] [Indexed: 01/17/2023]
Abstract
Radiation is an important component of cancer treatment with more than half of all patients receive radiotherapy during their cancer experience. While the impact of radiation on tumour morphology is routinely examined in the pre-clinical and clinical setting, the impact of radiation on the tumour microenvironment and more specifically the inflammatory/immune response is less well characterised. Inflammation is a key contributor to short- and long-term cancer eradication, with significant tumour and normal tissue consequences. Therefore, the role of radiation in modulating the inflammatory response is highly topical given the current wave of targeted and immuno-therapeutic treatments for cancer. This review provides a general overview of how radiation modulates the inflammatory and immune response—(i) how radiation induces the inflammatory/immune system, (ii) the cellular changes that take place, (iii) how radiation dose delivery affects the immune response, and (iv) a discussion on research directions to improve patient survival, reduce side effects, improve quality of life, and reduce financial costs in the immediate future. Harnessing the benefits of radiation on the immune response will enhance its maximal therapeutic benefit and reduce radiation-induced toxicity.
Collapse
Affiliation(s)
- Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Northern Sydney Local Health District Research and the Northern Clinical School, University of Sydney, St Leonards, NSW, 2065, Australia. .,Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia. .,Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.
| | - Amanda L Hudson
- Bill Walsh Translational Cancer Research Laboratory, Northern Sydney Local Health District Research and the Northern Clinical School, University of Sydney, St Leonards, NSW, 2065, Australia.,Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia.,Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Michael Back
- Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Tom Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Connie I Diakos
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| |
Collapse
|
166
|
Peña-Oyarzun D, Bravo-Sagua R, Diaz-Vega A, Aleman L, Chiong M, Garcia L, Bambs C, Troncoso R, Cifuentes M, Morselli E, Ferreccio C, Quest AFG, Criollo A, Lavandero S. Autophagy and oxidative stress in non-communicable diseases: A matter of the inflammatory state? Free Radic Biol Med 2018; 124:61-78. [PMID: 29859344 DOI: 10.1016/j.freeradbiomed.2018.05.084] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
Abstract
Non-communicable diseases (NCDs), also known as chronic diseases, are long-lasting conditions that affect millions of people around the world. Different factors contribute to their genesis and progression; however they share common features, which are critical for the development of novel therapeutic strategies. A persistently altered inflammatory response is typically observed in many NCDs together with redox imbalance. Additionally, dysregulated proteostasis, mainly derived as a consequence of compromised autophagy, is a common feature of several chronic diseases. In this review, we discuss the crosstalk among inflammation, autophagy and oxidative stress, and how they participate in the progression of chronic diseases such as cancer, cardiovascular diseases, obesity and type II diabetes mellitus.
Collapse
Affiliation(s)
- Daniel Peña-Oyarzun
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Alexis Diaz-Vega
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Larissa Aleman
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena Garcia
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia Bambs
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Mariana Cifuentes
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eugenia Morselli
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
167
|
Moraes LA, Ampomah PB, Lim LHK. Annexin A1 in inflammation and breast cancer: a new axis in the tumor microenvironment. Cell Adh Migr 2018; 12:417-423. [PMID: 30122097 DOI: 10.1080/19336918.2018.1486143] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Targeting inflammation in cancer has shown promise to improve and complement current therapies. The tumor microenvironment plays an important role in cancer growth and metastasis and -tumor associated macrophages possess pro-tumoral and pro-metastatic properties. Annexin A1 (ANXA1) is an immune-modulating protein with diverse functions in the immune system and in cancer. In breast cancer, high ANXA1 expression leads to poor prognosis and increased metastasis. Here, we will review ANXA1 as a modulator of inflammation, and discuss its importance in breast cancer and highlight its new role in alternative macrophage activation in the tumor microenvironment. This review may provide an updated understanding into the various roles of ANXA1 which may enable future therapeutic developments for the treatment of breast cancer.
Collapse
Affiliation(s)
- Leonardo A Moraes
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, & NUS Immunology Program, Life Sciences Institute, Centre for Life Sciences, National University of Singapore , Singapore
| | - Patrick B Ampomah
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, & NUS Immunology Program, Life Sciences Institute, Centre for Life Sciences, National University of Singapore , Singapore
| | - Lina H K Lim
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, & NUS Immunology Program, Life Sciences Institute, Centre for Life Sciences, National University of Singapore , Singapore
| |
Collapse
|
168
|
Chen L, Zeng H, Yang J, Lu Y, Zhang D, Wang J, Kuang C, Zhu S, Wang M, Ma X. Survival and prognostic analysis of preoperative inflammatory markers in patients undergoing surgical resection for laryngeal squamous cell carcinoma. BMC Cancer 2018; 18:816. [PMID: 30103707 PMCID: PMC6090788 DOI: 10.1186/s12885-018-4730-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/07/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND To estimate the prognostic value of inflammatory markers in patients with laryngeal squamous cell carcinoma (LSCC). METHODS A total of 361 resected LSCC patients were included. The preoperative and postoperative neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), alkaline phosphatase (ALP) and l actate dehydrogenase (LDH) were assessed. The Kaplan-Meier survival analysis and Cox regression analysis were conducted on overall survival (OS) and progression-free survival (PFS). RESULTS Both Kaplan-Meier analysis and univariate analysis demonstrated significant prognostic value of preoperative and postoperative NLR, PLR and MLR. However, only preoperative ALP was predictive of OS and PFS, and LDH failed to be predictor of OS and PFS. The multivariate analysis showed that preoperative NLR (OS: HR = 1.64, 95%CI: 1.06-2.54, p = 0.026; PFS: HR = 1.52, 95%CI: 1.04-2.23, p = 0.029) and postoperative MLR (OS: HR = 2.02, 95%CI: 1.29-3.14, p = 0.002; PFS: HR = 1.57, 95%CI: 1.05-2.34, p = 0.026) were independently related with survival. CONCLUSIONS The elevated preoperative NLR, PLR, MLR and ALP were significantly associated with worse survival and cancer progression. The preoperative NLR and postoperative MLR might be independent prognostic markers of OS and PFS in LSCC patients undergoing surgical resection.
Collapse
Affiliation(s)
- Linyan Chen
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Hao Zeng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Jiapeng Yang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Yuqing Lu
- The People's Hospital of Hechi, Hechi, Guangxi, People's Republic of China
| | - Dan Zhang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Jinggan Wang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Chienyun Kuang
- West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Sha Zhu
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Manni Wang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
169
|
Wegiel B, Vuerich M, Daneshmandi S, Seth P. Metabolic Switch in the Tumor Microenvironment Determines Immune Responses to Anti-cancer Therapy. Front Oncol 2018; 8:284. [PMID: 30151352 PMCID: PMC6099109 DOI: 10.3389/fonc.2018.00284] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor-induced immune tolerance permits growth and spread of malignant cells. Cancer cells have strong influence on surrounding cells and shape the hypoxic tumor microenvironment (TME) facilitating cancer progression. A dynamic change in glucose metabolism occurring in cancer cells and its influence on the TME are still poorly understood. Indeed, cancer and/or immune cells undergo rapid adaptation in metabolic pathways during cancer progression. Metabolic reprograming affects macrophages, T cells, and myeloid derived suppressor cells (MDSCs) among other immune cells. Their role in the TME depends on a nature and concentration of factors, such as cytokines, reactive oxygen species (ROS), growth factors, and most importantly, diffusible metabolites (i.e., lactate). Further, the amounts of available nutrients and oxygen as well as activity of microbiota may influence metabolic pathways in the TME. The roles of metabolites in regulating of the interaction between immune and cancer cell are highlighted in this review. Targeting metabolic reprogramming or signaling pathways controlling cell metabolism in the TME might be a potential strategy for anti-cancer therapy alone or in combination with current immunotherapies.
Collapse
Affiliation(s)
- Barbara Wegiel
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Marta Vuerich
- Division of Interdisciplinary Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Saeed Daneshmandi
- Division of Interdisciplinary Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Pankaj Seth
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Division of Interdisciplinary Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
170
|
Lu CH, Yeh DW, Lai CY, Liu YL, Huang LR, Lee AYL, Jin SLC, Chuang TH. USP17 mediates macrophage-promoted inflammation and stemness in lung cancer cells by regulating TRAF2/TRAF3 complex formation. Oncogene 2018; 37:6327-6340. [PMID: 30038267 PMCID: PMC6283856 DOI: 10.1038/s41388-018-0411-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/27/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
Abstract
Macrophage accumulation and inflammation in the lung owing to stresses and diseases is a cause of lung cancer development. However, molecular mechanisms underlying the interaction between macrophages and cancer cells, which drive inflammation and stemness in cancers, are poorly understood. In this study, we investigated the expression of ubiquitin-specific peptidase 17 (USP17) in lung cancers, and role of elevated USP17 in the interaction between macrophages and lung cancer cells. USP17 expression in lung cancers was associated with poor prognosis, macrophage, and inflammatory marker expressions. Macrophages promoted USP17 expression in cancer cells. TNFR-associated factor (TRAF) 2-binding and TRAF3-binding motifs were identified in USP17, through which it interacted with and disrupted the TRAF2/TRAF3 complex. This stabilized its client proteins, enhanced inflammation and stemness in cancer cells, and promoted macrophage recruitment. In different animal studies, co-injection of macrophages with cancer cells promoted USP17 expression in tumors and tumor growth. Conversely, depletion of macrophages in host animals by clodronate liposomes reduced USP17 expression and tumor growth. In addition, overexpression of USP17 in cancer cells promoted tumor growth and inflammation-associated and stemness-associated gene expressions in tumors. These results suggested that USP17 drives a positive-feedback interaction between macrophages and cancer cells to enhance inflammation and stemness in cancer cells, and promotes lung cancer growth.
Collapse
Affiliation(s)
- Chih-Hao Lu
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan.,Department of Life Sciences, National Central University, Zhongli District, Taoyuan City, Taiwan
| | - Da-Wei Yeh
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Chao-Yang Lai
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - S-L Catherine Jin
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan City, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan. .,Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
171
|
Liu J, Wang L, Wang T, Wang J. Expression of IL-23R and IL-17 and the pathology and prognosis of urinary bladder carcinoma. Oncol Lett 2018; 16:4325-4330. [PMID: 30214568 PMCID: PMC6126236 DOI: 10.3892/ol.2018.9145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Expression of interleukin-23 receptor (IL-23R) and IL-17 in urinary bladder carcinoma (UBC) was investigated to explore the correlations with prognosis. IL-23/IL-17 axis significantly inhibited the development of inflammatory bowel disease. Thirty patients with UBC were enrolled in Zhengzhou Central Hospital Affiliated to Zhengzhou University from September 2013 to September 2014. Tumor tissue and adjacent healthy tissue were collected, and the levels of IL-23R and IL-17 mRNA were detected by RT-PCR. Thirty healthy people were also selected to serve as normal control group. Serum levels of IL-23R and IL-17 in serum of UBC patients and normal controls were detected by ELISA, and the correlations with clinical features of UBC were analyzed. Pearson's correlation analysis was used to analyze the correlation between IL-23R and IL-17 protein expression. Follow-up study was performed by phone or during patient's visit to out-patient department. Overall survival (OS) and disease-free survival (DFS) curves were plotted by Kaplan-Meier method to analyze the correlation between expression of IL-23R and IL-17 and survival time. ROC curve was used to detect the diagnostic values of IL-23R and IL-17 protein for UBC. Levels of IL-23R and IL-17 mRNA in UBC tissue were 3.26 and 2.65 times higher than those in adjacent tissue (P<0.05), and serum levels of IL-23R and IL-17 protein in UBC patients were significantly higher than those in normal control group. Protein expression levels of IL-23R and IL-17 were correlated with clinical stage and lymph node metastasis in UBC patients (P<0.05), and Cox hazard model showed that L-23R and IL-17 expression may be independent factors for UBC (P<0.05), and high expression levels of IL-23R and IL-17 significantly shortened the OS and DFS (P<0.05). Serum levels of IL-23R and IL-17 can be used to effectively diagnose clinical stage and lymph node metastasis of UBC patients, and the combined diagnosis has a higher sensitivity and specificity than the diagnosis using a single factor. These findings indicated that expression levels of IL-23R and IL-17 were increased in tumor tissue and serum of UBC patients, and the increased expression levels of IL-23R and IL-17 were correlated with poor prognosis. Detection of IL-23R and IL-17 levels has certain clinical significance in the diagnosis and prognosis of UBC.
Collapse
Affiliation(s)
- Jian Liu
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Lei Wang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Tongqing Wang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Jizheng Wang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
172
|
Roy J, Watson JE, Hong IS, Fan TM, Das A. Antitumorigenic Properties of Omega-3 Endocannabinoid Epoxides. J Med Chem 2018; 61:5569-5579. [PMID: 29856219 DOI: 10.1021/acs.jmedchem.8b00243] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accumulating studies have linked inflammation to tumor progression. Dietary omega-3 fatty acids, such as docosahexaenoic acid (DHA), have been shown to suppress tumor growth through their conversion to epoxide metabolites. Alternatively, DHA is converted enzymatically into docosahexaenoylethanolamide (DHEA), an endocannabinoid with antiproliferative activity. Recently, we reported a novel class of anti-inflammatory DHEA-epoxide derivative called epoxydocospentaenoic-ethanolamide (EDP-EA) that contain both ethanolamide and epoxide moieties. Herein, we study the antitumorigenic properties of EDP-EAs in an osteosarcoma (OS) model. First, we show ∼80% increase in EDP-EAs in metastatic versus normal lungs of mice. We found significant differences in the apoptotic and antimigratory potencies of the different EDP-EA regioisomers, which were partially mediated through cannabinoid receptor 1 (CB1). Next, we synthesized derivatives of the most pro-apoptotic regioisomer. These derivatives had reduced hydrolytic susceptibility to fatty acid amide hydrolase (FAAH) and increased CB1-selective binding. Collectively, we report a novel class of EDP-EAs that exhibit antiangiogenic, antitumorigenic, and antimigratory properties in OS.
Collapse
|
173
|
Zhao J, Wang H, Zhang Z, Zhou X, Yao J, Zhang R, Liao L, Dong J. Vitamin D deficiency as a risk factor for thyroid cancer: A meta-analysis of case-control studies. Nutrition 2018; 57:5-11. [PMID: 30086436 DOI: 10.1016/j.nut.2018.04.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/26/2018] [Accepted: 04/21/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The association between vitamin D deficiency and thyroid cancer is controversial. Some studies have demonstrated that higher serum vitamin D levels might protect against thyroid cancer, whereas others have not, or have even indicated the opposite to be the case. The aim of this meta-analysis was to investigate the association between vitamin D deficicency and thyroid cancer and propose that vitamin D deficiency is a risk factor for thyroid cancer. METHODS This was a meta-analysis of 14 articles of the association between vitamin D deficiency and thyroid cancer. Databases including PubMed, Cochrane library, Sinomed, CNKI, Wanfang, and clinical trial register centers, were searched for case-control studies of vitamin D in thyroid cancer. RESULTS Fourteen studies were included in this meta-analysis. A fixed-effect model was used to merge the standardized mean difference value of serum 25-hydroxyvitamin D levels. The pooled effect showed that the levels of serum 25-hydroxyvitamin D were lower in patients with thyroid cancer preoperatively than in the controls (-0.22; 95% confidence interval [CI], -0.36 to -0.09; P = 0.001). There was no difference after thyroid cancer patients underwent thyroidectomy (-0.19; 95% CI, -0.47 to 0.10; P = 0.21). A fixed-effect model was used to pool the odds ratio of thyroid cancer and vitamin D deficiency. It showed that the pooled odds ratio from six studies was 1.30 (95% CI, 1.00-1.69; P = 0.05). Subgroup analysis of 25-hydroxyvitamin D levels between different pathologic characteristics in patients with thyroid cancer was summarized, but no statistical differences were determined. CONCLUSIONS Lower serum 25-hydroxyvitamin D levels were associated with increased risk for thyroid cancer. On the other hand, vitamin D deficiency may act as a risk factor for thyroid cancer.
Collapse
Affiliation(s)
- Junyu Zhao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Haipeng Wang
- Department of Radiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Zhongwen Zhang
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaojun Zhou
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Jinming Yao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Rui Zhang
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Lin Liao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China.
| | - Jianjun Dong
- Department of Medicine, Division of Endocrinology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| |
Collapse
|
174
|
Doak GR, Schwertfeger KL, Wood DK. Distant Relations: Macrophage Functions in the Metastatic Niche. Trends Cancer 2018; 4:445-459. [PMID: 29860988 DOI: 10.1016/j.trecan.2018.03.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages are known contributors of tumor progression in the primary tumor via multiple mechanisms. However, recent studies have demonstrated the ability of macrophages to promote secondary tumor development by inhibiting tumoricidal immune response, initiating angiogenesis, remodeling the local matrix, and directly communicating with cancer cells. In this review, we discuss macrophage functions in establishing distant metastases including formation of the premetastatic niche, extravasation of circulating cancer cells, and colonization of secondary metastases. A more thorough understanding of metastasis-associated macrophages and their associated mechanisms of metastatic progression may lead to novel therapeutic intervention to prevent further metastatic development and tumor reseeding.
Collapse
Affiliation(s)
- Geneva R Doak
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kathryn L Schwertfeger
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - David K Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
175
|
Huang C, Li Y, Guo Y, Zhang Z, Lian G, Chen Y, Li J, Su Y, Li J, Yang K, Chen S, Su H, Huang K, Zeng L. MMP1/PAR1/SP/NK1R paracrine loop modulates early perineural invasion of pancreatic cancer cells. Theranostics 2018; 8:3074-3086. [PMID: 29896303 PMCID: PMC5996366 DOI: 10.7150/thno.24281] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/27/2018] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanism of perineural invasion (PNI) is unclear, and insufficient detection during early-stage PNI in vivo hampers its investigation. We aimed to identify a cytokine paracrine loop between pancreatic ductal adenocarcinoma (PDAC) cells and nerves and established a noninvasive method to monitor PNI in vivo. Methods: A Matrigel/ dorsal root ganglia (DRG) system was used to observe PNI in vitro, and a murine sciatic nerve invasion model was established to examine PNI in vivo. PNI was assessed by MRI with iron oxide nanoparticle labeling. We searched publicly available datasets as well as obtained PDAC tissues from 30 patients to examine MMP1 expression in human tumor and non-tumor tissues. Results: Our results showed that matrix metalloproteinase-1 (MMP1) activated AKT and induced protease-activated receptor-1 (PAR1)-expressing DRG to release substance P (SP), which, in turn, activated neurokinin 1 receptor (NK1R)-expressing PDAC cells and enhanced cellular migration, invasion, and PNI via SP/NK1R/ERK. In animals, hind limb paralysis and a decreased hind paw width were observed approximately 20 days after inoculation of cancer cells in the perineurium. MMP1 silencing with shRNA or treatment with either a PAR1 or an NK1R antagonist inhibited PNI. MRI detected PNI as early as 10 days after implantation of PDAC cells. PNI also induced PDAC liver metastasis. Bioinformatic analyses and pathological studies on patient tissues corroborated the clinical relevance of these findings. Conclusion: In this study, we provided evidence that the MMP1/PAR1/SP/NK1R paracrine loop contributes to PNI during the early stage of primary tumor formation. Furthermore, we established a sensitive and non-invasive method to detect nerve invasion using iron oxide nanoparticles and MRI.
Collapse
|
176
|
Zhang Q, Yuan RF, Li XH, Xu TA, Zhang YN, Yuan XL, Cui YF, Shen W, Guan QL, Sun XY. Clinical Effects of CpG-Based Treatment on the Efficacy of Hepatocellular Carcinoma by Skewing Polarization Toward M1 Macrophage from M2. Cancer Biother Radiopharm 2018; 32:215-219. [PMID: 28820636 DOI: 10.1089/cbr.2017.2240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE This study aims to explore the clinical efficacy of CpG-based therapy for treating hepatocellular carcinoma (HCC) by skewing polarization toward M1 macrophage from M2. METHODS Pulmonary metastasis rate, overall survival time, and remission rate of 10 patients with HCC treated with transcatheter arterial chemoembolization (TACE) combined with CpG therapy and 10 age-, gender-, and TNM0-matched patients treated with TACE (control group) were compared. RESULTS No pulmonary metastasis rate was 70% in the combined treatment group and 40% in the control group, respectively; and the differences between the two groups were statistically significant (p < 0.05). Median overall survival time was 22 months in the combined treatment group, compared with 6.65 months in the control group (p < 0.05). Remission rate in the combined treatment group (70%) was higher than in the control group (30%), but the differences between these two groups were not statistically significant (p > 0.05). CONCLUSION Compared with TACE, CpG combined with TACE can decrease the pulmonary metastasis rate. This combined therapy can also improve the overall survival time of patients.
Collapse
Affiliation(s)
- Qing Zhang
- Central Laboratory, Affiliated Zhongshan Hospital of Dalian University , Dalian, China
| | - Ru-Fei Yuan
- Central Laboratory, Affiliated Zhongshan Hospital of Dalian University , Dalian, China
| | - Xiao-Huan Li
- Central Laboratory, Affiliated Zhongshan Hospital of Dalian University , Dalian, China
| | - Tai-An Xu
- Central Laboratory, Affiliated Zhongshan Hospital of Dalian University , Dalian, China
| | - Yan-Ni Zhang
- Central Laboratory, Affiliated Zhongshan Hospital of Dalian University , Dalian, China
| | - Xiao-Lin Yuan
- Central Laboratory, Affiliated Zhongshan Hospital of Dalian University , Dalian, China
| | - Yi-Fen Cui
- Central Laboratory, Affiliated Zhongshan Hospital of Dalian University , Dalian, China
| | - Wan Shen
- Central Laboratory, Affiliated Zhongshan Hospital of Dalian University , Dalian, China
| | - Qing-Lin Guan
- Central Laboratory, Affiliated Zhongshan Hospital of Dalian University , Dalian, China
| | - Xiu-Yan Sun
- Central Laboratory, Affiliated Zhongshan Hospital of Dalian University , Dalian, China
| |
Collapse
|
177
|
Upadhyay S, Sharma N, Gupta KB, Dhiman M. Role of immune system in tumor progression and carcinogenesis. J Cell Biochem 2018; 119:5028-5042. [PMID: 29327370 DOI: 10.1002/jcb.26663] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/09/2018] [Indexed: 12/26/2022]
Abstract
Tumor micro-environment has potential to customize the behavior of the immune cell according to their need. In immune-eliminating phase, immune cells eliminate transformed cells but after tumor establishment innate and adaptive immune cells synergistically provide shelter as well as fulfill their requirement that helps in progression. In between eliminating and establishment phase, equilibrium and escaping phase regulate the immune cells response. During immune-escaping, (1) the antigenic response generated is either inadequate, or focused entirely on tolerance, and (2) immune response generated is specific and effective, but the tumor skips immune recognition. In this review, we are discussing the critical role of immune cells and their cytokines before and after the establishment of tumor which might play a critical role during immunotherapy.
Collapse
Affiliation(s)
- Shishir Upadhyay
- Department of Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Nidhi Sharma
- Department of Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Kunj Bihari Gupta
- Department of Biochemistry and Microbial Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Biochemistry and Microbial Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
178
|
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018; 233:6425-6440. [PMID: 29319160 DOI: 10.1002/jcp.26429] [Citation(s) in RCA: 3030] [Impact Index Per Article: 432.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
Abstract
Macrophages are heterogeneous and their phenotype and functions are regulated by the surrounding micro-environment. Macrophages commonly exist in two distinct subsets: 1) Classically activated or M1 macrophages, which are pro-inflammatory and polarized by lipopolysaccharide (LPS) either alone or in association with Th1 cytokines such as IFN-γ, GM-CSF, and produce pro-inflammatory cytokines such as interleukin-1β (IL-1β), IL-6, IL-12, IL-23, and TNF-α; and 2) Alternatively activated or M2 macrophages, which are anti-inflammatory and immunoregulatory and polarized by Th2 cytokines such as IL-4 and IL-13 and produce anti-inflammatory cytokines such as IL-10 and TGF-β. M1 and M2 macrophages have different functions and transcriptional profiles. They have unique abilities by destroying pathogens or repair the inflammation-associated injury. It is known that M1/M2 macrophage balance polarization governs the fate of an organ in inflammation or injury. When the infection or inflammation is severe enough to affect an organ, macrophages first exhibit the M1 phenotype to release TNF-α, IL-1β, IL-12, and IL-23 against the stimulus. But, if M1 phase continues, it can cause tissue damage. Therefore, M2 macrophages secrete high amounts of IL-10 and TGF-β to suppress the inflammation, contribute to tissue repair, remodeling, vasculogenesis, and retain homeostasis. In this review, we first discuss the basic biology of macrophages including origin, differentiation and activation, tissue distribution, plasticity and polarization, migration, antigen presentation capacity, cytokine and chemokine production, metabolism, and involvement of microRNAs in macrophage polarization and function. Secondly, we discuss the protective and pathogenic role of the macrophage subsets in normal and pathological pregnancy, anti-microbial defense, anti-tumor immunity, metabolic disease and obesity, asthma and allergy, atherosclerosis, fibrosis, wound healing, and autoimmunity.
Collapse
Affiliation(s)
- Abbas Shapouri-Moghaddam
- Faculty of Medicine, Department of Immunology, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Mohammadian
- Faculty of Medicine, Student Research Committee, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Vazini
- Nursing Department, Basic Sciences Faculty, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mahdi Taghadosi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed-Alireza Esmaeili
- Faculty of Medicine, Student Research Committee, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mardani
- Faculty of Medicine, Student Research Committee, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bita Seifi
- Department of Anatomy, Islamic Azad University, Mashhad Branch, Iran
| | - Asadollah Mohammadi
- Inflammation and Inflammatory Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil T Afshari
- Faculty of Medicine, Department of Immunology, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
179
|
Deng YR, Liu WB, Lian ZX, Li X, Hou X. Sorafenib inhibits macrophage-mediated epithelial-mesenchymal transition in hepatocellular carcinoma. Oncotarget 2018; 7:38292-38305. [PMID: 27203677 PMCID: PMC5122390 DOI: 10.18632/oncotarget.9438] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/01/2016] [Indexed: 02/06/2023] Open
Abstract
Tumor-associated macrophages, crucial components of the microenvironment in hepatocellular carcinoma, hamper anti-cancer immune responses. The aim of the present study was to investigate the effect of sorafenib on the formation of the tumor microenvironment, especially the relationship between polarized macrophages and hepatocytes. Macrophage infiltration was reduced in patients with hepatocellular carcinoma who were treated with sorafenib. In vitro, sorafenib abolished polarized macrophage-induced epithelial mesenchymal transition (EMT) and migration of hepatocellular carcinoma cells but not normal hepatocytes. Moreover, sorafenib attenuated HGF secretion in polarized macrophages, and decreased plasma HGF in patients with hepatocellular carcinoma. Additionally, sorafenib abolished the polarized macrophage-induced activation of the HGF receptor Met in hepatocellular carcinoma cells. Our findings suggest that sorafenib inhibits polarized macrophage-induced EMT in hepatocellular carcinoma cells via the HGF-Met signaling pathway. These results contribute to our understanding of the immunological mechanisms that underlie the protective effects of sorafenib in hepatocellular carcinoma therapy.
Collapse
Affiliation(s)
- Yan-Ru Deng
- Intensive Care Unit, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Wen-Bin Liu
- Department of Hepatic Surgery and Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xingsheng Li
- Department of Gerontology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Hou
- Anhui Provincial Laboratory of Microbiology and Parasitology, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
180
|
Ren HY, Liu F, Huang GL, Liu Y, Shen JX, Zhou P, Liu WM, Shen DY. Positive feedback loop of IL-1β/Akt/RARα/Akt signaling mediates oncogenic property of RARα in gastric carcinoma. Oncotarget 2018; 8:6718-6729. [PMID: 28035062 PMCID: PMC5351665 DOI: 10.18632/oncotarget.14267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 12/01/2016] [Indexed: 01/29/2023] Open
Abstract
Abnormal expression and function of retinoic acid receptor α (RARα) have been reported to be associated with various cancers including acute promyelocytic leukemia and hepatocellular carcinoma. However, the role and the mechanism of RARα in gastric carcinoma (GC) were unknown. Here, the expression of RARα was frequently elevated in human GC tissues and cell lines, and its overexpression was closely correlated with tumor size, lymph node metastasis and clinical stages in GC patients. Moreover, RARα overexpression was related with pathological differentiation. Functionally, RARα knockdown inhibited the proliferation and metastasis of GC cells, as well as enhanced drug susceptibility both in vitro and in vivo. Additionally, RARα knockdown suppressed GC progression through regulating the expression of cell proliferation, cell cycle, invasion and drug resistance associated proteins, such as PCNA, CyclinB1, CyclinD2, CyclinE, p21, MMP9 and MDR1. Mechanistically, the above oncogenic properties of RARα in GC were closely associated with Akt signaling activation. Moreover, overexpression of RARα was induced by IL-1β/Akt signaling activation, which suggested a positive feedback loop of IL-1β/Akt/RARα/Akt signaling in GC. Taken together, we demonstrated that RARα was frequently elevated in GC and exerted oncogenic properties. It might be a potential molecular target for GC treatment.
Collapse
Affiliation(s)
- Hong-Yue Ren
- Department of Pathology, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou 363000, Fujian Province, China
| | - Fan Liu
- Department of Medical College, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Gui-Li Huang
- State Key Laboratory of Cellular Stress Biology, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Department of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Yu Liu
- Department of Biobank, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian Province, China
| | - Jin-Xing Shen
- Department of Biobank, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian Province, China
| | - Pan Zhou
- State Key Laboratory of Cellular Stress Biology, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Department of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Wen-Ming Liu
- Department of Gastroenterology, Zhongshan Hospital, Gastroenterology Institute of Xiamen University, Gastroenterology Center of Xiamen, Xiamen 361003, Fujian Province, China
| | - Dong-Yan Shen
- Department of Biobank, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian Province, China
| |
Collapse
|
181
|
Ding D, Yao Y, Yang C, Zhang S. Identification of mannose receptor and CD163 as novel biomarkers for colorectal cancer. Cancer Biomark 2018; 21:689-700. [PMID: 29226859 DOI: 10.3233/cbm-170796] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dongbing Ding
- Department of Gastrointestinal Surgery, Jingmen First People’s Hospital, Jingmen 448000, Hubei, China
- Department of Gastrointestinal Surgery, Jingmen First People’s Hospital, Jingmen 448000, Hubei, China
| | - Yao Yao
- Department of Ophthalmology, Jingmen First People’s Hospital, Jingmen 448000, Hubei, China
- Department of Gastrointestinal Surgery, Jingmen First People’s Hospital, Jingmen 448000, Hubei, China
| | - Changming Yang
- Department of Anesthesiology, Jingmen First People’s Hospital, Jingmen 448000, Hubei, China
| | - Songbai Zhang
- Department of Gastrointestinal Surgery, Jingmen First People’s Hospital, Jingmen 448000, Hubei, China
| |
Collapse
|
182
|
Rebelo SP, Pinto C, Martins TR, Harrer N, Estrada MF, Loza-Alvarez P, Cabeçadas J, Alves PM, Gualda EJ, Sommergruber W, Brito C. 3D-3-culture: A tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials 2018; 163:185-197. [PMID: 29477032 DOI: 10.1016/j.biomaterials.2018.02.030] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Abstract
The tumour microenvironment (TME) shapes disease progression and influences therapeutic response. Most aggressive solid tumours have high levels of myeloid cell infiltration, namely tumour associated macrophages (TAM). Recapitulation of the interaction between the different cellular players of the TME, along with the extracellular matrix (ECM), is critical for understanding the mechanisms underlying disease progression. This particularly holds true for prediction of therapeutic response(s) to standard therapies and interrogation of efficacy of TME-targeting agents. In this work, we explored a culture platform based on alginate microencapsulation and stirred culture systems to develop the 3D-3-culture, which entails the co-culture of tumour cell spheroids of non-small cell lung carcinoma (NSCLC), cancer associated fibroblasts (CAF) and monocytes. We demonstrate that the 3D-3-culture recreates an invasive and immunosuppressive TME, with accumulation of cytokines/chemokines (IL4, IL10, IL13, CCL22, CCL24, CXCL1), ECM elements (collagen type I, IV and fibronectin) and matrix metalloproteinases (MMP1/9), supporting cell migration and promoting cell-cell interactions within the alginate microcapsules. Importantly, we show that both the monocytic cell line THP-1 and peripheral blood-derived monocytes infiltrate the tumour tissue and transpolarize into an M2-like macrophage phenotype expressing CD68, CD163 and CD206, resembling the TAM phenotype in NSCLC. The 3D-3-culture was challenged with chemo- and immunotherapeutic agents and the response to therapy was assessed in each cellular component. Specifically, the macrophage phenotype was modulated upon treatment with the CSF1R inhibitor BLZ945, resulting in a decrease of the M2-like macrophages. In conclusion, the crosstalk between the ECM and tumour, stromal and immune cells in microencapsulated 3D-3-culture promotes the activation of monocytes into TAM, mimicking aggressive tumour stages. The 3D-3-culture constitutes a novel tool to study tumour-immune interaction and macrophage plasticity in response to external stimuli, such as chemotherapeutic and immunomodulatory drugs.
Collapse
Affiliation(s)
- Sofia P Rebelo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Catarina Pinto
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Tatiana R Martins
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Nathalie Harrer
- Boehringer Ingelheim RCV GmbH & Co KG, Department of Lead Discovery, 1121, Vienna, Austria
| | - Marta F Estrada
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Pablo Loza-Alvarez
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - José Cabeçadas
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Emilio J Gualda
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Wolfgang Sommergruber
- Boehringer Ingelheim RCV GmbH & Co KG, Department of Lead Discovery, 1121, Vienna, Austria
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
183
|
Jiménez-García L, Herranz S, Higueras MA, Luque A, Hortelano S. Tumor suppressor ARF regulates tissue microenvironment and tumor growth through modulation of macrophage polarization. Oncotarget 2018; 7:66835-66850. [PMID: 27572316 PMCID: PMC5341841 DOI: 10.18632/oncotarget.11652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
Tumor microenvironment has been described to play a key role in tumor growth, progression, and metastasis. Macrophages are a major cellular constituent of the tumor stroma, and particularly tumor associated macrophages (TAMs or M2-like macrophages) exert important immunosuppressive activity and a pro-tumoral role within the tumor microenvironment. Alternative-reading frame (ARF) gene is widely inactivated in human cancer. We have previously demonstrated that ARF deficiency severely impairs inflammatory response establishing a new role for ARF in the regulation of innate immunity. On the basis of these observations, we hypothesized that ARF may also regulates tumor growth through recruitment and modulation of the macrophage phenotype in the tumor microenvironment. Xenograft assays of B16F10 melanoma cells into ARF-deficient mice resulted in increased tumor growth compared to those implanted in WT control mice. Tumors from ARF-deficient mice exhibited significantly increased number of TAMs as well as microvascular density. Transwell assays showed crosstalk between tumor cells and macrophages. On the one hand, ARF-deficient macrophages modulate migratory ability of the tumor cells. And on the other, tumor cells promote the skewing of ARF-/- macrophages toward a M2-type polarization. In conclusion, these results demonstrate that ARF deficiency facilitates the infiltration of macrophages into the tumor mass and favors their polarization towards a M2 phenotype, thus promoting tumor angiogenesis and tumor growth. This work provides novel information about the critical role of ARF in the modulation of tumor microenvironment.
Collapse
Affiliation(s)
- Lidia Jiménez-García
- Unidad de Terapias Farmacológicas. Instituto de Investigaciones de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Herranz
- Unidad de Terapias Farmacológicas. Instituto de Investigaciones de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | - María Angeles Higueras
- Unidad de Terapias Farmacológicas. Instituto de Investigaciones de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Luque
- Unidad de Terapias Farmacológicas. Instituto de Investigaciones de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonsoles Hortelano
- Unidad de Terapias Farmacológicas. Instituto de Investigaciones de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
184
|
Li H, Wang JS, Mu LJ, Shan KS, Li LP, Zhou YB. Promotion of Sema4D expression by tumor-associated macrophages: Significance in gastric carcinoma. World J Gastroenterol 2018; 24:593-601. [PMID: 29434448 PMCID: PMC5799860 DOI: 10.3748/wjg.v24.i5.593] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/26/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To study the role of semaphorin 4D (Sema4D) expression promoted by tumor-associated macrophages (TAMs) in gastric carcinoma cells and its clinical significance in the invasion and metastasis of gastric carcinoma. METHODS CD68 and Sema4D expression was analyzed in gastric carcinoma and adjacent normal tissues from 290 patients using the immunohistochemical streptavidin-peroxidase method, and their relationships with clinicopathological features were evaluated. Human M2 macrophages were induced in vitro and co-cultured in non-contact with gastric carcinoma SGC-7901 cells. Changes in the secretory Sema4D level in the SGC-7901 cell supernatant were measured using an enzyme-linked immunosorbent assay. The effects of TAMs on SGC-7901 cell invasion and migration were assessed with invasion and migration assays, respectively. RESULTS CD68 and Sema4D protein expression was significantly higher in gastric carcinoma tissues than in adjacent normal tissues (71.7% vs 33.8% and 74.5% vs 42.8%, respectively; P < 0.01). CD68 and Sema4D protein expression was significantly associated with histological differentiation, TNM stage, and lymph node metastasis (P < 0.05), and their expression levels were positively correlated with one another (r = 0.467, P < 0.01). In the in vitro experiment, secretory Sema4D protein expression was significantly increased in the supernatant of SGC-7901 cells co-cultured with TAMs compared with the blank control (1224.13 ± 29.43 vs 637.15 ± 33.84, P < 0.01). Cell invasion and metastasis were enhanced in the Transwell invasion and migration assays (P < 0.01). CONCLUSION TAMs promote the invasion and metastasis of gastric carcinoma cells possibly through upregulated secretory Sema4D protein expression. Combined detection of TAM markers, CD68 and Sema4D, in gastric carcinoma tissue shows potential to predict the trend of gastric carcinoma progression.
Collapse
Affiliation(s)
- Han Li
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jin-Shen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250012, Shandong Province, China
| | - Lin-Jun Mu
- Department of Emergency Surgery, Weifang People’s Hospital, Weifang 261000, Shandong Province, China
| | - Ke-Shu Shan
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250012, Shandong Province, China
| | - Le-Ping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250012, Shandong Province, China
| | - Yan-Bing Zhou
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
185
|
Parikh N, Shuck RL, Gagea M, Shen L, Donehower LA. Enhanced inflammation and attenuated tumor suppressor pathways are associated with oncogene-induced lung tumors in aged mice. Aging Cell 2018; 17. [PMID: 29047229 PMCID: PMC5771401 DOI: 10.1111/acel.12691] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2017] [Indexed: 01/09/2023] Open
Abstract
Aging is often accompanied by a dramatic increase in cancer susceptibility. To gain insights into how aging affects tumor susceptibility, we generated a conditional mouse model in which oncogenic KrasG12D was activated specifically in lungs of young (3–5 months) and old (19–24 months) mice. Activation of KrasG12D in old mice resulted in shorter survival and development of higher‐grade lung tumors. Six weeks after KrasG12D activation, old lung tissues contained higher numbers of adenomas than their young tissue counterparts. Lung tumors in old mice displayed higher proliferation rates, as well as attenuated DNA damage and p53 tumor suppressor responses. Gene expression comparison of lung tumors from young and old mice revealed upregulation of extracellular matrix‐related genes in young tumors, indicative of a robust cancer‐associated fibroblast response. In old tumors, numerous inflammation‐related genes such as Ccl7,IL‐1β, Cxcr6, and IL‐15ra were consistently upregulated. Increased numbers of immune cells were localized around the periphery of lung adenomas from old mice. Our experiments indicate that more aggressive lung tumor formation in older KrasG12D mice may be in part the result of subdued tumor suppressor and DNA damage responses, an enhanced inflammatory milieu, and a more accommodating tissue microenvironment.
Collapse
Affiliation(s)
- Neha Parikh
- Department of Molecular Virology and Microbiology; Baylor College of Medicine; Houston TX 77030 USA
| | - Ryan L. Shuck
- Department of Molecular Virology and Microbiology; Baylor College of Medicine; Houston TX 77030 USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery; UT MD Anderson Cancer Center; Houston TX 77030 USA
| | - Lanlan Shen
- Children's Nutrition Research Center; Houston TX 77030 USA
| | - Lawrence A. Donehower
- Department of Molecular Virology and Microbiology; Baylor College of Medicine; Houston TX 77030 USA
| |
Collapse
|
186
|
Wogonoside prevents colitis-associated colorectal carcinogenesis and colon cancer progression in inflammation-related microenvironment via inhibiting NF-κB activation through PI3K/Akt pathway. Oncotarget 2018; 7:34300-15. [PMID: 27102438 PMCID: PMC5085157 DOI: 10.18632/oncotarget.8815] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/28/2016] [Indexed: 12/31/2022] Open
Abstract
The inflammatory microenvironment has been reported to be correlated with tumor initiation and malignant development. In the previous studies we have found that wogonoside exerts anti-neoplastic and anti-inflammatory activities. In this study, we aimed to further investigate the chemopreventive effects of wogonoside on colitis-associated cancer and delineated the potential mechanisms. In the azoxymethane initiated and dextran sulfate sodium (AOM/DSS) promoted colorectal carcinogenesis mouse model, wogonoside significantly reduced the disease severity, lowered tumor incidence and inhibited the development of colorectal adenomas. Moreover, wogonoside inhibited inflammatory cells infiltration and cancer cell proliferation at tumor site. Furthermore, wogonoside dramatically decreased the secretion and expression of IL-1β, IL-6 and TNF-α as well as the nuclear expression of NF-κB in adenomas and surrounding tissues. In vitro results showed that wogonoside suppressed the proliferation of human colon cancer cells in the inflammatory microenvironment. Mechanistically, we found that wogonoside inhibited NF-κB activation via PI3K/Akt pathway. In conclusion, our results demonstrated that wogonoside attenuated colitis-associated tumorigenesis in mice and inhibited the progression of human colon cancer in inflammation-related microenvironment via suppressing NF-κB activation by PI3K/Akt pathway, indicating that wogonoside could be a promising therapeutic agent for colorectal cancer.
Collapse
|
187
|
Binnemars‐Postma K, Bansal R, Storm G, Prakash J. Targeting the Stat6 pathway in tumor‐associated macrophages reduces tumor growth and metastatic niche formation in breast cancer. FASEB J 2018; 32:969-978. [DOI: 10.1096/fj.201700629r] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karin Binnemars‐Postma
- Targeted TherapeuticsBiomaterials Science and TechnologyInstitute for Biomedical Technology and Technical Medicine (MIRA)University of TwenteEnschedeThe Netherlands
| | - Ruchi Bansal
- Targeted TherapeuticsBiomaterials Science and TechnologyInstitute for Biomedical Technology and Technical Medicine (MIRA)University of TwenteEnschedeThe Netherlands
| | - Gert Storm
- Department of PharmaceuticsUtrecht UniversityUtrechtThe Netherlands
| | - Jai Prakash
- Targeted TherapeuticsBiomaterials Science and TechnologyInstitute for Biomedical Technology and Technical Medicine (MIRA)University of TwenteEnschedeThe Netherlands
| |
Collapse
|
188
|
Stephen B, Hajjar J. Overview of Basic Immunology and Translational Relevance for Clinical Investigators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 995:1-41. [DOI: 10.1007/978-3-030-02505-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
189
|
Li R, He Y, Zhang S, Qin J, Wang J. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm Sin B 2018; 8:14-22. [PMID: 29872619 PMCID: PMC5985624 DOI: 10.1016/j.apsb.2017.11.009] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
Taking inspiration from nature, the biomimetic concept has been integrated into drug delivery systems in cancer therapy. Disguised with cell membranes, the nanoparticles can acquire various functions of natural cells. The cell membrane-coating technology has pushed the limits of common nano-systems (fast elimination in circulation) to more effectively navigate within the body. Moreover, because of the various functional molecules on the surface, cell membrane-based nanoparticles (CMBNPs) are capable of interacting with the complex biological microenvironment of the tumor. Various sources of cell membranes have been explored to camouflage CMBNPs and different tumor-targeting strategies have been developed to enhance the anti-tumor drug delivery therapy. In this review article we highlight the most recent advances in CMBNP-based cancer targeting systems and address the challenges and opportunities in this field.
Collapse
Key Words
- Biomimetic nanoparticle
- CC, cancer cell
- CMBNPS, cell membrane-based nanoparticles
- CTC, circulating tumor cell
- Cancer targeting
- Cell membrane
- Circulation
- DOX, doxorubicin
- DSPE, distearoyl phosphoethanolamine
- Drug delivery
- EPR, enhanced permeability and retention
- ICG, indocyanine green
- Molecular recognition
- NIR, near infrared
- NPs, nanoparticles
- PLGA, poly (lactic-co-glycolic acid)
- PM-NV, platelet membrane-coated nanovehicle
- PTX, paclitaxel
- RBC, red blood cell
- TDDS, targeting drug delivery system
- TRAIL, tumor necrosis factor-related apoptosis inducing ligand
- VCAM1, vascular cell adhesion molecule-1
Collapse
Affiliation(s)
- Ruixiang Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Yuwei He
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Shuya Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jing Qin
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Institute of Materia Medica, Academy of Chinese and Western Integrative Medicine, Fudan University, Shanghai 201203, China
- Corresponding author at: Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China. Tel.: +86 21 51980088; fax: +86 21 51980002.
| |
Collapse
|
190
|
Willumsen N, Thomsen LB, Bager CL, Jensen C, Karsdal MA. Quantification of altered tissue turnover in a liquid biopsy: a proposed precision medicine tool to assess chronic inflammation and desmoplasia associated with a pro-cancerous niche and response to immuno-therapeutic anti-tumor modalities. Cancer Immunol Immunother 2018; 67:1-12. [PMID: 29022089 PMCID: PMC11028250 DOI: 10.1007/s00262-017-2074-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023]
Abstract
Immuno-therapy has begun to revolutionize cancer treatment. However, despite the significant progress achieved in regard to the duration of clinical benefits, a substantial number of patients do not respond to these therapies. To improve the outcome of patients receiving immuno-therapy, there is a need for novel biomarkers that can predict and monitor treatment. Tumor microenvironment alterations, more specifically the state of chronic inflammation and desmoplasia (tumor fibrosis), are important factors to consider in this context. Here, we discuss the potential for quantification of altered tissue turnover in a liquid biopsy as a proposed precision medicine tool to assess chronic inflammation and desmoplasia in the immuno-oncology (IO) setting. We highlight the need for novel non-invasive biomarkers in IO and the importance of addressing tumor microenvironment alterations. We focus on desmoplasia and extracellular matrix (ECM) remodeling, and how the composition of the ECM defines T-cell permissiveness in the tumor microenvironment and opens up the possibility for associated liquid biopsy biomarkers. Moreover, we address the importance of the assessment of chronic inflammation, primarily macrophage activity, in a liquid biopsy.
Collapse
Affiliation(s)
- Nicholas Willumsen
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 205-207, Herlev, Denmark.
| | - Louise B Thomsen
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 205-207, Herlev, Denmark
| | - Cecilie L Bager
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 205-207, Herlev, Denmark
| | - Christina Jensen
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 205-207, Herlev, Denmark
| | - Morten A Karsdal
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 205-207, Herlev, Denmark
| |
Collapse
|
191
|
Jeong M, Kim HM, Ahn JH, Lee KT, Jang DS, Choi JH. 9-Hydroxycanthin-6-one isolated from stem bark of Ailanthus altissima induces ovarian cancer cell apoptosis and inhibits the activation of tumor-associated macrophages. Chem Biol Interact 2018; 280:99-108. [DOI: 10.1016/j.cbi.2017.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/18/2017] [Accepted: 12/05/2017] [Indexed: 01/22/2023]
|
192
|
Annexin-A1 enhances breast cancer growth and migration by promoting alternative macrophage polarization in the tumour microenvironment. Sci Rep 2017; 7:17925. [PMID: 29263330 PMCID: PMC5738423 DOI: 10.1038/s41598-017-17622-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
Macrophages are potent immune cells with well-established roles in the response to stress, injury, infection and inflammation. The classically activated macrophages (M1) are induced by lipopolysaccharide (LPS) and express a wide range of pro-inflammatory genes. M2 macrophages are induced by T helper type 2 cytokines such as interleukin-4 (IL4) and express high levels of anti-inflammatory and tissue repair genes. The strong association between macrophages and tumour cells as well as the high incidences of leukocyte infiltration in solid tumours have contributed to the discovery that tumour-associated macrophages (TAMs) are key to tumour progression. Here, we investigated the role of Annexin A1 (ANXA1), a well characterized immunomodulatory protein on macrophage polarization and the interaction between macrophages and breast cancer cells. Our results demonstrate that ANXA1 regulates macrophage polarization and activation. ANXA1 can act dually as an endogenous signalling molecule or as a secreted mediator which acts via its receptor, FPR2, to promote macrophage polarization. Furthermore, ANXA1 deficient mice exhibit reduced tumour growth and enhanced survival in vivo, possibly due to increased M1 macrophages within the tumor microenvironment. These results provide new insights into the molecular mechanisms of macrophage polarization with therapeutic potential to suppress breast cancer growth and metastasis.
Collapse
|
193
|
Chen ZE, Wufuer R, Ji JH, Li JF, Cheng YF, Dong CX, Taoerdahong H. Structural Characterization and Immunostimulatory Activity of Polysaccharides from Brassica rapa L. . JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9685-9692. [PMID: 28994289 DOI: 10.1021/acs.jafc.7b03902] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two neutral polysaccharides (BRNP-1, 6.9 kDa; BRNP-2, 4.8 kDa) were purified from the common edible plant Brassica rapa L. via the combined techniques of ion-exchange chromatography and high-performance gel permeation chromatography. Monosaccharide composition analysis showed that BRNP-1 and BRNP-2 were composed of glucosyl residues. Methylation and 1D- and 2D-NMR analyses revealed that both BRNP-1 and BRNP-2 contained a backbone chain that was composed of α-D-(1 → 4)-linked Glcp residues and side chains that were composed of terminally linked Glcp residues attached at the O-6 position of backbone-glycosyl residues. BRNP-1 and BRNP-2, however, differed in branch degree and molecular weight. Bioassay results showed that treatment with the higher dosage (400 μg/mL) of BRNP-1 and BRNP-2 stimulated the proliferation, NO release, and cytokine secretion (IL-6 and TNF-α) of RAW264.7 macrophages. These results suggested that BRNP-1 and BRNP-2 may enhance macrophage-mediated immune responses.
Collapse
Affiliation(s)
- Zhuo-Er Chen
- College of Pharmacy, Xinjiang Medical University , Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Reziyamu Wufuer
- College of Pharmacy, Xinjiang Medical University , Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jin-Hu Ji
- Medical Engineering Technology Institute, Xinjiang Medical University , Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jin-Fang Li
- The Experimental Teach Center, College of HouBo, Xinjiang Medical University , Karamay, Xinjiang Uygur Autonomous Region, China
| | - Yu-Feng Cheng
- College of Pharmacy, Xinjiang Medical University , Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Cai-Xia Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University , Tianjin 300070, China
| | - Hailiqian Taoerdahong
- College of Pharmacy, Xinjiang Medical University , Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
194
|
Abstract
The global incidence of thyroid cancer is increasing, and metastatic spread to the lymph nodes is common in papillary thyroid carcinoma. The metastatic course of thyroid carcinoma is an intricate process involving invasion, angiogenesis, cell trafficking, extravasation, organ specific homing, and growth. A key aspect in this process involves a multitude of interactions between chemokines and their receptors. Chemokines are a group of small proteins, which act to elicit normal physiologic and immune responses principally through recruitment of specific cell populations to the site of infection or malignancy. Thyroid cancer cells, like other tumors, possess the ability to corrupt the chemokine system to their advantage by altering cell movement into the tumor microenvironment and affecting all aspects of thyroid cancer progression.
Collapse
Affiliation(s)
- Sharinie Yapa
- 1 Department of Otolaryngology and Head and Neck Surgery, Castle Hill Hospital , Cottingham, United Kingdom
| | - Omar Mulla
- 1 Department of Otolaryngology and Head and Neck Surgery, Castle Hill Hospital , Cottingham, United Kingdom
| | - Victoria Green
- 2 School of Life Sciences, University of Hull , Hull, United Kingdom
| | - James England
- 1 Department of Otolaryngology and Head and Neck Surgery, Castle Hill Hospital , Cottingham, United Kingdom
| | - John Greenman
- 2 School of Life Sciences, University of Hull , Hull, United Kingdom
| |
Collapse
|
195
|
Zheng X, Hu Y, Yao C. The paradoxical role of tumor-infiltrating immune cells in lung cancer. Intractable Rare Dis Res 2017; 6:234-241. [PMID: 29259850 PMCID: PMC5735275 DOI: 10.5582/irdr.2017.01059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains one of the leading causes of death worldwide, and lung cancers have often already metastasized when diagnosed. Numerous studies have noted the infiltration of immune cells in the lung cancer microenvironment, but these cells play a dualistic role, i.e. they suppress and/or promote tumor development and growth based on tumor progression and different cytokines in the microenvironment. These tumor-infiltrating immune cells create different microenvironments depending on their type and interaction. Chemokines act as a bridge in this process by recruiting immune cells to the tumor site and they regulate the phenotypes and functions of those cells. The current review summarizes current knowledge about the tumor-infiltrating immune cells in lung cancer as well as the mechanisms involved in suppression and promotion of tumor development and growth.
Collapse
Affiliation(s)
- Xiaodan Zheng
- Clinical Laboratory, Wuhan Hankou Hospital, Wuhan, China
| | - Yuhai Hu
- Clinical Laboratory, Wuhan Hankou Hospital, Wuhan, China
| | - Chengfang Yao
- Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to: Dr. Chengfang Yao, Institute of Basic Medicine, Shandong Academy of Medical Sciences, No. 18877 Jingshi Road, Ji'nan 250062, Shandong, China. E-mail:
| |
Collapse
|
196
|
Zarrin B, Zarifi F, Vaseghi G, Javanmard SH. Acquired tumor resistance to antiangiogenic therapy: Mechanisms at a glance. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2017; 22:117. [PMID: 29184575 PMCID: PMC5680657 DOI: 10.4103/jrms.jrms_182_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/03/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022]
Abstract
Angiogenesis is critical for oxygen and nutrient delivery to proliferating tumor cells. Therefore, as angiogenesis is required and vital for the tumor growth and metastasis. Antiangiogenic therapy is considered to be beneficial for tumor growth prevention due to starvation of tumor of oxygen and nutrients, but in some cases, the benefits are not permanent. Tyrosine kinase inhibitors and many other agents often target angiogenesis through inhibition of the vascular endothelial growth factor (VEGF) pathway. Although preclinical studies showed satisfactory outcomes in tumor growth inhibition, antiangiogenic therapy in the clinical setting may not be effective. The resistance observed in several tumor types through alternative angiogenic “escape” pathways contributes to restoration of tumor growth and may induce progression, enhancement of invasion, and metastasis. Therefore, activation of major compensatory angiogenic pathways, sustaining tumor angiogenesis during VEGF blockade contributing to the recurrence of tumor growth overcome antiangiogenic strategies. In this review, we summarize the novel mechanisms involved in evasive resistance to antiangiogenic therapies and represent different cancer types which have the ability to adapt to VEGF inhibition achieving resistance to antiangiogenic therapy through these adaptive mechanisms.
Collapse
Affiliation(s)
- Bahare Zarrin
- Department of Physiology, Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzane Zarifi
- Department of Pharmacology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
197
|
CD163 as a marker of M2 macrophage, contribute to predicte aggressiveness and prognosis of Kazakh esophageal squamous cell carcinoma. Oncotarget 2017; 8:21526-21538. [PMID: 28423526 PMCID: PMC5400603 DOI: 10.18632/oncotarget.15630] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
M2 macrophages was domesticated by tumor microenvironment to produce some angiogenic molecules and protease, facilitating angiogenesis and matrix breakdown, promoting tumor invasive and metastasis. However, The function of M2 macrophages to progression of esophageal carcinoma, especially Kazakh esophageal carcinoma is still dimness. This study aims to investigate M2 macrophages correlated with matrix metalloproteinase-9 (MMP9) and microvessel density, and the role in the progression of Kazakh esophageal squamous cell carcinoma. CD163 and CD34 as the marker of M2 macrophages and endothelial cells, were used to identify the M2 macrophages density and microvessel density, respectively. Immunohistochemistry staining was evaluated the expression of MMP9. The number of infiltrated CD163-positive M2 macrophages in tumor islets and stroma was significantly higher than in cancer adjacent normal tissues. The increased of M2 macrophages and microvessel density were significantly correlated with more malignant phenotypes including lymph node metastasis and clinical stage progression. Meanwhile, the expression of MMP9 showed much higher level in esophageal squamous cell carcinoma than that in cancer adjacent normal tissues, and high expression of MMP9 in Kazakh esophageal squamous cell carcinoma was significantly associated with age, depth of tumor invasion, lymph node metastasis, and tumor clinical stage. The quantity of M2 macrophages in tumor stroma was positively associated with microvessel density and the expression of MMP9, and as an independent poorly prognostic factor for overall survival time of Kazakh esophageal squamous cell carcinoma. These findings suggest the increased number of M2 macrophages correlated with high expression of MMP9 and high microvessel density may contribute to the tumor aggressiveness and angiogenesis, promoting the progression of Kazakh esophageal squamous cell carcinoma.
Collapse
|
198
|
van Attekum MHA, van Bruggen JAC, Slinger E, Lebre MC, Reinen E, Kersting S, Eldering E, Kater AP. CD40 signaling instructs chronic lymphocytic leukemia cells to attract monocytes via the CCR2 axis. Haematologica 2017; 102:2069-2076. [PMID: 28971904 PMCID: PMC5709106 DOI: 10.3324/haematol.2016.157206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/22/2017] [Indexed: 01/23/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells are provided with essential survival and proliferative signals in the lymph node microenvironment. Here, CLL cells engage in various interactions with bystander cells such as T cells and macrophages. Phenotypically distinct types of tumor infiltrating macrophages can either be tumor supportive (M2) or play a role in tumor immune surveillance (M1). Although recent in vitro findings suggest a protective role for macrophages in CLL, the actual balance between these macrophage subsets in CLL lymphoid tissue is still unclear. Furthermore, the mechanism of recruitment of monocytes towards the CLL lymph node is currently unknown. Both questions are addressed in this paper. Immunofluorescence staining of lymph node samples showed macrophage skewing towards an M2 tumor-promoting phenotype. This polarization likely results from CLL-secreted soluble factors, as both patient serum and CLL-conditioned medium recapitulated the skewing effect. Considering that CLL cell cytokine secretion is affected by adjacent T cells, we next studied CLL-mediated monocyte recruitment in the presence or absence of T-cell signals. While unstimulated CLL cells were inactive, T cell-stimulated CLL cells actively recruited monocytes. This correlated with secretion of various chemokines such as C-C-motif-ligand-2,3,4,5,7,24, C-X-C-motif-ligand-5,10, and Interleukin-10. We also identified CD40L as the responsible T-cell factor that mediated recruitment, and showed that recruitment critically depended on the C-C-motif-chemokine-receptor-2 axis. These studies show that the shaping of a tumor supportive microenvironment depends on cytokinome alterations (including C-C-motif-ligand-2) that occur after interactions between CLL, T cells and monocytes. Therefore, targeted inhibition of CD40L or C-C-motif-chemokine-receptor-2 may be relevant therapeutic options.
Collapse
Affiliation(s)
- Martijn H A van Attekum
- Department of Hematology, Academic Medical Center, University of Amsterdam; the Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam; the Netherlands
| | - Jaco A C van Bruggen
- Department of Hematology, Academic Medical Center, University of Amsterdam; the Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam; the Netherlands
| | - Erik Slinger
- Department of Hematology, Academic Medical Center, University of Amsterdam; the Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam; the Netherlands
| | - M Cristina Lebre
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam; the Netherlands
| | - Emilie Reinen
- Department of Hematology, Academic Medical Center, University of Amsterdam; the Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam; the Netherlands
| | - Sabina Kersting
- Department of Hematology, Haga Teaching Hospital, The Hague, the Netherlands
| | - Eric Eldering
- Department of Hematology, Haga Teaching Hospital, The Hague, the Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), the Netherlands
| | - Arnon P Kater
- Department of Hematology, Academic Medical Center, University of Amsterdam; the Netherlands .,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), the Netherlands
| |
Collapse
|
199
|
Peng M, Zhang Q, Cheng Y, Fu S, Yang H, Guo X, Zhang J, Wang L, Zhang L, Xue Z, Li Y, Da Y, Yao Z, Qiao L, Zhang R. Apolipoprotein A-I mimetic peptide 4F suppresses tumor-associated macrophages and pancreatic cancer progression. Oncotarget 2017; 8:99693-99706. [PMID: 29245934 PMCID: PMC5725125 DOI: 10.18632/oncotarget.21157] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/08/2017] [Indexed: 01/07/2023] Open
Abstract
Pancreatic cancer is an aggressive malignancy that is unresponsive to conventional radiation and chemotherapy. Therefore, development of novel immune therapeutic strategies is urgently needed. L-4F, an Apolipoprotein A-I (ApoA-I) mimetic peptide, is engineered to mimic the anti-inflammatory and anti-oxidative functionalities of ApoA-I. In this work, H7 cells were orthotopically implanted in C57BL/6 mice and treated with L-4F. Then, pancreatic cancer progression and the inflammatory microenvironment were investigated in vivo. The cytotoxicity of L-4F toward H7 cells was assessed in vitro. Furthermore, we investigated the effects of L-4F on macrophage polarization by analyzing the polarization and genes of mouse bone marrow-derived macrophages in vitro. The results show that L-4F substantially reduced the tumorigenicity of H7 cells. L-4F inhibited inflammation by reducing the accumulation of inflammatory cells, such as IL-17A-, IL-4-, GM-CSF-, IL-1β-, and IL-6-producing cells and Th1 and Th17. Notably, L-4F also decreased the percentage of macrophages in tumor tissues, especially M2 macrophages (CD11b+F4/80+CD206+), which was also confirmed in vitro. Additionally, the expression of the M2 marker genes Arg1, MRC1, and CCL22 and the inflammatory genes IL-6, iNOS, and IL-12 was decreased by L-4F, indicating that L-4F prevents M2 type macrophage polarization. However, L-4F could not directly attenuate H7 cell invasion or proliferation and did not induce apoptosis. In addition, L-4F potently down-regulated STAT3, JNK and ERK signaling pathways but not affects the phosphorylation of p38 in RAW 264.7 cells. These results suggest that L-4F exhibits an effective therapeutic effect on pancreatic cancer progression by inhibiting tumor-associated macrophages and inflammation.
Collapse
Affiliation(s)
- Meiyu Peng
- Department of Immunology, School of Clinical Medicine, Weifang Medical University, Weifang, China.,Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Qi Zhang
- Institute of Integrative Medicines for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China.,Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Yingnan Cheng
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Shuyu Fu
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China.,Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
| | - Huipeng Yang
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Xiangdong Guo
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Jieyou Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Lina Wang
- Department of Immunology, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Lijuan Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Zhenyi Xue
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Yan Li
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Yurong Da
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Zhi Yao
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Liang Qiao
- Storr Liver Unit, Westmead Institute for Medical Research, the University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China.,Laboratory of Immunology and Inflammation, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
200
|
Song W, Mazzieri R, Yang T, Gobe GC. Translational Significance for Tumor Metastasis of Tumor-Associated Macrophages and Epithelial-Mesenchymal Transition. Front Immunol 2017; 8:1106. [PMID: 28955335 PMCID: PMC5601389 DOI: 10.3389/fimmu.2017.01106] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment determines development and progression of many cancers. Epithelial–mesenchymal transition (EMT) is fundamental to tumor progression and metastasis not only by increasing invasiveness but also by increasing resistance to cell death, senescence, and various cancer therapies; determining inflammation and immune surveillance; and conferring stem cell properties. It does this by enabling polarized epithelial cells to transform into cells with a mesenchymal, and therefore motile, phenotype. Tumor-associated macrophages (TAMs) are key cells of the tumor microenvironment that orchestrate the connection between inflammation and cancer. Activation of EMT often requires crosstalk between cancer cells and components of the local tumor microenvironment, including TAMs. In this review, clinical and experimental evidence is presented for control of TAMs in promoting cancer cell invasion and migration and their interaction with the EMT process in the metastatic cascade. The translational significance of these findings is that the signaling pathways that interconnect TAMs and EMT-modified cancer cells may represent promising therapeutic targets for the treatment of tumor metastasis.
Collapse
Affiliation(s)
- Wenzhe Song
- Faculty of Medicine, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Roberta Mazzieri
- Faculty of Medicine, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Tao Yang
- Discipline of Pathology, The Western Sydney University, Sydney, NSW, Australia.,SydPath, St Vincent's Hospital, Sydney, NSW, Australia
| | - Glenda C Gobe
- Faculty of Medicine, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| |
Collapse
|